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Abstract. Sleep Disorders have received much attention in recent years,
as they are related to the risk and pathogenesis of neurodegenerative
diseases. Notably, REM Sleep Behaviour Disorder (RBD) is considered
an early symptom of alpha-synucleinopathies, with a conversion rate to
Parkinson’s Disease (PD) up to 90%. Recent studies also highlighted
the role of disturbed Non-REM Slow Wave Sleep (SWS) in neurodegen-
erative diseases pathogenesis and its link to cognitive outcomes in PD
and Dementia. However, the diagnosis of sleep disorders is a long and
cumbersome process. This study proposes a method for automatically
detecting RBD from single-channel EEG data, by analysing segments
recorded during both REM sleep and SWS. This paper inspects the un-
derlying microstructure of the two stages and includes a comparison of
their performance to discuss their potential as markers for RBD. Ma-
chine Learning models were employed in the binary classification be-
tween healthy and RBD subjects, with an 86% averaged accuracy on a
5-fold cross-validation when considering both stages. Besides, SWS fea-
tures alone proved promising in detecting RBD, scoring a 91% sensitivity
(RBD class). These findings suggest the applicability of an EEG-based,
low-cost, automatic detection of RBD, leading to potential use in the
early diagnosis of neurodegeneration, thus allowing for disease-modifying
interventions.

Keywords: EEG · Machine Learning · Sleep Disorders · RBD · REM
Sleep Behaviour Disorder · Automatic Classification

1 Introduction

Sleep is a transient state of altered consciousness opposed to wake, and provides
a restorative function to the human organism. Given its complex nature, it is a
reservoir of significant clinical data. Human sleep cyclically alternates between
two different states – which also entail two different kinds of brain activity:
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rapid-eye movement sleep (REM) and non-REM sleep (NREM). The latter,
according to the American Academy of Sleep Medicine (AASM) guidelines, is
further divided into three stages, from light to deep: N1, N2 and Slow Wave
Sleep (SWS) [1]. REM Sleep, on the contrary, exhibits mixed features and is
often referred to as paradoxical sleep; it supports memory consolidation and
is characterised by skeletal muscle atonia, as well as electrical brain activity
resembling wake [21].

It has been demonstrated that the quality of both REM and SWS contributes
to neurological outcomes in older adults [20], and their disruption not only leads
to sleep disorders, but plays a role in the pathogenesis of neurodegenerative
diseases.

Recent studies highlighted the role of sleep in clearing toxic metabolites –
such as Amyloid-β – from the brain [14]. This occurs primarily during SWS
through the glymphatic system, which is instead inhibited throughout wakeful-
ness [28]. Consequently, poor sleep is associated to a variety of Sleep Disorders,
which, in turn, entail a lower Quality of Life (QoL) [15], as well as an increased
risk for neurodegeneration.

Sleep disorders may manifest in different ways. Among these, REM Sleep
Behaviour Disorder (RBD), a REM parasomnia characterised by lack of physi-
ological muscle atonia during REM Sleep [18], features a prevalence of approxi-
mately 2% in the elderly population worldwide [9]. RBD in its isolated phenotype
is considered an early prodrome of α-synucleinopathy – e.g., Parkinson’s Disease
(PD), Dementia with Lewy Bodies (DLB) and multiple system atrophy [10, 23];
indeed, the phenoconversion rate to PD is around 90% [7].

Polysomnography (PSG) is the gold standard to diagnose sleep disorders.
It consists in recording various biosignals during sleep; including the electroen-
cephalogram (EEG), pivotal to assess sleep stages, the electromyogram (EMG),
and the electrooculogram (EOG). However, a PSG exam is costly and cumber-
some; besides, the recordings are manually scored by a sleep technologist, thus
significantly hindering the diagnostic process. Different studies undertook the
automatic classification of sleep disorders through Machine Learning (ML) algo-
rithms, in an attempt to accelerate and support the diagnosis [12]. They either
employed PSG features [27] – i.e., clinical variables descriptive of the quality
of sleep – or PSG biosignals [26]. Automatic RBD detection has also been ad-
dressed, primarily through EMG features [4, 5], but also relying on EEG data
only [3]. This study aims at performing an automatic classification between
healthy and RBD subjects, based on single-channel EEG. Features extracted
from the REM and SWS segments are input to ML models, in order to explore
their applicability and determine which of the two stages is more relevant to the
application at hand. To this end, in this work the feature sets derived from the
two stages are analysed both separately and collectively.
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2 Materials and Methods

