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Resumo

Compreender o comportamento coletivo de (grupos de) indivíduos em sistemas com-
plexos, mesmo em cenários em que as propriedades individuais de seus componentes
sejam conhecidas, é um desafio. Do ponto de vista de modelos de redes, as ações co-
letivas desses indivíduos são, frequentemente, projetadas em um grafo formando uma
rede de co-interações, aqui chamado de rede many-to-many. No entanto, o volume e a
diversidade com que elas são observadas nos mais variados sistemas atuais como, por
exemplo, aplicações de mídia social, transações econômicas e comportamento político
em sistemas de votação, impõe desafios na extração de padrões (estruturais, contex-
tuais e temporais) emergentes do comportamento coletivo e que estejam relacionados
a um fenômeno alvo de estudo. Especificamente, a frequente presença de um grande
número de co-interações fracas e esporádicas e que, portanto, não refletem necessari-
amente padrões relacionados ao fenômeno de interesse, acabam por introduzir “ruído”
ao modelo de redes. A grande quantidade de ruído, por sua vez, pode mascarar os
padrões de comportamento mais fundamentais capturados pelo modelo de rede, ou
seja, os padrões que essencialmente são relevantes para o entendimento do fenômeno
sob investigação. A remoção deste ruído é, portanto, um desafio importante.

Nesta tese, nosso objetivo é investigar a modelagem e análise do comportamento
coletivo emergente de redes formadas por co-interações em diferentes contextos, visando
extrair informação relevante e fundamental sobre um fenômeno alvo do estudo. Es-
pecificamente busca-se abordar a extração de propriedades estruturais, contextuais e
temporais que emergem a partir de comportamento coletivo fundamentalmente repre-
sentadas por comunidades extraídas da rede. Para tal, nós propomos uma estratégia
geral que aborda os principais desafios mencionados acima. Em especial, esta estratégia
contempla, como passo inicial, a identificação e a extração do backbone da rede, isto é,
o subconjunto das arestas relevantes para o estudo alvo. Os próximos passos consistem
na extração de comunidades deste backbone, como reflexo de padrões de comporta-
mento coletivo presentes, e a caracterização das propriedades estruturais (topológicas),
contextuais (relacionadas ao fenômeno de interesse) e temporais (dinâmica) destas co-
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munidades. Tendo como base essa estratégia geral, nós produzimos artefatos específicos
para as etapas que a compõe e avançamos o estado da arte, notavelmente, com um novo
método para extração de backbone, um novo método capaz de representar temporal-
mente uma sequência de redes (temporal node embedding) possibilitando a extração de
padrões temporais de interesse, e por fim, uma metodologia para auxiliar na seleção e
avaliação de estratégias de extração de backbones do ponto de vista estrutural e contex-
tual considerando o cenário mais comum, em que não há verdade fundamental (ground
truth). Além disso, exploramos esses artefatos estudando três fenômenos que requerem
diferentes estratégias de modelagem e análise. Especificamente, investigamos: (i) a
formação de grupos ideológicos na Câmara dos Deputados do Brasil e dos Estados
Unidos, (ii) discussões políticas online ocorrendo no Instagram no Brasil e na Itália e
(iii) disseminação de informação no WhatsApp. Em suma, nossos resultados mostram
que os artefatos propostos oferecem contribuições relevantes para o campo em que esta
tese está inserida.

Palavras-chave: Redes Complexas; Comportamento Coletivo; Extração de Back-
bones ; Detecção de Comunidades..
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Sommario

Comprendere il comportamento collettivo di (gruppi di) individui all’interno di sistemi
complessi è una sfida anche negli scenari in cui sono note le proprietà individuali dei
loro componenti. Spesso questi fenomeni sono modellati come reti e le azioni collettive
di questi individui sono proiettate su un grafo che rappresenta la rete di co-interazioni,
che possiamo definire come una rete many-to-many. Il volume e la diversità di queste
interazioni nei sistemi più grandi e complessi, come ad esempio, le piattaforme dei
social media, l’insieme delle transazioni economiche o il comportamento politico nei
sistemi di voto, complicano l’estrazione di schemi (strutturali, contestuali e temporali)
dal comportamento collettivo e che sono fondamentalmente legati a un fenomeno di
interesse. In particolare, la presenza di un numero elevato di co-interazioni occasionali
che, quindi, non riflettono necessariamente pattern di interesse, introduce “rumore”
nella rete modellata. Questo rumore può offuscare gli schemi comportamentali presenti
nella rete in esame, rendendo di fatto impossibile la comprensione del fenomeno in
esame. La rimozione di tale rumore diventa quindi una sfida chiave.

L’obiettivo in questa tesi è indagare la creazione e l’analisi dei modelli di
comportamento collettivo in reti formate da co-interazioni, con l’obiettivo di estrarre
informazioni rilevanti su un fenomeno d’interesse. Nello specifico, affrontiamo
l’estrazione di proprietà strutturali, contestuali e temporali associate a modelli di com-
portamento collettivo, le quali sono tipicamente rappresentate da comunità estratte
dalla rete stessa. A tal fine, proponiamo una strategia generale che affronti le suddette
sfide. Questa strategia prevede, come passo iniziale, l’identificazione e l’estrazione
della così detta rete backbone, ovvero il sottoinsieme degli archi che sono effettivamente
rilevanti per l’obiettivo prefissato. Il passo successivo consiste nell’estrazione di
comunità dalla backbone che manifestino i modelli di comportamento collettivo
esistenti e permettano la caratterizzazione delle proprietà strutturali (topologiche),
contestuali (relative al fenomeno d’interesse) e temporali (dinamiche) del fenomeno.
Sulla base di questa strategia generale, proponiamo strategie specifiche che avanzano
lo stato dell’arte per alcuni dei passaggi che lo compongono. In particolare, questa tesi
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fornisce approcci innovativi per l’estrazione della backbone e propone un nuovo metodo
di temporali nodi embedding in grado di rappresentare ed estrarre differenti pattern
temporali d’interesse da una sequenza di reti. Infine, definiamo una metodologia per
supportare la selezione e la valutazione delle backbone da un punto di vista strutturale
e contestuale, considerando il caso tipico di assenza di ground truth. In questa tesi,
esploriamo questi approcci studiando tre diversi fenomeni che richiedono diverse
strategie di modellazione e analisi. Nello specifico, indaghiamo: (i) la formazione
di gruppi ideologici nella Camera dei rappresentanti Brasiliana e Statunitense, (ii)
il dibattito online su Instagram in Brasile e in Italia e (iii) la disseminazione di
informazioni via WhatsApp. Nel complesso, i nostri risultati mostrano che gli approcci
proposti offrono contributi rilevanti nel campo in cui è inserita questa tesi.

Parole chiave: Sistemi complessi; Comportamento Collettivo; Estrazione del Back-
bone; Rilevamento della Comunità.
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Abstract

Understanding the collective behavior of (groups of) individuals in complex systems,
even in scenarios where the individual properties of their components are known, is a
challenge. From the point of view of network models, the collective actions of these
individuals are often projected on a graph forming a network of co-interactions, which
we here refer to as a many-to-many network. However, the volume and diversity
with which these co-interactions are observed in the most varied systems, such as,
for example, social media platforms, economic transactions and political behavior in
voting systems, impose challenges in the extraction of patterns (structural, contextual
and temporal) emerging from collective behavior and that are fundamentally related
to a phenomenon under study. Specifically, the frequent presence of a large number of
weak and sporadic co-interactions, which, therefore, do not necessarily reflect patterns
related to the phenomenon of interest, end up introducing “noise” to the network model.
The large amount of noise, in turn, may obfuscate the most fundamental behavior
patterns captured by the network model, that is, the patterns that are essentially
relevant to the understanding of the phenomenon under investigation. Removing such
noise becomes then a key challenge.

Our goal in this dissertation is to investigate the modeling and analysis of
collective behavior patterns that emerge in networks formed by co-interactions in
different contexts, aiming to extract relevant and fundamental information about a
target phenomenon of interest. Specifically, we tackle the extraction of structural,
contextual and temporal properties associated with patterns of collective behavior
that are fundamentally represented by communities extracted from the network. To
this end, we propose a general strategy that addresses the aforementioned challenges.
In particular, this strategy includes, as an initial step, the identification and extraction
of the network backbone, that is, the subset of the edges that are indeed relevant
to the target study. The next steps consist of the extraction of communities from
this backbone as a manifestation of the existing collective behavior patterns and the
characterization of the structural (topological), contextual (related to the phenomenon
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of interest) and temporal (dynamic) properties of these communities. Based on this
general strategy, we propose specific artifacts for some of the steps that compose it and
advance the state-of-the-art, in particular with a new method for backbone extraction,
a new temporal node embedding method capable of representing and extracting
different temporal patterns of interest from a sequence of networks, and finally a
methodology to support the selection and evaluation of backbones from a structural
and contextual point of view, considering the most common scenario where there is
no ground truth. Furthermore, we explore these artifacts by studying three different
phenomena that require different modeling and analysis strategies. Specifically, we
investigate: (i) the formation of ideological groups in the Brazilian and U.S. House
of Representatives, (ii) online discussions on Instagram in Brazil and Italy, and (iii)
information dissemination on WhatsApp. Overall, our results show that the proposed
artifacts offer relevant contributions to the field in which this dissertation is inserted.

Keywords: Complex Networks; Collective Behavior; Backbone Extraction; Commu-
nity Detection.
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Chapter 1

Introduction

A “complex system” is a system formed of many individual parts called “components”
or “agents” interacting with each other and leading to large-scale behaviors. A key
challenge when analyzing such complex systems is to uncover and understand the
collective behavior of (groups of) individuals, even though the individual properties of
its components may be known [Mitchell and Newman, 2002; Cohen and Havlin, 2010].
The notion of collective behavior has been widely studied in other domains such as
Sociology and Psychology where it is defined in different ways [Rohall et al., 2013].
Here, we adopt the following definition, most related to the concepts explored in this
dissertation: “Collective behavior refers to the kinds of activities engaged in by sizable
but loosely organized groups of people.” [Smelser, 2011; Turner et al., 2020].

We are surrounded by complex systems in both online and offline worlds. Many
of them are of great interest to our society as they can strongly influence and drive
social, cultural, economical and even political phenomena. Examples include (i) users
helping to disseminate ideas and pieces of information as they share messages and
comments on social media [Fraga et al., 2018; Paudel et al., 2019; Martin-Gutierrez
et al., 2020]; (ii) members of a House of Representatives voting in a series of vote
sessions and, from their voting patterns, forming ideological groups that, by crossing
the formal boundaries of established political parties, more faithfully represent the
political scenario of a country [Brito et al., 2020]; (iii) collective economic changes in a
cryptocurrency market as result of successive changes in different financial assets such
as stocks and commodities [Stosic et al., 2018; Papadimitriou et al., 2020]; and (iv)
cultural mapping of a community by analyzing people’s visits to different places driven
by the need to pursue cultural interests [Yang et al., 2016a]. These are a few notable
examples where loosely organized groups of people, acting individually, do interact
with each other, driven by common interests, common goals or even hidden factors

1
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(e.g., coordinated behavior), and from such interactions a group/collective behavior
may emerge without necessarily a previous social structure that explains it.

Network science has been a valuable field for modeling and studying these sys-
tems, as well as providing a set of theoretical tools that can be applied to describe and
analyze the phenomena that lie behind many complex systems [Newman, 2003; Rossetti
and Cazabet, 2018a]. The way interactions between the components of a complex sys-
tem take place can be understood by first representing them in a mathematical model
called a graph, and then forming is known as a network. In general terms, networks
are a collection of nodes mapping the system components and interconnected by edges
describing the relationship among them [David and Jon, 2010]. Once they have been
modeled, a range of metrics such as density, diameter, clustering coefficients, number
of connected components, among others can be applied to characterize the structural
properties of the interactions under analysis, and from such characterization, obtain
relevant knowledge about the underlying phenomenon being modeled [Barabási et al.,
2016].

In addition to the aforementioned metrics that capture different aspects of the
network topology, one of the most interesting problems in network characterization
is the question of finding communities that are formed by the components of these
networks [Fortunato, 2010; Rossetti and Cazabet, 2018a]. The main interest in com-
munity detection lies in the fact that communities typically display properties that are
very particular and differ from the average properties of the complete network [New-
man, 2006]. Thus, analyzing properties of different communities that build a global
network may be a promising approach to reveal collective behavior patterns. This is
because such communities naturally group users that are more “similar”, with respect
to common interactions and other behavior patterns. As such, by focusing on such
communities, especially by exploring contextual properties associated with each such
community, i.e., characteristics of the communities that are not explicitly captured
by the network topology but rather are intrinsically related to the phenomenon being
studied, one may be able to uncover properties that can help explain the emergence
of collective behavior patterns, and, by doing so, gather a more clear glimpse of the
driving factors behind the phenomenon under investigation [Yang et al., 2016a; Gao
and Liu, 2016; Liu et al., 2018b; Lu et al., 2020].

Yet, many of the complex systems mentioned above (in both physical and on-
line environments) are essentially structured by interactions occurring among multiple
(potentially more than two) individuals simultaneously. For example, multiple users
share the same piece of content or engage in a discussion on a social media platform.
Similarly, multiple congressmen may vote similarly in a particular voting session. This



3

contrasts with the traditional view of a network as a set of independent interactions
among pairs of elements. The network that emerges from interactions among groups
of elements simultaneously have attracted the interest of researchers in several areas
such as Biology, Chemistry, Social Sciences and Economics [Hinds et al., 2000; Sporns
and Kötter, 2004; Jin et al., 2007; Camacho et al., 2007; Lord et al., 2016], though only
recently in the Computer Science community [Benson et al., 2018b; Meng et al., 2018;
Guidotti et al., 2019]. It should be noted that the literature employs different terms
with no clear consensus for this type of network as well as for the particular interac-
tions driving its formation. Some of the terms used to refer to them are derived from
networks formed by sets of interactions, sequences of associations, cliques (a particular
type of motif) or multi-actor interactions [Benson et al., 2018a; Kumar et al., 2019;
Lerner et al., 2019; Battiston et al., 2020]. We here adopt the terms many-to-many
networks and many-to-many interactions, or simply co-interactions, as they clearly re-
late to the most basic concept of interactions occurring simultaneously among multiple
elements.

Several studies have highlighted the effects of this sort of interaction on the topo-
logical structure of networks, notably when considering the aggregate effect of co-
interactions occurring over time. In particular, they have shown how the competing
dynamics behind them display a rich and varied pattern at different levels, including se-
quentiality, periodicity and sporadicity [Yin et al., 2017; Benson et al., 2018a; Guidotti
et al., 2019; Coscia and Rossi, 2019; Yu et al., 2020; Sun et al., 2020; De Domenico and
Altmann, 2020]. In particular, it is often the case that these many-to-many networks
(as well as networks driven by traditional pairwise interactions) are overwhelmed by
a large volume of edges representing random, sporadic and spurious interactions that,
in essence are only weakly connected, if any at all, to the underlying phenomenon
being investigated [Ghalmane et al., 2020]. As such, the large presence of these noisy
edges adds further complexity to the study of collective behavior being modeled, as it
requires one to first identify the (fewer) co-interactions that indeed are relevant to the
particular target phenomenon.

In light of this, our aim in this dissertation is to investigate the modeling and
analysis of collective behavior that emerges in many-to-many networks in different con-
texts, focusing on the structural, contextual and temporal properties of the communities
that can be extracted from them.



4 Chapter 1. Introduction

1.1 Motivation

Several studies have investigated community detection in many-to-many networks pro-
jecting those co-interactions in an undirected and weighted graph [Coscia and Rossi,
2019; Pacheco et al., 2020; Brito et al., 2020; Neal, 2020; Uyheng and Carley, 2021].
In this way, the nodes represent the system components and an edge links two given
components by the number of co-interactions in which they appear together. However,
many-to-many networks display complex and diverse temporal properties. Specifically,
some co-interactions may repeat consistently over time, while new ones emerge spo-
radically from partial copies or merge with previous ones. Thus, while persistent and
repetitive co-interactions may occur, many random and sporadic ones are also present.
In great volume, these weaker co-interactions may indeed hide the real underlying
structure of the network representing the phenomenon under study, masking the true
communities representing the collective behavior patterns that drive such phenomenon
[Benson et al., 2018a; Coscia and Rossi, 2019; Guidotti et al., 2019]. We further elab-
orate on this issue, which is a key motivation to this dissertation, using a few concrete
examples.

Let’s start with the case of a co-voting network, i.e., a network modeling the
voting patterns of a set of congressmen in a series of voting sessions. In such network,
each node is a congressman and the weighted edges reflect the level of agreement
between two congressmen along with those sessions. By analyzing this network, one
can infer collective patterns that go beyond the traditional boundaries of political
parties, revealing ideological similarities that can be useful to understand the political
system of a country [Porter et al., 2005; Lee et al., 2017; Neal, 2020]. However, it is
possible that a vote for a general-interest humanitarian cause may lead congressmen
of different ideologies to adopt the same position, thus adding edges to the co-voting
network. These edges represent sporadic interactions and are driven by a particular
topic of large agreement, and thus do not necessarily reflect an ideological alignment.
The presence of many such sporadic interactions, especially when considering sequences
of voting sessions over time, may mask those interactions reflecting true ideological
alignment, and by doing so, make it difficult to study, for example, the formation of
the ideological groups (communities) that emerge in the network [Brito et al., 2020].

A similar issue may arise when studying information dissemination in social me-
dia applications. One common network model adopted in that case is to represent
users by nodes and connect two users by an edge weighted by a number of pieces of
content shared in common [Pacheco et al., 2020; Nobre et al., 2020; Uyheng and Carley,
2021]. In such context, it is possible that a very popular (or viral) piece of content is
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shared by a large number of different users, generating a large number of edges in the
network. Yet, these users are simply reacting to a popular content, mostly indepen-
dently from each other. This can hardly be seen as true co-interactions if one aims at
investigating patterns of collective behavior relevant to the information dissemination
process, that is, groups of users (communities) driving the information spread in the
system [Bogdanov et al., 2014; Nobre et al., 2020]. Moreover, one may consider that
measurement errors may occur in some settings. For example, errors are common in
wearable sensor networks, used for human behavior modeling [Yang et al., 2015], as
they are often subject to corruption, delay or loss of information caused by the wireless
communication and the presence of hardware inaccuracies in the nodes [Ni et al., 2009].
This suggests that many co-interaction may indeed be noisy in the sense that they are
little value (if any at all) to the given phenomenon being studied.

Yet, most algorithms for community detection in networks are designed under
the assumption that the network structure modeled from the individuals’ interactions
faithfully represents the studied phenomenon [Coscia and Rossi, 2019]. In other words,
all existing edges are taken into consideration in the process of uncovering communities.
As such, in face of large volumes of noisy and sporadic edges, these algorithms are
susceptible to misinterpretations, producing misleading conclusions. Indeed, there has
been a widespread debate about the implications of ignoring data quality in network
[Coscia and Neffke, 2017; Leão et al., 2018; Newman, 2018]. The selection of edges that
are important to the phenomenon under study, referred to as salient edges, is tackled by
algorithms that filter out noisy edges and provide a reduced (representative) version of
the network that only contains those salient edges. Such reduced version of the network
is called the network backbone. The definition of edge salience is based on an ensemble
of problem-specific and node-specific perspectives of the network and quantifies the
extent to which there is a consensus among the nodes with regard to the importance
(representativeness) of an edge [Grady et al., 2012]. Often, a statistical edge property is
defined and, then, used as the criterion to determine whether edges should be preserved
or discarded [Qian et al., 2015].

Although a number of methods for network backbone extraction are available in
the literature [Slater, 2009; Serrano et al., 2009; Radicchi et al., 2011; Grady et al., 2012;
Silva et al., 2014b; Jacobs, 2015; De Melo et al., 2015; Rahimi et al., 2015; Dianati,
2016; Coscia and Neffke, 2017; Newman, 2018; Valverde-Rebaza et al., 2018; Yan et al.,
2018; Coscia and Rossi, 2019; Kobayashi et al., 2019; Marcaccioli and Livan, 2019], there
is still a lack of studies that evaluate how they perform on many-to-many networks,
when applied with the purpose of uncovering collective behavior patterns represented
by communities of nodes that are both tightly connected (in a topological sense) as
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well as cohesive and meaningful for the particular context under consideration (e.g.,
ideological behavior of congressmen), considering more than one method to choose the
most appropriate one for the given phenomenon. In other words, the removal of noisy
and sporadic edges considering the phenomenon to be studied leaving only the network
backbone, particularly in the case of many-to-many networks, is a necessary step prior
to applying community detection algorithms to reveal collective behavior patterns.

Another issue that arises is the frequent lack of a ground truth for evaluating
the quality of an extracted backbone, which makes it difficult to validate the obtained
results. Usually, authors evaluate the results only on topological metrics, such as com-
munity modularity, density, clustering coefficient, arguing that the extracted backbone
has more clearly defined substructures than the original network [Serrano et al., 2009;
Grady et al., 2012; Dianati, 2016; De Melo et al., 2015; Newman, 2018; Valverde-
Rebaza et al., 2018; Dai et al., 2018; Neal et al., 2021; Mukerjee et al., 2022]. While
topological properties are important to study the quality of the extracted backbone,
they are only one aspect. Contextual criteria that relate the backbone properties (e.g.,
identified communities) to the characteristics of the phenomenon under study (e.g.,
amount of information shared by a community) should also be considered as part of
the evaluation to provide a clearer picture of whether the backbone actually captures
the driving factors behind the phenomenon [Yang et al., 2016a; Gao and Liu, 2016;
Coscia and Neffke, 2017; Dai et al., 2018; Liu et al., 2018b; Marcaccioli and Livan,
2019; Lu et al., 2020]. Yet, to our knowledge, there is no previous work that addresses
both topological and contextual metrics for evaluating backbones in terms of collective
behavior represented by communities and, in particular, highlights how the properties
of both the phenomenon and the method should be considered.

Moreover, from a temporal perspective, there are several studies that address the
dynamics of co-interactions focusing on the challenges associated with prediction tasks
[Yu et al., 2016; Benson et al., 2018a; Sun et al., 2020; Kumar et al., 2020; Yu et al.,
2020; Zeno et al., 2020], models for temporal representation learning [Rossi et al., 2018;
Lee et al., 2019; Hu and He, 2019], and mining of special graph substructures (e.g.,
motifs) over time [Paranjape et al., 2017; Liu et al., 2019; Fournier-Viger et al., 2020;
Wang et al., 2020]. The different contexts evaluated by these studies leave no doubt
that these systems display distinct and valuable, from the perspective of understanding
system dynamics, temporal properties. However, these previous studies have mostly
not addressed the temporal dynamics of communities as well as contextual information
from the emerging backbone. Understanding such temporal patterns, in turn, can offer
valuable insights into the dynamics of collective behavior in the system and, as such,
a better understanding of the phenomenon under investigation [Del Re, 2013; Mitra
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et al., 2017; De Domenico and Altmann, 2020].
In sum, all of these issues must be considered and properly tackled when one aims

at investigating collective behavior modeled in many-to-many interactions. As argued,
no prior work has jointly addressed them all. Yet, such endeavor has the potential
to reveal fundamental knowledge that is crucial to understand the phenomenon under
study. For example, in the context of co-voting networks, it may reveal which ideo-
logical groups dominate the political system and how they evolve over time. Similarly,
when analyzing networks of information dissemination, community analysis may help
explain how a particular content becomes viral, whether particular groups of users are
responsible for dictating the online discussions or even by coordinating the spread of
misinformation [Nobre et al., 2020; Pacheco et al., 2020; Cruickshank and Carley, 2020;
Uyheng and Carley, 2021].

Having stated the challenges and motivations driving this dissertation, we next
define our guiding question and introduce the problem we address.

1.2 Problem Statement

In this dissertation, we are interested in modeling and analyzing collective behavior
captured by many-to-many networks of user co-interactions in different contexts. To
that end, we face the challenges of identifying and removing random, sporadic and
weak (i.e., noisy) edges from the network as a step to uncover the communities that
emerge from the remaining salient edges. In particular, we aim at characterizing struc-
tural, contextual and temporal properties of such communities as a means to reveal
fundamental knowledge about collective behavior patterns driving the phenomenon of
interest. Overall, the work developed in this dissertation is driven by the following
guiding question:

Given a particular phenomenon of interest to be studied in the light of collective
user behavior in a complex system, and given the (noisy) many-to-many network
model built from a set of user co-interactions collected from that system, how can
we reveal structural (topological), contextual and temporal properties of cohesive
groups of users (communities) that can help shed light into how collective behavior
emerges and evolves, driving the phenomenon under investigation?

Our goal is to tackle this guiding question in different contexts, by exploring
the general steps presented in Figure 1.1. We start with a target phenomenon to
be investigated and a corresponding dataset gathered from a system where such phe-
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Figure 1.1. A visual representation of the scope of this dissertation.

nomenon will be studied. This dataset should contain a sequence of timestamped
co-interactions among different individuals of the system, covering a period of inter-
est. The first step is to build a many-to-many network model of these co-interactions
which, as argued, may carry a large volume of noisy edges. Thus, as a next step, we
must extract the backbone of this network, i.e., the set of salient edges with respect to
the phenomenon of interest. For this purpose, we either rely on existing algorithms or
propose new algorithms that exploit the peculiarities and requirements of the system
under study. In addition, we can choose a backbone method whose assumptions are
appropriate for a given phenomenon, as well as a set of candidate methods with the
goal of finding out which of them best captures the underlying phenomenon of the
network. Finally, community detection algorithms are used to uncover groups of users
representing different collective behavior patterns influencing the system. We then aim
at analyzing such communities, focusing on topological (community structure), con-
textual (system-related community attributes) and temporal (community dynamics)
properties, attempting to draw fundamental knowledge about the target phenomenon.

1.3 Research Goals

The challenges associated with our target problem defined in Section 1.2 have led to
the definition of the following research goals that we explore in this dissertation:

• RG1: Uncovering topological and contextual properties of communi-
ties in many-to-many networks: Our first goal consists of identifying commu-
nities representative of collective behavior in the target system and characterizing
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structural and contextual properties of such communities that are fundamentally
related to the phenomenon under investigation. As mentioned, one key challenge
to be addressed is the identification of the salient edges that compose the network
backbone. We adopt different methods of backbone extraction, existing ones as
well as new ones, based on the specificities of the system and the phenomenon
under study.

• RG2: Modeling the temporal dynamics of communities in many-to-
many networks: We are interested in analyzing the temporal dynamics of the
identified communities by examining how the structural and contextual prop-
erties of the backbones evolve over time. From the structural perspective, we
are interested in understanding and quantifying the dynamics at individual and
community membership levels. With the contextual perspective, we can in turn
examine the contextual properties of the phenomenon behind these communities
(e.g., the discussion topics, co-interactions patterns) as they evolve over time.

• RG3: Establishing a methodology for selecting and evaluating network
backbone extraction methods in the face of a phenomenon modeled in
many-to-many networks: As mentioned earlier, several methods for backbone
extraction in the literature may be used for our purposes in RG1 and RG2.
However, it is challenging to select and evaluate the most appropriate method
in scenarios for which often there is no ground truth. This largely depends on a
comprehensive knowledge of the assumptions of both methods and phenomena.
Our ultimate research goal, therefore, is to identify the key properties of such
methods and potential phenomena to guide the selection, use, and evaluation of
methods for the study of a particular phenomena.

In Figure 1.1, we label the steps that compose each research goal by labeling
them with RG1, RG2, and RG3. Aiming at investigating collective behavior in differ-
ent contexts, we examine the research goals 1 and 2 in different case studies. Then,
motivated by the possibility of using more than one method and proposing alternatives
for selecting and evaluating backbone methods, we approach our RG3 with a range of
methods and structural and contextual metrics, finally testing it on prior and new case
study.
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1.4 Contributions

Building on the motivation and research question presented in the previous section,
we offer our contributions to each of our RG below.

RG1 and RG2: Our contributions to RG1 and RG2 are explored through two case
studies of very different domains, notably political ideologies of voting congressmen
and online discussions in a popular social media application. As our first case study,
we have investigated the emergence and the dynamics of ideological communities in
political co-voting networks. In that front, our main contributions can be summarized
as:

• We propose a methodology to uncover and analyze dynamic ideological communi-
ties and their polarization in party systems using historical data from the House
of Representative of two different countries, namely Brazil and the United States;

• As part of our methodology, we propose to extract the network backbone by
sequentially employing two approaches. This first one is driven by contextual in-
formation of the target phenomenon, that is the formation of ideologically aligned
communities. The second approach is based on structural information of the ini-
tially extracted backbone, aiming at revealing polarized ideological communities;

• We investigate the dynamics of community membership by quantifying the ex-
tent to which community membership changes over time. We also propose a new
method to jointly learn temporal node embeddings for multiple networks repre-
senting the target system in different periods of time. This method allows us to
track the shifting of individual members over time in the political space defined
by the identified ideological communities.

• We offer an extensive characterization of the properties of ideological communi-
ties, in particular polarized communities, in the Brazilian and American party
systems over a long period of 15 years. Our results reveal strikingly different pat-
terns, in terms of both structural and dynamic properties, and help understand
the dynamics of ideological groups in distinct political systems.

As our second case study, we study the emergence of communities of discussions
that may drive the information dissemination on a currently very popular social me-
dia platform, namely Instagram. Our main contributions in that direction are the
following:
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• We model the interactions that occur among groups of users commenting on
the same post by an influencer. For the sake of comparison, we use two groups
of influencers, one made up of politicians and political figures and the other
composed by celebrities in general. Moreover, our study considers data from two
different countries, namely Brazil and Italy, aiming at identifying cultural-driven
similarities and difference. To drive this study we gathered a very large dataset for
each country, covering, in both cases, a 10-week period around a major political
election campaign. In total, our dataset contains the activity of approximately
1.8 million unique commenters on almost 37 thousand posts by 320 influencers
in Brazil and Italy;

• Aiming at extracting the backbone of the modeled networks, we propose TriBE,
a novel backbone extraction method based on a probabilistic reference network
model where the edges are built on the assumption of independent behavior of
commenters. The main idea is to focus on commenter co-interactions that deviate
significantly (in a probabilistic sense) from this assumption, as these may more
faithfully represent the ongoing discussions and driving information spread in
the system. TriBE takes into account particular characteristics of user behavior
in social media, notably the popularity of posts and commenters’ engagement
towards each influencer;

• We analyze the structure of the backbones and the communities that compose
them in terms of their topological structure, textual properties of the discussions
carried out by their members and temporal evolution. Our results reveal rich and
distinct characteristics in terms of political and non-political discussions in both
countries.

RG3:: Towards addressing RG3, we propose a methodology for selecting and evaluat-
ing methods for extracting networks based on a phenomenon under study. Specifically,
our contributions are:

• We review nine methods for extracting backbones, characterize their assump-
tions and requirements, and discuss aspects to consider for their applicability in
practice. We identify the network properties that these approaches exploit by
showing how they can be used to study various phenomena. Compared to previ-
ous works, we offer a thorough and reasoned investigation covering a wide range
of state-of-the-art methods, including recently proposed ones.
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• We propose a methodology for applying, evaluating, and selecting the best
method(s) for a given target phenomenon. Our methodology builds on the exist-
ing literature by bringing together metrics for backbone quality that capture both
structural and contextual (i.e., phenomenon-specific) aspects. This allows us to
evaluate the resulting backbone from the perspective of the emerging structure
and the extent to which it captures the phenomenon under study. In addition,
our methodology explicitly considers each method’s matching properties and re-
quirements with the key characteristics of the phenomenon under study as a step
towards method selection.

• We apply the proposed methodology to two large-scale case studies (i.e., online
discussions on Instagram and information dissemination on WhatsApp) related
to phenomena with different requirements. For each case study, we show that
different methods can lead to very different results and that the choice of the
most appropriate method is of paramount importance to reveal knowledge about
the phenomenon under study.

1.5 Outline

The remainder of this dissertation is organized as follows: Chapter 2 discusses previous
work in areas closely related to the topic of this dissertation. Chapter 3 states our
target problem, presents the associated challenges, and provides our general approach
to tackle it. Chapters 4 and 5 present our investigation of the first two research goals in
two different case studies, while Chapter 6 describes our methodology for selecting and
evaluating network extraction methods. Finally, Chapter 7 concludes this dissertation
and provides an outlook on future work.



Chapter 2

Background and Related Work

Figure 2.1. Mind mapping of the topics related to this dissertation.

In this chapter, we present a summary of background knowledge and related work
that is essential to the understanding of this dissertation. Figure 2.1 shows the main
topics of prior work related to this dissertation are organized. In light of this, this
chapter is organized as follows:

• Section 2.1 discusses prior studies on collective behavior focusing on distinct
models, their applications and outstanding problems;

• Section 2.2 provides an overview prior strategies to model user co-interactions;

• Section 2.3 offers a brief overview of existing network backbone extraction tech-
niques and also focuses on previous efforts that attempt to systematize the use of
a set of backbone extraction methods for a particular purpose. We then discuss
their advantages, limitations, and opportunities for new contributions;

• Section 2.4, in turn, provides an overview on community detection in complex
network, here taken as a fundamental representation of collective behavior;

13
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• Section 2.5 discusses an important alternative for extracting patterns in networks
from a temporal perspective, notably embeddings;

• Finally, Sections 2.6 e 2.7 present representative prior studies on the modeling
of political ideological behavior and online discussions, respectively, which are
topics that we tackle in our two case studies.

2.1 Modeling Collective Behavior

Collective behavior is a wide and complex concept covering different kinds of behaviors,
structures, processes in varied contexts. In essence, collective behavior is a multidisci-
plinary topic of investigation, being studied by researchers in areas such as Sociology,
Anthropology, Psychology, Political Science, Economics and, more recently, Computer
science [Del Re, 2013]. Most of the existing theories about collective behavior are
based on specific phenomena. For instance, protests, riots or panic, fads and trends in
which a large number of people are obsessed with an object or idea for a period of time
[Smelser, 2011; Mackay, 2012; Rohall et al., 2013]. In light of that, different definitions
of collective behavior are presented in the literature. However, they all have something
in common, namely the focus on the behavior of people in groups, usually in response
to an event or to express a common feeling.

The concept of collective behavior has changed over time, broadening in response
to changes in social relations and to the evolution of society. One of the main reasons
was technological advances, which allows collective behavior to reach global scale
[Del Re, 2013]. Popularity of online content [Lu et al., 2019b, 2020; De Domenico
and Altmann, 2020], human mobility [Silva et al., 2014b; Yang et al., 2016a], market
transaction [Peron and Rodrigues, 2011; Mateo et al., 2019; Saeedian et al., 2019] are
notable examples where collective behavior has been studied. Here, we consider the
definition adopted by Neil Smelser in 1962:

Definition: “Collective behavior refers to the kinds of activities engaged in by
sizable but loosely organized groups of people.” [Smelser, 2011; Turner et al., 2020].

In other words, according to this definition, collective behavior is essentially as-
sociated with a considerable number of people acting in a given context in general.
Although there may be any small structure for a subset of these people who act col-
lectively, it is extrapolated by the scale of joint actions considering all individuals.
Therefore, they still constitute a loosely organized group.
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In Computer Science, the modeling of collective behavior has been explored across
different frontiers. The combination of new technologies and methodologies enables the
crawling, storage and processing of large volumes of data that are sources of information
and can contribute to a multidisciplinary sphere. In such a context, distinct computa-
tional models have been used to study collective behavior. In the following, we discuss
some prior efforts in that direction.

