
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploiting post-silicon debug hardware to improve the fault coverage of Software Test Libraries / Cantoro, Riccardo;
Garau, Francesco; Masante, Riccardo; Sartoni, Sandro; Singh, Virendra; Reorda, Matteo Sonza. - (2022), pp. 1-7.
(Intervento presentato al  convegno 2022 IEEE 40th VLSI Test Symposium (VTS) tenutosi a San Diego (USA) nel 25-27
Aprile 2022) [10.1109/VTS52500.2021.9794219].

Original

Exploiting post-silicon debug hardware to improve the fault coverage of Software Test Libraries

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/VTS52500.2021.9794219

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2968143 since: 2022-06-17T17:08:55Z

IEEE



Exploiting post-silicon debug hardware to improve
the fault coverage of Software Test Libraries

Riccardo Cantoro∗, Francesco Garau∗, Riccardo Masante∗,
Sandro Sartoni∗, Virendra Singh† and Matteo Sonza Reorda∗

∗Department of Computer and Control Engineering †Department of Electrical Engineering
Politecnico di Torino Indian Institute of Technology Bombay

Turin, Italy Mumbai, India

Abstract—Functional test using a Software Test Library (STL)
is becoming a standard solution for the in-field test of safety-
critical systems, in compliance with functional safety standards,
such as the ISO26262 for the automotive domain. However,
developing high-quality test programs is considerably more chal-
lenging than generating scan test patterns through commercial
tools, mainly due to the lack of mature EDA tools. As a result, in
many cases, the effort needed to reach the target fault coverage
is not affordable. In this paper, we propose a methodology to
improve the fault coverage of an STL using already available
hardware resources. The proposed approach identifies the set of
sequential cells that capture fault effects before being masked
during their propagation towards observable points. Using a
heuristic set covering approach, we select the subset of flip-flops
needed to reach the target fault coverage, and exploit post-silicon
debug hardware to make fault effects observable. Experimental
results gathered on an open-source RISC-V core show significant
improvements in the stuck-at and delay fault coverage values.

Index Terms—software-based self-test, software test libraries,
in-field test, post-silicon debug, safety, functional test

I. INTRODUCTION

Functional test of integrated circuits is becoming a standard
solution to implement in-field test for safety-critical systems.
Such solution is typically developed in the form of Software-
Based Self-Test (SBST) [1], [2], in which the device under test
(DUT) executes Software Test Libraries (STLs), i.e., a collec-
tion of test programs. The results produced while executing
STLs are compacted through software means and compared
against pre-computed signatures to detect structural faults
(e.g., stuck-at faults). SBST is a well-studied topic in academia
and has been proven effective when targeting processor cores
[3]–[11], peripherals [12], [13] and memories [14]. Moreover,
several companies provide STLs as a Functional Safety (FuSa)
solution to test latent faults in the field [15]–[17]. The main
advantages of using SBST solutions are its proven reliability
and flexibility. For example, test engineers can schedule STLs
to run only during idle slots not to interfere with the DUT’s
main mission, hence avoiding service interruptions. Being an
inexpensive technology, as no additional hardware is required,
these properties make functional testing particularly suitable

whenever compliance to the FuSa standards like ISO26262
is needed. However, the development of STLs is very ex-
pensive and requires a significant manual effort. The main
difficulty of this process resides in the necessity of exciting
and propagating fault effects throughout the whole circuit to
observable points, i.e., primary outputs or memory locations,
by only using instructions (test program) from the instruction
set architecture (ISA) [18].

The work in [19] moves the first steps in providing sys-
tematic strategies to automatically improve test programs by
identifying two groups of excited but not observed (NO)
faults. The first group includes faults reaching user-visible
registers, while the other one is composed by faults reaching
to hidden registers. [19] gives preliminary solutions to cover
faults belonging to the first category. Contrarily, covering
faults that are captured by hidden registers through functional
software means is still an open problem. For this reason, we
intend to employ debug hardware that is already available in
SoCs to observe their effects.