2.1 Subjects and Data

For the purpose of this work, both a public and a private datasets were employed.
The public dataset is the CAP Sleep Database [25], available on PhysioNet [8].
It includes PSG recordings of 22 subjects affected by RBD (19 males, aged 70
± 6 years) and 16 healthy subjects (9 males, aged 32 ± 5 years). The record-
ings were studied along with the provided manual annotations of sleep stages,
scored according to the AASM standards [1]. The additional data for this study
were taken from a private dataset – the Turin Sleep Disorders Database (TuSDi
Database) – encompassing PSG recordings of 10 healthy subjects (6 males, aged
37 ± 16 years) and 10 RBD subjects (8 males, aged 62 ± 6 years). Data were col-
lected at the Center for Sleep Disorders at Molinette Hospital (Turin, Italy); the
procedure has been conducted in accordance with the Declaration of Helsinki and
approved by the Ethics Committee of A.O.U. Città della Salute e della Scienza
di Torino (approval No. 00384/2020). Informed consent for observational study
was obtained from the participants. Inclusion criteria were suspected or diag-
nosed RBD, with polysomnographic evidence of REM Sleep Without Atonia;
exclusion criteria included dementia or other psychiatric conditions that could
affect the correct execution of the PSG exam. All participants received detailed
information on the study purpose and execution, and informed consent was ob-
tained.

PSG recordings in the TuSDi Database were manually scored and annotated
by a sleep technologist, according to the AASM standards. To sum up, this work
considered for the analysis 26 healthy and 32 RBD subjects.

Being a single-channel EEG classification, only the recordings from the cen-
tral EEG channel have been employed. Therefore, the C3-A2 channel (or C4-A1,
if the former was not available) was selected for the subsequent analysis. Given
the aim of the study, only sleep segments related to the REM stage and SWS
were taken into account for the feature extraction step, detailed in Section 2.3.

2.2 Data pre-processing

First of all, the sleep segments’ duration was inspected; all subjects presented
with at least 5 minutes of REM episodes and SWS and were therefore included in
the study. The majority of EEG signals were collected at a sampling frequency of
512 Hz; signals presenting with a different sampling frequency were resampled
at 512 Hz. This work relies on raw EEG data, meaning that the analysis did
not require additional processing such as artefact removal or spatial filtering.
However, in order to decrease high-frequency noise, all recordings have been
pre-processed through a low-pass, zero-phase Chebyschev Type 1 Filter (cut-
off frequency: 40 Hz). To prevent the acquisition conditions from affecting the
analysis, the signals amplitude was converted to µV .
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2.3 Feature Extraction

In this work, a total of 367 features were extracted. The features comprised both
polysomnographic features – i.e., clinical parameters that describe the overall
sleep structure – and features extracted from the EEG during REM and SWS
segments. The feature extraction procedure is detailed in the following para-
graphs.

Polysomnographic Features As previously introduced, a first set of polysomno-
graphic variables was computationally extracted from the hypnogram – i.e., the
sleep scoring array. This set consists of variables that are commonly employed
by sleep experts to assess overall sleep structure and quality – e.g., Sleep On-
set Latency (SOL), Sleep Efficiency (SE); other parameters that describe the
architecture of sleep stages – e.g., the proportion of each stage per sleep time,
Minutes of REM Sleep (MREM), Minutes of SWS (MSWS) – and, lastly, vari-
ables that describe the variability within sleep stages and the sleep fragmentation
– e.g., Arousal Index (ARI), Sleep Transition Index (STI). The complete set of
employed polysomnographic features is presented in Table 1, and a detailed def-
inition is provided for each parameter.