For example, the adoption of models based on time series has allowed studies on
how the preference for content generated by influential users favors bursts of engage-
ment on Twitter [De Domenico and Altmann, 2020]. In [Mitra et al., 2017], the authors
showed a relationship between the dynamics of news spreading on Twitter and their
level of credibility. They observed that news with lower levels of credibility tends to
attract more users to spread them. Lehmann et al. [Lehmann et al., 2012] showed that
the diffusion of hashtags on Twitter analyzed from a collective perspective is naturally
driven by exogenous factors. That is, co-interactions through hashtags posts are mostly
expressed by common feelings that instigate users’ actions.

In a different direction, prior studies explored machine learning techniques to
analyze collective behavior patterns. For example, the authors of [Yang et al., 2016a]
proposed to extract cultural similarities in cities by analyzing patterns of collective
behavior through the use of Location-Based Social Networks data. By generating an
affinity matrix between cities based on the features as daily activity, mobility, and lin-
guistic perspectives of groups of peoples, the authors used spectral clustering techniques
to discover cultural clusters around the world.

In a similar direction, Silva et al. proposed to map people’s mobility between
places using Location-Based Social Networks (LBSN) data to build a transition graph
model. Using such model, the authors analyzed patterns of human mobility in differ-
ent cities, discussing how to identify similarities and differences in human dynamics
by grouping cities according to characteristics of people’s mobility [Silva et al., 2014b].
Other prior studies by the same authors investigated the emergence of gender pref-
erence for venues in a given region in the real world [Mueller et al., 2017] and user
preferences regarding eating and drinking habits across populations at different scales,
e.g., countries, cities, or neighborhoods [Silva et al., 2017]. In [Hamedmoghadam et al.,
2019], the authors modeled a network of taxi travel demands to discover latent collec-
tive mobility patterns. The proposed model allows identifying, for example, points of
origin and destination that are more influential and groups of people who constantly
present similar demands in their travels.

Conversely, Belhadi et al. [Belhadi et al., 2021] focused on identifying patterns of
collective abnormal human behavior in pedestrians using images. The authors referred
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to abnormality as a set of pedestrians that are highly correlated, i.e, with a large
number of shared locations. By proposing the use of machine learning models based
on deep learning for image recognition, the authors showed that it is possible to learn
different characteristics about mobility through historical data to extract collective
abnormal behavior patterns. Taking a different approach, Barros et al. propose a
methodology for modeling and analyzing node mobility in networks based on a node
embedding method that models and reveals the importance of nodes in mobility and
connectivity patterns while maintaining their spatial and temporal properties [Barros
et al., 2021b].

Other approaches propose the use of alternative models to analyze collective be-
havior. As an example, Lu et al. [Lu et al., 2019b] proposed a survival model to identify
factors that motivate and drive collective attention under content generated on online
social networks. Orthogonally, Martin-Gutierrez et al. [Martin-Gutierrez et al., 2020]
proposed a probabilistic framework to analyze how actions performed by individuals
embedded in a social system trigger collective reactions (or responses). In [Gleeson
et al., 2014], the authors propose a generative model to analyze how users collectively
interact with Facebook applications taking into account the history of recent decisions
and the cumulative popularity of each application. The results show that the future
popularity of applications on Facebook is strongly associated with recency factors that
are cumulative, suggesting that the adoption of an application among a set of users
follows a collective trend.

Focusing on network-oriented models, closer to the goals pursued in this disser-
tation, a number of studies target the analysis of collective behavior notably in social
media applications. For example, Lu et al. [Lu et al., 2020] proposed a framework
for modeling collective behavior in cascading social systems (e.g., Twitter and Weibo).
The authors found that users following the same profile can be organized into different
groups, each one with particular characteristics driving such collective behavior, e.g.,
timing, structure, posts topic, and user interests. The author of [Liu et al., 2018a] used
the Facebook and Wiki-talk (A dataset build on edits on user talk pages on Wikipedia)
aimed at understanding how user’s social signature changes over time considering their
ego network. The results, obtained on Facebook and Wiki-talk, show that there are
strong and temporally stable social signatures built around co-interactions on such
platforms. In the same direction, Xu et al. [Xu et al., 2018] aimed at developing strate-
gies to predict user behavior, given some knowledge of the behavior adopted by the
user’s neighbors in the network.

By associating users with common interests, Awal et al. [Awal and Bharadwaj,
2019] examined collective preferences by adopting an overlapping community detec-
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tion approach. Their goal was to extract information and predict which categories of
articles a user would read or would be interested in reading, based on his/her social
collective actions on a consumer review site. Gao et al. modeled human behavior
during different extreme events by correlating data from Twitter and GoogleTrends.
The goal of the authors was to assess how human risk and emotional intensity generate
collective responses in different regions and how these responses evolve over time. The
results of a case study of the 2011 Japanese earthquake show different communities
emerging with different perceptions and actions about the event studied [Gao and Liu,
2016].

Network-based modeling has also been used in other complex systems in addition
to social media platforms. For example, Mateo et al. showed how network topology
has a significant impact on collective behavior in the study of swarm robots [Mateo
et al., 2019]. The authors proved the existence of optimal network topology to pro-
duce the most effective collective response. With a focus on final markets, Peron et
al. [Peron and Rodrigues, 2011] aimed at identifying the emergence of collective be-
havior when stock prices exhibit a similar tendency, defining the market’s direction
synchronization. Similarly, the authors of [Saeedian et al., 2019] presented a broader
analysis of the degree of collective behavior among the markets and the share of each
market in the world global network. Stosic et al., in turn, studied studies the presence
of communities in the context of cryptocurrency price changes, highlighting distinct
community structures built on price variation [Stosic et al., 2018].

In short, there is a large number of studies in different areas but notably in
Computer Science, focused on modeling collective behavior. Similar to some of the
aforementioned prior efforts, we here also propose a network-oriented approach. Nat-
urally, the collective actions of groups of individuals constitute what we here refer to
as co-interactions, which can be modeled by a network. Consequently, this favors the
extraction of patterns of different natures (e.g., structural, contextual and temporal).
However, most of the previous efforts neglect some aspects of paramount importance
that we will discuss and address throughout this dissertation. In particular, many such
co-interactions occur from random and sporadic behavior, thus reflecting very weak
relations from the perspective of analyzing collective behavior to understand the tar-
get phenomenon. Thus, it is important to filter out such noise, focusing only on those
network edges that are really relevant (or salient) for the purpose of characterizing
collective behavior [Benson et al., 2018a; De Domenico and Altmann, 2020; Ghalmane
et al., 2020]. Although some prior studies have addressed this issue, they are limited
to specific strategies to the systems studied [Peron and Rodrigues, 2011; Silva et al.,
2014b; Stosic et al., 2018].
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Similarly, focusing on the extraction of communities of people exhibiting collective
behavior, the adoption of community detection approaches seems a natural strategy
to identify structural properties of how individuals relate and provide a view of how
the system is structured. Moreover, mapping the dynamics of these groups over time
converge or contrast is something seldom explored by previous studies, although it
constitutes a fundamental property of any collective behavior [Del Re, 2013; Gleeson
et al., 2014; Mitra et al., 2017].

Here, our main hypothesis is that considering these previously neglected elements
together can provide valuable insights about collective behavior in a given system. This
imposes a series of challenges, starting with the possibility of proposing a generalized
and agnostic modeling approach. In the following sections, we discuss other prior
studies that are also related to this dissertation, including prior techniques employed
in the analysis of collective behavior. We start by discussing prior studies on modeling
user co-interactions, which, though closely related to our current goal, differs by not
necessarily aiming at uncovering patterns of collective behavior.

2.2 Modeling User Co-Interactions

A plethora of phenomena related to human interactions online and in the real world
have been analyzed using concepts from complex networks. Yet, many of these inter-
actions occur among multiple (potentially two or more) entities simultaneously, here
referred to as co-interactions. Acknowledging the distinct properties of co-interactions,
some recent studies have empirically analyzed them through the lens of higher-order
models. Such models focus on preserving the different structures of connectivity that
can occur as two or more individuals interact with each other [Battiston et al., 2020;
Yoon et al., 2020].

In the most basic form, these structures are represented by different motifs (e.g.,
triangular motifs, star, structural hubs, etc) [Benson et al., 2016; Rossi et al., 2018].
Indeed, Benson et al. [Benson et al., 2016] explored the diversity of such co-interactions
to analyze how they build networks with diverse structural patterns. Similarly, Rossi
et al. [Rossi et al., 2018] proposed a general framework to learn higher-order structures
embedding representations based on distinct motifs, while others have used neural net-
works to extract latent patterns from signals to forecast new co-interactions [Meng
et al., 2018; Hu and He, 2019]. Also, alternative methods have been proposed to repre-
sent different settings of higher-order structures [Wehmuth et al., 2016, 2017]. However,
analyzing such co-interactions on large scale is, often, computationally intractable de-



2.2. Modeling User Co-Interactions 19

spite recent advances in high-performance data processing, which limits the use of
many of the recently developed models [Wang et al., 2020; Yoon et al., 2020].

In this dissertation, we focus on the densest and most uniform form of co-
interactions, where all individuals interact with each other, a particular type of motif
known as clique [Battiston et al., 2020]. For such case, the literature adopts different
nomenclatures, including sets of interactions, sequences of associations, cliques, and
multi-actor interactions [Kumar et al., 2019; Lerner et al., 2019; Battiston et al., 2020;
Yoon et al., 2020]. These co-interactions constitute an important substructure for some
complex systems, exhibiting diverse properties that are relevant to the study of the (of-
ten global) phenomenon of interest [Benson et al., 2018a; Meng et al., 2018]. Examples
of such co-interactions are online shopping carts with a set of items being purchased
together, co-authors of scientific publications, co-interactions among proteins, people
co-visiting the same places driven by cultural interests, congressmen taking the stand
to vote during a voting session and groups of users commenting on the same topic on
a social media application [Yang et al., 2016a; Benson et al., 2018b; Newman, 2018;
Nobre et al., 2020; Brito et al., 2020].

Moreover, we are interested in looking at how a sequence of such co-interactions,
driven by actions of interest of multiple individuals build a network. To that end, we
model them by projecting them into a weighted and undirected graph G = (V,E),
where nodes (or vertices) in set V correspond to individuals and an edge eij = (i, j),
with weight w, is added to set E linking the components i and j if they have already
interacted. The weight w corresponds to the number of interactions both individuals
shared in common during the period under analysis. From this network model, the
structural topology can be characterized based on traditional metrics such as density,
diameter, clustering coefficient and number of connected components, among others
[David and Jon, 2010].

However, as already argued [Liebig and Rao, 2016; Benson et al., 2018b; Coscia
and Rossi, 2019; Cao et al., 2019; Kumar et al., 2020], such projected networks may
include a large number of random, sporadic and weak edges that are not really part of
the fundamental underlying network component representing the target phenomenon.
Indeed, although this practice of projecting the original network into a graph of pairwise
connections has been widely adopted, little attention has been paid to understanding
how the projection considering all co-interactions may obfuscate relevant structural
properties in the projected network.

For example, Cruickshank et al. [Cruickshank and Carley, 2020] proposed to an-
alyze discussion topics on Twitter by modeling a sequence of networks of co-interaction
built on co-occurrences of hashtags used by tweet users. Moreover, other information
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is considered to model the network, for instance, the textual similarity of Tweets using
the same hashtag. Then, a community detection method is applied to identify topical
clusters of hashtags. In another work, the authors analyzed the online hate of such
communities [Uyheng and Carley, 2021]. Similarly, Pacheco et al. used contextual
metrics, for instance, activity synchronization and text similarity to model the net-
work representing Twitter users, aiming at uncovering coordinated behavior in Twitter
[Pacheco et al., 2020, 2021].

More recently, some studies have shown the importance of removing random or
weak edges to reveal an underlying structure (i.e., the backbone) in networks formed
by co-interactions [Grinberg et al., 2019; Malang et al., 2020; Coscia and Rossi, 2019;
Coscia et al., 2020; Mattsson, 2020; Mattsson and Stuart, 2020; Jaffe et al., 2020;
Jiang et al., 2020]. For example, Leão et al. showed how removing random edges
in co-authoring networks converge to a topology with more pure social relationships
and better quality community structures, compared to the original complete network
[Leão et al., 2018]. Another example is the study of information dissemination on
the WhatsApp platform [Nobre et al., 2020], where the authors explored a network
of co-sharing patterns (i.e., a network connecting users who shared the same piece of
content) to reveal important properties of information spread on the platform.

Thus, as part of our approach to model co-interactions, we must tackle the chal-
lenges of using the projected network, notably the presence of a potentially large num-
ber of weak and possibly irrelevant edges. Specifically, we must investigate strategies
that remove such noise and reveal edges in the projected network that, in fact, con-
tribute to the study of a given phenomenon emerging from collective behavior pattern.
In other words, we must investigate strategies to extract the backbone of the original
network. Moreover, as our focus is on collective behavior, we must also extract com-
munities from the backbone, as each community may represent an important pattern
of collective behavior. Ultimately, our goal is to provide a methodology by combining
these steps to gain relevant insight into the phenomenon under study. Such methodol-
ogy should consider backbone extraction as a crucial step in addressing this problem.
In short, the final goal is to use the best method for extracting backbones from a set of
candidates to capture patterns of collective behavior. In the next sections, we discuss
previous work on the two main components that make up such endeavor: network
backbone extraction and community detection.
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2.3 Network Backbone Extraction

Starting with applications, multiple works in various fields have shown the importance
of backbone extraction methods to deal with random, sporadic, and weak edges that
may obfuscate the phenomenon under study. For example, several studies applied early
proposed methods to study phenomena in biological networks [Perkins and Langston,
2009; Bordier et al., 2017], transportation networks [Wu et al., 2006; Dai et al., 2018],
economic networks [Namaki et al., 2011; Mattsson, 2020; Mattsson and Stuart, 2020],
co-authoring networks [Leão et al., 2018; Galuppo Azevedo and Murai, 2021], human
mobility networks [Silva et al., 2014b; Coscia et al., 2020; Bonaventura et al., 2021] as
well as congressional voting networks [Brito et al., 2020]. More recently, some studies
have highlighted the importance of this task in social media applications [Olson and
Neal, 2015; Abbar et al., 2016; Pacheco et al., 2020, 2021].

Moving to the body of work that focuses on the proposal of new methods, they
compared methods to alternatives in light of specific phenomena of interest in various
domains, such as transportation, finance, and ecology [Serrano et al., 2009; Radicchi
et al., 2011; Grady et al., 2012; Dianati, 2016]. Most of these prior studies rely on struc-
tural/topological properties, including node and edge coverage, clustering coefficient,
centrality measures, and community quality measures, to evaluate different backbones
extracted from the same network (thus comparing alternative extraction methods).
As such, they offer only a partial view of the quality of the backbones. Contextual
(i.e., phenomenon-specific) criteria, capturing the extent to which the extracted back-
bone represents the phenomenon under study, are not considered. More recently, some
studies have proposed and compared backbone extraction methods based on regression-
models as a means to capture contextual attributes specific to the phenomenon, relating
them to topological properties of the backbone [Coscia and Neffke, 2017; Marcaccioli
and Livan, 2019; Coscia, 2021]. However, these studies, as well as the aforementioned
ones, do not provide a clear rationale as to why the subset of used methods fits the
given phenomenon and therefore whether they are adequate to the study. Such rea-
soning is of utmost importance as different methods have different assumptions and
properties, which may constrain their use or introduce unwanted biases to the study
of specific phenomena.

We then focus on methods that are considered state of the art and that have
already been used to model collective behavior in the context of many-to-many to
give a brief overview of them. In addition, in Chapter 6, we propose a categorization
that highlights their assumptions, requirements and various relevant aspects of
these methods that have not been clearly stated in previous work as part of our
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methodology for selecting and evaluating backbone methods. In this way we make our
own contribution to a more fundamental understanding of the methods. We describe
here naive threshold-based backbone extraction, High Salient Skeleton [Grady et al.,
2012], Random rElationship ClAssifier STrategy (RECAST) [De Melo et al., 2015],
Disparity Filter [Serrano et al., 2009], Polya Urn Filter [Marcaccioli and Livan, 2019],
Marginal Likelihood Filter [Dianati, 2016], Noise Corrected (NC) [Coscia and Neffke,
2017], and Global Statistical Significance (GloSS) Filter [Radicchi et al., 2011], and
finally, Tripartite Backbone Extraction (TriBE) [Ferreira et al., 2020], which is a
particular contribution of this dissertation and is described in detail in Chapter 5.

Threshold-based backbone extraction: one of the simplest, most intuitive and
most used methods [Rahimi et al., 2015; Yan et al., 2018; Soro et al., 2020]. It consists
on removing edges whose weights are smaller (or higher) than a pre-defined threshold
τ , that is, edge saliency refers simply to edge weight. This method is adequate to
studies where the salient edges are those with higher (or lower) weights. Otherwise, as
previously argued [Tsur and Lazer, 2017], thresholds may bias the analysis and lead
to misinterpretation of the results.

High Salient Skeleton (HSS) [Grady et al., 2012]: the backbone is extracted
by first normalizing the edge weights and then performing a sampling process to
define the shortest-path trees from each node to all other nodes in the network. Edge
saliency is defined based on the frequency of its occurrence in the shortest path trees:
edges with frequency below a pre-defined threshold τ are disregarded. In doing so,
this method attempts to capture edges that simultaneously have heavy weights and
are fundamental for keeping nodes connected. As such, the notion of edge saliency
is inherently connected to network topology. Moreover, like for the threshold-based
method, the use of a global threshold may lead to biases and misinterpretation [Grady
et al., 2012].

Random rElationship ClASsifier sTrategy (RECAST) [De Melo et al.,
2015]: it assumes that a salient edge connecting two nodes must have at least
one of two properties that differ significantly from random graphs: (i) the common
neighborhood of two adjacent nodes (your friends are my friends) and (ii) the
regularity of interactions (persistence) within the observed time period. Following
this rationale, each edge is classified into one of four possible classes as follows.
First, a single reference network model is created, as a random graph with the same
numbers of nodes and edges and the same node degree of the original network. The
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distributions of the two aforementioned properties – common neighborhood and
persistence – are then computed for the random graph. The following four classes
are then obtained depending on whether each of the two properties significantly
deviates (according to a pre-defined p-value) from the random graph: Friends (both
common neighborhood and persistence deviate from random), Bridge (only persistence
deviates), Acquaintance (only common neighborhood deviates), and Random (neither
deviates). These classes provide a flexible concept of edge saliency as they can be
employed differently, depending on the phenomenon being studied, to remove edges
with particular properties.

Disparity Filter (DF) [Serrano et al., 2009]: it assumes that an edge connecting
a given pair of nodes is salient if it has a disproportionate weight compared to
the other edges leading from the nodes to their respective neighbors. In other
words, salient edges are those whose weights deviate significantly from the null hy-
pothesis that the weights of all edges incident to a given node are uniformly distributed.

Polya Urn Filter [Marcaccioli and Livan, 2019]: similarly to DF, this method
assumes that edge weights emerge from the aggregate process of individual nodes’
preferences to interact with each other over time. It also assumes that interactions
between nodes are maintained and reinforced, such that the larger the number of
interactions between the same two nodes, the higher the probability of they interacting
again. A reference model is built for each edge, using the Polya Urn model [Hoppe,
1984] which captures the reinforcement of existing interactions by examining the
degree and strength (the sum of the weights of all edges incident to the node) of
each node incident to this edge. This reinforcement mechanism can be regulated and
estimated by the system through a fine-tuning process. Salient edges are those that
deviate significantly from such reference model (according to a given p-value).

Marginal Likelihood Filter (MLF) [Dianati, 2016]: assumes that edge saliency
should be analyzed in light of the strengths of the two nodes the edge connects. The
higher the strengths the larger the edge weight must be to be considered salient.
Specifically, the method builds a reference edge weight distribution model for each
edge: the probability that edge between nodes i and j ends up with weight wij is
based on a Binomial distribution with parameters n defined by the total strengths of
all nodes in the network and p computed based on the strengths of nodes i and j. An
edge is considered salient if the observed weight deviates significantly from the one
predicted by the reference model.
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Noise Corrected (NC) [Coscia and Neffke, 2017]: similarly to DF and the Polya
Urn Filter methods, NC also assumes that edge saliency arises from the cooperation
between nodes. However, unlike those methods, NC preserves peripheral-peripheral
connections, which is crucial for capturing edges that, despite having small weights,
may still be considered relevant for the phenomenon under study. These connections
may be preserved by estimating the expectation and variance of edge weights using a
hypergeometric distribution, taking into account the propensity of both nodes to send
and receive edges. It also provides a direct approximation through a per-edge reference
Binomial distribution (similarly to the MLF method). The main advantage of NC,
though, is the ability to estimate an error for the expectation of the weights. As in
the other methods, an edge is considered salient if its observed weight significantly
exceeds the expected weight (given the strengths of both nodes).

Global Statistical Significance (GloSS) Filter [Radicchi et al., 2011]: it
assumes that salient edges cannot be identified independently of the overall network
topology, once nodes have different degrees. As such, it builds a single (null) reference
model that preserves the edges between nodes as well as the overall edge weight
distribution. Yet, when selecting salient edges, i.e., edges whose observed weights
significantly deviate from the reference model, the method estimates the probability
of observing an edge weight between two given nodes considering the nodes’ observed
degrees and strengths as constraints.

Tripartite Backbone Extraction (TriBE) [Ferreira et al., 2020, 2021]: this
method was proposed to study phenomena driven by user interactions in social media
applications. It exploits the tripartite structure commonly found in such platforms,
that is, a piece of content, the content creator, and the other users (e.g., the followers)
who interact with each other in reaction to that content (e.g., by commenting on a
post, retweeting the same tweet, etc). As such, the method addresses the heterogene-
ity in user activity level and content popularity typically observed in social media
applications. Specifically, it builds a reference weight distribution model for each edge,
based on a Poisson binomial distribution, whose parameters are computed based on
the distributions of content popularity and user engagement towards content from
the same creator (as estimated by prior interactions). Once again, salient edges are
those whose observed weights significantly deviate from their corresponding reference
models. This particular method is proposed in this dissertation and explained in more
detail in Chapter 5.
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Figure 2.2. Selected backbone extraction methods: edges connect methods already com-
pared to each other in prior work.

The aforementioned methods have been analyzed in the context of various phe-
nomena of interest. Yet, no prior study is available in the literature where all nine
methods are evaluated under the same analysis framework. For illustration purposes,
Figure 2.2 shows which methods have been compared to each other in at least one of
the studies aforementioned. Several methods have not been compared to each other
(e.g, NC and MLF). Some of them (e.g., RECAST and TriBE) have not been com-
pared to alternatives at all. Clearly not all methods are adequate to all studies, which
justifies the lack of some comparisons.

Yet, the literature lacks an approach for selecting backbone extraction alterna-
tives and evaluating them for a given study, as we note that few works evaluate existing
solutions for a target study. Notably, Dai et al. have evaluated six methods for extract-
ing the salient edges from transportation networks, i.e., those edges that are critical
in the network [Dai et al., 2018]. As most prior studies, the authors considered only
topological properties in such evaluation, which seems adequate given the interest in
network connectivity (i.e., paths). Similarly, Mukerjee et al. investigated the impact
of method parameters on network connectivity [Mukerjee et al., 2022]. They proposed
choosing the best method and its parameters based on topological properties, notably,
by maximizing the number of edges while maintaining the network’s connectivity. Last,
Zachary et al. evaluated existing methods for the specific case of bipartite networks,
but once again considering only topological properties [Neal et al., 2021].

In contrast, our focus is on collective human behavior in many-to-many networks,
which are expected to have more nuanced aspects (compared to, for example, trans-
portation networks). These aspects should be investigated from both topological and
contextual perspectives. Thus, we see a gap in terms of a principled methodology
for selecting and evaluating the best method among alternatives for a given target
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phenomenon, taking into account whether the assumptions and requirements of each
method are appropriate to the characteristics of the phenomenon.

2.4 Community Detection

Detecting communities (or clusters) in networks has been a widely studied problem
for many decades due to its considerable range of applications. There is no universal
definition for community detection [Leskovec et al., 2010]. Often, the concept of com-
munity has been defined as a group of nodes that have a higher likelihood of connecting
(or similarity) to each other than to nodes from other communities [Barabási et al.,
2016]. To extract such communities, it is then necessary to define some measure of
connectivity or similarity that captures such intuition [Leskovec et al., 2010]. Given
such a loose definition, a number of strategies have been proposed, each one targeting a
somewhat different goal depending on the particular system and problem under study
[Fortunato and Hric, 2016].

Existing solutions can be classified according to different criteria [Porter et al.,
2005; Labatut and Balasque, 2012; Yang et al., 2016b; Fortunato and Hric, 2016]. For
example, a community detection method can be classified as to whether or it allows
overlap among communities, whether it considers static or dynamic communities, or
even whether it considers node attributes or only topological properties [Xie et al.,
2013; Jia et al., 2017; Rossetti and Cazabet, 2018a]. Here, we focus on detecting static
and non-overlapping communities. In other words, we aim primarily at extracting
communities composed of disjoint sets of nodes in a given network, to be applied in
a sequence of networks representing the system in consecutive non-overlapping time
windows. Even in this particular context, the diversity of existing methods is quite
rich. In the following, we offer a brief discussion of the most important methods,
following the categorization proposed by Fortunato et al. [Fortunato and Hric, 2016].

Some of the most widely used methods for detecting communities in networks
are based on the optimization of some quality measure of the partitions representing
the identified communities [Fortunato and Hric, 2016]. One such measure of quality
is modularity [Newman and Girvan, 2004]. There are different methods to compute
modularity, depending on the properties of the input graph. For a weighted graph
G(V,A), the modularity Q is defined as:

Q =
1

2M

∑
i,j∈V

[
A(i, j)− k(i)k(j)

2M

]
δ(c(i), c(j)) (2.1)
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where

• A(i, j) is the weight of edge connecting vertices i and j;

• k(i) and k(j) are the sum of the weights of the edges attached to vertices i and
j, respectively;

• M is the sum of the weights of all edges in graph G;

• c(i) and c(j) are the communities assigned to i and j, respectively; and

• δ is the Kronecker delta function, i.e., δ(c(i), c(j)) = 1 if c(i) = c(j), 0 otherwise.

Since exploring all possible partitions of the graph into communities is computa-
tionally impractical (it is NP-hard), several heuristic algorithms have been proposed.
The Louvain method is one of these [Blondel et al., 2008]. One such heuristic that
has been widely used in the literature is the Louvain method [Blondel et al., 2008].
This method has been applied in different domains, from biological networks [Rubinov
and Sporns, 2010; Han et al., 2016] to social media applications [Vosoughi et al., 2018;
Nobre et al., 2020].

It starts by finding first small (i.e., single-node) communities, optimizing the
modularity locally on all vertices. It then proceeds iteratively: each small community is
grouped into one (meta-)node and the first step is repeated. At each step, the resulting
network partition is evaluated by the modularity metric. The process is repeated until
no modularity increase can occur. In other words, given the graph G = (V,E), the
Louvain algorithm extracts the set of communities that provides the highest modularity
value. Modularity lies in the range [-0.5,1], although, in practice, values between 0.3
and 0.7 are can be taken as evidence of well structured communities [Newman and
Girvan, 2004].

The Louvain method does not require defining the number of partitions (i.e.,
communities) in advance and does not depend on other representations of the graph
(e.g., to encode it in a dimensional space), but the use of modularity as a measure of
quality suffers from a problem known as Resolution Limit [Fortunato and Barthelemy,
2007]. In its original formulation [Newman and Girvan, 2004], the modularity metric
tends to increase as very small communities are merged into larger ones. Thus, methods
that aim at optimizing this metric tend to favor such merges, which ultimately yields
results that lose inherently small communities. This is directly related to the number
of links on the network. Communities whose the sum of its nodes’ degree is smaller
than

√
(2 ∗ E) are invisible for the method and may be merged with other communities

[Menczer et al., 2020]. There have been proposals to change the modularity metric by
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incorporating a parameter γ in its definition so as to make it robust to such cases,
effectively allowing small communities to be identified [Lambiotte et al., 2008]. As
in other studies [Han et al., 2016; Kaalia and Rajapakse, 2019], we here set γ to its
maximum value (γ = 1). The revised definition of modularity, which is the one we use
in this dissertation, is as follows:

Q =
1

2M

∑
i,j∈V

[
A(i, j)− γ

k(i)k(j)

2M

]
δ(c(i), c(j)) (2.2)

where

• A(i, j) is the weight of edge connecting vertices i and j;

• γ is the resolution parameter;

• k(i) and k(j) are the sum of the weights of the edges attached to vertices i and
j, respectively;

• M is the sum of the weights of all edges in graph G;

• c(i) and c(j) are the communities assigned to i and j, respectively; and

• δ is the Kronecker delta function, i.e., δ(c(i), c(j)) = 1 if c(i) = c(j), 0 otherwise.

However, it has been recently argued that the Louvain method has an inherent
limitation that may lead to arbitrarily badly connected communities being extracted,
regardless of the specific quality metric adopted. Such limitation gave rise to the Leiden
algorithm [Traag et al., 2019]. This method works similarly to Louvain’s with some
modifications. Briefly, the Leiden algorithm consists of three steps. First, it starts by
creating singletons partition from the whole network locally moving nodes from one
community to another to find a partition. Unlike the Louvain algorithm that visits all
the nodes in the network after the first visit, the Leiden algorithm only visits those
nodes whose neighborhood has changed in each interaction, making the local moving
step more efficient. In the second step, the algorithm tries to identify refined partitions
from the ones created in the first step. When refining such partitions, they can be
divided into more communities as long as their nodes are better connected. Nodes
may be merged with any community within its partition for which the quality function
increases. This step prevents possible problems of badly connected communities. The
last step is to aggregate the network based on the refined partitions until no further
improvements can be made [Traag et al., 2019].
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Moreover, the Leiden algorithm can use the Constant Potts Model (CPM) as
quality metric, which has some important differences compared to modularity [Traag
et al., 2011]. One such difference is that, unlike modularity, CPM does not suffer from
the resolution limit problem. Essentially, it increases as the intra-community edges are
maximized and the inter-community edges are minimized. To achieve this, a parameter
γ is established to force that communities should have a density of at least γ, while
the density between communities should be lower than γ. CPM is defined as follows:

H =
∑

c
[ec − γ(

nc

2
)], (2.3)

where

• ec is the actual number of edges in community c;

• nc is the number of nodes in community c

• γ is parameter defining the community density of at least γ, while the density
between communities should be lower than γ.

Other methods exploit statistical inference to fit a generative network model on
the data [Shuo and Chai, 2016]. One of the most widely used approaches in this cate-
gory builds a generative stochastic block model (SBM) [Lee and Wilkinson, 2019]. In
essence, this method works as follows. Given two components, the vector of commu-
nity memberships and the block matrix, each entry of such matrix represents the edge
probability of two nodes be connected conditioned on their group membership. This
makes it possible to assess the probability of the observed data, for modeling purposes.
To find the latent groups of nodes in a network, it is necessary to infer the parameters
of the model that provide the best fit for the observed network [Rosvall et al., 2019].

However, there is one problem: for the observed graph, neither component is
known a priori. Thus, the objective of fitting a random graph constructed by SBM
to an observed graph is to infer these two components simultaneously according to a
function [Rosvall et al., 2019]. Some more recent approaches consider identifying the
number of groups as well as other properties, such as, degree-corrected which is a new
parameter that controls the expected degree of each node [Lee and Wilkinson, 2019].
An advantage of these methods is that they discover not only communities but also
other properties such as, for example, disassortativity, core-periphery structure and the
hierarchy between communities [Fortunato and Hric, 2016].

Other methods of community detection are based on spectral clustering. The
fundamental idea behind these approaches is to identify communities using spectral
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properties of the graph, for example, a Laplacian matrix [Porter et al., 2005]. In
brief terms, these methods map modes in a space using their respective eigenvectors
and eigenvalues to define the coordinates [Fortunato and Hric, 2016]. Finally, the
resulting points can be grouped into clusters using standard clustering techniques such
as k-means [Shiga et al., 2007]. Methods based on spectral clustering are agnostic of
the particular algorithm applied to cluster the point and, unlike those that rely on
statistical inference, do not depend on any random graph model. In addition, they do
not depend on any random graph model. Another advantage is that they tend to be
quite scalable, for example, when matrix factorization is adopted [Bhattacharyya and
Chatterjee, 2017]. Conversely, these methods may not work well for sparse networks
or networks with very heterogeneous degrees, which is quite common in many domains
[Krzakala et al., 2013].

Yet another class of community detection methods allows communities to be
identified based on particular patterns, for example, by defining structural similarity
measures [Labatut and Balasque, 2012; Fortunato and Hric, 2016]. For instance, Struc-
tural Clustering Algorithm for Networks (SCAN) is one of them that is able to identify
and isolate community that are similar based on inter-community density, while also
including two kinds of nodes that play special roles, i.e., vertices that bridge clusters
(hubs) and vertices that are marginally connected to clusters (outliers) [Xu et al., 2007].

In contrast, other approaches are based on running a dynamic processes on the
network. network. For example, some methods, such as the Walktrap [Pons and Lat-
apy, 2005], rely on running random walks in the network. The assumption behind these
methods is that if there is a reasonably strong community structure in the network,
the random walkers tend to be trapped in nodes within a community before moving to
other communities. Though presenting some satisfactory results, Walktrap may have
a high computational cost, especially on denser networks [Fortunato and Hric, 2016].

Conversely to the aforementioned methods, which aim to identify communities in
projected networks, others are concentrated in community detection on higher-order
models. For instance, Pizzuti et al. employed a genetic algorithm to detect com-
munities in networks formed by motifs [Pizzuti and Socievole, 2017], while Yin et al.
adopted a local graph clustering approach based on motif conductance [Yin et al.,
2017]. Tsourakakis et al. demonstrated the potential of methods based on motifs for
tackling clustering problems and graph mining [Tsourakakis et al., 2017]. Huang et al.,
in turn, proposed a motif-based community detection algorithm for high-order multi-
layer networks [Huang et al., 2019]. All these methods aim at uncovering communities
that are based on particular structural patterns (e.g., motifs) and, therefore, are not
applicable for the modeling adopted here.
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In this dissertation, our focus is on exploring algorithms for detecting existing
communities, like the ones presented here, as a fundamental step to capture patterns
of collective behavior. As already mentioned, our primary focus is on detecting static
non-overlapping communities, by applying the selected method on snapshots of the
network corresponding to different time windows. Once communities are detected in
each time window, we are able to analyze their temporal dynamics by contrasting
community membership across different time windows. To that end, different metrics
and strategies can be applied, as will be discussed in Chapters 4 and 5. In particular,
one such strategy is the use of temporal network embeddings to model the dynamics
of a network. We review prior work in this area next.

2.5 Temporal Network Embeddings

Another body of work that relates to this dissertation is the use of alternative strate-
gies for temporal modeling, such as temporal embeddings used to model dynamics of
behavior in different contexts. Despite the rich literature on the use of embeddings to
extract latent signals in various domains (e.g., word embeddings in textual documents
[Kusner et al., 2015; Bamler and Mandt, 2017] and node embeddings in networks [Cui
et al., 2018]), the study of temporal embeddings is relatively new. Specifically, in the
network context, embeddings offer an important tool to network analysis due to their
capability of encoding the structures and properties of networks with latent represen-
tations [Lu et al., 2019a]. Some efforts have proposed temporal latent space models
by exploiting network embeddings [Zhu et al., 2016; Nguyen, 2018; Xie et al., 2020],
in some cases jointly with node attributes [Li et al., 2017; Huang et al., 2017]. More
recently, various dynamic graph embedding techniques have been proposed for diverse
purposes and applications. We refer to [Barros et al., 2021a] for a complete review of
such approaches and their applications.