This paper presents a mixed hardware/software methodol-
ogy that allows observing fault effects from the latter, hard-
to-test, fault category, targeting transition delay faults (TDFs).
We first perform a fault simulation analysis that extracts spatial
(i.e., at which sequential nodes fault effects stopped propagat-
ing) and temporal (i.e., at what time instant such propagation
occurs) information. Next, based on the availability of features
to support the test, we devise systematic algorithms to evaluate
the best configuration in terms of signals and clock cycles to
look for the aforementioned faults. The main contributions of
this work are:

• a method to identify a set of hard-to-test TDFs through
SBST means, together with a set of internal signals where
such fault effects propagate, paired with timing instants
at which such faults are observed;

• three different approaches to improve the available STL
to detect as many additional faults as possible with as
little resources as possible; and

• integration of available mechanisms (e.g., trace buffers
originally included for post-silicon debug) and SBST
methodologies to support the test engineer developing
STLs while keeping the number of signals observed978-1-6654-1060-1/22/$31.00 ©2022 IEEE



through hardware means at a bare minimum.
Post-silicon debug circuitry is used to efficiently observe

fault effects without adding any timing or area overhead,
as such hardware is already implemented in the DUT. The
proposed methodology is particularly suited for in-field testing.
This can be done provided that the debug infrastructure can
be accessed during the operational phase by another module
belonging to the same system (e.g., at the board level) able
to trigger the test and retrieve the results, and given enough
time to launch the test procedure: the automotive sector, for
instance, has key-on and key-off phases long enough to support
this testing procedure. Moreover, this approach well befits
delay fault testing, as internal signals are observed while STLs
are executed, allowing to apply test vectors at-speed. If the
system to be tested could be equipped with some means
to compact trace buffers’ data into a signature and read it
back, this approach could be extended for online testing as
well. This approach is validated on a RISC-V core, using
available commercial tools and a set of already available
STLs devised for stuck-at faults (SAFs), also evaluated on
TDFs. The reported results highlight the best combinations
of hardware resources capable of recovering all hard-to-test
faults belonging to the aforementioned category and finally
increasing the fault coverage.

The article is organized as follows: in Section II a back-
ground on related works is outlined, while in Section III we
describe the proposed approach. In Section IV we present the
experimental results and, finally, in Section V we draw the
conclusions.

II. BACKGROUND

A. Self-Test Libraries hardening

Improving available test programs to achieve higher fault
coverages is a thoroughly investigated issue, with several
works on this [19]–[22]. [20] presents a methodology to gen-
erate test patterns for online testing starting from verification-
oriented programs. The authors tested the methodology on two
modules, namely the multiplier and hardware loop control of
a RISCV core, reaching, respectively, stuck-at fault coverages
of 99.26% and 80.41%. Although promising, our method does
not require to modify previosuly devised test programs, and
focus on the whole CPU. [21], [22] introduce a tool based on
High-Level Decision Diagrams (HLDDs) capable of modeling
microprocessors and faults, deployed in conjunction with
previously prepared code templates to generate the final test
program. Developing HLDDs for complex cores, however, is
not easy. Moreover, results show this methodologies achieves a
stuck-at fault coverage of 45.26% on a SPARC processor core,
as the authors only focused on the integer arithmetic unit. [23]
shows how, through evolutionary algorithms, it is possible to
increase an initial stuck-at fault coveage of 59% up to a final
99.38% fault coverage on a pipelined SPARCv8 core. This
approach, however, requires 26 hours to run, and makes the
original test program 1.4 times larger. [19], on the other hand,
performs an analysis of not directly observable transition delay

faults in functional mode, identifying those that can be tested
through few instructions added to the original STL and those
that require significantly more effort by the test engineer. Such
analysis is versatile and can easily be applied to other fault
models, but it currently lacks a strategy to observe the latter,
hard-to-test, fault category.

