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Abstract: For a photovoltaic (PV) generator, knowledge of the parameters describing its equivalent 

circuit is fundamental to deeply study and simulate its operation in any weather conditions. In the 

literature, many papers propose methods to determine these parameters starting from experiments. 

In the most common circuit, there are five of these parameters, and they generally refer to specific 

weather conditions. Moreover, the dependence on irradiance and temperature is not investigated 

for the entire set of parameters. In fact, a few papers present some equations describing the depend-

ence of each parameter on weather conditions, but some of their coefficients are unknown. As a 

consequence, this information cannot be used to predict the PV energy in any individual weather 

condition. This work proposes an innovative technique to assess the generated energy by PV mod-

ules starting from the knowledge of their equivalent parameters. The model is applied to a highly 

efficient PV generator with all-back contact, monocrystalline silicon technology, and rated power of 

370 W. The effectiveness of the model is investigated by comparing its energy prediction with the 

value estimated by the most common model in the literature to assess PV energy. Generated energy 

is predicted by assuming PV power to be constant for a time interval of 1 min. 

Keywords: high efficiency PV module; equivalent parameters; single diode model; parameters ex-

traction; simulated annealing; Nelder–Mead; Osterwald model; energy prediction 

 

1. Introduction 

In recent years, energy demand has been rapidly increasing due to many factors, in-

cluding the urbanization process and the increasing human population. Despite fossil 

fuels still supplying most of the energy demand, one of the actual challenges is reducing 

pollution by improving the exploitation of renewable energy sources (RES), and, thus, the 

self-sufficiency [1] and self-consumption [2] by RES-based systems. In this context, the 

most important and reliable technology is the photovoltaic (PV) device thanks to its low 

installation, operation, and maintenance costs [3], its absence of polluting emissions, and 

its high availability [4]. 

Researchers in the PV sector are focusing on different lines of research, and one of 

the most important is the determination of the parameters in equivalent circuits [5], aim-

ing to fully describe the performance of PV modules. The knowledge of these parameters 

is fundamental to deeply study and simulate the operation of a PV generator in any 

weather condition. Indeed, the current–voltage (I–V) curve of a PV generator can be traced 

starting from these quantities. Moreover, this information can be used in many applica-

tions such as mismatch studies in complex grid-connected PV systems [6,7], performance 

investigation of maximum power point trackers (MPPTs) under different weather condi-

tions [8,9] or in reliability studies to reduce the maintenance operations in PV plants [10]. 

In this field, many models and algorithms are proposed in the literature to determine the 
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equivalent parameters starting from experimental I-V curves [11]. The proposed models 

can be of three types: empirical, analytical [12], or evolutionary [13]. The first category is 

created starting from the observation of experimental data; it does not include complex 

models, but it may provide unrealistic results and large experimental datasets are re-

quired to minimize this risk. Analytical models are mathematical models able to provide 

a closed-form solution, i.e., the solution is estimated using systems of analytic functions 

[14]. They provide fast, stable, and exact solutions [15], however, their efficiency signifi-

cantly decreases under certain conditions, e.g., in case of nonlinear problems. Finally, evo-

lutionary models are effective solutions to investigate the performance related to the de-

sign and optimization of complex problems [16]. They use optimization algorithms, and 

they are applicable to complex geometries and nonlinear problems. However, the pro-

vided solutions are approximated, and the solving process may be complex and requires 

a high computational cost [17]. In the PV context, numerical models are, generally, used 

because they permit us to determine the parameters of equivalent circuits at any condi-

tion. In particular, the most common algorithms are the Levenberg–Marquardt [18], the 

simulated annealing (SA) [19], the Nelder–Mead (NM) [20], the Newton–Raphson [21], 

the genetic [22], and the particle swarm optimization algorithms [23]. 

This work uses a numerical model and proposes an innovative technique to assess 

the generated energy by PV modules starting from the knowledge of their equivalent pa-

rameters. The model is applied to a highly efficient PV generator with all-back contact 

technology and rated power of 370 W. The quality of the model is investigated by estimat-

ing the energy generated by the module: these data are compared with the experiments 

and with the prediction by the most common model in the literature to assess PV energy 

[24]. 