Recall that, in this dissertation, we build sequences of networks (backbones and
corresponding communities) for non-overlapping time windows. Thus, we are inter-
ested in methods that learn embeddings for such time windows independently. This
ultimately leads to an “alignment problem” [Yao et al., 2018]. In simple terms, this
means that while learning different embeddings for different networks, it may not be
possible to place all learned embeddings in the same latent space, since the learning
is done independently. Thus, it may be hard to track an element (i.e., a node) across
time windows. One challenge in the “alignment problem” is to preserve similarities and
to reveal differences of the neighborhood across time in the same latent space, which
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is a seldom addressed problem.

Recent work has tackled this problem, yet the proposed solution has some key
properties that may not hold in several practical scenarios [Goyal et al., 2018b; Mahdavi
et al., 2018; Goyal et al., 2018a]. Specifically, it assumes that the temporal changes in
the networks are of short duration since it only considers the network of the previous
time window to learn the next time embedding. Also, it uses the learned embedding
from the previous time window to initialize the new one. These two properties implicitly
keep the new embedding (time t) close to the immediately previous one (time t-1).
Thus, the approach is unstable in sparse networks, when not all nodes are present in
all time windows.

In a completely different context, the authors of [Yao et al., 2018] proposed a
method to model word semantic evolution which simultaneously learns time-aware
word vector representations and effectively solves the aforementioned “alignment prob-
lem”. The method (presented in details in Chapter 4) tackles the problem of inferring
how word semantics evolve over time by proposing a dynamic statistical model for
learning time-aware word embeddings using all time windows simultaneously. The
main advantage is that it reaches robustness for scenarios with both smooth and rough
changes, thus being more flexible. It is also more robust to data sparsity and more
scalable in terms of memory usage, which is important for large networks. Inspired by
this work, we here adapt the proposal to the context of network embeddings and apply
it to analyze the dynamics of individual nodes over time. We describe how we have
performed this adaptation and the results obtained with it in Chapter 4.

2.6 Modeling Political and Ideological Behavior

A number of studies on political ideologies and behavior are based on the analysis of
user behavior in online social media applications [Brady et al., 2019; Oliveira et al.,
2020] as well as roll call vote networks [de Melo, 2015; Brito et al., 2020]. In particular,
roll call votes may be used to build networks such that the nodes represent people
(e.g., politicians), and two nodes are connected if they have voted similarly in one
(or more) voting session. Using these networks, Andris et al.. studied committees’
formation in the US House of Representatives, concluding that, despite the recent
increase in polarization, there are moderate members in both parties who cooperate
with each other [Andris et al., 2015]. Similarly, Porter et al.. studied the committees
and subcommittees of the same chamber, exploiting the network connections that
are built according to common membership [Porter et al., 2005]. Analogously, the
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polarization in the US Senate was evaluated using a network defined by the similarity
of senators’ votes [Moody and Mucha, 2013].

In [Dal Maso et al., 2015], the authors studied the relations between members
of the Italian parliament according to their voting behavior, analyzing the commu-
nity structure with respect to political coalitions and government alliances over time.
Similarly, the cohesiveness of members of the European parliament was investigated
through the analysis of network models combining roll call votes and Twitter data
[Cherepnalkoski et al., 2016]. Others studied the behavior of political members, mod-
eling roll call votes using signed networks. For example, Levorato et al. used signed
networks to evaluate aspects related to political governance and party behavior in
the Brazilian House of Representatives [Levorato and Frota, 2017]. The results re-
vealed inefficient coalitions with the government as parties that make such coalitions
have members distributed in different ideological communities over time. Mendonça
et al., in turn, proposed an algorithm to evaluate signed networks using the Euro-
pean parliament network as case study [Mendonça et al., 2017]. Orthogonally, others
have investigated the ideology of political members and users through profiles of social
networks [Agathangelou et al., 2017; Darwish et al., 2017; Oliveira et al., 2018, 2020].

A closely related body of work has used roll call votes to measure latent ide-
ological patterns. One such family of procedures is known as NOMINATE, whose
variants are D-NOMINATE (originally called ‘NOMINATE’) [Poole and Rosenthal,
1985], W-NOMI-NATE [Poole and Rosenthal, 2000] and DW-NOMINATE [Poole and
Rosenthal, 2001]. NOMINATE procedures assume a spatial model where each member
has an ideal position in a space, while ‘yea’ and ‘nay’ votes on each roll call take on
two positions in that space. Both D-NOMINATE and W-NOMINATE assume a mul-
tidimensional space (typically bidimensional), where errors (i.e., a member closer to a
certain vote decides to vote the opposite way) follow a logit model. Unlike the former,
W-NOMINATE assumes a distance model where dimensions are weighted differently,
allowing for more flexible utility functions. DW-NOMINATE builds and improves upon
W-NOMINATE by letting errors be normally distributed.

In [Bateman and Lapinski, 2016], the authors discussed some key shortcomings
of methods based on ideal positions such as DW-NOMINATE and why they are not
used more often in the American Political Development literature. One such limitation
is the assumption of linear change in a member’s ideal position over time. Moreover,
these methods disregard important data. For instance, such methods cannot leverage
information from unanimous votes – a typical situation in less polarized and fragmented
political systems – which are discarded before parameter estimation [Poole and Rosen-
thal, 1985]. Similarly, the identities of members who have changed parties during the
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period of analysis are also disregarded. For instance, in [Poole and Rosenthal, 2011],
the voting behavior of a member who changes parties once is considered as two inde-
pendent sequences. While this is not a severe issue in non-fragmented party systems,
it can introduce a large amount of noise when analyzing fragmented systems, such as
the case of Brazil’s party system, where such changes occurs with greater frequency.

Clinton et al. [Clinton et al., 2004] proposed a Bayesian simulation approach
that improves existing methods by allowing the inclusion of ancillary information (e.g.,
the location of extremist members, member-specific covariates, or the evolution of
the legislative agenda) in the model. The proposed framework also allows estimating
changes of ideal positions over time by modeling the process associated with that
change (e.g., members switching political parties). Although this approach offers a
number of advantages over the aforementioned point estimate models, it also retains
some statistical issues in relation to Bayesian ideal point estimation, such as proper
variance estimates, scale and translation invariance, reflection invariance and outliers
[Bafumi et al., 2005].

Some other prior efforts used alternative methods to network models. For in-
stance, the approach proposed by Vaz de Melo [de Melo, 2015] addresses the problem
of party fragmentation in Brazil by proposing an analytical method to identify the
ideal number of parties that the country should have. The results show that party
fragmentation is a reality in Brazil and that the number of parties that the country
should have is much smaller than the existing one. Motivated by the problem of fre-
quent party migration in Brazil, Desposato et al. [Desposato, 2006] proposed a model
based on game theory to identify reasons behind the high migration of members among
political parties.

Most of the aforementioned studies are based on scenarios of non-fragmented
party systems (e.g., the United States) in which ideologies are clearer and, therefore,
easier distinguished. However, moving to scenarios that suffer from party fragmen-
tation (composed of multiple political parties), there is the challenge of dealing with
the ideological overlap of these various political parties before analyzing ideologies. Al-
though some studies based on alternative models to complex networks are robust to this
characteristic, they also have limitations in terms of extracting temporal patterns. For
example, quantifying the extent to which ideological groups (communities) change over
time may be quite challenging. Moreover, network models can be considered for more
than two positions (i.e., ‘yea’ and ‘nay’), eliminating the need to collapse ‘absence’ and
‘nay’ as a single opposition category, as is the case for the United Nations General As-
sembly, where abstention is a milder form of disapproval than a ‘nay’ vote [Rosenthal,
2018].
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In this dissertation, we tackle the modeling of ideological and political behavior
in roll call votes as a one case study of our proposed general approach to model and
analyze collective behavior. In this context, the collective behavior emerges from loosely
organized individuals who, despite particular party boundaries, may form ideological
groups that cross such boundaries. In this case, co-interactions among individuals (i.e.,
politicians) occur as they vote similarly, leading to a network model that exhibits, in
essence, a noisy nature. For example, co-interactions may arise as highly consensual
topics generate similar votes from many individuals, even though such behavior is no
reflection of individual ideologies. Thus, this network model is a natural candidate
to be analyzed using our proposed general approach. Specifically, we contribute to
the aforementioned prior studies by using a network-oriented approach to identify and
characterize ideological communities in both fragmented and non-fragmented party
systems and extract relevant properties of them. The results from this case study are
presented in Chapter 4.

2.7 Modeling Online Discussions in Social Media

The growing use of social media applications in recent years has attracted the attention
of researchers to the analysis of online user discussions, considering different objectives
and methodologies [Tang, 2017]. Examples include studying online discussions aiming
at characterizing the presence and properties of hate speech [Mondal et al., 2017;
ElSherief et al., 2018; Saha et al., 2019], trolls [Cheng et al., 2017], conflicts [Kumar
et al., 2018], abuse [Waseem et al., 2017; Zampieri et al., 2019; Founta et al., 2019],
toxicity [Gehman et al., 2020; Rajadesingan et al., 2020], cyberbullying [Raisi and
Huang, 2017; Yao et al., 2019; Mukhopadhyay et al., 2020] and mental health issues
[McClellan et al., 2017; Silveira et al., 2020].

In this dissertation, we use online discussions in social media applications as a
case study of collective behavior, focusing on political discussions. Indeed, social media
applications have been largely studied from the perspective of platforms for political
debate. Twitter, in particular, has been the target of a large number of studies. As
a summary of prior efforts, Nguyen [Nguyen, 2018] presented a literature review of
the role of Twitter on politics, discussing prior findings in terms of the effectiveness of
the platform to help politicians win elections, political polarization, and the benefits
of using Twitter in the political arena. Indeed, many studies have already argued
for the increasing polarization in the online political debates [Gruzd and Roy, 2014;
Vergeer, 2015], whereas others have explored the benefits that politicians can have from
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using Twitter to reach their supporters. For example, Chi and Yang suggested that
politicians can significantly benefit from using Twitter, as they are able to establish
networks with their peers and acquire their support [Chi and Yang, 2010].

In [Gorkovenko and Taylor, 2017], the authors studied user behavior on Twitter
during live political debates. They observed that people often use the social network
to share their opinions, experiences, make provocative or humorous statements, and
interact and inform others. In [Badawy et al., 2018], the authors found evidence of
the use of Twitter for political manipulation. Caetano et al., in turn, analyzed the
behavior of politically engaged user groups on Twitter during the 2016 US presidential
campaign [Caetano et al., 2018]. Using information from user profiles, contact networks
and tweet content, the authors identified four different groups, namely advocates for
both main candidates, bots and regular users, and analyzed their behavior in terms of
language patterns, popularity and how tweets from each candidate affected the mood
expressed in their messages.

The online discussions have also been studied in the context of other social media
platforms. For example, Tasente et al. [Tasente, 2020] analyzed the political debate
around the Brexit on Facebook. The author focused on the frequency at which Euro-
pean institutions spoke about Brexit on their Facebook pages and on identifying and
analyzing the messages that generated higher engagement from users. In [Silva et al.,
2020], the authors developed a system to detect political ads on Facebook and used it
to present evidence of misuse during the Brazilian 2018 elections. In that direction,
WhatsApp has also been the target of recent studies as an important platform for
political debate and information dissemination, notably for the spread of fake news
during political elections [Resende et al., 2019a; Caetano et al., 2019; Nobre et al.,
2020; Maros et al., 2020].

Considering Instagram, which is the platform used in our second case study, the
literature on user behavior and interactions is reasonably recent and somewhat re-
stricted. Some studies focused on how different types of content or profiles attract user
engagement, notably in the political context. For example, Zarei et al. [Zarei et al.,
2019] analyzed user engagement of twelve Instagram profiles divided into different cate-
gories (namely, sports, news and politics), searching for impersonators – i.e., users who
simulate others’ behavior to perform specific activities, such as spreading fake news.
Muñoz et al. [Muñoz and Towner, 2017] studied image content posted by candidates
during the 2016 US primary elections, highlighting combined factors that attract user
engagement, whereas Trevisan et al. [Trevisan et al., 2019] performed a quantitative
study of the political debate on Instagram, highlighting that politician’s profiles tend
to have significantly more interactions than others.
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Moreover, other studies have also analyzed user engagement on online discus-
sions from different perspectives on Instagram. For example, Kang et al. [Kang et al.,
2020] studied a well-known strategy to trigger user interactions in social media, namely
mentioning a friend in a comment. The authors proposed a model capable of classi-
fying mentions into three categories based on its motivation: information-oriented,
relationship-oriented, and discussion-oriented. Jaakonmäki et al. [Jaakonmäki et al.,
2017] analyzed the influence of the content posted for social media marketing. They
used machine learning algorithms to extract textual and visual content features from
posts, along with creator and context features, to model their influence on user engage-
ment. In another direction, Yang et al. [Yang et al., 2019] studied the brand mentioning
practices of influencers, finding that audience has highly similar reactions to sponsored
and non-sponsored posts. They also proposed a neural network model to classify the
sponsorship of posts combining network embedding with features related to the posts
and followers. Similarly, Kim et al. [Kim et al., 2020] proposed a multimodal deep
learning model that uses contextual information of posts, including textual and image
content, to classify influencers as well as their posts into specific topics, such as food,
fashion and traveling.

Other studies have analyzed properties of the textual content shared by Instagram
users. For example, Zhan et al. [Zhan et al., 2018] analyzed the sentiment of captions of
Instagram posts to provide a preview of the content to the reader. Arslan et al. [Arslan
et al., 2019] also used sentiment analysis tools to develop a message-level emotion
classifier, with the goal of detecting cyberbullying. With a similar goal, Gupta et
al. [Gupta et al., 2020] focused on the temporal perspective, showing that, cyberbullying
activities exhibit recurrent temporal patterns such as the occurrence of bursts. In the
same direction, Kao et al. [Kao et al., 2019] proposed a social role detection framework
to analyze cyberbullying on social media platforms, taking Instagram as one of their
case studies. The framework considers the roles of victim, bully and supporter, which
are automatically identified by analyzing comment network and linguistic properties.

In contrast to prior studies, we here take a completely different perspective by
analyzing online discussions on Instagram, notably discussions on political subjects,
through the less of a many-to-many network. In particular, we focus on discussions
triggered by posts of particular influencers. As such, co-interactions occur among users
who comment on the same post. The network that emerges from such co-interactions,
just as the co-voting network discussed in the previous section, does suffer from the
presence of noisy edges. Thus, our proposed general approach to study collective
behavior may be applied in this context as well: by taking the online discussions
and political debates as expressions of collective behavior, we are able to uncover
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fundamental properties governing their dynamics.
Our present effort is orthogonal to the aforementioned prior studies as it focuses

on the network that emerges as users engage in online debates by commenting on
the same posts, an aspect mostly neglected so far, especially in the political context.
Indeed, the case study we address here largely complements prior studies of user inter-
actions around political subjects [Zarei et al., 2019; Muñoz and Towner, 2017; Trevisan
et al., 2019] by offering a much broader analysis of the dynamics of communities of users
who engage in political discussions. Thus, we are able to offer a more comprehensive
investigation by delving into the structural and contextual properties of the discus-
sions these communities engage in as well as on their temporal dynamics. We further
elaborate on this case study, presenting and discussing our main results in Chapter 5.

2.8 Summary

Recall that our main goal in this dissertation is to develop a general approach to study
collective behavior through the lens of many-to-many networks, focusing on struc-
tural, contextual and temporal properties, aiming at uncovering fundamental knowl-
edge about a phenomenon of interest. In this chapter, we have presented a review of
the literature related to the main topics covered in our work. In particular, we dis-
cussed prior studies and findings in the areas of (i) modeling of collective behavior,
(ii) modeling of user co-interactions, (iii) network backbone extraction, (iv) commu-
nity detection, (v) temporal network embeddings, as well as prior findings related to
our two case studies, notably the modeling and analysis of (vi) political ideological
behavior and (vii) online discussions.As we discussed, our present effort builds on prior
work to provide an original and novel approach to modeling and analyzing collective
behavior. In the next chapter, we formally define our target problem and present an
initial description of a general solution to tackle it.



Chapter 3

Modeling and Analyzing Collective
Behavior

This chapter takes the first step towards modeling and analyzing collective behavior
in many-to-many networks. The chapter is divided into four sections. First, we revisit
the problem statement in Section 3.1. Then, in Section 3.2, we discuss some of the
key challenges related to our target problem. In Section 3.3, we present our general
solution to tackle this problem, focusing in particular on our first two research goals
(defined in Section 1.3). We explore such solution through two case studies of interest,
notably the emergence of ideological groups in political systems and the study of online
discussions in a social media application in Chapters 4 and 5, respectively. Finally, we
provide a summary in Section 3.4.

3.1 Problem Statement

This dissertation focuses on the following setting of investigation. Consider a
particular phenomenon of interest that emerges or is driven by the collective actions
of a number of individuals. Such individuals, acting either independently or partially
coordinated, produce patterns of collective behavior that favor or leverage such a phe-
nomenon in a complex system. Our general goal is to uncover fundamental knowledge
that helps in understanding the dynamics of the given phenomenon, from the lens of
these collective behavior patterns.

Examples of such phenomena include information dissemination in social me-
dia platforms, driven by groups of users sharing ideas and pieces of information; the
emergence of ideological groups in a political system, as politicians cross the formal
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boundaries of established political parties by voting together and forming short or long
term alliances; and a cultural description of a geographical region built from the indi-
vidual choices made by its inhabitants in terms visitation patterns [Yang et al., 2016a],
eating habits [Silva et al., 2014a; Cao et al., 2018] or any other expression of their
cultural interests1.

The collective behavior driving such phenomena (e.g., content sharing, voting,
visitation or eating patterns) emerges from a sequence of individual actions that, inten-
tionally or not, coincide from the perspective of the target phenomenon. For example,
multiple users may share the same piece of information thus favoring its dissemination
on the platform; multiple politicians consistently vote similarly despite belonging to
different political parties, thus revealing fundamental ideological similarities; multiple
inhabitants may exhibit similar interests in terms of places of visitation in a city as
well as similar trajectories, revealing particular cultural patterns (e.g., popularity of
particular types of restaurants or attractions [Silva et al., 2014a; Cao et al., 2018]). We
here refer to a collection of such coincident actions, involving two or more individuals as
a co-interaction. Note that individuals participating in these co-interactions may not
necessarily have any previous social structure connecting them; rather, they are guided
by common goals or interests and driven by hidden contextual elements. In the light of
the aforementioned example phenomena, we can cite as potential sources of contextual
elements, respectively, posts containing specific topics attracting interested users to
online discussions in social media platforms, voting sessions with specific themes, and
cultural interests that drive human actions in a particular geographic region.

It is important to emphasize that the collective behavior patterns driving the phe-
nomenon of interest are often fundamentally very dynamic, as the contextual elements
driving human behavior change over time. For example, user discussions on social
media platforms naturally evolve over time, covering different topics and different user
groups. Similarly, politicians in some political systems, notably those that are more
fragmented, may also change their party memberships and, ultimately, their political
ideologies, as time passes.

As described, investigating the properties of those co-interactions is a key step
to reveal the collective behavior patterns that fundamentally influence and drive the
target phenomenon. One approach to pursue such investigation is to encode these co-
interactions into a graph model that captures the intensity between co-interactions. As
the co-interactions may involve more than two individuals, we refer to such graph model
as a many-to-many network to emphasize the multi-peer nature of these interactions.

1In that matter, cultural mapping [Silva et al., 2014b] is a practical and participatory tool to build
such descriptions.
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Figure 3.1. Overview of the problem statement.

In such a setting, the problem this dissertation aims to tackle is to reveal key prop-
erties associated with the collective behavior patterns driving a phenomenon of interest,
as a means to uncover fundamental knowledge about this phenomenon. We consider as
key: (1) topological properties, associated with the connectivity of individuals in the
network of co-interactions, notably communities of individuals that exhibit common
(collective) behavior; (2) contextual properties, associated with the contextual elements
driving individual and collective behavior; and (3) temporal properties, reflecting the
network dynamics.

Figure 3.1 illustrates the key elements that compose the problem this dissertation
aims to tackle.

3.2 Challenges

The modeling and analysis of collective behavior, notably in many-to-many net-
works, raise a number of challenges in different domains. In this section, we discuss
some of these challenges, notably those related to: (i) the presence of noise in the
network; (ii) the identification of the network component that is more relevant to the
target phenomenon (backbone extraction); (iii) the identification of groups of users
exhibiting common (collective) behavior patterns (community detection); and (iv) the
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characterization of specific patterns of interest.

3.2.1 Presence of Noise in the Network

The multitude of different co-interaction patterns influencing a particular phenomenon
of interest can be quite large. Indeed, as already shown [Benson et al., 2018b; Cao
et al., 2019; Coscia and Rossi, 2019; Fu et al., 2019; Kumar et al., 2020; Battiston et al.,
2020], they often exhibit a richness of patterns, including sequentiality, periodicity and
sporadicity. Moreover, it is often the case that to study the target phenomenon, one
must consider large volumes of co-interactions covering a reasonably long period of
time of co-interactions. However, not all co-interactions are equally important to the
study of the target phenomenon. As a matter of fact, it is often the case that many
such co-interactions occur only sporadically or as result of pure chance and, as such,
have weak relation, or no relation at all, to the target phenomenon.

To give an illustration, let us consider some possible scenarios when co-
interactions take place in a given system where a phenomenon is to be investigated.
Figure 3.2 shows the case of five co-interactions represented in dashed circles involving,
in total, seven different individuals (numbered 1 to 7). Although a co-interaction may
not be an atomic action (e.g., individuals co-interacting in an online discussion post
their comments at different moments in time), for the sake of simplicity, we show them
in some chronological order from left to right in the figure.

The simple example shown in Figure 3.2 illustrates different patterns, including:
i) the presence of individuals with a high level of activity participating in all observed
co-interactions (e.g., individual 2); ii) individuals participating in a few co-interactions
possibly due to particular interests (e.g., particular topics of discussion) driving their
choices (e.g., individual 5), and iii) individuals who sporadically co-interact (e.g., indi-
viduals 6 and 7); and iv) co-interactions involving a large fraction (or all) individuals
(e.g., the 3rd co-interaction from left to right). The last case may suggest a common
goal driving individual behavior that is so general and broad that might not be of great
interest to the study, that is, it might reflect a general trend and, as such, is not very
relevant to understand the specific collective patterns driving the phenomenon under
investigation.

Given such richness of patterns, it is unclear the extent to which the aforemen-
tioned diversity of co-interactions affects the study of the phenomenon under consider-
ation. For example, the presence of a large number of random, sporadic and thus weak
edges, may introduce excessive noise to the study of the phenomenon from the network
perspective. As consequence, the most fundamental underlying network substructure,
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Figure 3.2. Example of diversity of co-interactions in a given system.

built from edges that are indeed relevant to the phenomenon, is may be obfuscated
[Cao et al., 2019; Coscia and Rossi, 2019; Fu et al., 2019]. This situation gives rise to
the following question:

What makes a particular edge relevant (or salient) to the study of the given phe-
nomenon under consideration?

As argued by Grady et al. [Grady et al., 2012], the definition of edge salience is
based on an ensemble of node-specific perspectives in the network and quantifies the
extent to which there is a consensus among the nodes with regard to the importance
(representativeness) of a link. Hence, there is a wide range of different factors associated
with the studied phenomenon and the target system that can define whether an edge
is salient or not, which makes the identification of a salient edge a challenging issue.

Another challenge is to operationalize the identification and extraction of these
edges in the input network, once an appropriate definition of edge salience has been
found. The set of salient edges is referred to as the network backbone In the following
section, we discuss some challenges related to the design and use of algorithms for
extracting the backbone in the following section.
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3.2.2 Network Backbone Extraction

The identification of salient edges that form the backbone in noisy networks is widely
discussed in the literature, and several algorithms to perform this task have been
proposed as presented in Section 2.3. However, each method is designed based on
specific assumptions and, as such, reveals a very particular underlying structure. Thus,
one challenge is identifying the method that should be applied for a target study given
a pre-defined definition of edge salience.

Some methods provide a clearer definition of salience criteria to be captured,
making them easier to apply to specific phenomena. Examples include the use of a
threshold-based approach in some biological networks, where a minimum (or maximum)
level of interaction is expected in a protein-protein interaction network [Milenković and
Pržulj, 2008], financial market networks where a minimum correlation should be ob-
served between stocks connected by edges [Namaki et al., 2011], and co-voting networks
where congressmen with similar ideologies should have a minimal agreement during
voting sessions captured by the edge (as we present in Chapter 4).

On the other hand, other methods are more complex and require closer exam-
ination to capture their assumptions and main characteristics. This is the case with
most of the methods mentioned in Section 2.3. Once this is accomplished, it is possible
to categorize them according to similar assumptions and characteristics. While this
is quite a challenge, it does provide the opportunity to apply a set of methods to a
particular phenomenon to achieve a better result. Nevertheless, this leads us to an-
other challenge in evaluating and validating the best strategy. Newman argues that it
is impossible to evaluate the quality of the backbone extracted by a particular method
under normal circumstances because the true structure is unknown by definition [New-
man, 2018]. Therefore, a major challenge is to investigate alternatives to evaluate their
quality conditioned on the phenomenon’s characteristics. There is evidence in the lit-
erature of the construction of models that exploit available contextual information and
certain assumptions, and characteristics of the phenomenon under study, which there-
fore could be useful for the present work [Coscia and Neffke, 2017; Marcaccioli and
Livan, 2019; Coscia, 2021].

Finally, we note the possibility of developing new approaches for backbone extrac-
tion. While innovative strategies can be used to study new phenomena, the challenge
is primarily to identify relevant characteristics of one or more phenomena on differ-
ent systems and understand how they affect the properties of the network model to
rationalize the development of such new approaches.
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3.2.3 Community Detection

Having discussed the challenges of backbone extraction, the next step is to identify pat-
terns of collective behavior in it. The graph concept that directly maps into this idea
is that of community. The literature in community detection is quite vast, as different
approaches capture different concepts of communities for different network models [La-
batut and Balasque, 2012; Yang et al., 2016a]. The greatest challenge in community
detection is that there is a lack of a universal definition of community structure [For-
tunato and Hric, 2016]. One definition of community that is widely adopted is a group
of nodes that are more densely interconnected among themselves than with those in
the rest of the network. Strictly speaking, according to this definition, a community
is a cohesive subset of nodes that is distinctly separated from the rest of the network.
A number of formal interpretations of this definition have been made in an attempt
to formalize and combine both the aspects of cohesion and separation [Abraham and
Hassanien, 2012; Labatut and Balasque, 2012]. For instance, algorithms like Louvain
[Blondel et al., 2008] and Leiden [Traag et al., 2019] are driven by the density of the
edges. In general terms, these approaches rely on metrics (e.g., modularity, coverage,
and conductance) computed over intra-community and inter-community edges to assess
the cohesion and separation of the detected communities [Fortunato and Hric, 2016].

Moreover, other approaches are concerned with specific patterns in the network.
For instance, Louvain or Leiden adopting the Constant Potts Model (CPM) to establish
a minimal intra-community density [Traag et al., 2011]. Remember, that this quality
function allows a parameter to be set that makes it possible to define the communities
with a particular density. The definition of a community is, to some extent, independent
of the actual graph since the nature of this separation and the notion of cohesion
depend on the selected density pattern [Rossetti et al., 2019]. On the other hand,
some approaches involve looking for communities formed by a group of nodes that
are similar to each other, but different from the rest of the network by employing a
similarity measure. The strong point of this approach is that it goes beyond structural
analysis and allows contextual information to be considered in the definition of the
similarity function [Labatut and Balasque, 2012]. The SCAN (Structural Clustering
Algorithm for Networks) algorithm is an example of this kind of approach [Xu et al.,
2007].

Given the diversity of community definitions and corresponding community de-
tection methods, another challenge is how to choose the best method for a target study.
Once again, this choice should consider the specificities of the target phenomenon and
the perspective taken in the investigation as well as how the definition of community
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associated with each method maps into the types of collective behavior of interest.

3.2.4 Collective Behavior Pattern Extraction

As discussed in the last sections, the tasks of extracting the network backbone and
detecting communities exhibit particular challenges, mostly because a proper solution
should consider the phenomenon under study closely. Having overcome such challenges,
the communities found in the backbone offer an interpretable summary of the patterns
closely related to this phenomenon, both from a structural point of view and from a
contextual perspective of the system under analysis. For example, one can analyze the
structural property of communities using metrics such as modularity [Blondel et al.,
2008], degree distribution and clustering coefficient [David and Jon, 2010]. Moreover,
context-oriented information associated with the nodes in each community may be used
to aggregate external and domain-specific knowledge about it. If structural and con-
textual analyses are reasonably straightforward, investigating the temporal dynamics
of these communities may offer some challenges.

As mentioned in Section 2.5, there are different approaches to model temporal
networks. One such approach, adopted in this dissertation, is by building a sequence
of networks representing a sequence of snapshots of the real (dynamic) network. How-
ever, mapping the structural and contextual properties of communities across different
snapshots involves facing some particular challenges. Fundamentally, tracking a par-
ticular community over successive snapshots may be quite hard, as nodes dynamically
change community membership and some nodes may leave or join the network as time
passes.

There is a variety of metrics that can be applied to characterize the dynamics of
communities. Examples include the persistence (or coverage) of nodes or edges, Jac-
card index, degree correlation, among others [Fortunato and Hric, 2016; Rossetti and
Cazabet, 2018b]. By applying these metrics across different snapshots, one may obtain
a general assessment of the amount of change in the communities across consecutive
snapshots. For example, Normalized Mutual Information (NMI) [Vinh et al., 2010; Wei
and Carley, 2015], which will be formally defined in Chapter 4, is an information theo-
retic metric that can be used to quantify the extent to which the community structure
identified in snapshot ∆t changes in snapshot ∆t+1. However, this metric requires the
same set of nodes to be present in both snapshots, thus disregarding the arrival of new
nodes and the disappearance of other nodes. Moreover, this metric, as others, offers a
general perception of change but does not allow to zoom in which particular members
have changed and how they changed.
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Thus, it may be worth analyzing the dynamics of individual nodes, as a step
towards a more clear understanding of how the communities are evolving. Embedding
representations of nodes and graphs [Grover and Leskovec, 2016] have been proposed
as an efficient means to uncover the network structure and perform various network
mining tasks at node level [Nguyen, 2018; Xie et al., 2020]. As such, embeddings may
be a useful framework for analyzing the dynamics of nodes. As we argue in Section
2.5, there is a challenge to track a given node across embeddings learned for different
snapshots, as such learning is performed independently. Therefore, it is not possible to
map a node (or group of nodes) across different embeddings, leading to an “alignment
problem" [Yao et al., 2018].

In summary, the modeling and analysis of collective behavior driving a target
phenomenon of interest raise a number of challenges. In this dissertation, we seek to
tackle such challenges by offering a general approach that can be instantiated in dif-
ferent case studies. Our ultimate goal is to design a unifying framework that combines
all the elements of a general solution while also offering a discussion on the issues one
must consider when adopting it. In the following section, we offer a sketch of the first
steps towards a general solution, which will be instantiated, in the following chapters,
in two case studies.

3.3 A General Approach

In this section, we present our general approach to study collective behavior in
many-to-many networks, which is depicted in Figure 3.3. Starting with a phenomenon
to be studied in a given system, we assume the existence of a sequence of timestamped
user actions covering a period of interest and gathered from that system. These ac-
tions represent expressions of user behavior that are fundamentally related to the phe-
nomenon that will be studied (e.g., comments posted on a social media application,
votes during a voting session).

In general terms, we propose to divide the period of interest into adjacent, non-
overlapping and fixed-duration windows (snapshots). For each such snapshot, we first
identify co-interactions from the set of user actions. This is done by grouping together
actions that coincide from the perspective of the phenomenon under investigation. By
coincident actions we mean that, collectively, they represent the same perspective from
the study of the target phenomenon (e.g., the same ideology in a study of ideological
groups). We then build a many-to-many network by projecting the co-interactions
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Figure 3.3. Overall solution for modeling and analyzing collective behavior.

into a weighted graph where weights express the number of times two individuals
participated in a co-interaction (or any other contextual metric) during the respective
time window. Then, we must extract the backbones of these networks by identifying the
subset of edges that are salient with respect to the phenomenon under investigation. For
that purpose, we may either rely on an existing algorithm or propose a new approach,
exploiting singularities and constraints of the target problem and system. Yet, we
note the possibility of using more than one method for the target phenomenon in the
backbone extraction step. However, as we mentioned in the last section, a particular
challenge in this step is to select and evaluate a set of methods to choose the one that
best captures the phenomenon. Above all, this requires knowledge and categorization of
the assumptions and properties of a set of methods under consideration. Therefore, we
address this challenge later, in particular in Chapter 6, where we present a methodology
for applying and evaluating a set of methods compatible with the same phenomenon.

Next, a community detection algorithm should be employed to uncover groups
of individuals representing different collective behavior patterns influencing the sys-
tem. We then aim at analyzing such communities, focusing on topological (community
structure), contextual (system-related community attributes) and temporal (commu-
nity dynamics) properties, aiming at uncovering fundamental knowledge about the
target phenomenon.

Formally speaking, we propose to model the system as follows. Given a sequence
T = (∆t1,∆t2, ...,∆tn) of non-overlapping time windows of fixed duration, consider
I∆t = {i1, i2, ..., ij} a set of individuals who interact with the system and among them-
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selves during a given time window ∆t, collectively driving the dynamics of the target
phenomenon during that period. We consider that the system may define, explicitly
or not, opportunities for individuals to interact, expressing their interests and personal
goals with respect to that particular opportunity and, at the same time, the system may
also impose restrictions on which interactions may occur at any given time (or in re-
sponse to specific opportunities). Specifically, we define a set O∆t = {o1∆t

, o2∆t
, ...., om∆t

}
of opportunities for individuals to interact during a given time window ∆t. A group
of individuals who interact in response to a given opportunity ok∆t

is said to form a
co-interaction. In this fashion, the panorama between individuals and opportunities in
a given system is tied as two or more individuals in I∆t choose to co-interact, driven
by a particular opportunity in O∆t , during a time window in ∆t ∈ T .

For instance, consider the study of online discussions in social media applications
such as YouTube and Instagram. In that case, a user who shares content on a given
topic (e.g., a user who shares a post on Instagram or a video on YouTube) may trigger
comments from others, starting a thread of discussion, which is the object of investiga-
tion. Thus, the content initially posted opened an opportunity for users to comment on
the topic, co-interacting with each other. In this particular case, the original post is the
opportunity, whereas a co-interaction is said to occur among those users who, attracted
by the original post, choose to comment on it. Note that users act individually by com-
menting on a given post; the co-interactions happen as multiple users choose to interact
with each other by commenting on the same post. Another example, consider now the
case of a study based on a co-voting network. In that case, co-interactions occur during
voting sessions when congressmen express their votes with respect to pre-defined bills.
In such case, the voting sessions are the opportunities whereas co-interactions occur as
different congressmen vote similarly in the same session.

As defined, a co-interaction represents multiple individuals simultaneously in-
teracting with the system (and with each other) in response to a given opportunity,
taking actions that impact the system and, thus, reflect on the phenomenon. Although
a given co-interaction is driven by a single opportunity, it should be noticed that an
opportunity may generate multiple co-interactions. For instance, during a voting ses-
sion (opportunity), there might be two co-interactions, one among congressmen who
voted in favor of the specific bill being analyzed (yes), another among those who voted
against it (no).