B. Trace Buffers

Numerous works examine in-depth the post-silicon debug
topic [24]–[27]. [24] presents data compaction algorithms that
allow obtaining fine-grained error localization through a two-
session-based debugging methodology. It uses a trace buffer
of size 32kB, in various configurations of number of selected
signals and clock cycles used, i.e., 32 signals for 1000 cycles
or 128 signals for 256 cycles. Work [25] introduces a technique
for capturing debug data when errors are known to be present,
thus extending the capacity of trace buffers that do not need
to capture error-free data. Article [26] aims at reducing debug
time by proposing an on-chip error detection method capable
of identifying time windows in which errors are present,
selectively capturing data, and reducing the number of debug
sessions. Finally, [27] presents a scheme to minimize stalls
due to trace buffers’ limited size, slowing down the whole
debugging process. Even though these works demonstrate the
effectiveness of post-silicon debug in modern architectures,
they apply these methodologies on the whole processor core.

In this work, we re-use the existing debug infrastructures
for test purpose and to carefully pick signals to be observed.
We pick only those signals at which effects of hard-to-observe
faults propagate and stop. In this way the number of signals
to observe is significantly reduced. Experimental results show
that a high percentage of the previously excited but undetected
faults can be detected by intelligently selecting the signals to
be observed. To the best of our knowledge, this is the first
article that aims at improving transition delay fault coverage
of test programs previously devised by combining SBST
and post-silicon debug methodologies for pipelined processor
cores.

III. PROPOSED APPROACH

Starting from an STL previously developed for the DUT, the
basic idea behind this work is to first analyze the STL run and
identify the pipeline flip-flops (FFs) where the effects of faults
which are not detected by the STL propagate. We then propose
some methods to cleverly select subset of FFs to monitor
during the STL execution, with the purpose of increasing
the aforementioned STL fault coverage. No minimum fault
coverage from STLs is required for this methodology to work;
however, for this methodology to be effective, many not-
observed transition delay faults must be present, as it often
happens in practice [19]. The approach is based on two steps.
First, a fault-dictionary is generated to identify which hidden
pipeline FFs can capture which faults. Then, a post-processing
procedure identifies a subset of those flip-flops to monitor.
Such a subset can be fixed or variable in time, according to



the features available to support the test. The two steps are
described in the following two Subsections.

A. Generation of fault dictionary

A fault dictionary can be generated using commercial fault
simulators. The dictionary reports all points and times where
each fault propagated its effects, until the fault is possibly
dropped. To efficiently generate a fault dictionary, we propose
an approach based on two fault simulation steps:

1) Run a fault simulation on the whole DUT using test
vectors obtained by the execution of the STL, and extract
all NO faults.

2) Run without fault-dropping whenever possible, or an n-
detection fault simulation on the combinational logic of
the DUT, using the set of faults previously identified
and observing the pseudo-primary outputs connected
to hidden flip-flops (i.e., pipeline registers). Generate a
fault dictionary using all gathered information.

No fault-dropping allows to recover the largest amount of
faults. Nevertheless, depending on the architecture of the DUT,
it may lead to computational intensive fault simulations and
generate large dictionaries. Such issue is solved by using an
n-detection fault simulation. The resulting fault dictionary will
include information on faults that have been observed on the
selected flip-flops and not detected at DUT level.

B. Selection procedure

The fault dictionary generated in the previous step is pro-
cessed to identify a subset of flip-flops to monitor. Selecting
the subset of flip-flops to monitor does not affect critical paths
within the DUT, as we are using hardware that is already
present inside the SoC (i.e., the debug infrastructure), thus
not affecting timing performances. The debug infrastructure
is used to increase fault effects observability, in a transparent
mode.

We identify three possible scenarios, which result in three
different selection strategies:

1) A non-programmable hardware infrastructure can mon-
itor a certain number of flip-flops (e.g., by compacting
their values using a Multiple-Input Shift register, or
MISR) selected at design time.

2) A programmable hardware infrastructure can monitor a
certain number of flip-flops.

3) A programmable hardware infrastructure can trace a
certain number of flip-flops for some clock cycles.

The first scenario requires identifying the subset of flip-flops
to observe during the whole STL run. A simple procedure
to determine such a subset is reported in Algorithm 1. At
each iteration, the greedy algorithm selects the flip-flop which
increase the fault coverage the most, until a target fault
coverage Cmin is reached or all the flip-flops are selected.
A threshold can be included to stop after selecting a certain
number of flip-flops.