The paper is organized as follows: Section 2 describes the main steps of the proposed 

methodology. Section 3 presents the measurement system to acquire the current–voltage 

(I–V) curve of the PV module under test. In Section 4, the main electrical specifications of 

the tested module are reported. Section 5 presents the results of the methodology, while 

Section 6 contains the conclusions. 

2. Innovative Methodology 

The present paper proposes an innovative methodology to assess the generated en-

ergy by PV generators. This technique aims to provide lower deviations from experi-

mental data with respect to the model commonly used in the literature. This method con-

sists of four steps. The flowchart of the procedure is reported in Figure 1. 

 

Figure 1. Flowchart of the methodology. 
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2.1. Step #1—Data Preprocessing 

Experimental data may be affected by mismatch, shading, measurement errors, or 

other issues. In this step, proper filters are applied to the dataset under analysis to exclude 

I–V curves affected by these issues. In this work, the I–V curves are traced by charging an 

external capacitive load. However, after the closing of the circuit, fast current peaks and 

fluctuations may occur with low voltage across the capacitor terminals due to internal 

parasitic parameters (typically, junction capacitance and, sometimes, inductance linked to 

the series connection of many cells). Therefore, the first filter aims to remove these current 

peaks and fluctuations. In the present work, at the beginning of the acquisition, the capac-

itor is negatively pre-charged. This procedure permits current peaks and fluctuations 

when the voltage across the terminals of the capacitive load is still negative. Hence, this 

filter excludes I-V points with V < 0. 

Then, a weighted reduction of experimental points may be performed to make the 

distribution of points in the curves almost uniform between the short-circuit and the open-

circuit states. The voltage step between each I-V point is computed, and the data are fil-

tered in order to keep a specific number of points in each curve. In this work, each I-V 

curve consists of 200 points. 

A third filter based on the evaluation of the monotonicity index Imon for the curves is 

applied to remove I-V curves affected by mismatch or mechanical defects (i.e., cracks). For 

each curve, Imon, which ranges between 0 and 1 (perfectly monotonic curve), is computed 

as follows: 

𝐼mon = |∑
𝑓(𝐼k+1 − 𝐼k)

𝑁 − 1

𝑁−1

𝑘=1

| 

𝑓(𝐼k+1 − 𝐼k) = 1 𝑖𝑓 𝐼k+1 > 𝐼k 

𝑓(𝐼k+1 − 𝐼k) = 0 𝑖𝑓 𝐼k+1 = 𝐼k 

𝑓(𝐼k+1 − 𝐼k) = −1 𝑖𝑓 𝐼k+1 < 𝐼k 

(1) 

where Ik and Ik+1 are the kth and (k+1)th current values in the I-V curve, respectively, and N 

is the number of points of each characteristic curve. 

Finally, an additional filter removes the curves acquired under variable irradiance 

and wind speed (vwind). This filter computes the irradiance difference ∆G between the val-

ues at the beginning (Ginit) and at the ending (Gend) of the I-V curve tracing, removing the 

curves with: 

∆𝐺
𝐺init

⁄ > 3%, 𝑣𝑤𝑖𝑛𝑑 > 5 𝑚
𝑠⁄  (2) 

2.2. Step #2—Parameters Extraction 

The I-V curve of PV generators can be described by proper equivalent circuits with 

different parameters. In this step, the five parameters of the single diode model (SDM) 

[25] are numerically determined using proper algorithms. First, the following acceptance 

ranges for the five parameters of the SDM are set (Table 1): 

Table 1. Suggested acceptance ranges for the parameters of the SDM. 

Parameter Range 

Iph 0–15 A 

I0 0–10−3 A 

n 0–4 

Rs 0–1 Ω 

Rsh 0–20,000 Ω  



Solar 2022, 2, FOR PEER REVIEW 4 
 

 

Measurements with numerically determined parameters not included in these ranges 

will be excluded from the analysis. 