Moreover, opportunities may represent particular points in time when co-
interactions can occur (e.g., voting sessions), or alternatively, specific events (e.g., a
user post in a social media application) that drive users to co-interact, though such
co-interactions may occur at any time after the opportunity happens. In the latter
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case, we may or may not define a limit on the user interactions following a particular
opportunity that form a co-interaction (e.g., a maximum time period or even a maxi-
mum number of users participating in a co-interaction), depending on the phenomenon
under investigation. For example, in a social media application, a given post may con-
tinue receiving new comments even after the end of the time window during which the
post was shared. Still, these comments may be included in the co-interaction triggered
by that post. In a co-voting network, in turn, a particular voting session restricts
congressmen to take a position immediately. Similarly, the number of interactions by
the same user (e.g., number of comments by the same user) in response to the same
opportunity may or may not be explicitly considered, depending on the study.

Given the above description, we can see that each opportunity ok∆t
has an associ-

ated set of co-interactions C(ok∆t
) that occurred in response to it. Each co-interaction c

in set C(ok∆t
), in turn, is a set of users who participated in the co-interaction. In other

words, C(ok∆t
) = c1k,∆t

, c2k,∆t
, ...cqk,∆t

such that cjk,∆t
⊆ I∆t . We also define the set of all

co-interactions associated with time window ∆t, C∆t , as all co-interactions associated
with opportunities that occurred during ∆t. In other words:

C∆t = ∪ C(ok∆t
), ∀ok∆t

∈ O∆t (3.1)

Given a set of co-interactions C∆t , we build a many-to-many network model for
time window ∆t by projecting such co-interactions into an undirected and weighted
graph G∆t = (V,E) such that:

• V : is the set of vertices represented by I∆t . In other words, all individuals who
co-interacted in the system during a time window ∆t.

• E: is the set of undirected and weighted edges, such that the weight of edge
ei1,i2 connecting two individuals i1, i2 ∈ I∆t is γ∆t(i1, i2) = f(C∆t , i1, i2), where
f(C∆t , i1, i2) may be any aggregation function (e.g, count) that takes into account
the co-interactions between i1 and i2 that happened during window ∆t and/or
any contextual information associated to them available during that period ∆t

2.

Having defined the graph G∆t , we are interested in extracting its backbone, B∆t =

(Vb, Eb), such that Vb ⊆ V and Eb ⊆ E. As discussed in Section 3.2.2, choosing the best
algorithm to extract B∆t is a challenge as characteristics of the system and phenomenon
under study may impose constraints on how co-interactions among individuals occur.

2As an example of contextual information being explored to build the graph G∆t
, the authors

of [Pacheco et al., 2020, 2021] used several contextual metrics to connect nodes representing Twitter
users, aiming at uncovering coordinated behavior in Online Social Networks.
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For example, it is possible that an individual i ∈ I∆t may not be particularly interested
in an opportunity ok∆t

∈ O∆t . Yet, a stronger constraint forces i to take part in a co-
interaction around this opportunity. For example, a congressman feels compelled to
voice her vote in a voting session due to her duty to the constituents, rather than
by a particular interest in the bill being voted. Similarly, it might be the case that
a particular user cannot, by system constraints, react to a particular opportunity o.
For example, a congressman cannot vote in a voting session if she does not attend it.
Equivalently, in a social media application, a user may not be able to comment on
a post if the post is not visible to her (e.g., she does not follow the post’s author).
In other words, for any given system and phenomenon of interest, there may be a
number of factors that impact the possibilities for co-interactions among individuals.
Consequently, such specificities should be reflected in different edge weight probability
distribution in G∆t . Thus, not only structural features but also contextual features can
be used to assist in extracting the backbone.

From the extracted backbone, a community detection algorithm should be applied
in B∆t to reveal a set P∆t of communities (partitions) during a time window ∆t. The
communities unveiled should then be analyzed with respect to their structural and
contextual properties, as well as with respect to their temporal dynamics. Lastly, we
can define universal sets for the components considered during the period analyzed as:
I = {I∆t1∪I∆t2∪...∪I∆tn} the universal set of individuals ; O = {O∆t1∪O∆t1∪...∪O∆tn}
the universal set of opportunities ; C = {C∆t1 ∪ C∆t2 ∪ ... ∪ C∆tn} the universal set of
co-interactions ; G = {G1, G2, ..., G∆tn} and B = {B1, B2, ..., B∆tn} the universal sets of
networks and backbones, respectively; and P = {P1, P2, ..., P∆tn} the universal set for
partitions;

After formalizing our general approach, we present two case studies of interest in
Chapters 4 and 5. Next, we dive into the backbone extraction step of such approach
by proposing a methodology for selecting and evaluating different backbone strategies
in Chapter 6.

3.4 Summary

In this chapter, we have set out the preliminaries and fundamental concepts for the
work developed in this dissertation. We started by revisiting our problem statement.
We then discussed several key challenges associated with the target problem. In par-
ticular, we discussed challenges related to: (1) how we filter out noise from the network
by defining and identifying only salient edges with respect to the problem under inves-
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tigation; (2) how the extraction of these salient edges are operationalized in different
backbone extraction algorithms and issues that must be considered when selecting one
approach; (3) alternative definitions of community – a graph concept representing col-
lective behavior – with possible implications on the study; and (4) how we extract
relevant patterns associated with the identified communities, notably temporal pat-
terns. We then proceeded to introduce a general solution that forms the skeleton of
this dissertation. In the next two chapters, we use it to examine two case studies.



Chapter 4

Ideological Groups in Co-voting
Networks

In this chapter, we present our first case study tackling the modeling of ideological
groups in co-voting networks. It is organized as follows: Section 4.1 presents a brief
contextualization as well as the research questions related to the phenomenon here
studied; Section 4.2 describes our methodology according to the aspects described in
Chapter 3; Sections 4.3-4.6 show the results while Section 4.7 discusses our findings
on the phenomenon in question; Finally, the Section 4.8 summarizes the contributions
and implications obtained.

4.1 Contextualization

Party systems can be classified with respect to fragmentation and polarization [Sartori,
2005]. Fragmentation corresponds to the number of parties existing in a political system
(e.g., a country), while polarization is related to the multiple opinions that lead to
the division of congressmen into groups with distinct political ideologies [Sartori, 2005;
Fiorina and Abrams, 2008]. In countries where the party system has low fragmentation,
the polarization of political parties can be more clearly observed since one party tends
to occupy most seats supporting the government than the others opposing it [Mann
and Ornstein, 2016]. Conversely, in fragmented systems, the many political parties
often create coalitions, a inter-party alliance, to raise their influence in the political
system and reach a common end [Ames, 2001; Budge and Laver, 2016]. Thus, a great
deal of ideological similarity, as expressed by voting decisions, is often observed across
different parties.

53
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Previous work has analyzed the ideological behavior of political party congress-
men by the modeling of voting data in signed and weighted networks [Andris et al.,
2015; Cherepnalkoski et al., 2016; Arinik et al., 2017; Levorato and Frota, 2017; Men-
donça et al., 2017] These prior efforts tackled topics such as community detection,
party cohesion and loyalty analysis, governance of a political party and congressman
influence in such networks. Yet, the identification and characterization of ideological
communities, particularly in fragmented party systems, require observing some issues,
such as: (i) presidents may define coalitions to strengthen the implementation of de-
sired public policies, which may be ruptured after some time [Mainwaring and Shugart,
1997; Budge and Laver, 2016]; (ii) political members have different levels of partisan-
ship and loyalty, and their political preferences may change over time [Baldassarri
and Gelman, 2008; Andris et al., 2015]; and (iii) different parties may have the same
political ideology, being redundant under a party system [de Melo, 2015].

In such context, we focus on the phenomenon related to the formation of ideo-
logical groups in political systems that go beyond pre-existing party boundaries. We
study the dynamic behavior of political party members aiming at identifying how ide-
ological communities are created and evolve over time and how individual members
change their ideological behavior with respect to others. For the sake of comparison,
we consider two very diverse political systems : the House of Representative of Brazil,
which is characterized as a highly fragmented political system (i.e., several political
parties occupying the seats) [de Melo, 2015], and the House of Representative of the
United States, which is mostly dominated by two main parties – Republicans and
Democrats [Dal Maso et al., 2015].

Using public voting data of the House of Representatives of both countries, cov-
ering a 15-year period, we model and characterize the emergence and evolution of
communities of House members with similar political ideology and ideological changes
of individual members over time. We study group and individual ideological behavior,
as captured by their voting decisions, aiming at tackling four research questions (RQs):

• RQ1: How are ideological communities in governments with different
(fragmented and non-fragmented) party systems characterized? We
model the voting behavior of each House member during a given time period
using a network, where nodes represent congressmen of the same House of Rep-
resentatives, and weighted edges are added if two congressmen voted similarly.
We use the Louvain algorithm [Blondel et al., 2008] to detect communities in each
network and characterize structural properties of such communities. Unlike the
aforementioned prior analyses in the political domain, we compare the properties
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of these communities in fragmented and in non-fragmented party systems.

• RQ2: How can we identify polarization in the ideological communities?
We use neighborhood overlap to estimate the tie strength associated to each
network edge, characterizing it as either strong or weak [David and Jon, 2010].
This approach to estimate tie strength has been employed in several contexts
[Granovetter, 1973; Jones et al., 2013; McGee et al., 2013; Wiese et al., 2015] and
to a short extent in the political domain [Waugh et al., 2009]. But unlike prior
studies, we use strong ties to identify polarized communities in each network,
comparing distinct political systems with respect to polarization.

• RQ3: How do polarized communities evolve over time? We analyze how
polarized communities evolve over the years of a government, characterizing how
the membership of such communities change over time.

• RQ4: How can we assess the ideological changes of individual House
congressmen over time? We capture ideological changes, as expressed by
members’ voting behavior, by mapping the network into a temporal latent ide-
ological space. Building upon a recent work [Yao et al., 2018], we learn tempo-
ral vertice embeddings for consecutive networks (representing consecutive years)
jointly, so that we can track individual congressmen over time in the defined space.
By doing so, we are able to analyze how the locations of individual congressmen
in this space change and thus measure ideological shifts over time. Unlike prior
studies that use contextual information (e.g., topics of voting sessions [Nguyen
et al., 2015; Kornilova et al., 2018], prior speeches of individual congressmen
[Lauderdale and Herzog, 2016; Sakamoto and Takikawa, 2017; Eidelman et al.,
2018]) to build an ideological space, we use only the topological structure of the
networks (which come from the voting data itself) to build such space, being thus
a more general approach.

4.2 Methodology

This section describes the methodology used in our study, starting with basic concepts
(Section 4.2.1) and our case studies (Section 4.2.2). We then present our modeling of
voting behavior (Section 4.2.3) and the time-aware node embedding approach used to
model an ideological latent space (Section 4.2.6.1).
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4.2.1 Basic Concepts

The House of Representatives is composed of several congressmen who occupy the
seats during each government period. House members participate in a series of voting
sessions, when bills, amendments, and propositions are discussed and voted. Thus, at-
tending such sessions is the most direct way for congressmen to express their ideologies
and opinions. When these congressmen are associated with a large number of political
parties, the party system in question is regarded as fragmented. In this case, during
a term of office, coalitions are often established, leading political parties to organize
themselves into ideological communities, defending together common interests during
voting sessions [Mainwaring and Shugart, 1997; Sartori, 2005].

One can evaluate the behavior of parties and their congressmen in terms of how
cohesive they are as an ideological community by analyzing voting data using widely
disseminated metrics, such as Rice’s Index [Rice, 1925]. Yet, the use of Rice Index
has been shown to be problematic when there are more than two voting options (other
than only yes and no) [Hix et al., 2005], as, for example, in the European parliament
and in our study, as we will see.

Instead, we here employ the Partisan Discipline and Party Discipline metrics,
proposed in [de Melo, 2015]. The former captures the ideological alignment of a member
to her party (estimated by the behavior of the majority), and the latter expresses the
ideological cohesiveness of a party. Given a member m, belonging to party pm, the
Partisan Discipline of m, pdm, is given by the fraction of all voting sessions to which
m attended and voted similarly to the majority of pm’s members. That is, let n be the
number of voting sessions attended by m and I(m, pm, i) be 1 if m voted similarly to
the majority of congressmen of pm in voting session i (i = 1..n) and 0 otherwise. Then,

pdm =

∑n
i=1 I(m, pm, i)

n
(4.1)

We note that pdm ranges from 0 to 1, where 1 indicates that member m voted
similarly to the majority of pm’s congressmen in all voting sessions, and 0 indicates
the opposite behavior. We note also that the Partisan Discipline can be generalized
to assess the discipline and ideological alignment of a member to any community (not
only his original party).

The Party Discipline of a party p is computed as the average Partisan Discipline
of all of its members, that is,

PD(p) =

∑M
m=1 pdm
M

(4.2)
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where M is the number of congressmen of p. Party Discipline captures how cohesive
a party (or community) is in a set of votes. That is, a PD(p) value of 1 (maximum)
indicates that party p is totally disciplined (or cohesive).

4.2.2 Case Studies

We consider two case studies: Brazil and the United States (US). In Brazil, the House
of Representatives consists of 513 seats. A member vote can be either Yes, No, Ob-
struction or Absence in each voting session. A Yes or No vote expresses, respectively,
an agreement or disagreement with the given proposition. Both Absence and Obstruc-
tion mean that the member did not participate in the voting, although an Obstruction
expresses the intention of the member to cause the voting session to be canceled, for
instance, due to insufficient quorum. Similarly, the US House of Representatives in-
cludes 435 seats, and a member vote can be Yes, No or Not Voting, whereas the last
one indicates the member was not present in the voting session. In our study, we
disregard Absence and Not Voting votes, as they do not reflect any particular inclina-
tion of the congressmen with respect to the topic under consideration. However, we
do include Obstructions as they reflect an intentional action of the congressmen and
a clear opposition to the topic. Thus, for Brazil, three different voting options were
considered.

For both case studies, we collected voting data from public sources. The plenary
roll call votes of Brazil’s House of Representatives are available through an application
programming interface (API) maintained by the government1. We collected roll call
votes from 2003 to 2017 (4 legislatures). US voting data covering the same 15-year
period (i.e., between the 108th and 115th congresses) was collected through the ProP-
ublica API2. Each dataset consists of a sequence of voting sessions; for each session,
the dataset includes date, time and voting option of each participating member.

In a preliminary analysis of the datasets, we noted that some congressmen had
little attendance to the voting sessions, especially in Brazil. Thus, we chose to filter
our datasets to remove congressmen with low attendance as they introduce noise to
our analyses. Specifically, we removed congressmen that had not attended (thus had
not associated vote) to more than 33% of the voting sessions during each year3. On

1http://www2.camara.leg.br/transparencia/dados-abertos/dados-abertos-legislativo
(in Portuguese).

2https://projects.propublica.org/api-docs/congress-api/
3This threshold was chosen based on Article 55 of the Brazilian Constitution that establishes that

a deputy or senator will lose her mandate if she does not attend more than one third of the sessions.

http://www2.camara.leg.br/transparencia/dados-abertos/dados-abertos-legislativo
https://projects.propublica.org/api-docs/congress-api/
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average, 19% and 1.98% congressmen were removed from the Brazilian and US datasets
for each year, respectively.

Table 4.1. Datasets overview (PD: party discipline, SD: st. dev.)

Brazil (52nd to 55th legislatures)

Year President
(Party)

# of
Sessions

# of
Votes

# of
Parties

# of
Members

Avg.
PD(%)

SD
PD

2003 Lula (PT) 150 106755 23 435 88.23 0.08
2004 Lula (PT) 118 71576 23 377 87.43 0.08
2005 Lula (PT) 81 50616 24 382 88.91 0.07
2006 Lula (PT) 87 62358 24 419 91.12 0.05
2007 Lula (PT) 221 190424 31 478 92.45 0.07
2008 Lula (PT) 157 122482 31 452 92.34 0.07
2009 Lula (PT) 156 125759 30 465 91.87 0.06
2010 Lula (PT) 83 63255 29 452 92.46 0.05
2011 Dilma (PT) 98 78662 29 481 89.34 0.08
2012 Dilma (PT) 79 60219 28 454 89.56 0.05
2013 Dilma (PT) 158 115751 29 451 88.70 0.06
2014 Dilma (PT) 87 66154 28 451 92.93 0.04
2015 Dilma (PT) 273 231031 28 502 85.84 0.06

2016 Dilma (PT)
Temer (PMDB) 218 156006 28 452 90.12 0.05

2017 Temer (PMDB) 230 159704 29 435 89.76 0.08

United States (108th to 115th congresses)

Year President
(Party)

# of
Sessions

# of
Votes

# of
Parties

# of
Members

Avg.
PD(%)

SD
PD

2003 Bush (R) 623 258867 3 432 95.76 0.03
2004 Bush (R) 502 203557 3 427 95.11 0.03
2005 Bush (R) 637 264735 3 432 95.02 0.03
2006 Bush (R) 511 210592 3 428 94.98 0.04
2007 Bush (R) 956 297957 2 414 92.23 0.04
2008 Bush (R) 605 244734 2 426 92.73 0.04
2009 Obama (D) 929 385344 3 431 93.78 0.02
2010 Obama (D) 631 253296 3 422 95.34 0.01
2011 Obama (D) 908 377601 2 428 91.98 0.01
2012 Obama (D) 621 253812 2 425 91.50 0.01
2013 Obama (D) 594 245430 2 427 93.04 0.01
2014 Obama (D) 531 217822 2 426 93.24 0.01
2015 Obama (D) 662 277732 2 432 94.87 0.01
2016 Obama (D) 588 241263 2 427 95.11 0.01
2017 Trump (R) 708 292503 2 427 95.99 0.00

Table 4.1 shows an overview of both (filtered) datasets, with Brazil on the top
part of the table and the US on the bottom. The table presents, for each year, the
acting president4 and his/her party5, total number of voting sessions, total number of
member votes, as well as numbers of parties and congressmen occupying seats in the
House of Representatives during the year. The two rightmost columns, Avg. PD and
SD PD, present the average and standard deviation of the Party Discipline computed

4Brazilian president Dilma Rousseff was impeached from Office in 2016 and, therefore, Brazil had
two Presidents that year.

5For Brazil: Worker’s Party (PT) and Democratic Movement Party (PMDB). For the US: Demo-
cratic (D) and Republican (R).
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across all parties. We show data for different Brazilian legislatures and US congresses
in separate blocks of the table.

Starting with the Brazilian dataset, we can see that the number of parties occu-
pying seats has somewhat grown in recent years, characterizing an increasingly frag-
mented party system. Yet, in general, average PD values are very high (ranging from
85% to 92%), with small variation across parties, indicating that, despite the fragmen-
tation, most party congressmen have high partisan discipline. Regarding the American
dataset, Table 4.1 shows that the number of voting sessions is much larger than in
Brazil. This is because the API of the Brazilian House of Representative provides only
data related to votes in plenary, while the US dataset covers all votes. Moreover, al-
though the numbers of congressmen are comparable to those in the Brazilian dataset,
the number of parties occupying seats in each year is much smaller. Indeed, only two
parties, namely Republican (R) and Democrat (D), fill all available seats since the
112th Congress. Thus, unlike the Brazilian case, party fragmentation is not an issue in
the US system. Nevertheless, parties have a high party discipline in both systems.

4.2.3 Network Model

We model the dynamics of ideological communities in voting sessions in each coun-
try using graphs as follows. We discretize time into non-overlapping windows of
fixed duration. Since in Brazil, government coalitions are usually made every year,
we choose one year as the time window for analyzing community dynamics. Thus,
we build a set TBR = {∆t1,∆t2, ...,∆t15} and the other for the United States
TUS = {∆t1,∆t2, ...,∆t15}.

We define individuals as congressmen that had seats in their respective House of
Representatives during the time window ∆t. We then define the sets of individuals for
each time window ∆t as IBR,∆t = {i1, i2, ..., ij1} for Brazil and IUS,∆t = {i1, i2, ..., ij2}
for the United States, where j1 and j2 are the total number of congressmen in the House
for Brazil and the United States, respectively, during window ∆t. The opportunities
whose those congressmen may interact are defined as voting sessions that take place
during a given time window ∆t (i.e., during a year). Thus, we define the sets OBR,∆t =

{o1∆t
, o2∆t

, ...., om1
∆t

} and OUS,∆t = {o1∆t
, o2∆t

, ...., om2
∆t

} formed by all the voting sessions
that were opened, respectively, in Brazil and in the United States during window ∆t.
Notice that the numbers of voting sessions m1 and m2 may be different.

Having defined that, a co-interaction c built around opportunity ok∆t
∈ OBR,∆t

(i.e., c ∈ C(ok∆t
)) is formed by Brazilian congressmen who took the same position

(Yes, No or Obstruction) at the House of representative of Brazil. The collection of
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co-interactions that took place during window ∆t in Brazil is referred to as CBR,∆t .
Similarly, we define a co-interaction c ∈ C(ok∆t

), for ok∆t
∈ OUS,∆t , as a set of American

congressmen who voted alike in the kth voting sessions of the American House of
Representatives. Also we define set CUS,∆t of all co-interactions that occurred during
all opportunities in OUS,∆t .

We then move towards the network modeling. For each scenario under study
(Brazil and the United States) and for each time window ∆t in TBR and TUS we build
an undirected and weighted graph. Recall that our goal is to analyze the formation
of ideological groups, that is, congressmen who have the same ideological alignment
during the analyzed voting sessions. Thus, for each scenario s (s = BR,US) and time
window ∆T we build a co-voting network Gs,∆t as follows:

• Vs,∆t : is the set of vertices represented by all congressmen. That is, all individuals
in Is,∆t who participated in at least one co-interaction in C·,∆t .

• Es,∆t : is the set of undirected and weighted edges, such that the weight of
edge ei1,i2 linking two congressmen i1 and i2 is γ∆t(i1, i2) = sim(i1, i2), where
sim(i1, i2) is given by the ratio of the number of sessions in which both con-
gressmen voted similarly to the total number of sessions in Os,∆t to which both
congressmen attended.

As a result, we have the following sets of networks for Brazil and the US: GBR =

{GBR,∆t1
, GBR,∆t2

, . . . , GBR,∆t15} and GUS = {GUS,∆t1
, GUS,∆t2

, . . . , GUS,∆t15}. Given
such networks, our goal is to infer patterns of common (collective) behavior in terms
of voting choices that extrapolate the traditional boundaries political parties, thus
revealing ideological similarities among congressmen. Based on these patterns, we
intend to study how ideological groups are formed and evolve over time in the two –
very different – political systems analyzed.

4.2.4 Network Backbone Extraction

After building each graph sequence, we noted that all pairs of congressmen voted
similarly at least once in all years analyzed and in both countries, and therefore all
graphs built are complete and do not allow that patterns be extracted. This reflects
the fact that some voting sessions are not discriminative of ideology or opinion, as
most congressmen (regardless of party) voted similarly. For instance, it is possible that
some voting sessions target general-interest or humanitarian causes. As a consequence,
many different congressmen, despite having different ideological beliefs and behaviors,
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Figure 4.1. Cumulative Distribution Function of Edge Similarity.

may still take a similar voting position with respect to the particular bill being voted,
adding edges to the co-voting network. These edges represent sporadic interactions
and are driven by a particular topic of large agreement, and thus do not necessarily
reflect an ideological alignment. Thereby, it is necessary to filter out edges that do
not contribute to the detection of ideological communities. By doing so, we intend to
reveal the salient edges to identify the backbone Bs,∆t for each time graph Gs,∆t .

Intending to remove such edges and extract the backbone, we employ the
threshold-based approach. To define the right threshold for our problem, we follow
previous works that use contextual information to address this point [Perkins and
Langston, 2009; Bordier et al., 2017; Yan et al., 2018]. We begin by analyzing the dis-
tributions of edge similarity for all the networks that capture agreement between voting
congressmen. Representative distributions for specific years are shown in Figures 4.1a
and 4.1b for Brazil and US, respectively.

We note that the distributions for the U.S. show clear concentrations around
very small (roughly 30%) and very large (around 85%) similarity values, while the
distributions for Brazil exhibit greater variability, which is consistent with the greater
fragmentation of the party system. Aiming at filtering out non salient edges from the
networks, in line with the phenomenon, we argue that the threshold should not be
much smaller than the average partisan discipline of the individual members. That
is, two congressmen that have a much lower similarity (ideological agreement) than
their partisan disciplines observed in the political system in question should not be
considered part of the same ideological community. Therefore, these interactions can
be taken out as they do not discriminate ideology, as mentioned earlier.

Based on these assumptions, we chose to remove all edges with weights below
the 90th percentile of the similarity distribution for the Brazilian graphs. For the US,
we removed edges with weights below the 55th percentile of the similarity distribution.
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Both percentiles correspond roughly to a similarity value of 80%, which is not much
smaller than the average partisan disciplines in both countries (see Table 4.1). We
removed nodes that become isolated after the edge filtering. We found that these
thresholds yield a good trade-off between removing less discriminative connections and
graph sparsity. Specifically, the fraction of nodes and edges removed from the Brazilian
networks fall in the 0-24% and 86-93% ranges, respectively, across all years analyzed.
For the US, the fractions are much lower, varying from 0% to 11% for nodes and
from 54% to 56% for edges. Therefore, we have the following sets of backbone for
Brazil and the U.S., respectively, BBR = {BBR,∆t1

, BBR,∆t2
, . . . , BBR,∆t15} and BUS =

{BUS,∆t1
, BUS,∆t2

, . . . , BUS,∆t15}.

4.2.5 Community Detection

After extracting the backbones, we use the Louvain algorithm [Blondel et al., 2008]
to identify ideological communities Ps,∆t in each backbone Bs,∆t . The goal is to find
communities formed by congressmen with closer ideology according to the edges that
directly encode voting similarity between congressmen. As explained in Chapter 2,
Louvain is based on the optimization of modularity [Newman, 2006], a metric to eval-
uate the structure of clusters in a network. Modularity is large when the clustering is
good, with a maximum value of 1. Thus, we have for each scenario a set of communities
Ps = {P1, P2, ..., P∆tn}.

4.2.6 Community Characterization

Once the communities are extracted, we characterize them in terms of their struc-
tural, contextual, and temporal dynamics. For the first two, we use modularity along
with party discipline as the main metrics to assess the cohesiveness of the communities
found. Modularity captures the quality of the result in terms of the topological struc-
ture of the communities in the network, while party discipline, which is computed for
the communities (rather than for individual parties), captures the quality in terms of
context semantics.

In terms of temporal properties„ we compute complementary metrics, namely
persistence and normalized mutual information (NMI) [Vinh et al., 2010; Wei and
Carley, 2015], for each pair of consecutive years. We define the persistence of two
consecutive years ∆t1 and ∆t2 as the fraction of all members of polarized communities
in ∆t1 who remained in some polarized community in ∆t2. A persistence equal to
100% implies that all members of polarized communities in ∆t1 remained in some
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polarized community in ∆t2. Yet, the membership of individual communities may
have changed as members switched communities. To assess the extent of change in
community membership over consecutive years, we compute the normalized mutual
information over the communities, taking only members who persisted over the two
years.

NMI is based on Shannon entropy of information theory [Shannon, 2001]. Given
two sets of partitions X ∈ Ps,∆t1

and Y ∈ Ps,∆t2

6, defining community assignments
for nodes, the mutual information of X and Y can be thought as the informational
“overlap" between X and Y , or how much we learn about Y from X (and about X

from Y ). Let P (x) be the probability that a node picked at random is assigned to
community x, and P (x, y) the probability that a node picked at random is assigned to
both x in X and y in Y . The NMI of X and Y is defined as:

NMI(X, Y ) =

∑
x

∑
y P (x, y) log P (x,y)

P (x)P (y)√
H(X)H(Y )

(4.3)

where H(X) = −
∑

x P (x) logP (x) is the Shannon entropy for X. NMI ranges from
0 (all members changed their communities) to 1 (all members remained in the same
communities).

4.2.6.1 Ideological Space Model

In order to model how the ideological behavior of individual party congressmen evolves
over time, we start from the networks defined in Section 4.2.3, which capture each
individual’s behavior in terms of how a member voted relative to others during a given
time window. We then build a network representation that embeds vertices into a
low-dimensional vector space, which preserves properties of the network’s topological
structure. Since the ideological behavior of an individual member is here captured by
how she voted relatively to her peers (i.e., by her neighborhood in the network), we
consider the low-dimensional latent space produced by the graph embedding technique
an ideological space. One key challenge is how to track individual congressmen over
time in this ideological space so as to identify changes in their behavior. This is difficult
because there are multiple networks (and thus network embeddings), one for each time
window under consideration. In this section, we describe our approach to address this
challenge and build a consistent time-aware ideological space.

We build upon node2vec, a popular graph embedding technique [Grover and
Leskovec, 2016]. Node2vec learns low-dimensional representations for vertices in

6For the sake of simplicity, we reduce the notation used so far to explain this metric.
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a single graph by performing biased random walks, and using them as input to
word2vec [Mikolov et al., 2013], a widely used word embedding technique. Word2vec
receives as input a textual corpus and produces as output a vector space. Each word in
the input corpus is mapped into a point in the vector space such that words that share
common contexts in the input corpus fall close to each other in the vector space. In the
case of node2vec, assuming that random walks are input sentences and visited vertices
represent individual words, vertices are mapped into the low-dimensional latent space
so as to maximize the likelihood of preserving the network neighborhoods. Grover et
al. defined a flexible notion of neighborhood [Grover and Leskovec, 2016], which can
be instantiated differently by carefully choosing the parameters of the biased random
walk procedure (see more details below).

However, like word2vec, node2vec also suffers from the “alignment problem” when
applied to a temporal sequence of networks. That is, the embeddings generated by the
successive application of node2vec to networks for consecutive time windows are not
mapped onto the same latent space. Thus, a vertex representation in one embed-
ding has no correspondence to its representation in the next embedding (i.e., the one
generated from the next time window).

Yao et al. tackled the problem of inferring how word semantics evolve over time by
proposing a dynamic statistical model for learning time-aware word embeddings [Yao
et al., 2018]. The proposed solution, which we refer to as DynamicWord2Vec, effectively
addresses the “alignment problem” in the context of word embeddings. Inspired by
that work, we build a temporally-consistent ideological space to represent parties and
their political congressmen by adapting DynamicWord2Vec to the network domain,
combining it with node2vec. That is, we modify the node2vec implementation so that
it uses DynamicWord2Vec (instead of word2vec) to generate an embedding from the
sampled walks. Next, we briefly review how node2vec works and how we combine it
with DynamicWord2Vec. We refer the reader to [Grover and Leskovec, 2016; Yao et al.,
2018] for further details on each technique.

Node2vec [Grover and Leskovec, 2016] uses a strategy of neighborhood sampling
through a biased random walk which behaves, at each step, either as breadth-first
sampling (BFS) or as depth-first sampling (DFS). In BFS, the neighborhood of a given
source vertex vs is restricted to vertices that are immediate neighbors of the source,
while DFS consists of vertices sequentially sampled at increasing distances from vs. We
here want the walk to enforce BFS more often than DFS to better capture the similari-
ties in the ideological space, rather than structural equivalences in the network [Grover
and Leskovec, 2016]. To control this behavior, node2vec has two parameters, p and q.
Parameter p determines the likelihood of immediately going back to an already visited
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vertex. Parameter q allows us to control whether the walk stays close to the source
vertex, exploring the same neighborhood (i.e., corresponding to BFS), or whether it
should walk further away, exploring other vertices (i.e., corresponding to DFS). We
here are focused on the former, i.e., sampling immediate neighbors of the source more
often. Thus, we set the parameter values according to the authors’ recommendations
for such case [Grover and Leskovec, 2016], i.e., p = 1 and q = 0.5. By doing so, we
skew the random walks towards the immediate neighborhood of each source vertex.

In addition to p and q, node2vec allows us to define the number of walks per
vertex and the length of each walk (i.e., number of vertices visited in each walk).
These parameters directly determine the sampling process, which tends to saturate
at a certain point as they increase [Grover and Leskovec, 2016]. In our experiments,
we found that 16 walks per vertex, each with length 40, are sufficient to perform
the sampling process in our case studies. Increasing either the number of walks or
the length of each walk further caused a proportional increase in the co-occurrence of
vertices in the walks, without bringing further information.

After computing the probabilities of the possible paths according to p and q and
sampling the walks, node2vec builds a walk matrix S of size k×l, where k is the product
of number of walks and number of vertices and l is the length of each walk. S contains
all vertices visited in all walks performed, starting from all vertices in the graph as
sources. In the original node2vec algorithm, given a matrix S, the representations of
the vertices are optimized using stochastic gradient descent so that vertices in the same
neighborhood appear more closely in the generated latent space. Instead, we here use
the DynamicWord2Vec technique as follows.

For the sake of simplicity and generalization, hereinafter we describe our approach
independent of the considered scenarios while in Section 4.6 we instantiate it according
to our case studies. We want to learn a single latent space covering ∆t successive
time windows, given any set of graphs G = {G∆t1

, G∆t2
, . . . , G∆tn

}7 representing the
networks produced for each windows ∆t in T . Let S = {S∆t1

, S∆t2
, . . . , S∆tn

} be the
set of matrices generated by node2vec for each graph in G, and V = {v1, v2, . . . , vj} be
the set of all vertices that appear at least once in any graph in G.

Then, we use DynamicWord2Vec to observe the association of vertices over time
according to the sampled walks, mapping them to a temporal ideological latent space.
To do this, for each matrix S∆t and each pair of vertices v1, v2 ∈ V (representing two
party congressmen in one of the case studies), we count: (1) the number #(v1) of
individual occurrences of v1 in the walks represented by rows of S∆t ; (2) the number

7In particular, we here use the backbones. But for generalization purposes, here we present it to
any set of graphs.
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#(v2) of individual occurrences of v2; and (3) the number of co-occurrences of vertices
v1 and v2, restricted within a window of size L from v1 (either before or after v1),
denoted as #(v2, v2). Typically, L is set between 5 to 10 as proposed in [Mikolov et al.,
2013]. Here, we use L=5, resulting in a window containing 10 vertices in addition to
the middle vertex. The degree of association between v1 and v2 is captured by the
pointwise mutual information (PMI) [Levy and Goldberg, 2014], defined as a function
of the empirical probabilities of occurrences of v1, occurrences of v2 and co-ocurrences
of v1 and v2 in matrix S∆t . Specifically, given |S∆t| = k × l, the PMI matrix entry
corresponding to (v1, v2) is given by:

PMI(S∆t , L)v1,v2 = log2

(
#(v1, v2) · |S∆t|
#(v1) ·#(v2)

)
, ∀v1, v2 ∈ V. (4.4)

When v1 and v2 co-occur very frequently in the sampled walks, the corresponding
PMI is high, indicating high proximity between them. On the other hand, when the
argument inside log2(.) is very small, PMI tends to take on negative values. According
to [Levy and Goldberg, 2014; Yao et al., 2018], the pairs (v1, v2) with more represen-
tative association have PMI values greater than 1, that is, they co-occur more than
twice in the walks sampled. Thus, considering only the positive values of PMI does
not significantly affect the solution while providing better numerical stability to matrix
factorization. Thus, given a walk matrix S∆t , we define a positive PMI matrix, referred
to as PPMI(S∆t , L), whose entry for given two vertices v1 and v2 is defined as:

PPMI(S∆t , L)v1,v2 = max(PMI(S∆t , L)v1,v2 , 0) := Y (∆t). (4.5)

Given the PPMI matrix Y (∆t), DynamicWord2Vec learns the embedding vectors
uv1 and uv2 for vertices v1 and v2, respectively, by applying a low-rank factorization such
that, for any pair v1 and v2, u⊤

v1
uv2 ≈ PPMI(∆t, L)v1,v2 . Each uv1 has length d ≪ |V |.