Electroencephalographic Features Electroencephalographic features were
extracted from the available central EEG channel (C3-A2 or C4-A1) from both
REM and SWS segments, respectively. The features were extracted in three do-
mains: Time, Frequency and Non-Linear. Given the fact that the AASM criteria
score sleep by inspecting the EEG signal in 30 s epochs, the data in this study
were analysed accordingly. Therefore, each sleep segment (i.e., REM or SWS)
was divided into 30 s epochs, and time-domain features were extracted from each
epoch. Spectral (i.e., frequency-domain) and Non-Linear features were extracted
on 2 s sub-epochs and then averaged across the corresponding 30 s macro-epoch,
thus ensuring stationarity for the EEG signal as well as a reasonable spectral
resolution. At the end of the feature extraction process, for each variable, the
values corresponding to the 30 s epochs were assembled into one feature array,
and three statistics were computed – i.e., mean value, standard deviation (STD)
and 75th percentile. A list of the employed EEG features is provided in Table 2,
grouped according to their domain – i.e., Time, Frequency or Non-Linear.

Temporal features mainly account for the information provided by the am-
plitude of the signal or its waveform. For the purpose of this work, the latter is
evaluated through the Form (FF), Crest (CF) and Impact factors (IF), defined
in Equations (1), (2), (3) – where x is the considered signal.

FF =
xRMS

|x|mean
(1)

CF =
xpeak

xRMS
(2)
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Table 1. Polysomnographic features employed in the study, along with their acronym
and description.

Feature (Acronym) Description

Sleep Onset Latency (SOL) The amount of time required to fall asleep
(minutes)

Wake After Sleep Onset (WASO) The amount of time the subject is awake
during the night (minutes)

Total Sleep Time (TST) Total hours of sleep

Time in bed (TIB) Lights-off to lights-on interval (hours)

Sleep Efficiency (SE) The percentage of time spent asleep while
in bed (%)

Arousal Index (ARI) Frequency of occurrence of arousals

Minutes of REM Sleep (MREM) Total duration of REM Sleep (minutes)

Minutes of SWS Sleep (MSWS) Total duration of SWS (minutes)

Proportion of N1 Sleep (PN1) N1 Sleep per TST (%)

Proportion of N2 Sleep (PN2) N2 Sleep per TST (%)

Proportion of SWS Sleep (PN3) SWS Sleep per TST (%)

Proportion of REM Sleep (PNR) REM Sleep per TST (%)

NREM Fragmentation Index (NFI) A measure of the number of transitions
from NREM to any other NREM stage per
hour of NREM sleep

REM Fragmentation Index (RFI) A measure of the number of transitions
from REM to any other sleep stage per
hour of REM

Wake Proportion (WP) Awake time during the night (%)

Sleep Transition Index (STI) A measure of the number of transitions
from REM to NREM (and vice versa) per
hours of sleep

Average Length N1 (ALN1) Average length of N1 segments (minutes)

Average Length N2 (ALN2) Average length of N2 segments (minutes)

Average Length SWS (ALN3) Average length of SWS segments (minutes)

Average Length REM (ALREM) Average length of REM segments (min-
utes)
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IF =
xpeak

|x|mean
(3)

The Hjorth Parameters – i.e., Activity, Mobility, Complexity – were also
computed on the EEG signal and its first- and second-order derivatives. They
are defined in Equations (4), (5), (6).

Activity = var(x) (4)

Mobility =

√
var(dxdt )

var(x)
(5)

Complexity =
Mobility(dxdt )

Mobility(x)
(6)

As regards the spectral features, the Power Spectral Density (PSD) was es-
timated on each mini-epoch through the Welch Periodogram (50% overlap, 1
s Hamming Window). Then, statistics on the power spectrum density (PSD)
were computed, the mean and median frequencies were retrieved, as well as the
absolute and relative powers for each clinically relevant EEG band and entropy
measures. The Teager-Kaiser Energy Operator was also computed on the mini-
epochs, for the whole available spectrum (0–40 Hz), as previously introduced in
[17].