Then, the main constraints of the adopted algorithms are set. In this case, a cascading 

combination of the simulated annealing and Nelder–Mead algorithms is used. Indeed, the 

convergence of the Nelder–Mead algorithm is not guaranteed because its behavior in the 

neighborhood of local minima of the objective function is not optimal. For this reason, 

first, the simulated annealing algorithm is applied to identify an initial set of parameters 

for the Nelder–Mead algorithm sufficiently far from local minima. The suggested con-

straints for the two algorithms are the following in Table 2: 

Table 2. Suggested constraints for the SA/NM algorithms. 

Tolerance 10−30 

Maximum number of iterations 10,000 

The initial values for the parameters of the SDM are analytically determined accord-

ing to the method proposed in Section II of [26]. Then, the parameters are numerically 

determined with the algorithms by solving the following equation of the SDM: 

𝐼 = 𝐼ph − 𝐼0 ∙ (𝑒
𝑞∙𝑉j

𝑛∙𝑘B∙𝑇 − 1) − 
(𝑉 + 𝑅s𝐼)

𝑅sh
⁄  (3) 

where q is the electron charge (1.6∙10−19 C), kB is the Boltzmann constant (1.38∙10−23 

J/K), Vj is the voltage across the terminals of the p-n junction, Iph is the photogenerated 

current, I0 is the reverse saturation current, n is the diode ideality factor, Rs is the series 

resistance, and Rsh is the shunt resistance. 

Finally, their values are validated. First, it is verified that the obtained parameters are 

included in the acceptance ranges of step #2a. Then, the I–V curve is traced according to 

previous equation using the obtained parameters, and the power deviation ∆P at the max-

imum power point is evaluated. Curves with ∆P > 1% are excluded from the analysis. The 

flowchart of step #2 is reported in Figure 2. 

 

Figure 2. Flowchart of step #2. 
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2.3. Step #3—Nonlinear Regression 

As previously mentioned, the equations describing the dependency of each parame-

ter on weather conditions are the following [18]: 

𝐼ph = 𝒂 ⋅ [1 + 𝛼 ⋅ (𝑇c − 𝑇c,STC)] ⋅
𝐺

𝐺STC
 (4) 

where α is the temperature coefficient for short-circuit current (1/K), Tc is PV temperature, 

Tc,STC is 25 °C, G is solar is solar irradiance (W/m2), GSTC is 1000 W/m2, a is the coefficient to 

be optimized, which is the photogenerated current at STC. 

𝐼0 = 𝒃 ⋅ (
𝑇c

𝑇c,STC
)

3

⋅ exp ((
𝐸g,STC

𝑇STC
−

𝐸g(𝑇c)

𝑇c
) ⋅

1

𝑘B
 ) (5) 

where Eg(Tc) and Eg,STC are the energy gap of the semiconductor material evaluated 

at temperature Tc and at STC, respectively. The coefficient b will be optimized, and it cor-

responds to the reverse saturation current at STC. 

𝑛 = 𝒄 + 𝒅 ⋅ 𝐺 + 𝒆 ⋅ 𝑇𝑐 (6) 

The behavior of n is not clear in the literature. Thus, a polynomial dependence on G 

and Tc is supposed by means of coefficients c, d and e. This assumption will be valid ac-

cording to the results of step #3. 

𝑅s = 𝒇 ⋅
𝑇c

𝑇c,STC
⋅ (1 − 𝒈 ⋅ log (

𝐺

𝐺STC
)) (7) 

where g is an adimensional coefficient quantifying the dependence of Rs on G, while 

the coefficient f is the series resistance at STC. 

𝑅sh = 𝒉 ⋅
𝐺STC

𝐺
 (8) 

where h corresponds to the shunt resistance at STC. 

However, [18] does not provide information regarding the green coefficients. In this 

step, these coefficients are numerically determined and optimized: nonlinear regressions 

are applied using iterative least squares estimations starting from the parameters deter-

mined from the experiments. In particular, the following least squares indicator needs to 

be minimized: 

min ∑(𝑦i,exp − 𝑦i,mod)
2

𝑁

𝑖=1

 (9) 

This indicator evaluates the deviation between the generic parameter from experi-

ments (yi,exp) and the parameter estimated by the model (yi,mod) at the ith couple of weather 

condition (irradiance and temperature). Its minimization is iterative and permits to iden-

tify the optimal coefficients in green. 