Thus, for each time window ∆t, a temporal embedding U(∆t)={uv1 , . . . ,uvj} must
satisfy U(∆t)U(∆t)

⊤≈Y (∆t).
This low-rank factorization is obtained by solving an optimization problem. Two

regularization terms are added to the objective function in order to address, respec-
tively, overfitting and alignment issues. To avoid overfitting, a typical penalty term
based on the Frobenius norm8 of each low-rank matrix U(∆t), such that, ∆t in T is
added [Davenport and Romberg, 2016]. To enforce alignment, a penalty term that
assumes some smoothness between subsequent time windows is added. Also, this term
is based on the Frobenius norm of the differences between matrices U(∆t−1) and U(∆t)

8The Frobenius Norm of a given matrix Mm×n is defined by: ∥M∥F =
√∑m

i=1

∑n
j=1 |aij |

2.
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for each ∆t in T. The function to be minimized is

min
U(∆t1 ),...,U(∆tn )

1

2

|T |∑
n=1

∥(Y (∆tn)− U(∆tn)U(∆tn)
⊤∥2F

+
λ

2

|T |∑
n=1

∥U(∆tn)∥2F +
τ

2

|T |∑
n=2

∥U(∆tn−1)− U(∆tn)∥2F , (4.6)

where λ, τ > 0. Observe that each embedding U(∆t) depends, indirectly, on all other
∆t−1 embeddings. The smoothing term ∥U(∆t−1)−U(∆t)∥2F enforces alignment across
embeddings. Parameters λ and τ control the degree of the regularization and smooth-
ness, respectively. Specifically, parameter τ controls the alignment of the embeddings
for successive windows ∆t: τ=0 implies no alignment, whereas τ→∞ produces a static
embedding with U(∆t1) = U(∆t2) = . . . = U(∆tn). We discuss how to set parameters
λ and τ in Section 4.6. In order to solve Equation (4.6), DynamicWord2Vec uses the
block coordinate descent [Yu et al., 2012] obtaining a representation vector uv1(∆t) for
each vertex v1 ∈ V and for each time window ∆t.

Given the embedding vectors, we can compute the change of a given member v1

in the defined ideological space between two time windows ∆t1 and ∆t2 using a metric
of distance between vectors. We here use the widely adopted cosine distance:

cos(v1(∆t1 )
, v1(∆t2 )

) = 1− uv1(∆t1) · uv1(∆t2)

∥uv1(∆t1)∥∥uv1(∆t2)∥
. (4.7)

Cosine distance ranges from 0 to 1. Values close to 0 indicate that the two vertices
uv1(∆t1) and uv2(∆t2) coincide, i.e., the corresponding party member did not change
ideologically between windows ∆t1 and ∆t2 . Values close to 1 indicate that the member
drastically shifted his ideology within the period.

In the next four sections, we discuss the results of our analyses when tackling the
research questions posed in Section 4.1.

4.3 Identifying Ideological Communities

We start by tackling our first research question (RQ1) and characterizing the
ideological communities discovered in both Brazilian and US networks. Table 4.2 shows
an overview of all networks for both countries, presenting some topological properties
[David and Jon, 2010], i.e., numbers of vertices (# of nodes) and edges (# of edges),
number of connected components (# of CC ), average shortest path length (SPL),
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average degree, clustering coefficient and density9. The difference between the number
of nodes in this table and the number of members in Table 4.1 corresponds to nodes
that were removed after the edge filtering.

Table 4.2. Statistics of Networks and Ideological Communities (CC: connected components,
SPL: shortest path length, Mod: modularity)

Brazil

Year # of
Nodes

# of
Edges

# of
CC

Avg.
SPL

Avg.
Degree

Avg.
Clust. D # of

Comm. Mod. Avg.
PD(%)

SD
PD

2003 342 9329 5 1.83 55.01 0.65 0.16 8 0.11 95.48 2.22
2004 326 7079 2 1.90 43.43 0.62 0.13 4 0.14 92.68 3.36
2005 359 7211 1 3.18 40.17 0.59 0.11 5 0.21 88.32 3.64
2006 419 8613 1 2.47 41.11 0.61 0.09 4 0.36 90.50 2.36
2007 427 11394 3 1.77 53.37 0.67 0.12 6 0.14 95.97 1.26
2008 400 10180 2 1.62 50.90 0.70 0.12 5 0.08 95.78 1.94
2009 434 10784 2 1.92 49.70 0.66 0.11 4 0.18 91.45 3.49
2010 446 10151 1 2.42 45.52 0.64 0.10 4 0.19 92.01 1.29
2011 408 11519 2 1.89 56.47 0.60 0.13 6 0.12 93.69 3.76
2012 345 6527 3 2.47 46.11 0.48 0.11 4 0.33 87.00 4.25
2013 449 10094 1 2.21 44.96 0.61 0.10 4 0.38 86.51 4.18
2014 450 10036 1 2.18 44.60 0.58 0.09 3 0.43 91.14 1.79
2015 490 12563 1 2.90 51.28 0.69 0.10 5 0.60 85.90 3.11
2016 425 10159 2 1.44 47.81 0.66 0.11 4 0.38 92.62 1.83
2017 396 9434 4 1.64 47.65 0.72 0.12 6 0.24 90.25 3.16

United States

Year # of
Nodes

# of
Edges

# of
CC

Avg.
SPL

Avg.
Degree

Avg.
Clust. D # of

Comm. Mod. Avg.
PD(%)

SD
PD

2003 431 41892 2 1.11 194.39 0.95 0.45 2 0.48 93.60 1.03
2004 426 40928 2 1.10 192.15 0.95 0.45 2 0.48 92.97 0.55
2005 431 41892 2 1.10 194.39 0.95 0.45 2 0.48 92.60 0.79
2006 426 41112 2 1.10 193.01 0.95 0.45 2 0.49 91.45 0.33
2007 414 38471 2 1.12 185.85 0.94 0.45 2 0.44 91.55 3.78
2008 424 40729 2 1.11 192.12 0.94 0.45 2 0.46 95.45 1.97
2009 429 41698 2 1.15 194.40 0.94 0.45 2 0.40 93.86 2.42
2010 420 39969 1 3.06 190.33 0.95 0.45 3 0.43 94.92 1.86
2011 426 41119 2 1.18 193.05 0.96 0.45 3 0.44 90.31 1.91
2012 417 40545 3 1.17 194.46 0.96 0.46 3 0.44 91.63 1.86
2013 423 40921 2 1.11 193.48 0.96 0.45 2 0.47 93.23 1.03
2014 418 40735 2 1.08 194.90 0.96 0.46 2 0.48 94.37 0.34
2015 427 41890 2 1.09 196.21 0.95 0.46 2 0.47 94.40 1.36
2016 423 40927 2 1.11 193.51 0.95 0.45 2 0.48 94.70 1.36
2017 423 40928 2 1.09 193.51 0.95 0.45 2 0.46 96.02 0.44

Table 4.2 also summarizes the characteristics of the ideological communities iden-
tified using the Louvain algorithm. In the four rightmost columns, it presents the num-
ber of communities identified, their modularity (Mod.) as well as average and standard
deviation of the party discipline (Avg PD and SD PD), computed with respect to the
ideological communities.

Starting with the Brazilian networks (top part of Table 4.2), we can observe great
fluctuation in most topological metrics over the years, but, overall, the networks are

9The density of a network is the ratio of the total number of existing edges to the maximum
possible number of edges in the graph. The clustering coefficient measures the degree at which nodes
tend to group together to form triangles, and is defined as the ratio of the number of existing closed
triplets to the total number of open and closed triplets. A triplet is three nodes that are connected
by two (open triplet) or three (closed triplet) undirected ties.
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sparse: the average shortest path length is long, the average clustering coefficient is
moderate and the network density is low. Also, the number of communities identified
is much smaller than the total number of parties (see Table 4.1) confirming the frag-
mentation and ideological overlap of multiple parties. Yet, the party discipline of these
communities is, on average, very close to, and, in some cases, slightly larger than the
values computed for the individual parties, despite a somewhat greater standard devi-
ation observed across communities. Thus, these communities are indeed very cohesive
in their voting patterns.

In contrast, the topological structure of the identified communities, as expressed
by the modularity metric, is very weak, especially in the former years. That is, there
is still a lot of similarity across members of different ideological communities. We
note that in the former years the government had greater support from most parties,
as their members voted similarly in most sessions. Such approval dropped during a
period of political turmoil that started in 2012, when the distinction of ideologies and
opinions become more clear10,11. This may explain why the modularity starts low and
increases in the most recent years, when there is greater distinction between different
communities. This occurs despite the large average party discipline maintained by
the communities. Thus, these two metrics offer complementary interpretations of the
political scenario.

Considering the greater variation in modularity, we take a step further and in-
vestigate a possible explanation for it. We note that, in the early years of our analysis,
the Presidents had higher governance by observing the number of victories obtained in
the voting sessions and assuming that the position of their respective party’s congress-
men represents the position of the government. In this way, we look at the majority
positioning of the president’s party in each voting session, obtaining the percentage
of voting sessions whose final result is aligned with the government’s positioning. In
other words, we look at whether most of the congressmen followed the position of those
congressmen that represent the government party.

By doing so, we compute the Pearson’s correlation between the percentage of
voting sessions where the governing party obtained the majority per year and compare
to the modularity of communities for the respective year. The correlation between such
metrics is −0.58 considering the 15 years analyzed. Such moderate negative correlation
indicates that the higher the percentage of votes in the year in which the government
obtained the majority, the lower the modularity and, therefore, the weaker is the
community structure. If we disregard the last two years analyzed (2016-2017), where

10https://www.vox.com/2016/4/21/11451210/dilma-rousseff-impeachment
11http://www.bbc.com/news/world-latin-america-19359111

https://www.vox.com/2016/4/21/11451210/dilma-rousseff-impeachment
http://www.bbc.com/news/world-latin-america-19359111
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Figure 4.2. Correlation between the percentage voting sessions that the government obtained
the majority and the the modularity obtained. Each point represents a year analyzed in Table
4.2 disregarding the period 2016-2017.

there was an impeachment process and the change of President that resulted in an even
more obscure period in terms of support from his own party, the negative correlation
increase to −0.94. The relation between both variables is presented in Figure 4.2.
Indeed, it is possible to observe a strong influence between the positioning and influence
of the government with the formation of such ideological groups, suggesting that high
governability makes it difficult to identify distinct ideological groups for some periods.

Turning our attention to the US (bottom part of Table 4.2), we note that, unlike
in Brazil, most metrics remain roughly stable throughout the years. The networks are
much more dense, with higher average clustering (Avg. Clust.) coefficient and density
and shortest path length. The number of identified communities coincides with the
number of connected components as well as with the number of political parties (see
Table 4.1) in most years. These communities are more strongly structured, despite
some ideological overlap, as expressed by moderate-to-large modularity value. They are
also consistent in their ideologies, as expressed by large party disciplines, comparable
to the original (party-level) ones. These metrics reflect the political behavior of a
non-fragmented and stronger two-party system, quite unlike the Brazilian scenario.

In sum, in Brazil, the several parties can be grouped into just a few ideological
communities, with strong disciplined members, although the separation between com-
munities is not very clear. In the US, on the other hand, ideological communities are
more clearly defined, both structurally and ideologically, though some inter-community
similarity still remains.
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(a) Modularity (b) Number of Members

Figure 4.3. Modularity values for different thresholds choices on Brazil’s 2017 data. Green
dot indicates selected threshold, 0.42.

4.4 Identifying Polarized Communities

As mentioned, the ideological communities identified in the previous section still
share some similarity, particularly for the Brazilian case. In this section, we address
our second research question (RQ2), with the aim of identifying polarized communities,
i.e., communities that have a more clear distinction from the others in terms of voting
behavior. To that end, we take a step further and consider that members of the same
polarized community should not only be neighbors (i.e., similar to each other) but
should also share most of their neighbors. Thus two members that, despite voting
similar to each other, have mostly distinct sets of neighbors should not be in the same
group.

To identify polarized communities, we start with the networks used to identify
the ideological communities and compute the neighborhood overlap for each edge.
The neighborhood overlap of an edge (v1, v2) is the ratio of the number of nodes
that are neighbors of both v1 and v2 to the number of neighbors of at least one of v1
or v2 [David and Jon, 2010]. The neighborhood overlap of v1 and v2 is taken as an
estimate of the strength of the tie between the two nodes. Edges with tie strength
below a given threshold are considered as weak ties, whereas edges with tie strength
above that threshold are classified as strong ties. We consider that weak ties come
from overlapping communities, and strong ties are edges within a polarized community.
Thus, edges representing weak ties are removed. As before, nodes that become isolated
after this new filtering are also removed.

Once again the selection of the best neighborhood overlap threshold is not
straightforward as it involves a complex trade-off: larger thresholds lead to more closely
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connected communities and higher modularity, which is the goal, but also produce
sparser graphs, resulting in a larger number of isolated nodes, which are disregarded.
Thus, for each network, we selected a threshold that produced a good trade-off between
the two metrics (i.e., the lowest threshold yielding modularity close to maximum). Fig-
ure 4.3 shows an example of this trade-off for one specific year (2017) in Brazil, with
the selected threshold value shown in green. For Brazil, the selected threshold fell
between 0.40 and 0.55, while for the US it was from 0.1 to 0.28. We then re-executed
the Louvain algorithm to detect (polarized) communities in the new networks.

Table 4.3 presents the topological properties of the networks as well as the struc-
tural and ideological properties of the identified polarized communities, for both Brazil
and US. Focusing first on the Brazilian networks (top part of the table), we see that
the number of nodes with strong ties decreases drastically (by up to 66%) as com-
pared to the networks analyzed in Section 4.3. This indicates the large presence of
House members that, despite great similarity with other members, are not strongly
tied (as defined above) to them, and thus do not belong to any polarized community.
The number of connected components dropped for some years and increased for oth-
ers, suggesting that some components in the first set of networks were composed of
structurally weaker communities or of multiple smaller communities. Network density,
average shortest path length, and clustering coefficient also dropped, indicating sparser
networks, as expected.

The number of polarized communities somewhat differs from the number of com-
munities obtained when all (strong and weak) ties are considered, increasing in most
years. This suggests that some ideological communities identified in Section 4.3 may be
indeed formed by multiple more closely connected subgroups. Yet, those numbers are
still smaller than the number of parties in each year (Table 4.1). Moreover, compared
to the ideological communities first analyzed, the polarized communities are stronger
both structurally and ideologically, as expressed by larger values of modularity and
average party discipline.

For the US case, the numbers in Table 4.3 are very similar to those in Table 4.2.
Less than 2% of the nodes have only weak ties and were removed from the networks in
all years. Thus, almost all members have strong ties to each other, building ideological
communities that are, in general, very polarized.

In summary, in this section we analyzed ideological communities and showed
that in Brazil, there is a high volatility in the formation of these communities within
a government, changing in recent years. Meanwhile, in the United States, there is a
clearly polarized party system and a third community within one of the parties.



4.5. Temporal Analysis of Polarized Communities 73

Table 4.3. Statistics of Strongly Tied Networks and Polarized Communities in Brazil (CC:
connected comp., SPL: shortest path length, Mod: modularity)

Brazil

Year # of
Nodes

# of
Edges

# of
CC

Avg.
SPL

Avg.
Degree

Avg.
Clust. D # of

Comm. Mod. Avg.
PD (%)

SD
PD

2003 186 1436 1 1.48 15.44 0.38 0.08 4 0.35 97.78 0.86
2004 154 866 1 1.52 11.25 0.33 0.07 5 0.36 97.11 0.57
2005 119 1210 2 1.19 20.34 0.59 0.17 4 0.37 95.40 0.93
2006 136 590 10 1.37 8.68 0.52 0.06 12 0.57 96.62 2.16
2007 175 977 3 1.68 11.17 0.32 0.06 6 0.44 97.31 1.36
2008 216 1019 2 1.94 9.44 0.23 0.04 5 0.42 97.11 0.46
2009 209 1217 1 1.30 11.65 0.41 0.05 5 0.56 94.57 1.67
2010 225 726 6 1.45 6.45 0.22 0.02 11 0.51 94.31 1.80
2011 250 1891 1 1.78 15.13 0.31 0.06 4 0.40 96.56 0.86
2012 145 1151 3 1.84 29.82 0.48 0.11 6 0.37 94.42 1.98
2013 318 4437 5 1.77 27.91 0.58 0.08 9 0.47 91.30 2.17
2014 287 1672 3 1.37 11.65 0.41 0.04 5 0.63 94.04 1.28
2015 372 6290 6 1.41 33.82 0.64 0.09 9 0.64 93.93 1.70
2016 269 1726 3 1.43 12.83 0.44 0.04 8 0.63 95.08 1.21
2017 227 1631 5 1.58 14.37 0.44 0.06 6 0.60 95.25 2.01

United States

Year # of
Nodes

# of
Edges

# of
CC

Avg.
SPL

Avg.
Degree

Avg.
Clust. D # of

Comm. Mod. Avg.
PD (%)

SD
PD

2003 431 41872 2 1.11 194.30 0.95 0.45 2 0.47 93.60 1.03
2004 426 40741 2 1.12 191.27 0.95 0.45 2 0.48 92.97 0.55
2005 431 41886 2 1.11 194.37 0.95 0.45 2 0.47 92.60 0.79
2006 426 41073 2 1.10 192.83 0.95 0.45 2 0.48 91.45 0.33
2007 414 38462 2 1.12 185.81 0.94 0.44 2 0.42 91.55 3.78
2008 423 40708 2 1.11 192.47 0.95 0.45 2 0.43 95.49 1.93
2009 428 41690 2 1.15 194.81 0.94 0.45 2 0.40 93.89 2.45
2010 418 39958 2 1.13 191.19 0.95 0.45 3 0.43 94.86 1.97
2011 422 41112 2 1.15 194.84 0.97 0.46 3 0.45 90.01 3.16
2012 413 40529 2 1.07 196.27 0.97 0.47 3 0.44 91.70 2.17
2013 421 40910 2 1.10 194.35 0.96 0.46 2 0.46 93.32 0.94
2014 417 40717 2 1.08 195.29 0.96 0.46 2 0.48 94.40 0.38
2015 424 41759 2 1.08 196.98 0.95 0.46 2 0.47 94.53 1.41
2016 418 40890 2 1.08 195.65 0.96 0.46 3 0.46 95.67 0.80
2017 421 40923 2 1.08 194.41 0.95 0.46 2 0.48 95.37 0.11

4.5 Temporal Analysis of Polarized Communities

We now turn to RQ3 and investigate how the polarized communities evolve over
time. Table 4.4 shows persistence (Pers) and NMI (See Section 4.2.6) results for all
pairs of consecutive years and both countries. For Brazil (BR), the values of persistence
varied over the years, ranging from 46% to 80%. Thus, a significant number of new
nodes join polarized communities every year. Indeed, in most years, roughly half of the
members of polarized communities are newcomers. The values of NMI are also small,
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Table 4.4. Temporal Analysis of Polarized Ideological Communities (NMI: normalized mu-
tual information)

Consecutive
Years

Brazil United States
Persistence NMI Persistence NMI

2003 - 2004 58.24% 0.14 98.13% 0.97
2004 - 2005 46.30% 0.16 90.80% 0.97
2005 - 2006 53.04% 0.20 98.36% 1.00
2007 - 2008 68.26% 0.22 97.57% 1.00
2008 - 2009 63.80% 0.18 86.74% 1.00
2009 - 2010 61.38% 0.26 96.24% 0.94
2011 - 2012 80.08% 0.14 96.18% 0.96
2012 - 2013 67.87% 0.59 96.76% 0.80
2013 - 2014 61.23% 0.56 97.85% 1.00
2015 - 2016 57.85% 0.65 97.63% 0.97
2016 - 2017 57.47% 0.58 86.26% 0.98

especially in the earlier years, reflecting great change also in terms of nodes switching
communities. This is consistent with a period of less clear distinction between the
communities and weaker polarization, as discussed in the previous sections. Since 2012,
the values of NMI fall around 0.6, reflecting greater stability in community membership.
For the US, in contras, both persistence and NMI are very large, approaching the
maximum of 1. Almost all members persist in their polarized communities over the
years.

A visualization of some of these results is shown in Figure 4.4 which presents the
flow of nodes across polarized communities over the years of 2015 to 2017 in Brazil
and in the US. Each vertical line represents a community, and its length represents
the number of members belonging to that community who persisted in some polarized
community in the following year. Thus, communities for which all members did not
persist in any polarized community in the following year are not represented in the
figure. Recall that, according to Table 4.3, the number of polarized communities in
Brazil in 2015, 2016 and 2017 was 9, 8 and 6, respectively. A cross-analysis of these
results with Figure 4.4a indicates that members of only 4 out of 9 polarized communities
in 2015 persisted polarized in the following year. Moreover, two polarized communities
in 2016 were composed of only newcomers and both communities disappeared in 2017
(as they do not appear in the figure). Similarly, one polarized community in 2017
was composed of only newcomers. The figure also shows a great amount of switching,
merging and splitting across communities over the years. Figure 4.4b, on the other
hand, illustrates the greater stability of community membership in the US.

4.6 Evaluating Ideological Changes
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(a) Brazil (b) United States

Figure 4.4. Dynamics of Polarized Communities over 2015-2017.

We now turn to our final analyses of changes in ideological behavior. We employ
the strategy described in Section 4.2.6.1 to model an ideological space and track indi-
vidual members over time in this space. For analysis purposes, we focus on changes
during a period ∆t equal to the duration of a term of office (time period during which
elected members should serve), divided in yearly time windows. In Brazil, party mem-
bers are elected for a 4-year term (named legislature), whereas in the US, they are
elected for a 2-year period (called Congress).

We start by defining, for each case study and each term of office specified in
Table 4.1, a corresponding a set of backbones BBR = {BBR,∆t1

, BBR,∆t2
, . . . , BBR,∆t15}

and BUS = {BUS,∆t1
, BUS,∆t2

, . . . , BUS,∆t15
} representing the networks produced for

windows ∆t in T , as described in Section 4.2.3. For each such sequence B we then
produce a single latent ideological space following the method in Section 4.2.6.1.
Specifically, for each window ∆t (year), we obtain a matrix of embedding vectors
U(∆t) = {uv1(∆t),uv2(∆t), . . . ,uvn(∆t)} where V = {v1, v2, . . . , vn} is the set of ver-
tices in Gs,∆T (s = {BR,US}). Recall that our model is robust to missing values,
allowing us to infer an ideological representation of a member v1 in ∆t from (∆t−1)
and (∆t+1). Nevertheless, we choose to include in V only members who appeared in
B in at least two years. This choice is based on a conservative approach to improve
robustness, particularly for the Brazilian case, which, as already discussed, has greater
instability and a longer term of office (4 years).

We train our ideological space model for a given term of office by carrying out
a grid search to determine the best values of parameters λ and τ , as proposed in
[Yao et al., 2018]. We consider various combinations of parameter values, varying λ in
[0;100] and τ in [0;100]. For each combination, we first generate our latent space model
and the vertice representations (embeddings) for each window ∆t. We then evaluate
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Figure 4.5. 2-D representation of latent ideological space. Symbols ⋄, ▽ and △ represent
party centroids (a,c) or members (b) respectively during 1st, 2nd and, in case of Brazil, 3rd

year of legislature as well.

the goodness of these embeddings (and correspondingly of the generated latent space)
as follows. We apply the spherical k-means algorithm [Banerjee et al., 2005], which
uses cosine similarity as distance metric, to group the vertice embeddings produced for
window ∆t, uv(∆t), into k clusters, where k is the number of ideological communities
detected for the same window ∆t (see Section 4.3). We then calculate the Normalized
Mutual Information (NMI) (Equation 4.3) between the ideological communities and the
clusters detected by the spherical k-means on the embeddings yielded by our model.
The most representative latent space model (i.e., the best parameter values) is the one
that best recovers the originally defined ideological groups, thus yielding a higher NMI
result.

The results of the grid search were very consistent across most terms of office for
each case study. For the US, the same values of λ = 15 and τ = 20 were found to
be the best in all cases. Also, the NMI values were very high, being at least 0.97 and
very often reaching the maximum of 1, reflecting the clear structural and ideological
separation of the networks. For Brazil, the best values are λ = 5 and τ = 10 for all
but the last term of office for which the best parameter values are λ = 10 and τ = 5.
The NMI values are lower than in the US, yet still reasonably high, especially in the
most recent terms (the NMI reached 0.85 in the last 55th legislature), reflecting the
stronger community structure and more clear ideological separation of party members
in the period (as discussed in Section 4.3).

For the sake of visualization, we select one example term of office from each case
study and plot the generated latent ideological space in a low-dimensional 2-D view
using the t-distributed Stochastic Neighbor Embedding (t-SNE) [Maaten and Hinton,
2008]. Figures 4.5a and 4.5c show the representations obtained for the 55th legislature
in Brazil12 and the 114th congress in the United States, respectively. Each color corre-

12Recall that our dataset covers only 3 years of 55th legislature.
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sponds to one political party and each point corresponds to one party member in one
of the covered years in the latent ideological space. For the sake of graph readability,
Figure 4.5a shows only the four brazilian parties (the largest ones). Also, the figures
do not distinguish between different members of the same party nor different locations
of the same member over the years (in case the member changed position over time):
all of them are represented by points of the same color. Yet, to illustrate changes in
ideological behavior, we plot the centroids of each party, distinguishing its location in
each year of the analyzed term by using different representations. Each centroid is
represented by a diamond in the first year, by an upside down triangle in the second
year, and, in case of Brazil, by a regular triangle in the third year.

We further illustrate changes in individual ideological behavior by focusing now
on 5 selected Brazilian party members. Figure 4.5b shows the locations of their cor-
responding vertice embeddings in the years of the 55th legislature in the same low-
dimensional 2-D view. Each member is shown in a different color and, once again,
we use a diamond, an upside down triangle and a regular triangle to represent their
locations in the first, second and third years, respectively.

As Figure 4.5a shows, all four Brazilian parties have changed their ideological
behavior over the years, as illustrated by the changes in the locations of their centroids
in the ideological space. However, some of them remained quite cohesive throughout
the period, that is, the changes were mostly in group. For example, despite individual
changes, the distinction between the Work Party (PT) and the Brazilian Social Democ-
racy Party (PSDB), represented in red and blue, respectively, is clear in all three years.
These two parties have faced each other for over twenty years in the presidential elec-
tions in Brazil. In any of the years, the cosine distance of any given two members (one
from each party) is close to 1, indicating great ideological distinction. On the other
hand, the distance between any two members from the same party tends to be close to
0, indicating strong ideological alignment. Another interesting example is the Brazilian
Democratic Movement Party (PMDB) which started the 55th legislature ideologically
aligned with PT, but approached the opposition, composed of PSDB and DEM (among
others), as the years went by. The change in Figure 4.5a reflects what happened in
reality as the second government of president Dilma Rousseff (PT) started with the
support of PMDB. However, the party of the vice-president decreased its support to
the left-wing president and shifted towards center, more aligned with PSDB and DEM.
Such movement, which was replicated by other supporting parties, culminated with
the presidential impeachment in 2016.

The changes in individual ideological behavior over the three analyzed years can
be more clearly visualized in Figure 4.5b. Note that some members, such as member 3,
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Figure 4.6. CDF of ideological shift of members over consecutive years (measured w.r.t.
cosine distance).

exhibit very small changes in the ideological space, whereas others have a much more
dynamic behavior, falling into different regions of the space over the years. Also note
that while some seem to be converging to the same region of the space (e.g., members
4 and 5), others are drifting away (e.g., member 1). In contrast, Figure 4.5c shows
that, in the US, party members have quite stable and distinct ideological behavior.

We delve deeper into the Brazilian scenario, by looking into the 54th legislature,
encompassing years 2011-2014, which, as already mentioned, consisted of a period of
great political turmoil during which ideological distinctions became more clear. Using
the temporal embedding obtained for this term of office, we compute, for each indi-
vidual member, her ideological shift, i.e., the cosine distance between her embedding
representations, in consecutive years. Figure 4.6a shows the cumulative distributions
of the ideological shift of individual members for each pair of consecutive years. The
three distributions are similar, but we can see a trend towards larger distances in the
more recent years, in alignment with our discussion in the previous sections. Also,
although most members exhibit some ideological shift over consecutive years, there
is great variability across members. For comparison purposes, Figure 4.6b shows the
distribution for the two years of the 114th US congress, when practically all members
remained unchanged, confirming the consistency of ideologies over time.

The greater variability in the Brazilian case can be explained, to some extent, by
the heterogeneity in ideological behavior between polarized and non-polarized party
members. To further analyze this issue, we separate, for each pair of consecutive years,
the party members into polarized, i.e., members who persisted in some polarized com-
munity in the two years (as in Table 4.4), and the other, non-polarized members.
Figures 4.7a and 4.7b show the distributions of ideological shift for each group and for
each pair of consecutive years of the 54th legislature. Clearly, non-polarized party mem-
bers exhibit much greater changes (larger cosine distances), while polarized members
do exhibit a more consistent ideology over time.



4.7. Discussion 79

Cosine Distance (x)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

(2011, 2012)
(2012, 2013)
(2013, 2014)

0.0

0.2

0.4

0.6

0.8

1.0

P
(X

  
  
 X

)

VI

(a) Members of polarized
communities

(2011, 2012)
(2012, 2013)
(2013, 2014)

0.0

0.2

0.4

0.6

0.8

1.0

P
(X

  
  
 X

)

VI

Cosine Distance (x)

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

(b) Non-polarized
members

Cosine Distance (x)

0.10 0.20 0.30 0.40 0.50 0.60

(2011, 2012)
(2012, 2013)
(2013, 2014)

0.0

0.2

0.4

0.6

0.8

1.0

P
(X

  
  
 X

)

VI

(c) Members who left polar-
ized communities

Figure 4.7. CDF of ideological shift of Brazilian members over consecutive years (w.r.t.
cosine distance) grouped by polarization.

Yet, even polarized members do experience changes over time, which indirectly
affect the membership of the polarized communities. Indeed, as already discussed in
Section 4.5, polarized members often switch between polarized communities, especially
in the earlier years. To get a hint of the extent to which such polarized members shift
in the ideological space but still remain polarized, we compare them with members
who started polarized but left the polarized ideological communities (i.e., became non-
polarized) in the following year. Figure 4.7c shows the distributions of ideological shift
for the latter for the same period. Clearly, members who ceased being polarized tend
to exhibit greater changes in ideological behavior. Thus, the changes in membership
of polarized communities are mostly due to members changing to nearby (polarized)
communities, as they slowly shift in the ideological space. Moreover, as shown in Figure
4.7c, the shift in the ideological space of members who ceased being polarized decreases
over the years. This suggests that the polarized communities and, thus, their members,
strengthen polarization over time.

4.7 Discussion

In this case study, we have proposed a methodology to analyze the formation and
evolution of ideological and polarized communities in party systems, applying it to
two strikingly different political contexts, namely Brazil and the US. Our analyses
showed that the large number of political parties in Brazil can be reduced to only a
few ideological communities, maintaining their original ideological properties, that is
well disciplined communities, with a certain degree of redundancy. These communities
have distinguished themselves both structurally and ideologically in the recent years,
a reflection of the transformation that Brazilian politics has been experiencing since
2012. For the US, the country’s strong and non-fragmented party system leads to the
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identification of ideological communities in the two main parties throughout the ana-
lyzed period. However, there are still some highly similar links crossing the community
boundaries. Moreover, for some years, a third community emerged, without however
affecting the strong discipline, ideology and community structure of the American party
system.

We then took a step further and focused on polarized communities by consider-
ing only tightly connected groups of nodes. We found that in Brazil, despite the party
fragmentation and the existence of some degree of similarity even across the identified
ideological communities, it is still possible to find a subset of members that organize
themselves into strongly polarized ideological communities. However, these communi-
ties are highly dynamic, changing a large portion of their membership over consecutive
years. In the US, on the other hand, most ideological communities identified are indeed
highly polarized and their membership remain mostly unchanged over the years.

Finally, we delved deeper into the individual ideological behavior of party mem-
bers by proposing a temporal ideological space model. Based on temporal vertice
embeddings, our model allows to analyze the ideological shift of individual members
over the period of a term of office. We observed that in Brazil, the vast majority of
party members did exhibit some change in ideological behavior over time, though the
extent of which varies greatly across members. Whereas members of polarized commu-
nities had a somewhat more consistent ideological behavior, members of non-polarized
communities fluctuated much more ideologically, especially after 2012. In contrast,
the representations of US party members in an ideological space confirm much greater
stability over time.

4.8 Summary

In this chapter, we have addressed our RG1 and RG2 defined in Section 1.3 by applying
our general approach to a specific phenomenon. First, to extract the backbones from
the complete networks, an extreme case of noise, we relied on contextual information,
often overlooked, and showed it could be used to identify salient edges. In particular,
we employed the partisan discipline to estimate the expected agreement between two
congresses belonging to the same ideological group. Then, from the assumption that
salient edges are those whose agreement is consistent with the party discipline of each
political system, we observed different community structures merging over the analyzed
period of fifteen years in both scenarios (BR and USA). Specifically for Brazil, we found
that some communities capturing the collective behavior of congressmen beyond their
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original parties were weakly structured due to governability issues.
We then went a step further and proposed a second strategy that extended the

first assumption. The idea is to require that two congressmen not only have a strong
ideological alignment but are also part of a common group of congressmen that exhibit
similar ideological behavior. Therefore, we focused on ideological communities that are
strongly polarized. To satisfy the new assumption, we proposed the use of neighbor-
hood overlap as a second backbone extraction strategy and showed that it is possible
to combine different backbone extraction approaches. Finally, we presented our con-
tribution and progress in the field of temporal embedding of nodes. In particular, we
proposed a new technique based on the two state-of-the-art techniques of static node
embedding and temporal word embedding.

In the next Chapter, we use our general approach to examine a new case study
with completely different characteristics, which requires, above all, a more sophisticated
strategy for extracting the backbone.





Chapter 5

Online Political Discussions on
Instagram

In this chapter, we present our second case study focused on modeling political discus-
sions on social media platforms, notably Instagram. It is organized as follows: Section
5.1 provides a contextualization of such study and particular questions that we tackle;
Section 5.2 describes our methodology based our overall solution presented in Section
3; Section 5.3 describe our dataset; Sections 5.4-5.6 show the results while Section 5.7
discusses our main findings on the phenomenon in question; Finally, the Section 5.8
summarizes the implications and contributions obtained.

5.1 Contextualization

Social media applications are a major forum for people to express their opinions and
information. By interacting with such applications, users build complex networks that
favor the dissemination of information [Al-Garadi et al., 2018]. Indeed, social media
has become an important source of information for a large fraction of the world popula-
tion [Shearer, 2018; Watson, 2020; Newman et al., 2019]. It has been shown to play an
important role in social mobilization and political engagement [Resende et al., 2019a;
Muñoz and Towner, 2017], notably during major political events [Pierri et al., 2020].

Instagram has observed a surge in popularity in recent years [Lerman, 2020],
especially among youth. Use of Instagram for consuming news has doubled since
2018, and the platform is set to overtake Twitter as a news source [Newman et al.,
2020]. It is no surprise that political figures are increasingly using this platform to
reach the population at large. Therefore, it is of utmost importance to understand
how users interact with each other to find out how information is disseminated on the

83
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platform and how online debate affects our society. Prior studies of user behavior on
Instagram have mainly focused on user engagement according to content type [Reece
and Danforth, 2017; Jaakonmäki et al., 2017; Garretón et al., 2019; Kao et al., 2019;
Kim et al., 2020; Weerasinghe et al., 2020], general characteristics of comments related
to political messages [Trevisan et al., 2019; Zarei et al., 2019], and the impact of posted
content on marketing contexts [Jaakonmäki et al., 2017; Yang et al., 2019; Kang et al.,
2020]. However, the literature lacks an investigation of the networks that emerge from
users’ interactions, particularly in the context of political content that fosters the spread
of information.