Sleep Substructure Features Though previously introduced as homogeneous
states, both the REM Sleep and SWS stages are characterised by an underly-
ing substructure. In particular, the REM stage features two micro-states: the
tonic stage (TREM) and the phasic stage (FREM) [22]. In further detail, aside
from the diversity regarding the morphology of the signal, the two aforesaid
micro-states significantly differ from a spectral point of view. In fact, as also
presented in [17], the FREM and TREM micro-states lie in the frequency ranges
2–8 Hz and 7–16 Hz, respectively; these two sub-bands are noteworthy for fea-
ture extraction purposes. Likewise, deep sleep – i.e., SWS – presents with an
underlying substructure, with the 1 Hz threshold being particularly significant.
While commonly and clinically located in the δ-band (0.5–4 Hz), SWS is indeed
further divided into two sub-bands: slow oscillations (SOs) and slow-wave activ-
ity (SWA). From a spectral point of view, SOs are the slowest waves of deep sleep
(< 1 Hz), whereas SWA lies in the 1–4 Hz range [2]. Recent works highlighted
the significance of this dychotomy in relation to Amyloid-β aggregation [14]. In
particular, the latter shows positive correlation with the SWA frequency range;
thus proving its significance in the neurodegeneration process. In accordance
with these statements, additional features regarding the spectral substructure of
the REM and SWS stages were extracted, and are listed in Table 3.
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Table 2. Employed features, along with the domain and proper reference. ⋄: adapted
from the cited study, †: first proposed in this study.

Category Feature (Name and description) Reference

Time

Amplitude metrics: mean, standard deviation, skewness,
kurtosis, range, maximum and minimum value

various

Zero Crossing Rate [24]

Hjorth Parameters [13]

Percentiles (25th, 75th, 95th) various

Form, Crest and Impact Factors various

Coastline [29]

Frequency

Fast Fourier Transform: numerical and statistical measures
(mean and median frequencies, total power, ...)

various

Spectral Edge Frequencies (SEF25, SEF75, SEF95) ⋄[17]

Spectral Edge Frequencies differentials (75 − 25, 95 − 25,
95− 50)

†

Absolute Power for each clinically relevant band
(δ, θ, α, β, γ)

various

Relative Power for each clinically relevant band (δ, θ, α, β, γ) various

Entropy measures ⋄[17]
Non-Linear Teager-Kaiser Energy Operator: numerical and statistical

measures
⋄[11]

Table 3. Additional spectral features, extracted according to sleep sub-structure. ⋄:
adapted from the cited study, †: first proposed in this study.

Sleep Stage Feature Reference

REM stage
Absolute and Relative Power in TREM, FREM ⋄[17]

Mean, Median Frequencies and Spectral Percentiles
(SEFx) in TREM, FREM

⋄[17]

Total Power Ratio TREM/FREM ⋄[17]

Slow Wave Sleep
Absolute and Relative Power in SO, SWA ⋄[19]

Mean, Median Frequencies, Spectral percentiles
(SEFx), statistical measures in SO, SWA

†
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2.4 Data post-processing and Feature Sets

Section 2.3 described the steps employed in the feature extraction process. Ow-
ing to the fact that the extracted features belong to diverse domains – e.g.,
clinical scores and computational parameters – Z-score normalization was ap-
plied to the whole feature set (367 features), thus transforming the features to
the continuous range [0, 1]. This procedure allowed the feature arrays to follow
a normal distribution, easing the subsequent implementation of distance-based
measures and classifiers.

At the end of the post-processing steps, three feature sets (FeatSeti) are
obtained:

– FeatSet1: Polysomnographic + REM Sleep features;
– FeatSet2: Polysomnographic + Slow Wave Sleep features;
– FeatSet3: Polysomnographic + REM Sleep + Slow Wave Sleep features.

The three feature sets are then used for binary classification purposes, in an
attempt to discriminate between healthy and RBD subjects.