2.4. Step #4—Power and energy estimation 

This step consists of using the optimized equations to evaluate, for each weather con-

dition (irradiance and temperature) from the experimental campaign, the maximum PV 

power, and the generated energy in the campaign. For each measurement, the correspond-

ing weather conditions are used to estimate the values of the parameters for the SDM 

according to the optimized equations from previous step. Then, the I–V curves are traced 

by solving Equation (3), and the maximum power is identified. This value is compared 

with the experimental data and with the corresponding quantity estimated by the most 

common model used in the literature, i.e., the Osterwald model (OM) [24]: 

𝑃 =  𝑃STC ∙ 𝐺
𝐺STC

⁄ ∙ (1 + 𝛾 ∙ ∆𝑇) (10) 
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where PSTC is the rated power in STC, γ is the temperature coefficient for power (pro-

vided by the manufacturer), and ∆T = (Tc − 25 °C). Finally, the generated energy is com-

puted by assuming PV power to be constant for an extended time interval (1 min) with 

respect to the duration of the transient charging of the capacitor (<<1 s at high irradiance). 

The deviations between the experimental data and the values estimated by the different 

models are calculated as: 

∆𝐸opt =  
(𝐸opt − 𝐸exp)

𝐸exp
⁄  (11) 

∆𝐸opt =  
(𝐸Ost − 𝐸exp)

𝐸exp
⁄  (12) 

where Eopt and EOst are the energy values evaluated by the optimized equations and 

by the OM, respectively, and Eexp is the quantity from experiments. 

3. Measurement System 

Four procedures can be adopted to trace the I-V curve of PV generators and they are 

based on different principles of operation to control the current provided by the PV mod-

ule between the short-circuit (V = 0, I = Isc) and the open-circuit state (V = Voc, I = 0) [27]. In 

particular, they are based on the transient charge of a capacitive load, on a resistive load 

with variable resistance, on an electronic load, or on a MPPT. 

In this work, the first method is used: the PV generator feeds a capacitive load that is 

initially discharged. In the circuit, a power breaker permits control of the opening and 

closing of the circuit. When the breaker closes the circuit, the load is fulfilled by the PV 

generator from short-circuit to open-circuit conditions. A common issue with this method 

is that current peaks may occur at the beginning of the charging transient, i.e., immedi-

ately after the circuit is closed. A common practice is to exclude this first part of the ac-

quired signals from subsequent analyses. However, this operation leads to a loss of infor-

mation close to the short-circuit point. To solve this issue, a negative pre-charge may be 

applied to the capacitive load: this procedure permits current peaks when voltage is still 

negative. As a consequence, the excluded region of the I–V curve is not of interest and the 

loss of information is avoided. The capacitance of the capacitive load must be properly 

selected as a function of the desired duration of the charging transient t. Indeed, according 

to [28], this quantity is a function of the short-circuit current Isc, the open-circuit voltage 

Voc, the number of parallel-connected PV strings Np, the number of PV modules in series 

per string Ns (each module consists of Nc series-connected cells), and the capacitance C of 

the capacitor in the following way: 

𝑡 = 1.82 ∙ 𝐶 ∙
𝑁s ∙ 𝑉oc

𝑁p ∙ 𝐼sc
 (13) 

During the measurement of single PV modules, a capacitor with C equal to 10 mF is 

suggested in order to achieve a transient duration between 0.1 and 0.2 s. In this work, the 

I-V curves of the PV module are traced using an automatic data acquisition system 

(ADAS) to store simultaneously the irradiance G, the air temperature Ta, and the current 

and voltage signals. The acquisition of the I–V curves is performed with a capacitive load, 

and the duration of its charging transient is < 1 s at each irradiance level. The ADAS is 

periodically calibrated and it consists of the components listed below [29]: 

● A notebook PC with a LabVIEW software to emulate a digital storage oscilloscope. 