In Instagram jargon, a profile is followed by a set of followers. A profile with a
large number of followers is called an influencer. Influencers post content, i.e., posts,
containing a photo or a video. Followers – or any registered user in the case of public
profiles – can view the profile’s posts and comment on them, becoming commenters.
We here refer to multiple users who comment on the same post as co-commenters, and
to the interactions that occur among multiple users (often more than two) when they
comment on the same post as co-interactions. Co-commenters may form communities
that arise either naturally (i.e., based on common interests on specific topics) or driven
by hidden efforts (e.g., ad-campaign or coordinated behavior). By feeding the discus-
sions, these communities may favor the spread of specific ideas or opinions while also
contributing to increase the visibility of particular influencers. Thus, revealing how
such communities emerge and evolve over time is key to understanding information
dissemination on the system.

In light of this, the phenomenon we investigate here is the analysis of online
discussions, notably on political themes on Instagram. Our goal in studying online
discussions is to analyze how discussion groups that emerge from collective behavior
around political and non-political personalities can be characterized by identifying
similarities and differences, as well as triggers that attract them. As case studies, we
analyze a large dataset of Instagram comments containing the activity of approximately
3 million commenters on 36 824 posts of 320 influencers. These influencers include
profiles of popular political figures – 80 from Italy and 80 from Brazil, as well as 160
top-influencers in other categories (e.g., sportsmen, celebrities, musicians), 80 from each
country, which we use as a baseline. We focus on two months surrounding elections
that took place in each country.

Our ultimate goal is to analyze how the collective behavior of such commenters
favor the dissemination of information at large. In particular, we address the following
three research questions (RQs):
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• RQ1: What are the characteristics of the network backbones emerging
from salient co-interactions on Instagram? First, we model co-commenters’
activity as a network in which nodes represent commenters and edge weights
indicate the number of posts commented by both users. To filter out uninteresting
edges and reveal the underlying network backbone, we propose TriBE, a new
backbone extraction built on a probabilistic reference network model where edges
are based on the assumption that commenters behave independently from each
other. Our model primarily considers two factors: the popularity of posts and
the engagement of commenters with each influencer. By comparing the network
observed in the real data with our reference model, we prune edges whose weights
are within the expected range under the assumption of independent user behavior,
revealing the backbones with salient for all scenarios and thus constraining them.

• RQ2: What are the distinguishing properties of the communities that
compose such backbones, notably communities formed around politi-
cal content? We delve further into the components of the network backbone by
using Louvain’s algorithm to extract communities. We then analyze the struc-
tural and contextual properties of these communities, in particular, how their
structure emerges and the interests of their profiles, textual features of their com-
ments, including sentiment analysis, topics they discuss, and the psycholinguistic
properties.

• RQ3: How do community properties evolve over time? By observing
10 weeks around political elections, we characterize communities temporally in
both their structure and context. We analyze how their characteristics evolve
over time in terms of membership and discussions held.

5.2 Methodology

In this section we formally define the network of co-commenters on Instagram and de-
scribe the probabilistic network model used as reference to uncover salient interactions.
We then describe how we extract communities from the network backbone and present
the techniques employed to characterize these communities.

5.2.1 Network Model

We model the interactions among users who comment on the same Instagram post
as a sequence of snapshots of fixed time window ∆t, where each snapshot aggregates



86 Chapter 5. Online Political Discussions on Instagram

posts of a selected set of influencers and their associated comments. We here consider
∆t equal to one week as a reasonable period to cover discussions around posts. For
a given scenario s (our scenarios is detailed in Section 5.3), we define a set of time
windows of one-week duration as Ts = {∆t1,∆t2, ...,∆t10}. In our solution, we model
individuals as being commenters, i.e., users commenting on posts made by influencers
analyzed in a given scenario and in a given time window ∆t, thus forming the sets of
individuals for each time window ∆t and scenario as follow: Is,∆t = {i1, i2, ..., ij}. Here,
opportunities are taken as users’ posts created during a given time window ∆t. In this
way, we define the set of opportunities containing all posts in each scenario in ∆T as
Os,∆t = o1∆t

, o2∆t
, ...om∆t

. The total j of commenters and opportunities m varies across
scenarios and time windows. In Section 5.3 we provide a overview of our dataset.

Here, we consider all users who commented in the same post at twice once to be
a co-interaction. In that manner we choose to disregard commenters whose activities
were concentrated on a single post, and thus reflect sporadic behavior.1 Thus each
opportunity (post) ok∆t

leads to a single co-interaction in set C(ok∆t
). Collectively, all

opportunities during time window ∆t leads to a set Cs,∆t of co-interactions associated
with that time period for scenario s. Having defined these elements, we then model a
network of co-commenters Gs,∆t for each scenario s and time window ∆t, defined as:

• Vs,∆t : is the set of vertices representing all commenters in Is,∆t who participated
in at least on co-interaction in Cs,∆t .

• Es,∆t : is the set of undirected and weighted edges, such that the weight of
edge ei1,i2 linking two commenters i1 and i2 is γ∆t(i1, i2) = count(i1, i2), where
count(i1, i2) is the number of times both commenters commented in the same
post shared during time window ∆t.

In such network, the presence of noise occurs due to different circumstances. First,
many users become co-commenters incidentally because of the high popularity of some
posts and/or influencers. Equally, very active commenters naturally become a co-
commenter of many other users as a side effect of their great frequency of commenting
activity. Yet, such co-interactions are mostly driven by chance, as opposed to true
group behavior. As such, they do not reflect fundamental properties (if any at all) of
the ongoing online debate and, more broadly, of the ongoing information dissemination
process. Moreover, often happening in large volumes, those casual and incidental

1Note that, by doing so, commenters who commented multiple times on a single post, but did
not comment on other posts, are removed.
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co-interactions may lead to the formation of networks of co-interactions with lots of
sporadic, uninteresting or weak edges.

In other words, such co-interactions are to some extent expected given users’
activity and post popularity. Thus, to analyze interactions among co-commenters, we
filter out such expected edges and focus on those whose frequencies of occurrence are
large enough to allow us reject, with some confidence, the assumption of independent
behavior. That is, we focus on salient edges that most probably reflect real online
discussions, forming the underlying fundamental network backbone.

In this context, we present our method in the next section. Next, Section
5.3 describes our scenarios of study. In sum, we have four scenarios built on dis-
joint sets of influencers in the following fashion: Brazil and Italy and, for each
one of them, two groups of influencers, Politics and General. Each scenario s

(s = {BRPolitics, BRGeneral, ITPolitics, ITGeneral}) builds the following universal sets of
networks, backbone and communities, respectively: Gs = {Gs,∆t1

, Gs,∆t2
, . . . , Gs,∆t10},

Bs = {Bs,∆t1
, Bs,∆t2

, . . . , Bs,∆t10} and Ps = {Ps,∆t1
, Ps,∆t2

, . . . , Ps,∆t10}.

5.2.2 Network Backbone Extraction

A fundamental question that arises when studying complex networks is how to quan-
tify the statistical significance of an observed network property [Grady et al., 2012;
Coscia and Neffke, 2017]. To that end, reference models are often used to determine
whether networks display certain features to a greater extent than expected under a
null hypothesis (e.g., independent behavior) [Newman, 2018]. A reference (or null)
model matches some of the features of a graph and satisfies a collection of constraints,
but is otherwise taken to be an unbiased random structure. It is used as a baseline
to verify whether the object in question displays some non-trivial features (i.e., fea-
tures that would not be observed as a consequence of the constraints assumed). An
appropriate reference model behaves according to a reasonable null hypothesis for the
behavior of the system under investigation. One strategy to build a reference model is
by employing generative growing networks [David and Jon, 2010; De Melo et al., 2015;
Newman, 2018].

For the sake of simplicity, let’s disregard the subscript s used to refer to a scenario.
We here employ a reference generative model Ĝ∆t for each network G∆t that is based on
the hypothesis that commenters during ∆t behave independently from each other. That
is, edge weights in Ĝ∆t are defined under a generative process in which commenters act
independently from each other, although their interactions with influencers’ posts (i.e.,
which post each user comments on) are not identically distributed. We can then observe
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which edges of the real network G∆t do not behave in accordance with the reference
model Ĝ∆t – i.e., reflect interactions that significantly deviate from an independent
behavior. Such edges will compose the network backbone. Intuitively, we want to
highlight co-interactions that occurred more often than what would be expected if
commenters behaved independently.

To achieve this, we proposed TriBE (Tripartite Backbone Extraction), a novel
backbone extraction method that uses as input the popularity of each post (number
of unique commenters) and the engagement of commenters towards each influencer
(number of posts by the influencer on which each commenter writes) to create a null
model. Using these statistics, comments are randomly assigned to commenters while
preserving: i) the set of influencers on which each commenter writes a comment; ii) the
popularity of each post, and iii) the engagement of each commenter towards each influ-
encer. The model assigns commenters to each post using independent and identically
distributed (i.i.d.) draws from a distribution where the probability is proportional to
the commenter’s engagement towards the target influencer. By doing so, we prevent
the backbone from being dominated by very active commenters or by those engaged in
highly popular posts.

More specifically, let U∆t be the set of all influencers who wrote a set of posts
considered as being opportunities O∆t . Let Io ⊆ I∆t be the set of unique commenters
in post o ∈ O∆t and O∆t,u ⊆ O∆t be a partitioning of O∆t based on the influencer
u ∈ U∆t who created the post. We define the engagement of commenter i1 ∈ I∆t

towards influencer u (measured by the total number of posts in O∆t,u commented by
i1) as

xu(i1) =
∑

o∈O∆t,u

1{i1 ∈ Io}, (5.1)

where 1{.} is the identity function. We then define i1’s relative engagement towards u
w.r.t. other commenters as:

fu(i1) =
xu(i1)∑

i2∈I∆t
xu(i2)

=
xu(i1)∑

o∈O∆t,u
|Io|

. (5.2)

In this way, we can describe in details the three steps of the generative process
to build our reference model Ĝ∆t :

1. For each post o ∈ O∆t , we consider a random assignment of each of the |Io|
(unique) commenters to a commenter i1 ∈ I∆t with probability fu(i1), where i1

is the author of o. Specifically, under the assumption of independent behavior,
we consider each such assignment as a Bernoulli random variable with parameter
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fu(i1). The probability that commenter i1 is not assigned to o is thus a Binomial
random variable, with 0 successes in |Io| experiments. Conversely, under the
assumption of independent behavior, the probability that i1 has commented (at
least once) on a post o ∈ O∆t,u is ro(i1) = 1− (1− fu(i1))

|Io|.

2. For each pair of commenters i1 and i2, we denote by ro(i1, i2) the probability that
both get assigned to post o and by ro(i1|i2) the probability that i2 gets assigned to
o given that i1 is assigned to o. The conditional probability ro(i1|i2) is necessary
because, strictly speaking, although we are drawing commenters independently,
when i1 is drawn, it decreases the number of chances i2 has for being drawn (since
|Io| is fixed). Hence, ro(i1, i2) = ro(i1) × ro(i1|i2). We approximate ro(i1, i2) ≈
ro(i1)× ro(i2), for each post o ∈ O∆t . Intuitively, this approximation works well
when |Io| is large (as in the case of most influencers’ posts), because drawing i1

decreases by only one the number of draws that can be used to draw i2. Then,
for each post o ∈ O∆t , our model defines a distribution over the set of vertices
corresponding to Io, where the value of the random variable Γ̂o(i1, i2) ∈ {0, 1}
indicates the existence of an edge between commenters c and d, and is given by
a Bernoulli trial with parameter ro(i1, i2), i.e. Γ̂o(i1, i2) ∼ Bernoulli(ro(i1, i2)).

3. The reference model Ĝ∆t = (V̂∆t , Ê∆t) is composed by the superposition of all
the edges created for all posts o ∈ O∆t . Hence, an edge êi1,i2 ∈ Ê∆t will have a
weight distribution described by a random variable Γ̂(i1, i2) =

∑
o∈O∆t

Γ̂o(i1, i2).
Therefore, it will be a sum of Bernoulli random variables with distinct probabili-
ties [Wang, 1993], which follows a Poisson Binomial distribution with parameters
r1(i1, i2), r2(i1, i2), . . . , r|O∆t |(i1, i2).

We can then compare the reference model Ĝ∆t with the observed network G∆t

to extract the backbone B∆t of the latter. We do so by keeping in B∆t only edges of
G∆t whose weights have values exceeding the ones expected in Ĝ∆t by a large mar-
gin. Specifically, for each edge êi1,i2 we compute the (1 − α)th percentile, denoted by
γ̂1−α(i1, i2), of the distribution of edge weight Γ̂(i1, i2), and compare it with the ob-
served edge weight γ(i1, i2). We keep edge ei1,i2 if γ(i1, i2) > γ̂1−α(i1, i2). Intuitively,
we keep only edges between co-commenters who interacted much more often than ex-
pected under the assumption of independent behavior. That is, edges for which the
chance of such frequency of interactions being observed under the independence as-
sumption is below α. We here set α = 5%, as done in prior studies [Serrano et al.,
2009; Kobayashi et al., 2019]. Note that the (1 − α)th percentile is computed sepa-
rately for each edge ei1,i2 ∈ E∆t from random variable Γ̂(i1, i2). For such a Poisson
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(a) Raw Data

(b) Original Network G∆t (c) Network Backbone B∆t

Figure 5.1. Illustration of the backbone extraction process in a simplistic graph. The
isolated vertices are removed from the final B∆t used in our analysis.

binomial distribution, there is a closed form for computing a given percentile [Hong,
2013], which, however, is expensive to compute. Instead, we here use the Refined Nor-
mal Approximation (RNA) [Hong, 2013], a method that proved very good performance
with low computational complexity.

After filtering out edges, isolated vertices are also removed. At the end, we
extract from the network G∆t its backbone B∆t = (V∆t,b, E∆t,b) where V∆t,b ⊆ V∆t

and E∆t ⊆ E∆t . Hence, we obtain a universal set of backbones being defined as
B = {B1, B2, ..., B∆tn}.

In the next section, we present a toy example to show how TriBE works.
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5.2.2.1 Backbone Extraction Exemplified

We illustrate how the backbone is extracted from a given input network G∆t by means of
the toy example shown in Figure 5.1. Figure 5.1a shows a total of five influencers, each
with a different number of posts (o1, o2, etc), and each post with associated commenters
(A, B, etc). Posts have different popularity, and commenters have different activity
levels and engagement towards each influencer. The projected graph G∆t is depicted
in Figure 5.1b, whereas the extracted backbone B∆t is shown in Figure 5.1c. In both
networks, line thickness is proportional to the edge weight.

The question that arises is: why did we extract only the edges shown in Figure 5.1c
to compose the network backbone? Recall that our model selects as salient edges those
that have weights large enough so that we can reject the assumption of independent
user behavior. Thus, for each edge in G∆t , we ask ourselves: is there enough evidence
to reject the assumption of independent behavior? If so, the edge is kept; otherwise, it
is removed.

Let’s illustrate our decisions regarding four groups of edges, focusing first on edges
incident to commenters A, B, C. Note that all three commenters commented on posts
only by influencers 1 and 5 and they commented on all posts by both influencers. These
commenters are thus quite active, and the popularity of these posts is actually high,
considering the population of users who commented on them. As such, it is possible
that A, B and C are driven by their individual interests on these two influencers, and,
as such, most probably would comment in most (if not all) posts by them. Thus, based
on the observed data, we cannot reject the assumption of independent user behavior
when considering co-interactions among A, B and C and the corresponding edges are
not kept as part of the network backbone in Figure 5.1c. For example, the edge eAB has
weight γ(A,B) = 9 which is below or equal to the 95th percentile of the corresponding
edge weight distribution γ̂0.95(A,B) = 9. The same reasoning applies to commenter X,
who only commented on posts by influencer 1. Thus, the co-interactions of X with A,
B and C are not considered salient and the corresponding edges are not kept.

Let’s consider now the edges incident to commenters J , K and L. These users
co-comment with low frequency in posts by influencers 2 (o2 and o3), 3 (o3) and 4 (o5).
These posts are the most popular posts by such influencers, receiving comments from
several other users as well. It is therefore expected that commenters active on these
posts will have several co-commenters, as we can observe in Figure 5.1b. However,
when it comes to J , K and L, the weights of these edges are small, as the co-interactions
are somewhat sporadic. Moreover, note that the posts on which these users commented
are among the most popular ones by the corresponding influencers, attracting most of
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their commenters. For example, o2 by influencer 2 received comments by 9 out of
all 10 users who commented on her posts. Co-interactions built around such highly
popular post are not considered salient as one cannot tell whether commenters are
truly interacting with each other or simply reacting independently to a quite attractive
content. From an operational perspective, recall that, when building the reference
model Ĝ∆t we do need to assign commenters to comments associated with each post.
In the case of such very popular posts, most if not all potential commenters are assigned,
thus raising the chance of the edge being added to Ĝ∆t , and thus of the edge being
considered expected under the assumption of independent behavior.

We now turn our attention to the edges incident to two groups of commenters:
i) D, E, F and X; and ii) G, H, I. In both cases, the commenters co-interact on
posts by influencers 2, 3 and 4, and the co-interactions occur very often on different
posts by these influencers. However, unlike the case of A, B and C, discussed above,
there are other users who also commented on the same posts. Compared to these
other commenters, D, E, F , and X (as well as G, H, I) clearly stand out as frequent
co-commenters. That is, taking the overall behavior of the commenters of these posts,
we find that the co-interactions among D, E, F , and X (as well as G, H, I) are more
frequent than expected if these users were being driven by independent behavior. For
example, the weight of edge eDE is γ(D,E) = 12 which is larger than the 95th percentile
of the corresponding edge weight distribution γ̂0.95(D,E) = 10. We consider this
evidence strong enough to reject the assumption of independent behavior. The same
holds for the other aforementioned commenters. As consequence, the corresponding
edges are maintained in the backbone (see Figure 5.1c).

Finally, we note that all isolated nodes are removed from the final network back-
bone (see, for example, nodes A, B, C, K, J , and L, no longer present in Figure 5.1c).

5.2.3 Community Detection

Once extracted the backbone B∆t , our next step consists of identifying communities
in B∆t . Qualitatively, a community is defined as a subset of vertices such that their
connections are denser than connections to the rest of the network. To extract com-
munities from B∆t , we adopt the Louvain algorithm [Blondel et al., 2008; Newman and
Girvan, 2004] explained in Chapter 2. By doing so, we expect to capture communi-
ties of commenters acting on distinct sets of posts and Influencers represented by the
universal set P = {P1, P2, ..., P∆tn}.
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5.2.4 Community Characterization

Once communities are extracted, we characterize them in terms of the textual proper-
ties of the content shared by their members as well as their temporal dynamics.

5.2.4.1 Content Properties

We analyze the discussions carried out by each community by focusing on the textual
properties of the comments shared by its members. In particular, we employ three
complementary textual analysis approaches.

First, we perform sentiment analysis using SentiStrength,2 a lexical dictionary
labeled by humans with multi-language support, including Portuguese and Italian.
Given a sentence, SentiStrength classifies its sentiment with a score ranging from -4
(extremely negative) to +4 (extremely positive) [Thelwall et al., 2010]. SentiStrength
has been widely applied to analyze the sentiment of social media content, notably short
texts (e.g., tweets), for which identifying sentiment is usually harder [Ribeiro et al.,
2016; Thelwall, 2017].

Second, we use Term Frequency - Inverse Document Frequency (TF-IDF) [Jones,
1972] to reveal terms that characterize each community. TF-IDF is traditionally used
to describe documents in a collection with their most representative terms. Given
a particular term and a document, the TF-IDF is computed as the product of the
frequency of the term in the given document (TF ) and the inverse of the frequency
at which the term appears in distinct documents (IDF ). Whereas TF estimates how
well the given term describes the document, IDF captures the term’s capacity to
discriminate the document from others. To apply TF-IDF in our context, we represent
each community as a document consisting of all comments of the community members.
We pre-process the comments to remove emojis, stopwords, hashtags, punctuation and
mentions to other users, perform stemming, as well as remove the overall top-1% most
popular terms and rare terms (less than 10 occurrences).3

Each community is then represented by a vector d with dimension equal to the
number of unique terms in the collection. The element d[i] is the TF-IDF of term
i. We here use a modified version of IDF , called probabilistic inverse document fre-
quency [Baeza-Yates et al., 1999], which is more appropriate when the number of
documents is small (as is our case). It is defined as IDF (i) = log N−ni

ni
, where N is the

total number of communities and ni is the number of communities using the term i.

2http://sentistrength.wlv.ac.uk/index.html
3The former are words whose frequency is extremely high and would not help to characterize the

communities, while the latter are mostly typing errors or grammar mistakes.

http://sentistrength.wlv.ac.uk/index.html
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We manually evaluate the terms with large TF-IDF of each community searching for
particular subjects of discussion.

Last, we delve deeper into community contents using LIWC [Tausczik and Pen-
nebaker, 2010], a lexicon system that categorizes text into psycholinguistic properties.
LIWC organizes words of the target language as a hierarchy of categories and subcate-
gories that form the set of LIWC attributes. Examples of attributes include linguistic
properties (e.g., articles, nouns and verbs), affect words (e.g., anxiety, anger and sad-
ness) and cognitive attributes (e.g., insight, certainty and discrepancies). The hierarchy
is customized for each language, with 64 and 83 attributes for Portuguese and Italian,
respectively. We apply LIWC to each comment of each community to quantify the
fraction of words that falls into each attribute. We search for statistical differences
across communities based on the average frequencies of their respective attributes. We
first use Kruskal’s non-parametric test to select only attributes for which there is a
significant difference across communities [Kruskal and Wallis, 1952]. Then, we rank
attributes with significant differences to select the most discriminative ones using the
Gini Coefficient [Yitzhaki, 1979].

5.2.4.2 Temporal Properties

Finally, we analyze how communities evolve over time, both in terms of their mem-
berships and the main topics of discussion. To analyze the dynamics of community
membership, we use the two metrics, in particular persistence and normalized mutual
information, explained in Section 4.2.6. For topic analysis, we start by focusing on
the most representative terms used by each community, as captured by the TF-IDF
metric, to examine the extent to which communities use the same lexicon in successive
time windows. To that end, we first generate, for each time window, the vector rep-
resentation of each identified community (as described in the previous section). Given
the large size of the vocabulary, we consider only the top-100 words with the highest
TF-IDF scores in each document, zero-ing other entries in the TF-IDF vectors. Next,
we need to match the communities found in week ∆t2 to the communities found in week
∆t1 so as to be able to follow users commenting on the same topics across windows.
Rather than doing so by using the structural information, we match them based on
the topics or, more precisely, on the set of terms they used in each window.

Specifically, we use the cosine similarity [Baeza-Yates et al., 1999] of the TF-IDF
vectors4 to compute the pairwise similarity between all pairs of communities in windows

4The similarity between communities p1 and p2 is defined as sim(p1, p2) = d1×d2, where d1 and d2
are the TF-IDF vector representations of communities c1 and p2, respectively. Note that sim(p1, p2)
ranges from 0 (maximum dissimilarity) to 1 (maximum similarity).
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Table 5.1. Dataset Overview (weeks including election dates are shown in bold in the
respective country). The number of posts and commenters (comm.) by each scenario and
week.

Week
Politics General

Brazil Italy Brazil Italy

# Posts # Comm. # Posts # Comm. # Posts # Comm. # Posts # Comm.

1 1 487 37 406 779 17 427 746 172 454 733 54 407
2 1 648 67 799 739 20 873 778 180 711 703 49 290
3 1 798 103 506 742 20 876 719 164 040 594 52 052
4 1 951 94 327 907 21 402 854 186 333 649 54 677
5 2 307 145 618 1 080 22 029 680 125 414 683 52 318
6 958 184 993 1 240 22 890 771 158 522 720 69 066
7 1 195 123 797 1 316 26 600 723 131 563 657 61 168
8 1 400 145 499 701 31 308 798 152 705 635 66 337
9 799 191 282 762 17 171 733 146 128 540 31 520
10 606 50 546 656 19 926 763 159 628 507 33 781

∆t1 and ∆t2, matching each community p∆t1
1 in window ∆t1 with the most similar one

in window ∆t2, provided that this similarity exceeds a given criterion of significance.
The criterion we adopt consists of comparing the similarity between two commu-

nities p∆t1
1 and p∆t2

2 and the similarity between p∆t1
1 and an “average" community in

window ∆t2. Let d∆t1
1 be the TF-IDF vector representation of community j in window

∆t1, we use all comments associated with window ∆t2 to compute its TF-IDF vector
d∆t2
∗ using the term frequencies in the complete document (i.e., all comments) but the

IDF values previously computed considering individual communities in ∆t2. In practice,
the cosine similarity between the TF-IDF vectors d∆t1

1 and d∆t2
∗ gives us a significance

threshold for matching the communities, i.e., when sim(d∆t1
1 ,d∆t2

2 ) > sim(d∆t1
1 ,d∆t2

∗ ),
the similarity between p∆t1

1 and p∆t2
2 is larger than the similarity between pw1 and an

“average community” in window ∆t2. In case no community p∆t2
2 satisfies that condi-

tion, we deem that no match was found for p∆t1
1 . Instead, if we find a match, it means

that we have a significant mapping between two communities in different windows.

5.3 Dataset

We now describe the dataset used in our study, which consists of over 39 million
comments produced by over 1.8 million unique commenters, participating in discussions
triggered by 320 top influencers over two countries (Brazil and Italy).

5.3.1 Dataset crawling

We collected data from Instagram profiles in Brazil and Italy. Our collection targets
electoral periods to capture the political debate taking place on the social network. For
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Brazil, we focus on Instagram posts submitted during the national general elections of
October 7th (first round) and October 28th (second round), 2018. Our dataset covers
10 weeks (from September 2nd until November 10th, 2018) which includes weeks before
and after the election dates. Similarly, for Italy we observed the European elections
held on May 26th, 2019, collecting data published from April 7th to June 15th (also
10 weeks). We monitor posts shared by selected profiles (see below), gathering all
comments associated with those posts.

We use a custom web crawler to scrape data from Instagram that relies on the
Instaloader library5. We performed the crawling in September 2019. Given a profile
i, the crawler looks for posts i created during the predefined period. For each post,
the crawler downloads all comments associated with it. As the interest in posts on
Instagram tends to decrease sharply with time [Trevisan et al., 2019], we expect that
our dataset includes almost all comments associated with posts created during the
period of analysis. We focus only on public Instagram profiles and posts, collecting all
visible comments they received. We performed the crawling respecting Instagram rate
policies to avoid overloading the service. We did not collect any sensitive information
of commenters, such as display name, photos, or any other metadata, even if public.

For each country, we monitor two groups of influencers:

• Politics : the most popular Brazilian and Italian politicians and official political
profiles. We consider 80 profiles for each country. In total, the Brazilian poli-
tics profiles created 14 149 posts and received more than 8 million comments by
575 612 unique commenters during the monitored period. Similarly, the Italian
profiles created 8 922 posts, which received more than 1.9 million comments by
94 158 distinct commenters.

• General : non-political influencers used as a control group. We rely on the Hy-
peAuditor6 rank to obtain the list of most popular profiles for the Sport, Music,
Show, and Cooking categories in each country. Similarly to the Politics group,
we pick 80 profiles for each country. The Brazilian general profiles created 7 565
posts and received 15 million comments by 295 753 distinct commenters during
the monitored period. Similarly, the Italian general profiles created 6 421 posts
and received 14 million comments carried out by 897 421 commenters.

5https://instaloader.github.io
6https://hypeauditor.com/

https://instaloader.github.io
https://hypeauditor.com/
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5.3.2 Data pre-processing

We only consider commenters who commented on more than one post when building
the network for a given week ∆t. This step removes 70–85% of the commenters. We
observe that 95% of removed commenters commented fewer than three times when
considering all period of the dataset. All results presented in the following refer to
the dataset after removing these occasional commenters. To build the network of co-
commenters, we aggregate posts by week separating data by country (Brazil and Italy)
and category of influencers (general and politics).7 We then use the comments these
posts received to build the co-commenter network. This procedure generates 40 weekly-
snapshots, here called week for simplicity: one for each of the 10 evaluated weeks, for
2 countries and 2 categories.

5.3.3 Dataset overview

Table 5.1 presents an overview of our dataset, showing the numbers of posts and distinct
commenters per week. Election weeks are shown in bold. In Brazil, elections were on
Sunday of the 5th and 8th weeks (1st and 2nd rounds, respectively), whereas the election
in Italy took place on Sunday of the 7th week. Focusing first on politics, we observe that
the number of posts tends to steadily increase in the weeks preceding elections, reach
a (local) maximum on the week(s) of the election, and drop sharply in the following.
Interestingly, the largest number of commenters appears on the week immediately after
the elections. Manual inspection reveals this is due to celebrations by candidates and
supporters. Regarding the general category, we observe that the number of posts and
commenters is rather stable, with a slight decrease in the last two weeks for Italy due
to the approaching of summer holidays.

We complement the overview with Figure 5.2, which shows the distributions of the
number of comments per post during each week. We use boxplots to ease visualization.
The black stroke represents the median. Boxes span from the 1st to the 3rd quartiles,
whiskers mark the 5th and the 95th percentiles. For politics, the median is a few tens of
comments per post, while general posts receive 10 times as much (notice the log y-axes).
Recall that the number of distinct commenters is similar on both cases (see Table 5.1),
thus commenters are more active in the general profiles. Yet, posts of the main political
leaders attract thousands of comments, similar to famous singers or athletes (holding
for both countries). Considering time evolution, the number of comments on politics
increases by an order of magnitude close to elections, with a sharper increase in Brazil.

7We consider weeks starting on Monday and ending on Sunday.
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Figure 5.2. Distributions of number of comments per post (notice the log scale in y-axis).
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Figure 5.3. Network characteristics for posts of influencers for Brazil - Politics (Week 1).

5.4 Structural analysis

We here describe the network structure emerging from our data. We first illustrate
characteristics of the original and network backbones. Then, we characterize the com-
munities and highlight insights emerging from the co-commenters backbones.

5.4.1 The Network Backbones

We first show an example of network backbone, using the 1st week of the Brazilian
Politics scenario as case study.

Figure 5.3a depicts the histogram of the edge weights in the original graph GP .
Notice that 82% of edges have weight equal to 1, i.e., the majority of co-commenters
co-comment in a single post. Higher weights are less frequent (notice the log scale
on the y-axis). Yet, some co-commenters interact on more than 20 posts. In the
following, we assess whether these weights are expected – i.e., their weights agree with
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Table 5.2. Characteristics of the original network GP and network backbone BP for Brazil
- Politics (Week 1).

Network # Nodes # Edges # Comm Modularity

Original 37 k 74.09 M 6 0.22
Backbone 26 k (70.7%) 1.06 M (1.4%) 19 0.59

the assumption of independent user behavior.

The scatter plot in Figure 5.3b compares the observed weight in GP and the 95th

percentile of weight estimated by our reference model ĜP . Colors represent the number
of edges, and lighter colors indicate larger quantities. Most edges have very low value
for both observed and estimated weights – notice the lightest colors for weights 1 and
2 in the bottom left corner. We are interested in the edges in which weights exceed
the 95th percentile of the expected weight – i.e., those above the main diagonal. The
fraction of edges over the diagonal is higher for larger weight values. This indicates
that co-commenters interacting on many posts deviate from the expectation.

Figure 5.3c digs into that by showing the percentage of edges that are included in
the network backbones separately by observed edge weight. If the null model held true,
5% of the edges would be included (those exceeding the 95th percentile) – highlighted by
the red dotted line. But in GP , edges weights do not always follow the null hypothesis
of independent behavior, especially for edges with large weights.

It is also important to remark that GP edge weights are integer numbers, and
our generative model provides discrete distributions. Therefore, the computation of
percentiles is critical since the same value can refer to a range of percentiles. This
causes a rounding issue that is critical for low values. Filtering weights greater than
or greater or equal to particular values results in significant differences for low weights.
Figure 5.3c illustrates it by reporting the fraction of edges that would be included in
the backbone in the two cases. Using greater than corresponds to a conservative choice
since we include only edges for which the expected weight is strictly higher than the
95th percentile (orange curve). Notice how the number of edges in the backbone is
reduced for low weights. Conversely, greater or equal to would preserve more edges,
including those whose weight possibly corresponds to a lower percentile (blue curve).
We here maintain a conservative choice and keep edges whose actual weight is strictly
greater than the 95th percentile.

Table 5.2 describes the resulting network backbone BP after filtering, comparing
it with the original graph GP . We focus on week 1 here, but results are consistent for
all weeks. Our approach discards 98.6 % of the edges – i.e., the vast majority of them
is not salient. We remove 29% of nodes, which remain isolated in BP . To highlight the
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Table 5.3. Breakdown of backbone and communities over different weeks for Brazil, Politics.
In bold, the weeks of the elections.

Week % Nodes % Edges % Edges
γ(cd) > 1

# Comm Mod.

1 70.69 1.40 11.43 19 0.59
2 93.36 2.11 12.19 27 0.64
3 73.81 1.01 4.75 20 0.52
4 93.63 2.23 15.10 32 0.69
5 94.30 2.65 19.36 17 0.61
6 91.49 2.36 19.37 31 0.66
7 94.05 1.87 15.45 31 0.66
8 95.40 2.13 15.29 27 0.64
9 68.01 0.62 4.06 24 0.59
10 71.33 1.11 7.21 29 0.61

benefits of the approach, we include the number of communities and the modularity in
the original and backbone graphs. The Louvain algorithm identifies only 6 communities
with very low modularity in the original graph. On the backbone, it identifies more
communities, and modularity increases from 0.22 to 0.59.

Table 5.3 summarizes the main characteristics of the network backbones obtained
on each week for Brazil, Politics. Focusing on the first four columns, notice that we still
include the majority of nodes, with percentages ranging from 68% to 95%. Considering
edges, the percentage is always low (0.6–2.6%). The fourth column reports the fraction
on edges in the backbone having weight larger than 1. Remind that, by design, a
random behavior would lead to 5% of edges in the backbone, while here we observe
up to 19%, despite our conservative filtering criteria. Results are rather stable and
consistent over time.

5.4.2 Communities of Commenters

We now study the communities obtained from the backbone graphs. The last two
columns of Table 5.3 show that we obtain from 19 to 32 communities, depending on
the week. Modularity values are high (always above 0.5), meaning that the community
structure is strong.

We summarize results for the other scenarios in Table 5.4, reporting only average
values across the 10 weeks. First, focusing on Politics and comparing Brazil and Italy
(first two rows), we observe similar percentages of nodes in the network backbones. For
Italy a larger fraction of edges are retained, potentially because of the smaller volume
of profiles and comments (see Section 5.3). For Brazil, we obtain a larger number of
communities with higher values of modularity than in Italy.

Moving to the General scenarios (3rd and 4th rows), we notice that fewer nodes and
edges are in the backbones compared to Politics. Interestingly, we identify more and
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stronger communities. We root this phenomenon in the heterogeneity of the General
scenarios that include influencers with different focuses, potentially attracting com-
menters with different interests. Manual inspection confirms the intuition – i.e., we
find some communities interested in sports, others on music, etc. For politics, instead,
we find a more tangled scenario. Even if communities are rather strong, some of them
include profiles commenting on politicians of different parties and embracing different
topics. Next, we evaluate communities in the Politics scenario.

5.4.3 Analysis of Political Communities

We now focus on Politics and show how the activity of commenters spreads across
political profiles of different parties. Here we focus on the election week for both
countries to better capture the peak of the political debate on Instagram.

We first focus on the main political leaders of the two countries and study how
the communities of co-commenters distribute their interests among their posts. We
consider six politicians in each country. Figure 5.4 shows how the commenters of
each community are spread among posts of each politician using a heatmap. Columns
represent politicians and rows represent communities. The color of each cell reflects
the fraction of the comments of the community members that are published on the
posts of the politician.