2.5 Feature Selection

As regards Feature Selection, a minimal-optimal approach was adopted, which
aims at selecting the set of features that, once grouped, have the highest predic-
tive power. The employed feature selection method is the Minimum Redundancy
Maximum Relevance (mRMR) [16], based on Pearson Correlation and F-test,
which maximises the mutual information provided by the features in spite of
their redundancy. This method ranks the features according to their relevance
to the target variable. The resulting top-5 features for each subset are shown in
Table 4. As appreciable, when considering FeatSet3 (i.e., REM, SWS + PSG),
three features out of five belong to SWS.

2.6 Classification

The aim of this work was to perform an automatic binary classification between
healthy and RBD subjects. To this end, supervised Machine Learning methods
were applied to the three feature sets presented in Section 2.4. Four different
models were tested, namely: Support Vector Machine (SVM), K-Nearest Neigh-
bour (KNN), Naive-Bayes (NB), Decision Tree (DT), along with an ensemble
method, Bootstrap Aggregating (BAG). The latter is a meta-algorithm specifi-
cally designed to reduce variance within the dataset, thus preventing overfitting.
The model randomly samples the original dataset, creating from such different
sub-sets; it then parallel-trains the sub-sets separately and finally yields pre-
diction scores based on majority voting. As regards the other models, a brief
description follows:

– SVM: it aims at finding the hyperplane which best separates data of the
two classes, while maximising the margin – i.e., the distance between the
data points (support vectors) and the hyperplane.
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Table 4. Top-5 ranked features with the mRMR feature selection method, in all three
employed feature sets. For FeatSet3: ⋆ REM features, ◦ SWS features

FeatSet Top-5 Features

FeatSet1 (PSG + REM)

Relative Power (α)
Minutes in REM Sleep
WASO

Mobility (2nd order)
SEF75

FeatSet2 (PSG + SWS)

Relative Power SWA (75th pctl)
Relative Power (θ), STD
Relative Power (α), STD
Minimum Amplitude

Median (75th pctl)

FeatSet3 (PSG + SWS + REM)

Relative Power SWA (75th pctl), ◦
Relative Power (θ), STD, ◦
Mobility (2nd order), ⋆
Relative Power (α), ⋆
Minimum Amplitude, ◦

– KNN: it is a non-parametric method that classifies observations based on
their similarity to its closest data-points in the datasets (i.e., neighbours).

– NB: it is a probabilistic classifier based on the Naive-Bayes theorem.
– DT: this model is based on decision rules; it starts from a root-node and clas-

sifies observations by testing them at each decision node, eventually leading
to the terminal node – i.e., the label.

Hyperparameters optimisation (Bayesian approach) was applied to each model.
Finally, to prevent overfitting k-fold cross-validation (CV) (k = 5) was applied.
This technique samples the dataset into k different sub-sets; it performs training
on k − 1 subsets and tests the model on the remaining one. Considering the
random sampling adopted by the CV, and to prevent the classification perfor-
mance from being affected by weak generalization capability, this procedure was
iterated 10 times.

3 Results

As introduced earlier, the models presented in Section 2.6 were employed in
a binary classification task, with the aim of discriminating healthy from RBD
subjects, (CAP Sleep Database and TuSDi Database). This Section presents the
classification performance, for each considered Feature Set (cf. Section 2.4).

3.1 Classification Performance: REM Features

The first Feature Set considered for the analysis (FeatSet1) comprised PSG fea-
tures and features extracted from the REM segments. The classification perfor-
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mance of the five models tested is displayed in Table 5; the values refer to a 5-fold
CV, averaged over 10 iterations. The macro-averaged accuracy (across all tested
classifiers) is 80.29% ± 0.03. The best overall performance was attained through
the KNN classifier (Accuracy: 83.91% ± 0.81, Sensitivity: 86.46% ± 2.95). As re-
gards the KNN model optimisation, the searched parameters were: K (number of
neighbours, 1 to 29) and distance metrics, resulting in the optimised parameters
K=3 and Chebyshev Distance.