The other two scenarios are addressed by Algorithm 2,
which produces a list of configurations. Each configuration
corresponds to a list of flip-flops and the time to reconfigure

Algorithm 1: Fixed flip-flop selection
input : A pair (D, Cmin) where

D is a list of triplets (Fi,Pi,Ti) where
Fi is a fault
Pi is a flip-flop where a Fi is captured
Ti is the time when Fi is captured in Pi

Cmin is a target coverage of recoverable faults
output: A set of flip-flops to observe
S := empty list of flip-flops;
while coverage < Cmin or D is not empty do

Pmax ← flip-flop with most distinct faults in D;
add Pmax to S;
remove all elements with Pmax from D;

end
return S

the hardware infrastructure. Eventually, the user can omit
timing information (highlighted in blue in the pseudo-code)
to deal with the second scenario, leading to configurations
that can be kept for an arbitrary amount of clock cycles.
This algorithm, although more complex, closely reflects the
behavior of post-silicon debug circuitry, and is capable of
providing more accurate and efficient results. The algorithm
works on a fault dictionary ordered by time and adopts a first-
come first-served (FCFS) policy. It starts filling a configuration
with flip-flops while removing faults observed by them and
keeping track of the insertion time. This is done as long as
there is space in the trace buffer. When the configuration is
full, either in terms of time slots or number of flip-flops, other
faults captured at the same time of the last fill are discarded,
as per FCFS policy. At that time, when a new time instant is
encountered, the algorithm stores the configuration and moves
to the next one, until reaching the target fault coverage or the
end of the dictionary.

IV. EXPERIMENTAL RESULTS

A. Case study

The methodology introduced in this paper has been vali-
dated on PULPino [28], a 32-bit RISCV-based SoC platform
developed by ETH Zurich and Università di Bologna. The
DUT has been synthesized using the 45nm Silvaco Open
Cell library [29] and accounts for 51,001 NAND2-equivalent
gates, 187,857 stuck-at faults (SAF) and transition delay faults
(TDF), and 1,207 flip-flops belonging to hidden registers.

With regards to the adopted test programs, we selected a
set of five different STLs developed with the aim of testing
stuck-at faults on the adopted core, referenced here as STL1
to STL5. The reason for choosing this test set lies in the fact
that mature techniques to develop SAFs oriented STLs are
available, hence being a good starting point for testing TDFs.
These five test programs have been developed by distinct
teams following various strategies. Table I summarizes the
most relevant data of the adopted STLs, i.e., the test Duration
in clock cycles, the memory footprint of the test program
(Size), the number of Detected faults (SAF and TDF), the Fault
coverage, and the maximum number of additional faults which
can be detected using the proposed approach (Recoverable
faults); the last pair of columns reports such numbers in



Algorithm 2: Variable flip-flop selection
input : A quadruplet (D, Lmax, Tmax, Cmin) where

D is a list of triplets (Fi,Pi,Ti) where
Fi is a fault
Pi is a flip-flop where a Fi is captured
Ti is the time when Fi is captured in Pi

Lmax is the max number of flip-flops to select
Tmax is the max observation time
Cmin is a target coverage of recoverable faults

output: A list of pairs (Sj , Tj) where Sj is a set of
flip-flops to select at time Tj

S := empty set of flip-flops;
R := empty list of (set of flip-flops, time) ;
U ← all untested faults in D;
order D by time;
while coverage < Cmin or D is not empty do

(Pnext, Fnext, Tnext) ← extract first el. from D;
if Fnext in U then

if (Length (S) < Lmax or Pnext in S) and
Tnext − Tflush < Tmax then

remove Fnext from U ;
if Pnext not in S then

add Pnext to S;
end
Tadd ← Tnext;

else if Tnext > Tadd then
add (S, Tflush) to R;
remove Fnext from U ;
clean S and add Pnext;
Tadd ← Tnext;
Tflush ← Tnext;

end
end

end
return R

percentage of the total number of faults (Recoverable FC).
Since all STLs were developed to tackle SAFs, we have similar
stuck-at fault coverages, while for TDFs STL2 is significantly
less effective than the others, although all fault coverages are
not very high. However, we purposely report TDF figures to
show the scalability of the proposed approach.