To gauge similarity of profiles, the top of the heatmaps report a dendrogram that
clusters politicians based on the communities of their commenters. We define as simi-
larity metric of politicians the Pearson correlation among the activity of communities
on their posts. In other words, we compare them by computing the correlation be-
tween the corresponding columns of the heatmap. Hence, two politicians that receive
comments from the same communities have high similarity.

Looking at the Brazilian case (Figure 5.4a), we notice that most communities
are interested in a single candidate - Jair Bolsonaro (jairmessiasbolsonaro), with the
large majority of comments focused on his posts. This behavior is expected given
his large number of followers and popularity. Indeed, communities 1 − 9 comment

Table 5.4. Networks backbone and identified communities for Brazil (BR) and Italy (IT).
We show average values over the 10 weeks.

Scenario % Nodes % Edges % Edges
γ(cd) > 1

# Comm Mod.

BR Politics 84.61 1.81 12.42 26 0.62
IT Politics 87.33 3.39 21.79 11 0.44

BR General 65.35 0.82 8.83 81 0.79
IT General 60.03 2.23 12.57 48 0.72
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Figure 5.4. Distribution of comments among political leaders for each community during
the main election weeks.

almost uniquely on Bolsonaro. Focusing on the dendrogram on the top of the figure,
Bolsonaro has the highest dissimilarity from the others, i.e., he is the first candidate
to be separated from others. Other clusters reflect accurately the candidates’ political
orientation. Left-leaning candidates (Ciro Gomes, Fernando Hadaad and Luiz Inacio
Lula8) are close, as well as the ones leaning towards the right-wing parties (Alvaro
Dias, Cabo Daciolo and Jair Bolsonaro).

Similar considerations hold for the Italian case (Figure 5.4b). Communities 1 −
10 focus on Matteo Salvini (matteosalviniofficial). He is the only one for which we

8Haddad replaced Lula, who was barred by the Brazilian Election Justice.
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(b) Italy.

Figure 5.5. Dendogram of political influencers clustered according to commenter communi-
ties. Influencers are colored according to their political coalition.

identify multiple and well-separated communities. The other right-wing leaders have
communities active almost exclusively on their posts, e.g., communities 13 and 14 for
Silvio Berlusconi and Giorgia Meloni. Other leaders (e.g., Matteo Renzi and Nicola
Zingaretti for the Democratic Party and Luigi Di Maio for the Five Star Movement)
share a large fraction of commenters in community 11. This suggests these commenters
are almost equally interested in the three leaders. Indeed, looking at the dendrogram,
these last three profiles are close to each other. Matteo Salvini (leader of the most
popular party) has the maximum distance from others. Similar to the Bolsonaro’s
case, Salvini is a single leader who polarizes communities, thus well-separated from
others.

We now broaden the analysis to all politicians. We label each politician according
to his/her political coalition using available public information.9 For Brazil, we rely on

9Differently from e.g., the US or UK, in both Brazil and Italy the political system is fragmented
into several parties that form coalitions during and after elections.
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the Brazilian Superior Electoral Court,10 while for Italy we use the official website of
each party. Rather than reporting the activity of each community on all politicians, we
show only the dendrograms that cluster them, following the same methodology used
in Figure 5.4.

Figure 5.5 shows the results, where the party leaders/candidates shown in Fig-
ure 5.4 are marked in bold. Politicians of the same parties appear close, meaning that
their posts are commented by the same communities. For Brazil, the higher splits of
the dendrogram roughly create two clusters, for left and right-wing parties. In Italy,
we can identify three top clusters, reflecting the tri-polar system. Less expected are
the cases in which politicians from distant political leanings attract the interest of the
same communities and are close in the dendrogram. For example, in Italy, we find the
profile of Monica Cirinnà (left-wing) very close to Angelo Ciocca (right-wing). Manual
inspection reveals a considerable number of disapproving comments to posts of the first
politician that are published by commenters supporting the second. The same happens
for Vladimir Luxuria, whose some supporters disapprove Marco Bussetti’s posts (and
vice-versa). The structure of the backbone graph reflects the presence of profiles that
bridge communities.

In sum, our methodology uncovers the structure of communities, which reflect
people’s engagement to politicians over the spectrum of political orientation. Most
communities are well-shaped around single profiles, but sub-communities emerge too,
possibly around particular topics, as we will check next. In some cases, commenters
cross the expected political divide, commenting on profiles from different political ori-
entations.

5.5 Textual Properties of Discussions

We now focus on how the communities differ in terms of textual, sentiment and psy-
chological properties of comments.

5.5.1 Political Communities’ Interests

We now look into how communities in politics are attracted by different posts. Since
communities differ in the number of members and in the number of comments they
post, we consider a relative interest index of the community in a post, given by the

10http://divulgacandcontas.tse.jus.br/divulga/#/estados/2018/2022802018/BR/
candidatos

http://divulgacandcontas.tse.jus.br/divulga/#/estados/2018/2022802018/BR/candidatos
http://divulgacandcontas.tse.jus.br/divulga/#/estados/2018/2022802018/BR/candidatos
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Figure 5.6. Interest of communities on posts.

fraction of the community’s comments going to the post. We use data from the week
of the main elections in Brazil (week 5).

Figure 5.6a quantifies, for each post, the two most interested communities. The
x-axis reports the index for the community with the highest interest on the post,
while the y-axis reports the index for the second most interested community in the
post. We observe that, in all cases, the most interested community leaves less than
7% of its comments in a unique post (see the x-axis). Given there are 2 144 posts in
this snapshot, even a relative interest of 1% could be considered highly concentrated
attention, suggesting that communities are built around specific posts. In ≈ 40% of the
posts, the relative interest of the second most interested community (y-axis) is very low
compared to the most interested one. We quantify this in Figure 5.6b, which reports
the ratio between the relative interests of the first and the second most interested
communities. We observe that, in the 55% of cases, the most interested community
has at least 10 times higher index than the second one – notice the x-axis log-scale.
Hence, we have strong evidences that communities are attracted by specific posts.

Figure 5.7 shows posts that attracted high interest from communities 3 and 7,
which we use as running examples along with communities 10 and 11. Community 3

comments mostly on posts related to public events Bolsonaro promoted via Instagram
(as in Figures 5.7a and Figures 5.7b), while community 7 comments on posts where
the candidate tries to show his proximity with black people to debunk his associations
with racism (Figures 5.7c and Figures 5.7d).
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(a) Community
3 - Post about a
rally in São Paulo.
www.instagram.
com/p/
BoXpvV6Hrkk

(b) Community
3 - Post about a
rally in Vitória.
www.instagram.
com/p/
BoXMwvwn6xj

(c) Community 7
- Post discussing
racism.
www.instagram.
com/p/
BomRItfH9p8

(d) Community
7 - Another post
discussing racism.
www.instagram.
com/p/
Boe7fQcHfJB

Figure 5.7. Examples of posts by Jair Bolsonaro (jairmessiasbolsonaro) in which two com-
munities show high interest.

5.5.2 Properties of Communities’ Comments

We now take all communities found in each week and extract properties of the com-
ments of their members, namely: i) Average comment length (in characters); ii) Frac-
tion of comments that include at least one mention; iii) Average number of hashtags
per comment; iv) Fraction of comments with at least one uppercase word; v) Average
number of comments per commenter; vi) Average number of emojis per comment; and
vii) Fraction of replies among comments. Together these metrics capture important
aspects of the communities’ behavior. For example, the comment length, the number
of emojis per comment and the use of uppercase words (commonly associated with a
high tone) can describe the way the communities interact on Instagram. Mentions,
the use of hashtags and replies are strongly associated with engagement, information
spreading and direct interaction of commenters, respectively.

We study the communities by applying Principal Component Analysis (PCA)
to vectors that represent communities using the seven previously described metrics.
PCA is a well-known method for dimensionality reduction in multivariate analysis. It
projects the data along its principal components (PCs), i.e., axes that capture most of
the variance in the data [Tipping and Bishop, 1999]. Figure 5.8a shows the representa-
tion obtained for each community using the two principal components, where the color
represents the pair country-scenario. The 2-D representations of communities for both
politics scenarios are more tightly clustered and overlapping than for the general sce-
nario. This behavior suggests that, when considering the given features, communities
on politics are more homogeneous than the communities on the general scenario.

To understand which metrics best distinguish the communities in Figure 5.8a,

https://www.instagram.com/p/BoXpvV6Hrkk
https://www.instagram.com/p/BoXpvV6Hrkk
https://www.instagram.com/p/BoXpvV6Hrkk
https://www.instagram.com/p/BoXpvV6Hrkk
www.instagram.com/p/BoXpvV6Hrkk
https://www.instagram.com/p/BoXpvV6Hrkk
www.instagram.com/p/BoXpvV6Hrkk
https://www.instagram.com/p/BoXpvV6Hrkk
www.instagram.com/p/BoXpvV6Hrkk
https://www.instagram.com/p/BoXMwvwn6xj
https://www.instagram.com/p/BoXMwvwn6xj
https://www.instagram.com/p/BoXMwvwn6xj
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Figure 5.8. (a) 2-D representation of communities based on seven metrics using PCA. (b)
Description of the two principal components in terms of the original metrics; the bar represents
the loading scores for the components (positive or negative).

we study the loading scores for the two principal components. The loading score
quantifies the contribution of each metric to a principal component. The largest the
score (in absolute value) the more the metric contributes to the component (positively
or negatively).

In Figure 5.8b bars represent the magnitude of loading scores for each metric
for the PC 1 (left) and PC 2 (right). The PC 1 (left) can be associated with lengthy
comments, high usage of uppercase, emojis, replies and hashtags, and a low number of
comments per commenter. From Figure 5.8a, we see that high values for PC 1 is more
common for communities in the politics scenarios. Conversely, most communities of the
general scenario have negative x coordinates, thus pointing to the opposite behavior.

A less clear picture emerges for PC 2. Large values for PC 2 are associated with
high number of replies, mentions and comments per commenter (see Figure 5.8b, right
plot). For the politics scenario in Figure 5.8a, communities are concentrated in the
y ∈ [−2, 3] range, with those for Italy being slightly more positive than those from
Brazil. In the general scenario, however, points are spread out along the y axis.

We conclude that commenters of politics influencers exhibit a more homogeneous
behavior than commenters of other influencers. Particularly, commenters on politics
leave larger comments and use higher tone. They also often rely on typical online social
mechanisms, such as replies, mentions and emojis.

5.5.3 Sentiment Analysis

Although communities grow around particular posts and influencers, their members do
comment on posts from other influencers. Here, we analyze whether there is a differ-



108 Chapter 5. Online Political Discussions on Instagram

ad
.al

va
rod

ias

cab
od

aci
olo

cir
og

om
es

fer
na

nd
oh

ad
da

do
fici

al

jair
mess

ias
bo

lso
na

ro

lula
ofi

cia
l

Influencer

1
2

3
4

5
6

7
8

9
10

11
12

13
Co

m
m

un
ity

0.31 0.30 0.25 0.23 0.55 0.45
0.39 0.34 0.51 0.37 0.46 0.31

0.38 0.23 0.18 0.51
0.35 0.30 0.17 0.67 0.58

0.40 0.43 0.37 0.52
0.46 0.40 0.58
0.34 0.50 0.38
0.24 0.32 0.31 0.20 0.58

0.06 0.69
-0.12 0.29 0.39 0.51 0.13 0.52
0.27 0.31 0.55 0.38 0.04 0.42
0.43 0.34 0.39 0.28 0.35

0.44
0.1

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

of
 P

os
. -

 F
ra

ct
io

n 
of

 N
eg

. C
om

m
en

ts

(a) Brazil (week 5)

gio
rgi

am
elo

ni

luig
i.d

i.m
aio

matt
eo

ren
zi

matt
eo

sal
vin

iof
fici

al

nic
ola

zin
ga

ret
ti

silv
iob

erl
usc

on
i_o

ffic
ial

Influencer

1
2

3
4

5
6

7
8

9
10

11
12

13
14

Co
m

m
un

ity

0.26 0.24 0.34
0.29 0.33 0.36 0.30 0.28
0.43 0.25 0.39 0.40 0.33 0.49
0.29 0.29 0.34
0.25 0.28 0.15 0.29
0.38 0.23 0.34
0.24 0.37 0.18 0.33
0.26 0.22 0.29 0.28 0.33
0.33 0.28 0.49 0.21 0.60
0.33 0.30 0.23 0.33 0.09 0.53
0.21 0.36 0.33 0.29 0.16 0.45

0.34
0.60

0.44
0.1

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

of
 P

os
. -

 F
ra

ct
io

n 
of

 N
eg

. C
om

m
en

ts

(b) Italy (week 7)

Figure 5.9. Contrastive sentiment score (difference between fraction of positive and negative
comments) of communities towards political leaders during the main election week.

ence between the sentiment expressed in comments across influencers. As explained
in Section 5.2, we use SentiStrength to extract the sentiment of each comment. Sen-
tiStrength provides an integer score ranging from -4 (strongly negative) to +4 (strongly
positive). Score 0 implies a neutral sentiment. We here consider as negative, neutral
and positive comments with scores smaller than 0, equal to 0, and greater than 0,
respectively.

Table 5.5 shows fraction of positive, neutral and negative comments. We notice
that positive comments are generally more common (between 47% and 58%), followed
by neutral comments (between 32% and 41%). We look into the neutral comments
to understand why they represent a significant fraction and observe a large number
of short comments, misspelled words, abbreviations etc, which seem to complicate
sentiment extraction by SentiStrength. Negative comments are the minority in our
data, but they are more prevalent in the politics scenarios for both countries.

We now analyze how the communities’ sentiment varies towards profiles of differ-
ent politicians. More specifically, we compute the breakdown of positive, neutral and
negative comments of each community on posts of each influencer. To summarize dif-

Table 5.5. Fraction of sentiment captured in comments using SentiStrenght.

Scenario Sentiment

Negative Neutral Positive

BR Politics 0.10 0.32 0.58
IT Politics 0.13 0.40 0.47
BR General 0.06 0.41 0.53
IT General 0.04 0.36 0.57
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ferences, we report in Figure 5.9a and Figure 5.9b a contrastive score calculated as the
difference between the fractions of positive and negative comments for the particular
community and influencer. We ignore cases where a community has made less than
100 comments on a given influencer’s posts to ensure that samples are representative.
These cases are marked as white cells in the heatmaps.

In Figure 5.9a we consider the six political leaders already used for Figure 5.4.
We focus on the week of the first election round in Brazil (week 5). Predominantly,
communities make positive comments on the profiles in which they are more active,
i.e., their “referring candidate”. More negative comments are seen on “opposing can-
didates”. For instance, communities 1 to 9, highly active on Jair Bolsonaro’s posts,
display a more positive contrastive score on them. Analogously, communities 10 to
12, mostly formed by commenters very active on the profiles of left-wing influencers
such as Ciro Gomes (cirogomes) and Fernando Haddad (fernandohaddadoficial), tend
to write negative comments on their opponents, such as Jair Bolsonaro. This behavior
appears on all weeks and suggests that communities in politics tend to promote their
central influencers while trying to demote others.

Considering the Italian case, we observe similar results in Figure 5.9b. Commu-
nities exhibit positive contrastive scores towards candidates in general, but with higher
scores for the referring candidate.

5.5.4 Main Topics of Discussion

We now turn our attention to the analysis of the main topics around discussions. As
before, we focus on politics, during the election weeks. To summarize the overall
behavior of each community, we group together all their respective comments in one
document. As explained in Section 5.2, the documents build a corpus on which we then
use the TF-IDF metric to identify the most representative words of each document (i.e.,
community), henceforth called top words.

We show in Table 5.6 the top-10 words (translated to English) for communities
yielding the most interesting observations. We manually inspect the comments and
related posts, providing a reference context as the last column of the table. The manual
inspection suggests that these words give a good overview of what the communities
discuss.
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Table 5.6. Example of words with the highest TF-IDF for some communities in the politics scenario in the main election week.

Scenario Comm. Key Words Context

BR 3
‘Anapolis’, ‘Orla’, ‘Righteousness’, ‘Constant’,

‘Natal’, ‘Paulista’, ‘Spontaneous’,
‘JB17’, ‘Gesture’, ‘Avenue’

It refers to several places
where pro-Bolsonaro rallies took

place during the election campaign.

BR 7
‘Nazi’, ‘Jew’, ‘Hitler’,

‘Black People’, ‘Anonymity’, ‘Bozonazi’,
‘Distrust’, ‘Jerusalem’, ‘Homosexual’

It refers to Bolsonaro’s posts about
specific social groups in an attempt to show

he has no prejudice against such groups.

BR 10
‘Manuela’, ‘Haddad, ‘Scammer’,

‘Lulalivre’, ‘Birthday’, ‘Guilherme’,
‘Dilma’, ‘Gratefulness’, ‘Lula’

It refers to left-wing names,
such as Fernando Haddad, his

deputy Manuela, Dilma Rousseff and Lula (ex-presidents).

BR 11
‘Ciro’, ‘Experience’, ‘Political Activism’,
‘Polarization’, ‘Brazil’, ‘Second Round’,

‘Turn’, ‘Prepared’, ‘Project’

It refers to the center-left candidate
Ciro Gomes who arrived close to

reach the second round of the elections.

IT 3
‘Gooders’, ‘Big ciao”, ‘Captain’,
‘Crime’, ‘Good night’, ‘Polls’,

‘Never Give Up’, ‘Electorate’, ‘Lampedusa’, ‘Riace’

General Salvini’s jargon,
as well as places related to

the arrival of immigrants in Europe (e.g., Lampedusa).

IT 4
‘Monetary’, ‘Elite’, ‘Unity’, ‘Budget’,

‘Fiscal’, ‘Colonial’, ‘Equalize’,
‘Yellow Vests’, ‘Masonic’, ‘Store’, ‘IVA’,

Generic taxes and monetary issues.

IT 10
‘Consumption’, ‘Fuel’, ‘Insurance’, ‘Traffic’,

‘Helpless’, ‘Vehicular’, ‘Taxes’, ‘Redundancy’,
‘Veterinary’, ‘Animal rights’, ‘Cats’, ‘Abuse’, ‘Cruelty’, ‘Breeding’

A combination of terms related
to taxes, vehicles and animals’ rights.

IT 11
‘5S’, ‘Toninelli (ex-Transport Minister)’, ‘Corruption’,

‘Zingaretti (PD’s leader)’, ‘Calenda (ex-PD politician)’,
‘Honesty’, ‘Election list’, ‘Coalition’, ‘Budget’, ‘Growth’

Debate on Five Stars Movement (a government
party at the time) and Democratic

Party (the main opposition party at the time)
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Matching with Figure 5.7, communities 3 and 7 for Brazil are associated with
rallies in different locations in the country, and with debunking Bolsonaro’s prejudice
against ethnic and racial groups. The terms highlighted by TF-IDF reflect quite ac-
curately the respective topics, reporting locations of rallies and words linked to racism
and Nazism. Similarly, the top words for communities 10 and 11 are focused on the
names of the candidates whose profiles they mostly comment on. For Italy, community
3 reflects the typical jargon used by Salvini’s supporters. Community 4 debates on
taxes and monetary issues. Community 10’s comments refer to provoking posts that
mix taxes, car costs and animals’ rights. Last, community 11 seems to debate over the
left-wing party (the main opposition party at the time) and the 5-Stars movement (the
governing party at the time).

In a nutshell, the TF-IDF is instrumental to analyze what the communities are
discussing. The analysis demonstrates that communities are well-formed around the
topics they discuss, even if they have been built solely on the network of commenters’
interactions.

5.5.5 Psycholinguist Properties

In this section, we study the psycholinguistic properties of comments, aiming at finding
similarities and differences in the way commenters of communities communicate. We
rely on the Linguistic Inquiry and Word Count (LIWC) tool to calculate the degree at
which various categories of words (called attributes in the LIWC terminology) are used
in a text (see Section 5.2). For example, attribute Home includes the words “Kitchen”
and “Landlord, and attribute Family “Daughter”, “Dad” and “Aunt”.

For each community, we run LIWC on the comments and compute the average
frequency of the attributes. We then look for statistical differences between communi-
ties based on the average values of the attributes. For Brazil, we identify 62 attributes
(from the 64 available in LIWC’s Portuguese dictionary) for which differences across
communities are statistically significant11. For Italy, we identify 77 (from 83 available
in the LIWC Italian dictionary). From those, we select the five attributes that ex-
hibit the largest variability across communities in terms of Gini index and use them
characterize the psycholinguistic of communities.

Figure 5.10 shows heatmaps for the top-five attributes found for the Brazilian
(top) and Italian (bottom) politics scenarios. The heatmap cells in a column indicate
the relative deviation of the given attribute for the given community from the other

11We used the Kruskal non-parametric test to select attributes with a significant difference between
the distribution of community comments considering p− value = 0.01.
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(b) Italy, Politics.

Figure 5.10. Top 5 LIWC attributes and their relative difference between communities.

communities. In other words, each column (attribute) is z-score normalized – i.e.,
z = (x−mean)/std. Thus, each value gets subtracted the average of the column, then
divided by the standard deviation of the column. The results show how communities
are different in terms of the LIWC selected attributes. For instance, for Brazil, Politics,
communities 6, 10, 3 and 7 frequently use words regarding death, but seldom words
related to health. Communities 2, 5 and 4 show positive scores on almost all attributes.
Community 13 focuses mostly on health. In Italy, community 6 is very focused on
religion (commenters debated Salvini’s post that depicts a Rosary). Community 12
and 13 exhibit some hate speech.

In summary, LIWC is a useful tool to analyze the content of Instagram comments,
complementing the TF-IDF analysis with information on the topics being debated. We
find that communities debate on different topics and using different lexicon.

5.6 Temporal Analysis

In this section, we focus on the dynamics of communities during the 10 weeks of
observation. First, we analyze the community membership, studying to what extent
commenters persist in the network backbone and are found in the same communities
across weeks. Next, we characterize the dynamics of the content, i.e., the topics that
these communities are engaged in.

5.6.1 Community Membership Persistence

We start our analysis by studying the persistence of commenters inside the network
backbone and to what extent these commenters end up in the same community week
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(d) Brazil, General.

Figure 5.11. Temporal evolution of commenters in communities. Blue: top 1%, Orange:
top 5%, Green: all commenters.

by week. We also want to check if the most engaged commenters exhibit a different
behavior – i.e., tend to persist more than those who are less engaged. To this end,
we perform a separate analysis selecting the top-1% and top-5% commenters in terms
of number of comments in week ∆t and ∆t+1. Then, we compute the persistence and
NMI score (see Section 5.2.4.2), restricting to these commenters and comparing the
results with those obtained with the full set of commenters.

We report results in Figure 5.11 separately by country and for Politics and Gen-
eral. Considering Politics (Figures 5.11a and 5.11b), we note that the persistence in
Brazil is moderately high, regardless the subset of commenters. Around 50-60% of
commenters remain in the backbone week after week until the first round of elections
(week 5). Since then, we observe a decrease (also due to the drop of commenters in
general) until the second round election (week 8), followed by a significant drop after.
This trend shows that commenters were very engaged in the election period, mostly in
the first round when the debate included more politicians, senators, congressmen and
governors. In the second round, fewer candidates faced – yet people were consistently
engaged before finally plumbing two weeks after elections. These results corroborate
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the first intuition we observed in Table 5.1 – where the number of commenters varied
over time. Since persistence is similar for all subsets of commenters, we can conclude
that all commenters in the backbone are persistently engaged. That is, the backbone
members are quite stable.

Considering the membership of commenters within the same community, the
NMI shows that the top-1% and top-5% most active commenters (blue and orange
curves) are considerably more stable in their communities during the whole time. When
considering all commenters in the backbone, the NMI is significantly lower. This is
due to the birth and death of new communities, centered around specific topics, where
the debate heats up and cools down. These dynamics attract new commenters that
afterward disappear or change community.

For Italy, Politics (Figure 5.11b) different considerations hold. The constant per-
sistence suggests a stable engagement of commenters in the backbone. We just observe
a sudden drop the week after the election, where the interest in the online debate
vanished. On the other hand, the NMI is rather low, revealing more variability in com-
munity membership, even if we restrict our attention to the most active commenters.
Despite commenters in the backbone tending to be the same (persistence is typically
above 0.5), they mix among different communities. Considering the low modularity
of communities for this scenario (see Table 5.4), we conclude that the community
structure is weaker in this case, indicating overlapping among communities that favor
membership changes. This result is also visible from the dendrogram in Figure 5.5,
where we observe that influencers receive comments from similar communities making
the latter also more clustered.

Moving to General (Figures 5.11c and 5.11d), we observe slightly lower persistence
than in Politics, but more stable over time. NMI instead often results higher for
General than Politics, reflecting better separation between communities, which persist
over time. More in detail, for Brazil (Figure 5.11c) we observe that persistence and
NMI are high and stable – especially for the most active users. This suggests that the
most engaged commenters have diverse, specific and stable interests. Indeed, here there
is no exogenous event that pushes a temporal dynamic, like elections do for politics.
Again, this result reflects the high heterogeneity of posts and influencers in the General
category. Moving to Italy, Figure 5.11d shows that persistence is small and varies over
time. Here the lower popularity of Instagram in Italy than in Brazil may play a role,
coupled with the smaller number of comments (see Table 5.1). However, NMI is high
and stable. We conclude that although many users do not persist in the backbone, the
remaining are very loyal to their interests.
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5.6.2 Topic Persistence

We now discuss how the topics discussed by communities evolve over time. To that
end, we take as reference weeks 5 for Brazil and 7 for Italy in the political scenario,
being the weeks of elections in each country. We compute the cosine similarity between
the communities in the reference weeks (illustrated in Table 5.6) and the communities
extracted in all other weeks, for each country. That is, for a given week, we identify
whether there exists a document/community that is significantly similar to those found
in the reference week, following the steps presented in Section 5.2.4.2.

Figures 5.12 show examples for both scenarios. In weeks 5 and 7 for Brazil and
Italy, respectively, the cosine similarity is 1 since the documents are compared with
themselves. Focusing on Brazil first, we observe very distinct behaviors among the
picked-up examples. Remember that communities 3 and 7 are focused, mainly, on
Bolsonaro’s profile and comment on posts related to rallies and racism, respectively.
In both cases, we can observe that discriminating terms for these communities are mo-
mentary and sporadic, with some communities using terms about rallies that appear in
some weeks, still with a very similarity low. Conversely, the set of significant terms rep-
resenting community 10 and related to candidate Fernando Haddad. At last, consider
community 11, focused on Ciro Gomes. Again, we can observe that terms used by his
community in the election week were used in some communities earlier, exhibiting high
similarity. However, immediately after the first round (week 5) when Ciro Gomes lost,
the similarity drops significantly. Indeed, Ciro Gomes was excluded from the run-off
and the online debate (and community) suddenly vanished. In Italy (Figure 5.12b) we
observe a similar behavior. Community 3, mostly consisting of Salvini’s supporters,
uses very specific jargon and are always present. Community 4 debates around taxes
and monetary issues were already debated during week 3. The same considerations
hold for community 10, in which the fight between democrats and five stars supporters
heats more frequently.

In summary, people commenting in politics are more volatile than those com-
menting on general topics, with debates suddenly growing and cooling down. Some
sets of terms remain “alive” throughout the observation period, while others include
communities born around short events such as rallies, which take place on a specific
date.
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Figure 5.12. Example of how communities’ comments change over time. We set weeks 5
and 7 as reference, being the election weeks in Brazil and Italy, respectively.

5.7 Discussion

In this chapter, we studied the political discussion on Instagram, focusing on the co-
interactions of users co-commenting on posts of influencers covering ten weeks of data
from Brazil and Italy during major electoral periods in both countries to study politi-
cians and other influencers. We first introduced TriBE, a novel method for backbone
extraction based on a probabilistic model that considers features particular to online
social media applications. Our model targets commenters’ noisy and sporadic na-
ture, removing network edges that emerge by side effects while revealing the salient
co-interactions that compose the underlying network, i.e., the network backbone.

Then, we performed our study on a large dataset of Instagram comments, includ-
ing approximately 1.8 million unique commenters on 36 824 posts by 320 influencers in
two countries (Brazil and Italy). From a structural view, the analyses of the extracted
backbones revealed the existence of stronger well-structured communities, especially
around politics. We observed that communities built the same influencers, although
communities grew around specific topics. Also, those communities around politicians
have distinguishing textual properties that reflect more assertive and engaged discus-
sions such as emotional content, longer comments containing more emojis, hashtags,
and uppercase words. Finally, we analyzed the temporal evolution of the communities.
In general, we observed that communities formed around political influencers are more
dynamic than those formed around non-political influencers, which may be related to
the topics associated with the posts and the evolution of the electoral process.

Moreover, we observed that communities in politics are more dynamic than non-
political influencers regarding temporal evolution. Notably, we showed that the interest
in particular discussions changes drastically over successive weeks, possibly reflecting
shifts of interest occurring in society as the electoral process evolves. This observation
contrasts with the communities in non-political cases, which are more stable over time.
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In addition, we observed great variation in community membership over successive
weeks in politics, although the most active commenters tend to remain consistently
active in the same communities over time. Finally, concerning discussion topics, we
observed great diversity in dynamics: Whereas some topics attract attention momen-
tarily, others remain active over time.

5.8 Summary

In this chapter, we revisited our RG1 and RG2 established in section 1.3 by applying
our general approach to the study of online discussions on Instagram. In contrast to
our first case study, we addressed a more challenging phenomenon from a modeling
perspective, whose study in four different scenarios resulted in a large amount of data
over a long period of time. First, we studied the interactions between users on this
platform, for which there are no antecedents in the literature, by modeling them as
co-commenters networks. In addition, we proposed TriBE, a novel backbone extraction
method, to reveal how the underlying structure of co-commenters networks facilitates
the dissemination of information through online discussions. Assuming independent
user behavior, TriBE was able to capture the interactions that act as triggers to en-
courage users to comment on posts. Furthermore, by analyzing the properties of the
communities that emerged on the backbones, we found that the communities that
emerge from a stronger and clearer structure unveiled by TriBE do indeed capture the
collective behavior of co-commenters.

In summary, TriBE takes into account fundamental characteristics of the phe-
nomenon and the analyzed system (social media platforms) such as the tripartite
structure (content creators, content sets, and users interested in a particular subset
of content), the heavy-tail character of the content, and users’ popularity which gener-
ates a large number of edges that are not necessarily relevant to such a phenomenon.
Therefore, our analyzes also open up several avenues for further research in this area,
such as extending the study to other platforms like Facebook and Twitter that have
a similar structure, which could uncover both consistent and different patterns than
those found here.

In the next chapter, we delve into the central point of our work, backbone extrac-
tion, and propose a methodology that extends our general approach for selecting, ex-
perimenting, and evaluating different backbone extraction methods (including TriBE)
for a given phenomenon.





Chapter 6

Selecting and Evaluating Backbone
Extraction Methods

In this chapter, we dive into the core of our general approach - backbone ex-
traction - and present a methodology for selecting and evaluating backbone extraction
methods for a given phenomenon. We first introduce the motivation for this method-
ology in Section 6.1, followed by an overview of the problem and its formal statement
in Section 6.2. We then describe our proposed methodology in Section 6.3 and show
how it can be applied to two different case studies in Sections 6.4 and 6.5. We dis-
cuss our findings in Section 6.6. Finally, Section 6.7 summarizes the implications and
contributions.

6.1 Motivation

In the last chapters, we have shown that the complexity and diversity of interactions
between users in many-to-many networks pose some challenges. In other words, the
presence of a large amount of sporadic interactions affects the understanding and inter-
pretability of the phenomenon in question. To address this problem, we have proposed
and applied a general approach based on smart algorithms whose goal is to select the
salient edges to a given phenomenon in order to obtain a reduced and representa-
tive version of the network, the network backbone. Thus, it is intended to be a more
representative model of the collective behavior driving the phenomenon under study.
However, the definition of edge salience is highly subjective and several methods for
extracting the network backbone are available in the literature, each containing specific
assumptions about edge salience [Slater, 2009; Radicchi et al., 2011; Grady et al., 2012;

119
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Coscia and Neffke, 2017; De Melo et al., 2015; Dianati, 2016; Marcaccioli and Livan,
2019; Ferreira et al., 2020, 2021]. Therefore, it is often quite difficult to decide which
of these methods should be applied to a particular phenomenon.

In addition, the general lack of ground truth for evaluating the quality of an ex-
tracted backbone challenges the analysis of certain methods. In most previous studies,
authors evaluated results based on topological metrics, such as community modularity,
density, clustering coefficient, arguing that the extracted backbone has more clearly
defined substructures than the original network [Dai et al., 2018; Neal et al., 2021;
Mukerjee et al., 2022]. More recently, a few studies have looked at regression models
that relate topological properties of the network backbone to phenomenon-specific at-
tributes [Coscia and Neffke, 2017; Marcaccioli, 2020; Coscia, 2021]. In general, however,
the existing literature lacks a principled methodology for selecting the most appropri-
ate method for extracting backbones for a given phenomenon, taking into account both
topological and contextual aspects.

In this chapter, we take a step towards filling this gap by presenting a methodology
for selecting and evaluating methods for extracting networks based on a phenomenon,
which extends a fundamental step of our general solution. Unlike most previous work,
we argue here for a more principled approach to selecting the most appropriate backbone
extraction method, in which the characteristics of the phenomenon under study should
be aligned with the key assumptions and properties of the method. We begin with a
discussion of nine backbone extraction methods that we reviewed in Chapter 2. We then
challenge them by highlighting their key assumptions and characterizing them in terms
of the salience criteria they capture. Finally, we consider two case studies to validate our
methodology: (i) online discussions on Instagram (as studied in the previous chapter)
and (ii) information spreading in social media applications on WhatsApp.

6.2 Problem Statement

We tackle the challenge of selecting and evaluating network backbone extraction
methods available in the literature given a target phenomenon to be studied. Inherent
to such problem is the use of a potentially noisy network to model interactions
driving the given phenomenon. Recall that by noisy we mean a network that may
contain a large number of spurious edges that are not relevant for understanding
the phenomenon at hand, and, even more, may obfuscate the relevant ones (i.e., the
salient edges), jeopardizing the understanding of the phenomenon and the validity of
conclusions drawn from the study.
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Problem Statement: Given (i) a particular phenomenon of interest driven by collec-
tive behavior, and (ii) a dataset capturing real interactions that represent manifesta-
tions of such phenomenon, how can we evaluate alternative network backbone extraction
methods and select the one that, when applied to a network model of the input inter-
actions, is able to accurately reveal key properties associated with the phenomenon of
interest?

One major assumption that guides our present effort is that not every network
backbone is adequate to study the given phenomenon. Rather, key characteristics
of such phenomenon must be matched to the assumptions and requirements of each
method. Thus, a characterization of these properties is of utmost importance to drive
the analysis. A mismatch between those characteristics, assumptions and requirements
may lead to biases and misinterpretations.

Specifically, we are interested in identifying the methods that provide the best
agreement between topological properties associated with the connectivity of users in
the network and the contextual properties associated with factors driving the phe-
nomenon that emerges from those patterns. Since our interest is in collective behavior
patterns, the topological properties of interest are mostly associated with communi-
ties representing tightly connected groups of users who exhibit common (collective)
behavior. One key challenge we must face is that each backbone extraction method
removes edges and, consequently, nodes from the network based on its own definition
of edge salience and noise. Thus, backbones extracted by different methods may reveal
different topological structures, with properties that, though possibly strong and clear,
may not be relevant (or related) to the phenomenon being studied.