Table 5. Classification performance (%) of the employed classifiers as regards FeatSet1
(PSG + REM features).

SVM KNN NB DT BAG

Accuracy 81.03 ± 0.5 83.91 ± 0.81 74.14 ± 1.72 82.18 ± 0.81 80.17 ± 0.86
Sensitivity 84.38 ± 3.13 86.46 ± 2.95 73.44 ± 1.56 85.42 ± 5.31 82.81 ± 1.56
Specificity 76.92 ± 3.85 80.77 ± 3.14 75 ± 1.92 78.21 ± 7.2 76.92 ± 0.1
Precision 81.94 ± 1.94 84.78 ± 1.75 78.33 ± 1.67 83.28 ± 4.25 82.16 ± 0.91
F1 83.06 ± 0.52 85.55 ± 0.9 75.81 ± 1.61 84.07 ± 0.87 82.16 ± 0.91
AUC 0.87 ± 0.05 0.87 ± 0.01 0.76 ± 0.02 0.83 ± 0.03 0.89 ± 0.02

3.2 Classification Performance: REM + SWS Features

Secondly, the classifiers were tested on FeatSet3, which adds to the previous one
the features extracted from the SWS stage. The classification performance con-
sistently increases for all classifiers (Table 6). This feature set, indeed, presents
with an overall macro-averaged accuracy of 85.70% ± 0.04 (+6% with respect
to FeatSet1), and a 8.3% increase for the AUC metric. The best classification
performance is achieved through the DT (Accuracy: 90.80% ± 0.8, Sensitivity:
95.83% ± 2.95). As for best model optimisation, the searched hyperparameters
were Split Criterion (method) and N (maximum number of splits, range: 1–57);
the resulting optimised parameters were cross entropy as Split Criterion and
N=4.

Table 6. Classification performance (%) of the employed classifiers as regards FeatSet3
(PSG + REM + SWS features).

SVM KNN NB DT BAG

Accuracy 89.08 ± 1.63 85.34 ± 2.59 79.31 ± 1.72 90.80 ± 0.8 83.62 ± 0.86
Sensitivity 92.71 ± 2.95 93.75 ± 0.4 82.81 ± 4.69 95.83 ± 2.95 85.94 ± 1.56
Specificity 86.42 75 ± 5.77 75 ± 1.92 84.62 ± 3.14 80.77
Precision 88.11 ± 0.33 82.33 ± 3.38 80.32 ± 0.32 88.54 ± 1.82 84.61 ± 0.24
F1 90.33 ± 1.56 87.63 ± 1.92 81.47 ± 2.11 91.99 ± 0.79 85.26 ± 0.89
AUC 0.98 ± 0.01 0.92 ± 0.03 0.82 ± 0.03 0.92 ± 0.02 0.93 ± 0.05
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3.3 Classification Performance: SWS Features

Finally, given the final aim of the study – i.e, determine which stage (REM vs
SWS) is more informative in the automatic detection of RBD – the classifiers
were tested also on the remaining feature set (FeatSet2), encompassing PSG
features and variables extracted from the SWS stage alone. The performance
metrics are displayed in Table 7. As appreciable, the classifiers achieved reason-
ably good results, with an overall macro-averaged accuracy of 81.10% ± 0.03.
Though the average accuracy (across classifiers) only shows a slight overall in-
crease with respect to the REM Subset, the SVM classifier clearly outperforms
the performances of the classifiers on FeatSet1. In fact, it achieved an Accuracy
of 86.21% ± 2.11 and Sensitivity of 91.23% ± 5.24, as well as an AUC value
of 0.94 ± 0.02. As regards SVM, the searched parameters were Kernel Function
and Maximum Penalty; the optimised model featured a cubic Kernel Function
and a Maximum Penalty of 2.56 (search range: 0.001–1000).

Table 7. Classification performance (%) of the employed classifiers as regards FeatSet2
(PSG + SWS features only).