B. Experimental setup

Fault simulations have been carried out using Synopsys
Z01X, a commercial tool devised specifically for FuSa. As
a result, the full flow of top-level and combinational level
stuck-at and transition delay fault simulations took no longer
than 5 hours on an Intel Xeon CPU E5-2680 v3 server with
a clock frequency up to 3.3GHz. The second fault simulation
performed on the combinational logic has been conducted by
dropping each fault after 50 detections, which led to fault
dictionaries not larger than 15MB. The two post-processing
algorithms were developed in Python and require few seconds
to analyze each fault dictionary.

C. Algorithm 1

Let us start first by analyzing data obtained when Algo-
rithm 1 is applied, as showed in Fig. 1. First, we present and
discuss results achieved on TDFs as this fault model is the
main goal of the article, followed by those achieved on SAFs.

Testing a slow-to-rise TDF on a net implies testing the relative
stuck-at-0, and the same applies to slow-to-fall and stuck-at-
1 faults: for this reason, improving the transition delay fault
coverage enhances the stuck-at one as a byproduct.
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Fig. 1. Undetected TDFs and SAFs faults recovered using a fixed selection
of pipeline flip-flops to monitor.

Each graph reports the percentage of recovered faults, i.e.,
faults that become detected (y-axis) when a given percentage
of flip-flops are monitored (x-axis). The TDF graph (above)
shows the results for all STLs. Starting with the curve for
STL2, we see that it has a quite steep slope at the very
beginning, allowing to recover more than 80% of TDFs by
observing just 2.24% of all flip-flops. It is noted, however,
that the transition delay fault coverage of this test program
was quite low to begin with as shown in Table I, and the
curve, once reached this value, markedly changes its slope,
requiring 63.30% of all flip-flops to reach 100%.

Looking at other test programs, detecting 50% of faults
requires observing 28% for STL1, 8.5% for STL3, 12% for
STL4 and 15% for STL5 of all flip-flops. Moving to the 75%
mark, we must monitor a percentage of flip-flops equal to 50%
for STL1, 17% for STL3, and about 30% for STL4 and STL5.
As for the previous case, trying to detect all the excited but
not detected TDFs requires a significant number of flip-flops
to be observed, the worst case scenario being 78% for STL1.



TABLE I
STLS GENERAL INFORMATION

Program Duration
[clock c.]

Size
[kB]

Detected faults Recoverable faults Fault coverage % Recov. FC (% total)

SAF TDF SAF TDF SAF TDF SAF TDF

STL1 17, 308 27.32 151, 558 117, 758 4, 581 7, 669 81.66 63.09 2.44 4.08
STL2 31, 158 27.86 152, 269 75, 826 2, 842 31, 338 82.02 40.74 1.51 16.68
STL3 80, 455 16.68 152, 801 118, 374 2, 327 3, 161 82.32 63.41 1.24 1.68
STL4 64, 541 36.04 160, 149 119, 367 4, 213 5, 007 86.22 63.94 2.24 2.67
STL5 118, 137 35.61 156, 038 123, 060 3, 412 3, 562 84.03 65.91 1.82 1.90

TABLE II
EXPERIMENTAL RESULTS ON TRANSITION DELAY FAULTS USING VARIABLE FLIP-FLOP SELECTION

Program #Configurations Recovered transition delay faults Recovered transition delay fault coverage %

Bits
Slots 16 32 64 128 inf. 16 32 64 128 inf. 16 32 64 128 inf.