● A multifunction data acquisition board with one A/D converter (successive approxi-

mation technology, 16 bit-resolution, sampling rate up to 1.25 MSa/s, maximum in-

put of ±10 V, internal amplifier gains for lower ranges) and multiplexer. 

● A differential voltage probe with two attenuation ratios 20:1 and 200:1 for voltage 

levels up to 140 V and 1400 V, respectively. 
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● Two current probes (Hall effect) with an output sensitivity of 100 mV/A for current 

values up to ±30 A, one for current measurement and the other one for trigger source. 

● A pyranometer to acquire irradiance with uncertainty < 2%. 

● A thermometer to acquire ambient temperature. 

● A temperature probe to acquire the temperature on the rear side of the module. 

● A capacitive load with capacitance equal to 10 mF. 

The schematic of the measurement circuit is presented in Figure 3. 

 

Figure 3. Schematic of the measurement circuit. 

4. PV Module under Test 

The procedure presented in this work is applied to an all-back contact monocrystal-

line PV module. The performance of the module was tested before applying the proposed 

technique: in particular, the I-V curve of the module was determined at standard test con-

ditions (STC) and it was compared with the data provided by the manufacturer. Moreo-

ver, an electroluminescence (EL) test [30] was performed to check the presence of defects 

or mechanical cracks. In particular, the power deviation with respect to manufacturer data 

is in the uncertainty range of the measurement system, and the EL image in Figure 4 con-

firms the absence of defects and cracks. According to the manufacturer datasheet, the 

main electric parameters of the analyzed PV module are summarized in Table 3. 

  
(a) (b) 

Figure 4. PV module under test in visible light (a) and during the EL test (b). 

+

Data aquisition board

v(t) i(t)
+ +- -

PV 
generator

V

A +−

+

−

PC

USB

G

Ta

C

breaker



Solar 2022, 2, FOR PEER REVIEW 8 
 

 

Table 3. Electrical parameters of PV module from manufacturer datasheet. 

Rated power PPV 370 W 

Short-circuit current Isc 10.82 A 

Open-circuit voltage Voc 42.8 V 

Current temperature coefficient α 0.04%/°C 

Voltage temperature coefficient β −0.24%/°C 

Power temperature coefficient γ −0.3%/°C 

Nominal Operating Cell Temperature NOCT 44 °C 

Number of cells in series Nc 60 

5. Results 

The experimental campaign of the module under analysis took place at the Politec-

nico di Torino (Turin, Italy) in 2021 from March to May, being tested in different weather 

conditions (62 I–V curves acquired). Figure 5 shows the distribution of the irradiance (yel-

low bars) and module temperature (blue bars) levels at which the PV performance was 

measured. 

  
(a) (b) 

Figure 5. Irradiance (a) and module temperature (b) distribution. 

In particular, the irradiance levels range between ≈150 W/m2 and ≈1100 W/m2, while 

the module temperature is in the range ≈25 °C−≈60 °C. Moreover, the temperature of the 

module and the wind speed were checked before each test in order to perform the meas-

urements under constant module temperature and in absence of wind. Regarding the nu-

merical extraction of the parameters, a combination of the simulated annealing and the 

Nelder–Mead algorithms was adopted. Figure 6 shows the distribution of the normalized 

root mean square error (NRMSE) for the I–V curve and of the error at the maximum power 

point (MPP). The first quantity estimates the deviation between the experimental data and 

the curve determined by the parameters of the equivalent circuit, and it is evaluated as 

follows: 

𝑁𝑅𝑀𝑆𝐸 =

√∑ (𝐼i,mod − 𝐼i,exp)
2𝑁

𝑖=1

𝑁

∑ 𝐼i,exp
𝑁
𝑖=1

𝑁

⋅ 100 
(14) 

where Ii,exp is the current value for the ith point of the I-V curve from experiments, and 

Ii,mod is the corresponding current value calculated by the model using the parameters of 

the equivalent circuit. The second parameter is the percentage deviation between the 

power evaluated at the MPP from experiments and using the parameters. 
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(a) (b) 

Figure 6. Distribution of NRMSE for the I-V curve (a) and of the error at the MPP (b). 