SVM KNN NB DT BAG

Accuracy 86.21 ± 2.11 80.46 ± 4.94 78.74 ± 4.30 79.52 ± 7.21 80.60 ± 3.31
Sensitivity 91.23 ± 5.24 83.71 ± 12.26 76.67 ± 6.73 80.83 ± 9.78 79.13 ± 5.58
Specificity 83.36 ± 1.57 80.83 ± 2.94 81.16 ± 3.15 79.06 ± 6.25 82.19 ± 1.92
Precision 76.92 ± 2.72 74.36 ± 7.90 76.92 ± 5.44 74.04 ± 6.72 77.88 ± 3.19
F1 83.36 ± 2.38 77.58 ± 3.58 76.50 ± 4.14 77.04 ± 7.31 78.34 ± 2.98
AUC 0.94 ± 0.02 0.85 ± 0.02 0.81 ± 0.02 0.77 ± 0.09 0.9 ± 0.02

4 Discussion

As described above (cf. Sections 3.1–3.3), the employed classifiers generally
achieved a good global performance on all tested feature sets. Indeed, the best
classifier for the REM subset scored an overall Accuracy of 84%, with 86.5%
sensitivity to the RBD class. As appreciable from the data presented in Table 6,
the classification performance significantly increases when including the SWS
features into the analysis, yielding a 91% Accuracy and 96% Sensitivity (best
score). Furthermore, the SWS features alone proved efficient in addressing the
binary classification task, achieving an overall 86% Accuracy and 91% Sensitiv-
ity (SVM classifier). As displayed in Fig. 1, that compares the best models on
each tested feature set, FeatSet2 (SWS features) outperforms the REM subset,
suggesting its applicability and relevance in the automatic detection of RBD.

This consideration is in line with the results presented in [3], which per-
formed a stage-agnostic feature extraction, and highlighted the δ-range – and in
particular the 1.5–2 Hz sub-band – as the most important in a healthy vs RBD
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Fig. 1. Performance comparison of the best model for each analysed Feature Set.

classification approach. In addition, the classification performance was compared
to the cited study, which addressed the task employing the same publicly avail-
able data (CAP Sleep Database) [3]. Therefore, the cited study analysed the
EEG recordings across the whole spectrum (0.5–50 Hz), with no stage distinc-
tion; our results outperform their metrics when considering features from both
SWS and EEG (FeatSet3), with a balanced accuracy (averaged across all mod-
els) of 86% versus 83%, as well as a 26% improvement on Specificity, and +2% on
Sensitivity. When considering the metrics on the SWS feature set only, the SVM
classifier yielded comparable performances as regards Accuracy and Sensitivity,
and achieved a 22% increase on Specificity with respect to [3].

5 Conclusion and Future Work

The clinical diagnosis of RBD involves a overnight full-PSG exam and additional
anamnestic interviews. Though being the gold standard for the detection and
monitoring of sleep disorders, PSG is invasive and impractical. Indeed, not only
it entails a high number of recording electrodes, but the manual and visual
scoring process is labourious, thus significantly hindering the diagnosis. Given
that RBD itself foreruns the onset of α-synucleinopathy up to 14 years, there is
the need to accelerate the detection process, providing accurate and lightweight
alternatives to manual scoring.

This paper proposed a method for the automatic detection of RBD from
single-channel EEG data. Data were extracted from the recordings during REM
Sleep and SWS. The implemented ML methods achieved high performance, sug-
gesting the applicability of single-channel electroencephalography in detecting
RBD subjects.
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Moreover, the performance attained by the SWS features alone is quite
promising, therefore implying its applicability to the study of RBD and the
related neurodegenerative process. These findings indicate the feasibility of a
lightweight screening tool, thus easing the scoring and diagnostic process. Fur-
thermore, automatic classification would reasonably facilitate follow-up proce-
dures, and allow for early detection and early disease-modifying interventions
which would have beneficial impact on the QoL of patients [6].

Future work will address a larger dataset to further investigate the SWS
dychotomy and its role in the development of RBD, and will combine the in-
vestigation of the breathing frequency patterns during both REM Sleep and
SWS.
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