STL1

4 551 531 515 510 503 4,547 4,514 4,517 4,515 4,531 59.29 58.86 58.90 58.87 59.08
8 359 328 311 298 288 5,473 5,434 5,427 5,383 5,384 71.37 70.86 70.77 70.19 70.20

16 249 221 197 179 164 6,377 6,338 6,336 6,285 6,346 83.15 82.64 82.62 81.95 82.75
32 198 159 133 112 90 7,259 7,175 7,195 7,176 7,099 94.65 93.56 93.82 93.57 92.57
64 173 123 90 65 40 7,591 7,538 7,534 7,495 7,453 98.98 98.29 98.24 97.73 97.18

128 166 112 75 48 16 7,669 7,669 7,609 7,589 7,503 100.00 100.00 99.22 98.96 97.84

STL2

4 936 890 865 847 835 21,877 21,652 21,492 21,163 21,137 69.81 69.09 68.58 67.53 67.45
8 619 553 498 471 451 26,567 26,341 26,117 26,090 25,938 84.78 84.05 83.34 83.25 82.77

16 477 395 323 278 234 29,976 29,912 29,837 29,595 29,362 95.65 95.45 95.21 94.44 93.69
32 400 304 217 165 88 31,048 31,058 30,994 30,971 30,993 99.07 99.11 98.90 98.83 98.90
64 378 277 191 132 30 31,272 31,215 31,182 31,177 31,197 99.79 99.61 99.50 99.49 99.55

128 377 273 186 123 13 31,338 31,338 31,336 31,248 31,266 100.00 100.00 99.99 99.71 99.77

STL3

4 161 160 160 159 158 1,652 1,652 1,652 1,648 1,648 52.26 52.26 52.26 52.14 52.14
8 104 102 102 101 100 2,050 2,049 2,049 2,043 2,043 64.85 64.82 64.82 64.63 64.63

16 64 61 60 60 58 2,477 2,456 2,456 2,456 2,440 78.36 77.70 77.70 77.70 77.19
32 44 38 38 37 35 2,797 2,801 2,805 2,805 2,793 88.48 88.61 88.74 88.74 88.36
64 30 22 20 19 18 3,069 2,986 2,988 2,988 3,021 97.09 94.46 94.53 94.53 95.57

128 28 16 12 9 8 3,134 3,148 3,139 3,095 3,099 99.15 99.59 99.30 97.91 98.04

STL4

4 587 560 536 507 466 3,614 3,607 3,598 3,599 3,573 72.18 72.04 71.86 71.88 71.36
8 418 386 358 320 258 4,188 4,180 4,164 4,151 4,088 83.64 83.48 83.16 82.90 81.65

16 331 289 249 214 136 4,616 4,603 4,581 4,561 4,441 92.19 91.93 91.49 91.09 88.70
32 286 238 201 155 67 4,816 4,813 4,810 4,864 4,722 96.19 96.13 96.07 97.14 94.31
64 266 220 176 133 29 5,004 5,005 4,955 4,954 4,927 99.94 99.96 98.96 98.94 98.40

128 262 216 171 126 13 5,007 5,007 5,004 5,004 4,979 100.00 100.00 99.94 99.94 99.44

STL5

4 669 643 598 570 504 3,380 3,375 3,378 3,378 3,362 94.89 94.75 94.83 94.83 94.39
8 457 421 365 330 246 3,514 3,497 3,506 3,507 3,489 98.65 98.18 98.43 98.46 97.95

16 366 319 262 224 114 3,556 3,554 3,554 3,550 3,548 99.83 99.78 99.78 99.66 99.61
32 328 277 219 180 53 3,562 3,530 3,530 3,530 3,528 100.00 99.10 99.10 99.10 99.05
64 322 269 204 162 24 3,562 3,562 3,562 3,562 3,558 100.00 100.00 100.00 100.00 99.89

128 319 265 202 158 11 3,562 3,562 3,562 3,560 3,562 100.00 100.00 100.00 99.94 100.00

Looking at SAF curves, some of them present significant
differences with respect to the TDF case. Such differences
can be explained by noting that the available STLs have been
developed keeping the stuck-at fault model in mind. Covering
50% of excited but not detected SAFs requires to observe 10%
of flip-flops for STL2 and 3, 18% of flip-flops for STL4 and
STL5, and more than 20% for STL1. However, if we increase
the amount of recovered SAF faults to 75%, we must observe
29% of all flip-flops for STL2, STL3, and STL5, 38% of flip-
flops for STL4 and 44% for STL1. If we aim at recovering all
SAF faults, we need to monitor 58% of flip-flops for STL2,
STL3, and STL5, 68% for STL4 and 80% for STL1. In the
worst case scenario we would have to observe 960 flip-flops
for the whole duration of the test procedure.