The numerical extraction was properly performed, obtaining most of NRMSEs < 

6∙10−3 and most of the errors at the MPP are in the range −0.5% − +0.5%. The results of step 

#3 are presented in Figure 7. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) 

Figure 7. Parameters of the equivalent circuit as functions of G and Tc: Iph (a), I0 (b), n (c,d), Rs (e,f), 

and Rsh (g). 

The optimized equations (blue curves) and the parameters from experiments (red 

dots) are presented for each quantity. The optimized coefficients are reported in Table 4. 

Table 4. Coefficients of the optimized equations. 

a 10.47 A 

b 4.17∙10−8 A 

c 2.48 

d 7.37∙10−4 m2/W 

e −4.62∙10−3 1/K 

f 0.0037 Ω 

g 17.19 

h 112.1 Ω 

The effectiveness of the technique is validated by estimating the generated PV power 

in the measurement conditions. These values (blue curve in Figure 8) are compared with 

the experiments (green dots) and with the prediction by the OM (red curve). The tech-

nique performs better than Osterwald, providing a NRMSE in power prediction of 6.7%. 

The improvement with respect to the Osterwald error (9.1%) is ≈26%. The energy estima-

tion is performed by assuming constant PV power in a time interval of 1 min. The pro-

posed model underestimates the generated energy (∆Eopt = −0.19%), while the prediction 

by the OM is overestimated (∆EOst = +8.28%) with respect to the experiments. In a future 

work, this method will be applied to wider experimental datasets. Figure 9 presents the 

irradiance and air temperature distribution for a reference year in Turin (hourly updated, 

for a PV installation with azimuth = 0° and tilt angle = 30°) during sunlight hours. 
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Figure 8. Power prediction from the technique and OM vs. experiments. 

  
(a) (b) 

Figure 9. Irradiance (a) and air temperature (b) distribution (reference year in Turin). 

According to Figure 8, the Osterwald model performs better in the irradiance range 

≈600–≈800 W/m2: however, according to Figure 9, most of irradiance levels (≈86%) are not 

included in this range. Thus, the proposed model is expected to outperform the Osterwald 

model with wider datasets as well. 

6. Conclusions 

For a PV generator, the knowledge of its equivalent parameters is fundamental to 

deeply study and simulate its operation in any weather condition. In the literature, many 

papers propose methods to extract these parameters from measurements. However, gen-

erally, they refer to specific weather conditions, and their dependence on irradiance and 

temperature is not investigated. Moreover, a few papers present some equations describ-

ing the dependence of each parameter on weather conditions, but some of their coeffi-

cients are unknown. As a consequence, this information cannot be used to predict the PV 

energy in any weather condition. This work proposes an innovative technique to assess 

the generated energy by PV modules starting from the knowledge of their equivalent pa-

rameters. The model is applied to a highly efficient PV generator with all-back contact, 

monocrystalline silicon technology, and rated power of 370 W. An experimental campaign 

was carried out for this module at Politecnico di Torino (Turin, Italy) in three months of 

2021. The module was tested under a wide range of irradiance (width of 850 W/m2) and 

module temperature (35 °C width of the range). Starting from the equations known in the 

literature to describe the dependency of each parameter on weather condition, experi-

mental data were used to optimize the values of their coefficients. The PV power gener-
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ated during the experimental campaign was estimated according to these optimized equa-

tions and with the Osterwald model. The deviations with respect to the experiments are 

quantified by evaluating the corresponding NRMSE for power estimation and estimating 

the energy deviations from experimental data. The results show that the optimized equa-

tions outperform the Osterwald model, reducing the NRMSE on power prediction by 

≈26%. Moreover, regarding energy prediction, the error by the model (−0.19%) is noticea-

bly lower than Osterwald (+8.28%). In the future, this method will be applied to wider 

experimental datasets, and is expected to outperform the Osterwald model in this condi-

tion as well. Finally, in future works, more PV modules will be tested, and the risk of 

overfitting will be minimized by proposing different sets of coefficients for different 

groups of PV modules. The classification of the modules will be performed according to 

some criteria (for example, according to the manufacturing date, the rated power, the po-

sition of the electrical contacts or other properties). 
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