D. Algorithm 2
Results of Algorithm 2 are reported in Tables II and III

for TDFs and SAFs, respectively. These tables report data on

recoverable faults with respect to the trace buffer width (Bits),
and the number of clock cycles during which a configuration
of observed flip-flops is kept (Slots). The value inf. defined
for Slots means that there is no fixed number of clock cycles
for the trace buffer to observe, hence the configuration can
be kept for as many clock cycles as necessary; this situation
implies for example the presence of a MISR to compact the
values of the monitored flip-flops.

Although different in absolute values, Tables II and III
report very similar trends for all test programs. To get more
into details, it is possible to see that the larger the trace buffer
width, the higher the amount of recovered faults: providing
128 bits, a size usually adopted with trace buffers, allows to
recover all TDFs and SAFs in almost every case. Looking at
TDFs, 32-bits trace buffers are required to observe more than
90% of faults, with the sole exception of STL3, where we can
only recover about 84% of faults with minimal fluctuations



TABLE III
EXPERIMENTAL RESULTS ON STUCK-AT FAULTS USING VARIABLE FLIP-FLOP SELECTION

Program #Configurations Recovered stuck-at faults Recovered stuck-at fault coverage %

Bits
Slots 16 32 64 128 inf. 16 32 64 128 inf. 16 32 64 128 inf.

STL1

4 464 452 444 438 429 3,793 3,783 3,781 3,785 3,756 82.80 82.58 82.54 82.62 81.99
8 302 281 270 258 250 4,291 4,278 4,300 4,279 4,260 93.67 93.39 93.87 93.41 92.99

16 198 171 155 145 131 4,476 4,484 4,481 4,464 4,399 97.71 97.88 97.82 97.45 96.03
32 148 118 98 85 66 4,523 4,516 4,524 4,496 4,506 98.73 98.58 98.76 98.14 98.36
64 126 92 71 56 32 4,581 4,568 4,531 4,536 4,541 100.00 99.72 98.91 99.02 99.13
128 117 84 58 43 15 4,581 4,581 4,572 4,572 4,557 100.00 100.00 99.80 99.80 99.48

STL2

4 370 362 352 350 334 2,600 2,600 2,600 2,601 2,592 91.48 91.48 91.48 91.52 91.20
8 236 223 211 203 185 2,794 2,793 2,791 2,790 2,793 98.31 98.28 98.21 98.17 98.28

16 150 138 127 116 93 2,795 2,793 2,793 2,793 2,790 98.35 98.28 98.28 98.28 98.17
32 106 97 85 75 46 2,841 2,841 2,841 2,841 2,841 99.96 99.96 99.96 99.96 99.96
64 90 75 62 53 23 2,842 2,802 2,842 2,842 2,842 100.00 98.59 100.00 100.00 100.00
128 83 67 54 44 11 2,842 2,842 2,842 2,842 2,842 100.00 100.00 100.00 100.00 100.00

STL3

4 244 243 243 242 242 1,753 1,753 1,753 1,749 1,749 75.33 75.33 75.33 75.16 75.16
8 155 154 154 153 153 2,111 2,115 2,115 2,111 2,111 90.72 90.89 90.89 90.72 90.72

16 86 82 81 81 81 2,236 2,212 2,213 2,213 2,223 96.09 95.06 95.10 95.10 95.53
32 50 44 42 42 42 2,296 2,302 2,302 2,302 2,295 98.67 98.93 98.93 98.93 98.62
64 31 24 22 21 20 2,315 2,314 2,309 2,309 2,315 99.48 99.44 99.23 99.23 99.48
128 24 16 12 12 9 2,298 2,297 2,297 2,297 2,295 98.75 98.71 98.71 98.71 98.62

STL4

4 476 461 451 440 417 3,598 3,598 3,603 3,603 3,601 85.40 85.40 85.52 85.52 85.47
8 319 300 284 267 238 3,983 3,983 3,983 3,978 3,969 94.54 94.54 94.54 94.42 94.21

16 213 189 169 154 123 4,103 4,106 4,106 4,103 4,114 97.39 97.46 97.46 97.39 97.65
32 164 140 117 102 59 4,212 4,061 4,061 4,061 4,165 99.98 96.39 96.39 96.39 98.86
64 140 115 92 78 29 4,213 4,213 4,213 4,213 4,187 100.00 100.00 100.00 100.00 99.38
128 131 105 82 67 14 4,213 4,213 4,213 4,213 4,213 100.00 100.00 100.00 100.00 100.00

STL5

4 461 445 427 415 385 2,995 2,995 2,995 2,994 2,993 87.78 87.78 87.78 87.75 87.72
8 322 299 277 257 219 3,278 3,278 3,278 3,278 3,276 96.07 96.07 96.07 96.07 96.01

16 240 212 186 167 116 3,376 3,376 3,376 3,376 3,379 98.94 98.94 98.94 98.94 99.03
32 190 158 136 113 58 3,411 3,411 3,411 3,411 3,410 99.97 99.97 99.97 99.97 99.94
64 168 138 116 92 29 3,412 3,412 3,412 3,412 3,411 100.00 100.00 100.00 100.00 99.97
128 162 130 107 82 14 3,412 3,412 3,412 3,412 3,412 100.00 100.00 100.00 100.00 100.00

due to the different timing slots; when dealing with SAFs, on
the other hand, even 16 bits trace buffers allow to observe
more than 90% of faults. Let us focus now on STL3, only:
even in the best case scenario, the greedy algorithm does not
achieve 100% coverage. The reason for this lies in how this
STL is implemented: this test program provides a large amount
of faults to be observed at the same time, which translates in a
large amount of flip-flops to be monitored by the trace buffer.
If there are more flip-flops to be monitored than the maximum
trace buffer size, this will inevitably lead to the discard of
some of them, having some untested faults as a consequence.
More sophisticated search algorithms could be implemented
to try to recover this situation, or to prove those faults are
untestable using a single STL run. Please note that further
STL runs would allow the full detection of recoverable faults.
Finally, if we take a look at the table values with respect
to the time slots, we see that the smaller the slot size the
higher the final coverage. This is expected, as shorter slots
allow for more configurations, hence observing more signals
throughout the whole test procedure. Results from the inf.
column fluctuate and are slightly better or slightly worse than
those achieved by having time slots of 128 and, in some cases,
64 clock cycles. This can be traced back to the peculiarities
of the single test program. Some STLs might require more
frequent configuration changes to achieve higher coverages, a

feature that cannot be achieved when large observation slots
are scheduled with no flexibility.

V. CONCLUSIONS

This work introduced a systematic methodology to identify
and detect hard-to-test, not directly observable in functional
mode transition delay faults in complex pipelined processor
cores through SBST. Our methodology assumes that the test
is based on STLs. First, it identifies a set of excited but still
unobserved faults through fault simulation, then produces a
configuration schedule for available monitoring features like
programmable trace buffers by means of carefully devised
algorithms. We have shown with experimental results that
a fixed selection of the signals to monitor does not allow
to efficiently detect hard-to-test faults, while the proposed
variable selection is capable of detecting 100% of the targeted
transition delay and stuck-at faults for 4 out of 5 STLs,
given enough configurations and 128 bits of trace buffer size.
Even in the worst case scenario, we recover 99.15% of TDFs
and 98.75% of SAFs. If such size cannot be afforded, 32
bits trace buffers still achieve significant results and can be
considered the best trade-off in terms of size vs. coverage. The
proposed solution aims at showing how to adopt trace buffers
to easily increase the final fault coverage for in-field testing.
Future works will include developing strategies for concurrent
testing.
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