Let us start presenting a simple case to exemplify the complexity of the prob-
lem. Consider the network in Figure 6.1-a) built by connecting different users (nodes)
who shared the same piece of content on WhatsApp. Edges are weighted by the num-
ber of times they shared the same content. This network, consisting of 100 nodes
and 2 522 edges, is a subgraph of the network analyzed in Section 6.5. Suppose we
build this network to investigate evidence of users coordination to speed up content
spreading dissemination on the platform. Figures 6.1-b), 6.1-c) and 6.1-d) show the
backbones extracted from the network by three different methods, namely a threshold-
based method, Gloss Filter and Disparity Filter. Note that nodes that end up isolated
after edge removal are also removed from the backbones. Thus, each backbone con-
tains a different subset of the original edges and nodes. The question that arises is:
Which backbone is the best one to study our phenomenon of interest, i.e., coordinated
behavior?
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(a) Original network(mod=0.29). (b) GloSS Filter(mod =0.5)

(c) Threshold(mod=0.46) (d) Disparity Filter(mod=0.36)

Figure 6.1. Example network and the backbones extracted from it by three different methods
(modularity values presented within parentheses). Edge thickness represents edge weight and
nodes’ color possible coordinated users’ communities.

Note first that all methods remove a large fraction of the original edges, under-
lining the large presence of spurious noisy edges in the original network. Indeed all
three methods reveal clear topological structures in terms of communities, as can be
seen visually and by the modularity [Newman and Girvan, 2004] computed for the
complete network and backbones (see values in captions of the figures). The backbone
extracted by Gloss Filter (Figure 6.1-b) is quite different from the other two: it com-
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pletely misses the connections among the green nodes in the center of the network,
which clearly form a very tightly connected community. These users shared the same
content many times, which is a strong evidence of coordination. Moreover, it keeps a
large number of (weaker) edges among the various pink nodes: it is not clear whether
these edges are indeed relevant to study coordination. The backbones extracted by the
threshold-based and Disparity Filter methods (Figures 6.1-c) and 6.1-d)) look more
similar. Both reveal three tightly connected groups of users. However, the threshold-
based model misses some strong edges among users and the resulting backbone ends
up with fewer nodes and smaller communities.

Intuitively, this example suggests that Disparity Filter was able to reveal a more
complete view of these communities, thus allowing a more thorough study of the phe-
nomenon under investigation1. Note that such conclusion cannot be based solely on
topological/structural metrics. Indeed the modularity of the backbone extracted by
Disparity Filter is the lowest among the three backbones (but higher than the mod-
ularity of the original network). However, the presence of communities formed by
users tied by edges with higher weights is more visible in the backbone extracted by
the Disparity Filter. For this, we claim that the method selection must also consider
contextual aspects related to the phenomenon under study.

To generalize and tackle our target problem, we propose a methodology consisting
of four steps, which we detail in the next section. We explicitly target the studies of
collective behavior emerging from social media applications. We validate our method-
ology by applying it to two case studies, which are presented in Sections 6.4 and 6.5.
Although our case studies are drawn from the context of social media, the method-
ology we propose is general enough to be applied to phenomena in other online and
offline domains that are also modeled by noisy networks (e.g., co-authorship networks
[Galuppo Azevedo and Murai, 2021]).

6.3 Methodology

Our proposed methodology consists of the 4 steps shown in Figure 6.2, a natural
extension of our overall solution presented in Chapter 3. Given a dataset capturing
user interactions that represent manifestations of collective behavior patterns driving a
phenomenon of interest, we start by building a network model of these interactions (step
1). This network potentially contains spurious and random edges with little relevance

1We cannot claim it was able to reveal all communities of users acting in coordination as no ground
truth is available. We can only claim result quality in comparison with backbones extracted by other
methods.
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Figure 6.2. Overall methodology.

(if any) to the target study. We then need to choose a method to identify and remove
such non-salient edges, thus revealing the network backbone. We here argue that the
choice of possible strategies to perform this task should be guided by a fundamental
understanding and careful matching between characteristics of the phenomenon and
the assumptions of each method (step 2). Having identified adequate candidates among
alternative backbone extraction methods, the next two steps consist of applying such
methods to the network (step 3) and evaluating the quality of the extracted backbones
with respect to both topological and contextual (phenomenon-specific) criteria (step
4). The backbone with the highest quality with respect to the considered criteria is
then used to investigate the collective patterns driving the phenomenon under study.
These four steps are described in detail next.

6.3.1 Step 1 – Building a Network Model

We assume the availability of a dataset containing a temporal sequence of user inter-
actions taking place over a period of interest, gathered from the target system. In
essence, these interactions may occur among multiple users simultaneously, being thus
referred to as many-to-many interactions and are observable actions (e.g., comments
posted in a social media application) reflecting different user behavior patterns. We
are interested in revealing those patterns that are fundamentally related to (and drive)
the phenomenon that will be studied.

As in our general approach, we also start building a network model from the
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input dataset by projecting the user interactions into an undirected and weighted
graph G = (V,E) such that:

• V is the set of users who interacted at least once during the period of interest;

• E is the set of undirected and weighted edges connecting pairs of users, such that
the weight of edge ei1,i2 connecting users i1, i2 ∈ V is γ(i1, i2) = f(i1, i2), where
f(i1, i2) is any aggregation function (e.g., count) defined over the set of interac-
tions between i1 and i2 and/or any contextual information available associated
to them. Examples include the sharing of similar content (e.g., same URLs, same
hashtags, or same messages) and/or temporarily synchronized activities [Pacheco
et al., 2020; Cruickshank and Carley, 2020; Uyheng and Carley, 2021; Weber and
Neumann, 2020; Cann et al., 2021; Weaver et al., 2019].

Before investigate strategies for extracting the backbone of the original network
where noisy edges are filtered out, we note that one might be interested in the dynamics
of such backbone over different periods of time covered by the input dataset. In that
case, one strategy is to break the original data into subsets covering non-overlapping
and consecutive time windows (e.g., weeks or months) and build one network model for
each such window (see Chapter 3). Given that the same phenomenon under study is
the same, it is reasonable to assume that the contextual criteria impacting the selection
of the best backbone extraction method would remain the same for all network models.
In that case, the methodology could be applied to one such network model (e.g., the
one corresponding to a period of peak user interactions) so as to identify the most
adequate backbone extraction method to the study. Such method could then be used
to extract different backbones (one for each window) allowing an assessment of the
temporal evolution of their properties (e.g., as done in our prior case studies).

6.3.2 Step 2 – Selecting Candidate Backbone Extraction

Methods

In principle, any backbone extraction method could be applied to a given network
model, and the backbones extracted by different methods may be quite different (as
illustrated in Figure 6.1). Some backbones may miss a few important edges while still
offering important insights, whereas others may be composed mostly of edges of little
relevance to the study. Detecting the latter is not always easy, especially for large-size
networks. Thus, we argue that a careful and principled selection of candidate methods
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must be performed before evaluating the extracted backbones to avoid misinterpreta-
tions and facilitate evaluation. To that end, our goal in this step is to shortlist backbone
extraction methods that are adequate to study the given phenomenon. By adequate
we mean that their assumptions and requirements are in alignment with key charac-
teristics of the phenomenon, at the cost of generating completely unrelated backbones
otherwise.

In the following, we offer a characterization of nine alternative methods, includ-
ing state-of-the-art solutions, and discuss issues one must consider to study a target
phenomenon. These are the same methods introduced in Section 2.3. The discussion
below reflects our analyses of the methods’ applicability to different scenarios. To
guide this discussion, in Table 6.1 we present a summary with some key properties of
each method. Specifically, we categorize the methods along with three aspects that are
important to assist one in determining the suitable methods for a given case study.

6.3.2.1 Global vs. Local Methods

The first aspect (2nd column of Table 6.1) is inherently related to how the method
determines whether an edge is salient or not. While some methods apply a single
criterion to all edges, others may use different criteria for different edges. Thus, we
propose to classify each method as either local or global. The former refers to methods
that determine the salience of each edge based on local information associated with
the neighborhood of the edge, thus capturing aspects that are specific to the edge (and
adjacent nodes) being analyzed. Global methods, instead, use the entire graph or a
single global property for all edges in the graph. As such, the same (global) criterion
is applied to all edges. As shown in Table 6.1, the simple threshold-based backbone
extraction, HSS and RECAST are global methods. All other six methods are local. It
is important to note that besides of GloSS uses a single reference model, the selection
of salient edges is based on local information about the degree and strength of adjacent
nodes [Radicchi et al., 2011].
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Table 6.1. Our characterization of selected backbone extraction methods.

Method Edge Salience Criteria ParametersLocal vs. Global Structural vs. Statistical
Threshold-based

Backbone
Extraction

Global Structural Threshold

High Salient
Skeleton (HSS) [Grady et al., 2012] Global Structural Threshold

RECAST [De Melo et al., 2015] Global

Statistical
Reference model: Two global
distribution for all edges from
random graphs with the same

topology as the original network

p-value

Disparity
Filter (DF) [Serrano et al., 2009] Local

Statistical
Reference model:

Uniform distribution
of edge weight per node

p-value

Polya Urn
Filter [Marcaccioli and Livan, 2019] Local

Statistical
Reference model:

Beta-Binomial distribution
of edge weight per edge

p-value,
α (reinforcement

learning)

Marginal
Likelihood

Filter (MLF) [Dianati, 2016]
Local

Statistical
Reference model:

Binomial distribution
of edge weight per edge

p-value

Noise Corrected
(NC) [Coscia and Neffke, 2017] Local

Statistical
Reference model:

Binomial distribution or a
Hypergeometric distribution

(obtained by a Bayesian Framework)
of edge weight per edge

p-value

Global
Statistical

Significance
(GloSS) [Radicchi et al., 2011]

Local

Statistical
Reference model:

A single null model considering
both the edges between nodes

and the weight distributions of the
original network. Each edge is evaluated

under its end nodes’ properties
using a proposed Bayesian Approach

p-value

Tripartite
Backbone
Extraction

(TriBE) [Ferreira et al., 2020, 2021]

Local

Statistical
Reference model:
Poisson-Binomial

distribution of edge
weight per edge

p-value
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The choice between a local or a global method should take into account whether
the phenomenon exhibits an inherent heterogeneity or possible biases across different
edges that are relevant to the understanding of the phenomenon. For example, it is
well-known that several attributes related to user behavior in social media applications
(e.g., content popularity, content sharing, etc.) are very heterogeneous, resulting in
heavy-tailed distributions [Crovella et al., 1998; Ratkiewicz et al., 2010]. Such dis-
tributions naturally lead to network models with edge weights, node strengths and
other properties that are widely distributed, often over different scales [Ahn et al.,
2007; Grabowicz et al., 2014; Newman, 2003]. If the phenomenon under investigation
is inherently related to a single (dominant) scale (e.g., revealing the most frequent in-
teractions – the heaviest edges in the network) or to properties that go beyond single
edges and their adjacent nodes (e.g., revealing users who can easily reach all others in
the network), then a global method could be adequate.

Otherwise, if the phenomenon occurs at all scales defined by the heterogeneous
structure of the network, a local method is probably more adequate. By exploring local
information to define the salience of an edge, such methods might be able to retain
edges that are representative of multiple scales, thus being relevant to the phenomenon.
One such example is the study of online discussions in social media. Participation in
such discussions is naturally highly heterogeneous reflecting the differences in user
behavior. Yet, to get a clear picture of what is being discussed, one must capture
the contributions of users with different levels of activity. Applying a global method
may bias the extracted backbone to the interactions among the most active users or
the most popular content, which would offer only a partial view of the discussions. A
local method, instead, would be able to retain interactions among users with different
levels of activity, thus offering a more complete and accurate representation of the
interactions driving the phenomenon. We further elaborate on this particular study in
Section 6.4.

6.3.2.2 Structural vs. Statistical Methods

A second aspect to be considered (3rd column of Table 6.1) is whether edge salience
is based on structural properties or on a statistical reference model. The former re-
lates to methods that determine whether an edge is salient based solely on topological
attributes of the network (e.g., edge weights, neighborhood overlap, paths, etc.), thus
relying only on the empirical distributions of these attributes. These distributions are
often evaluated via thresholds. As shown in Table 6.1, both the threshold-based and
HSS methods fall into this category. For the former, salient edges are those whose
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weights are above (or below) a given threshold. For the latter, the frequency of oc-
currence in the shortest path trees is used as attribute. Structural methods are more
adequate if the phenomenon being studied is inherently related to the network topol-
ogy or connectivity, as represented by the used attribute. Examples include revealing
the interactions among users/nodes with the largest number of neighbors in common
(highly neighborhood overlap), or revealing users who are sources of information with
greater reach in the network [Csermely et al., 2013].

In contrast, other phenomena may be studied in more detail by examining statis-
tical deviations from an expected reference behavior. In such cases, one should consider
methods that build statistical reference models for edge weights. These methods con-
sider as salient the edges whose weights deviate significantly (according to a given
p-value) from the reference model. The idea is that such reference model reflects the
random network structure that would emerge if the phenomenon would not be tak-
ing place. As such, it is built based on network properties (e.g., distribution of node
degrees, node strengths, or edge weights) often under the assumption of independent
user behavior. By looking at edges that statistically deviate from the reference, these
methods avoid uninteresting (common) behaviors, thus focusing on the edges that have
greater chance of reflecting uncommon interactions that drive the phenomenon under
investigation.

Different methods employ different reference models, thus directly impacting the
definition of salience. To select a method, one should consider whether the employed
reference model reflects a baseline for analysis of the phenomenon being studied. Con-
sider, for instance, the study of coordination among users to spread information where
interaction occurs when two users share the same piece of content. A strategy to model
this phenomenon is to consider that users should have similar sharing patterns with
their neighbors in the network if no coordination is taking place. This behavior leads
to a uniform distribution of edge weights for all edges incident to the same node as
the reference model.Edges with weights that significantly deviate from such reference
offer potential evidence of coordination and, thus, should be retained as part of the
backbone. We further elaborate on this study in Section 6.5.

6.3.2.3 Parameters to Filter

The third aspect (4th column) relates to parameters employed by each method. As
shown in Table 6.1, all structural methods rely on a threshold parameter to determine
salient edges. As mentioned in Section 2.3, the use of such approach may lead to biases
in the analyses. To avoid such problems, a threshold can be set contextually, i.e.,



130Chapter 6. Selecting and Evaluating Backbone Extraction Methods

based on an expected value for an edge according to the phenomenon. Since setting
the threshold based on a contextual decision may be quite complex, prior work has
proposed to consider a percentile of the empirical distribution of weights, analyzing
the impact of this value on topological properties, e.g., density and community quality
[Coscia and Rossi, 2019; Soro et al., 2020].

Conversely, all statistical methods make use of a p-value for statistical testing
to identify salient edges. Typically, the literature uses classical values (i.e., 0.1, 0.05,
0.01, or 0.0001) [Radicchi et al., 2011; Grady et al., 2012; Marcaccioli and Livan, 2019].
However, some studies have argued that such classical values do not always yield the
best topological structure of the network [Coscia and Rossi, 2019; Mukerjee et al.,
2022]. We here propose to test a range within these values looking for the impact on
both topological and contextual properties. In addition to a p-value, the Polya Urn
filter also requires a parameter α that governs the process of reinforcement of existing
interactions [Marcaccioli and Livan, 2019]. The higher the value of α, the larger the
weight of an edge between two nodes must be, compared to the weights of the other
edges adjacent to those nodes, in order for the edge to be considered salient.

6.3.2.4 Additional Considerations

Having discussed three aspects that must be considered when selecting backbone ex-
traction methods, we complete this step with some general considerations and insights
about specific methods that may also help guide the selection. First, we note that some
of the local statistical methods, notably TriBE, MLF and NC, use binomial or Poisson
binomial distribution as reference model for edge weights. These statistical distribu-
tions assume – by design [Ehm, 1991] – that each unit of edge weight is assigned to a
pair of nodes under the assumption of independence. Deviations from this assumption
are considered relevant evidence of salience in the context of social media applications,
as they suggest that the weights are generated by hidden effects, e.g., when users are
attracted to certain content and therefore interact around them [Ferreira et al., 2020;
Coscia, 2021]. The Polya-Urn filter, on the other hand, assumes the beta-binomial
distribution which breaks with the assumption of independence since each assignment
is not independent of the others and changes from trial to trial (see Section 2.3). Also,
as already mentioned, social media applications are characterized by a great degree
of heterogeneity in user activity and content popularity. TriBE, being designed for
this context, captures such heterogeneity directly, by using these two factors to build
the reference model. In contrast, MLF and NC capture it indirectly, by considering
node degrees and node strengths to build the reference models. Intuitively, these node
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attributes are closely related to user activity and content popularity. On one hand, as
very active users tend to interact more with others, the degrees and strengths of the
corresponding nodes in the network tend to be larger. Similarly, more popular content
tends to attract more users, thus contributing to increasing the strengths and degrees
of the corresponding nodes. GloSS filter also uses the same attributes to determine
whether an edge is salient, though using a somewhat different approach. Therefore,
all these four methods share similarities in terms of the definition of edge salience,
producing backbones that include edges with great variety of weights.

In contrast, the other methods here referenced explore network heterogeneity in
the sense that edges with larger weights, either from a local (Polya Urn and DF) or
a global (RECAST, HSS and threshold-based) perspective, are more likely to be con-
sidered salient. Both Polya Urn and DF build different reference models to seek edges
that stand out (from a local point of view) by their weights considering a subset of
nodes/edges. HSS and the threshold-based method, instead, take a global perspective
(the structure of the whole network or a target threshold) as reference to identify salient
edges. RECAST, in turn, characterizes edges into four classes, allowing for different
definitions of edge salience (see Section 2.3). Yet, by exploring two such classes, namely
Friends and Bridges, one may produce backbones that also favor edges with heavier
weights. Considering that the network model we build encodes user interactions, such
methods favor keeping edges in the backbone based on repetitive and consistent pat-
terns of interactions.

6.3.3 Steps 3 and 4 – Backbone Extraction and Evaluation

Having identified a set of backbone extraction methods that could be employed in a
particular study, step 3 consists of applying the selected methods to the original network
to extract the corresponding backbone. Specifically, each candidate method m in a set
of methods M identified in step 2 is applied to extract a backbone Bm = (V m

b , Em
b ),

such that Em
b ⊆ E consists of only edges considered salient by m and V m

b ⊆ V is the
set of nodes with at least one edge in the backbone extracted by method m.2 Step 4
consists of evaluating the quality of the produced backbones. In case multiple methods
were selected in step 2, the best alternative should be chosen according to a trade-off
between the metrics discussed next. The backbone produced by the best method would
then be used to carry out the study in course.

Building on prior work [Newman and Girvan, 2004; Newman, 2006; Coscia and
Neffke, 2017; Leão et al., 2018; Marcaccioli and Livan, 2019; Coscia, 2021], we consider

2In other words, after backbone extraction, all isolated nodes are disregarded.
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metrics of backbone quality in two categories: topological, which are closely related to
network and community structure, and contextual, which refers to phenomenon-specific
attributes.

6.3.3.1 Topological Metrics

The topology-related metrics aim at quantifying the extent to which the network struc-
ture emerging from the backbone provides a clear view of how users are organized.
Metrics such as node degree, density, clustering coefficient, number of connected com-
ponents, modularity (see discussion below) characterize the structural properties of
interactions considered as salient by the backbone extraction process. For the sake of
brevity, we refrain from formally presenting all such metrics here and refer the reader
to [Barabási et al., 2016] for formal definitions.

Recall that our main focus is on phenomena related to collective user behav-
ior. Examples in the social media domain include efforts to promote particular ideas,
brands, or ideologies. The graph concept that can be directly applied to this notion of
collective behavior is community. Thus, the emergence of clearly defined (i.e., strongly
structured) communities in the backbone offer potential evidence of groups of users
actively engaging in common behavior. Identifying such communities is an impor-
tant step to uncover relevant knowledge about the phenomenon being studied [Ferreira
et al., 2019; Leão et al., 2018; Ferreira et al., 2020, 2021; Brito et al., 2020; Soro et al.,
2020; Nobre et al., 2020, 2022].

The literature on community detection is quite extensive, with approaches focus-
ing on specific concepts of communities defined via various network models [Labatut
and Balasque, 2012; Yang et al., 2016a; Rossetti et al., 2019]. Recall, however, that
we have adopted here the definition of a community which naturally implies groups
of users who are more similar in terms of shared interactions and other behavioral
patterns. To capture this definition, which implies that users in a given community
are more strongly connected to each other than to the rest of the network, we again
chose to apply Louvain’s algorithm [Blondel et al., 2008; Newman and Girvan, 2004]
to identify communities in the backbones. However, as stated in Chapter 3, this is an
important step that could be modified from our methodology to employ alternative
methods. In addition, we recommend reading and exploring the various strategies and
metrics for detecting and evaluating communities in networks which are comprehen-
sively summarized in [Rossetti et al., 2019].
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6.3.3.2 Contextual Metrics

In addition to topological metrics, the quality of a backbone should be assessed with re-
spect to how well it represents properties of the phenomenon under study. For example,
by focusing on communities and, in particular, by exploring the contextual properties
associated with them – i.e., characteristics of the communities that are not explicitly
captured by the network topology, but are intrinsically related to the phenomenon un-
der study – we may uncover properties that can help explain the emergence of different
collective behavior patterns. In this way, we can gain insights into factors driving the
phenomenon [Yang et al., 2016a; Gao and Liu, 2016; Liu et al., 2018b; Lu et al., 2020].

Unlike topological attributes, contextual criteria of backbone quality require ad-
ditional information about the phenomenon. For example, in the case of social media
applications, contextual information can be obtained through metadata that is usually
collected when studying these applications. We thus also propose to assess how well
the backbone captures phenomenon-specific properties by means of regression models.
Specifically, we build upon prior work [Coscia and Neffke, 2017; Marcaccioli, 2020; Cos-
cia, 2021], where contextual (phenomenon-specific) properties are used as explanatory
variables to build linear regression models with edge weights as the response (depen-
dent) variable. Although only linear regression models were used in these previous
studies, nonlinear models can also be considered and are particularly appropriate when
the chosen covariates are known or expected to have a nonlinear relationship with the
edge weights. Since this is not the case for the studies presented in Sections 6.4 and
6.5, we use linear models to estimate the edge weights in the backbone (or in the entire
network). Specifically, we consider the following regression model:

γ(i1, i2) = β0 + β1X1 + β2X2 + ...+ βnXn + ϵ. (6.1)

where γ(i1,i2) is the weight of ei1,i2 , X1...Xn is a set of covariates related to the phe-
nomenon, β0...βn are the model coefficients and ϵ is an error factor.

The quality of the fitting of the model to the data captures how well the covariates
(contextual properties) can be used to explain the edge weights (topological property).
The better the fitting of the regression model, the more representative the considered
edges (and corresponding weights) are of the underlying network structure driving the
target phenomenon. In particular, we expect that the fitting of the regression model
produced for the edges in a backbone (i.e., only edges in Eb) to be better than the
fitting of the model produced using the entire (noisy) network (i.e., all edges in E).
Similarly, we can compare the quality of different backbones by comparing the fitting
of the models produced for them.
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Although this approach has been used in previous studies [Coscia and Neffke,
2017; Marcaccioli, 2020; Coscia, 2021], we point out some possible limitations. First,
prior work only considered the coefficient of determination R2 (or its relative improve-
ment for the backbone over the original network) as a quality measure. However,
R2 values may be misleading as they do not account for error estimates [Jain, 1991].
Therefore, we propose to assess the quality of the fitting by using both R2 and the root
mean square error (RMSE), which is the square root of the mean squared difference
between estimated and observed values [James et al., 2013]. That is, given n edges,
and the observed and estimated weights of these edges, γi1,i2 and γ̂i1,i2 for each edge
ei1,i2 respectively, the RMSE is defined as:

RMSE =

√∑
(i1,i2)∈E (γi1,i2 − γ̂i1,i2)

2

|E|
, (6.2)

Smaller RMSE values suggest better (i.e., more accurate) fittings of the model.
In order to be able to compare RMSE values for different networks/backbones, we use
a normalized version of RMSE [Hastie and Tibshirani, 2017], where edge weights are
normalized by the average value defined as:

NRMSE =
RMSE(∑

(i1,i2)∈E(γi1,i2 )

|E|

) (6.3)

Another issue that deserves special attention is that backbones extracted by dif-
ferent methods may be quite different in terms of both the number of salient edges
and the ranges of weight values, as the methods may favor very different edges during
selection of the salient ones. On the one hand, one would like to assess the quality of
each backbone using all (or most of) its edges. On the other hand, it may be interest-
ing to compare different methods over the same set of (salient) edges. As a trade-off
between these two scenarios, we propose to split the data into a training and a test
set, whereas the latter consists of a smaller set of edges common to all backbones, and
evaluate backbone quality in both sets.

Specifically, we first identify the largest common set of edges present in all ex-
tracted backbones E∩

b =
⋂

m∈M Em
b , where M is the set of alternative backbone extrac-

tion methods to be evaluated. We then propose to randomly select a sample T of E∩
b

as test edges. We choose to select 20% of E∩
b as test edges here, but other sample sizes

could be adopted [Gholamy et al., 2018]. Next, for each method m ∈ M , we build the
regression model using all edges in Em

b \T , that is, all edges in the extracted backbone
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except those in the testing set are used as training edges.3

We first evaluate the quality of each regression model using both R2 and NRMSE
over the training edges to assess how well the model fits the training data. Note that the
training data captures the majority of the edges in the original backbones. As such, by
analyzing the model fitting to this data we are able to assess the extent to which each
backbone is indeed capturing relevant information for the phenomenon under study.

We then assess the quality of each model in the common set of test edges T . That
is, we use the trained models to estimate the weights of edges in T , and evaluate the
quality of the fitting using NRMSE.4 In a sense, T captures the consensus in terms of
edge saliency among all methods. As such, we note that similar NRMSE values in the
training and test sets for a given method suggests that this consensus is representative
of the entire backbone extracted by the method. In contrast, larger NRMSE values in
the test set suggests that the backbone extracted by the method deviates significantly
from the other backbones (that is, the test set is not representative of the training
data).

Note that we chose to use a sample of E∩
b as test edges, instead of the complete

set, to avoid favoring particular methods. For example, backbones with larger relative
intersections with E∩

b (i.e., the smaller backbones) could be favored in the quality
assessment as edges in E∩

b are more representative of the training data. Indeed, we did
observe this effect to happen in a preliminary set of experiments when the complete set
E∩

b was used as test edges in our case studies. This effect was reduced as we adopted
the strategy of using a sample of E∩

b as test edges instead. This strategy has also the
side effect of leaving more edges to build the model, which may lead to more accurate
models.

We also note that although the above discussion focuses on quantitative assess-
ment of backbone quality, one could also resort to visualization, especially of the denser
components of each backbone, to identify possible differences between backbones ex-
tracted by different methods.

6.4 Case Study 1: Online Discussions on Instagram

We apply here our methodology for selecting and evaluating backbone extraction for
our first case study examined in this chapter, which was also examined in Chapter 5.
We then start with a brief review of the phenomenon under consideration.

3We do the same for the entire network, using set E − T as training edges.
4We only use the NRMSE because it is better suited for checking how far the points of the common

test set are from the regression line [James et al., 2013]
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6.4.1 Characterization of the Phenomenon

Our first case study focuses on online discussions on Instagram as the phenomenon of
interest. Different factors may drive users to comment on specific posts. For example,
the common interest in a specific topic related to the original post, may drive users
to elaborate their opinions and exchange ideas in their comments, thus generating and
feeding on-going discussions (as we presented in Chapter 5). However, users may also
comment on posts due to other factors, e.g., reaction to advertising campaigns or user
personalization mechanisms [Perra and Rocha, 2019]. Not all these factors are truly
related to online discussions. Therefore, a network model built from such commenting
interactions may contain a number of irrelevant (i.e., non-salient) edges to the study
of online discussions.

In the last chapter, we examined online discussions on Instagram by applying a
specific backbone extraction, TriBE, to reveal the truly relevant (i.e., salient) edges.
Our main focus was on characterizing the structural and dynamic properties of the com-
munities that compose the extracted backbone, as representations of different groups
of users actively engaged in online discussions. Despite the interest in the same phe-
nomenon, our goal here is completely different. We are here interested in evaluating
alternative methods of backbone extraction. In a sense, our present study should
precede an investigation of the phenomenon, as we aim here to identify the most ap-
propriate backbone extraction method for such an investigation. Specifically, we here
analyze how different backbone extractions methods uncover the user interactions driv-
ing online discussions in posts and forming communities that can foster the spread of
information (e.g., ideas or opinions). Our methodology can also be applied to other
social media and other broader contexts. With respect to the former, we note that
user interactions when commenting on various topics have already been studied in the
context of other social media applications such as Twitter [Malagoli et al., 2021] and
Facebook [Smith and Graham, 2019; Trevisan et al., 2020]. As for the latter, one can
cite mobility networks [Coscia et al., 2020; Bonaventura et al., 2021] and biological net-
works [Putra et al., 2021], where some of the methods we use here have been applied
without careful investigation.

We then sampled from the dataset described in Section5.3 focusing on content
posted by political influencers in Brazil in the week surrounding the first round of
the 2018 Brazilian general elections (i.e., from September 30th to October 6th ). In
particular, we gather posts from the eight main candidate runners.5 We use all the

5We target the profiles: @jairmessiasbolsonaro, @fernandohaddadoficial, @lulaoficial, @cirogomes,
@_marinasilva_, @guilhermeboulos.oficial, @cabodaciolo, @ad.alvarodias).
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posts that these profiles made during the election week, as well as the comments they
received from other Instagram users. Again, we chose not include users who commented
on fewer than two posts, as these clearly reflect sporadic behavior. In total, we analyze
here 41 099 who made 376 779 comments on 540 posts. These data cover a specific time
window where user activity is high in terms of posts and comments, but user interaction
patterns are representative of other time windows analyzed in these studies.

The following sections describe how we applied our proposed methodology to the
study of online discussions on Instagram and how we performed each of the four steps.

6.4.2 Step 1 - Building the Network Model

We model the interactions among users commenting on the same Instagram posts with
the same system properties presented in Section 5.2. That is, the commenters are the
individuals (i.e., users commenting on posts made by influencers analyzed ), opportu-
nities are the posts created and the co-interactions are co-commenters commenting on
the same post. Thus, the network model that has been shown to reveal communities
of users participating in online discussions is defined as a weighted undirected graph
GInstagram = (V,E), where:

• V is the set nodes representing the users who commented on posts; and

• E is the set of edges, where each edge (i1, i2) ∈ E connects nodes i1 and i2, rep-
resenting two users who commented on the same post. The edge weight γ(i1, i2)
is the number of posts that received comments by the same two users.

As mentioned earlier, many interactions captured by user comments on Insta-
gram, and represented by edges in our network model, may not reflect actual dis-
cussions. For example, a very popular post naturally attracts many users, who often
comment on them, often in an independent manner, without actually engaging in a dis-
cussion about the topic. Also, some users are more active than others. Thus, it is very
likely that the most active users actually comment on many posts, acting completely
independent of others who commented on the same posts, without however engaging
in discussions. Such cases result in a set of edges in our network model that are simply
random. Since these edges do not reflect discussions among users/commenters, they
represent a noise for studying the target phenomenon. This observation requires the
use of backbone extraction methods to identify and extract the salient edges for the
study, filtering out those that are most likely just random.
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6.4.3 Step 2 - Selection of Candidate Backbone Extraction

Methods

As argued in the last paragraph, the network model may contain a number of edges that
occur simply by chance, as a side effect of independent user behavior in the presence
of very popular posts and/or very active users (i.e., commenters). This understanding
of how inherent properties of the phenomenon may impact the network model helps us
focus on backbone extraction methods that do take such properties into consideration
to identify and extract only the salient edges, that is, those with greater evidence of
reflecting online discussions. Specifically, we are looking for methods that consider
the effects of user activity level and post popularity on the emergence of random and
spurious (i.e., irrelevant) edges. As such, methods that are based on the assumption
that edge salience is necessarily related to edge weight (e.g., methods that assume that
edges with larger weights are more likely to be salient), either from a local or a global
perspective, are not adequate as these methods tend to retain in the backbone only
edges representing repetitive patterns of the most active users, disregarding interactions
reflecting discussions carried out by less active (though still important) users.

Given these considerations, we select the following set of candidate methods for
further evaluation: M = {MLF, NC, Gloss Filter, TriBE}. As discussed in Section 6.3,
these methods are fundamentally local and statistical, and factor both user activity
level and content popularity. TriBE explicitly builds a reference model based on both
characteristics. MLF, NC and GloSS Filter evaluate the salience of an edge taking
these factors into account indirectly, by exploring structural aspects of the network,
notably node strength and degree, that are affected by user activity level and content
popularity as explained in Section 6.3.2.4.

6.4.4 Step 3 - Backbone Extraction

After selecting the set M of candidate backbone extraction methods, we apply each
method in M to the network model built in step 1 and extract the backbones. Recall
that all the selected methods require a p-value as parameter. As mentioned in Section
6.3.2.3, we tested a range of possible values, varying from 0.001 to 0.1. Table 6.2 sum-
marizes the topological characteristics of the original network and backbones extracted
by the considered methods. Notably, the backbone results reported were produced with
p-value equal to 0.05 for all methods. This value was selected as representative of all
results tested. Results for other p-values are consistent, as reported in Table A.1 (A).
We note that, for the sake of analyzing collective behavior, we chose to disregard from
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Table 6.2. Online discussions on Instagram: Topological metrics of the network and back-
bones extracted by each candidate method (Columns 2-3 contain total numbers for the original
network and corresponding percentages for backbones).

Network Model Nodes Edges Avg. Deg. Density Avg. Clust. # C.C. # Comm. Gini Index Mod.

Original network 41 099 1 193 201 9236 0.2248 0.68 1 4 0.10 0.25
TriBE’s backbone 70.06% 0.91% 119 0.0042 0.38 1 9 0.23 0.58
GloSS’s backbone 65.45% 0.73% 103 0.0039 0.33 1 6 0.18 0.39
NC’s backbone 100.00% 39.58% 3655 0.0890 0.46 1 5 0.28 0.52
MLF’s backbone 94.78% 10.27% 1000 0.0257 0.40 1 5 0.53 0.49

the backbones and from the original network, prior to performing any analysis of them,
any connected component with up to 3 nodes, focusing instead on larger components
with possibly more impact and relevance to the phenomenon being studied.

Columns 2-7 of the table show the results of topological metrics, notably: nodes
and edges (total numbers for the original network and corresponding percentages that
remained in the extracted backbones), average degree (Avg. Deg.), density, average
clustering coefficient (Avg. Clust.), and the number of connected components (# C.C.).
We can see large differences across the backbone extraction methods for most topolog-
ical metrics. Overall the backbones are sparser than the original graph once a fraction
of the nodes (up to 34%) and most of the edges (up to 99%) have been removed. More-
over, the average clustering coefficient shows a moderate number of connected triangles
in the network for all methods. Interestingly, the resulting backbones have only one
connected component as is also the case for the original graph, which suggests the
presence of key users promoting online discussions across different Instagram profiles
who tie salient edges into a single component.

The three rightmost columns of Table 6.2 show results of community-related
metrics. We note that the number of communities (# Comm.) is somewhat larger
in all extracted backbones. This result is expected since backbones are sparser than
the original graph. We analyze the community size distributions by employing the
Gini index [Lerman and Yitzhaki, 1984], which measures a deviation of the given
distribution to perfect equality (i.e., uniform distribution). The larger the Gini index,
the greater inequality across community sizes. As the table shows, all backbones exhibit
greater inequality of community sizes than the original network, notably the backbone
extracted by MLF (largest Gini index). Considering only the backbones, the one
extracted by GloSS Filter has communities with more evenly distributed sizes (lowest
Gini index), though still with greater inequality than the original network. Finally, the
rightmost column of Table 6.2 shows the modularity results as a measure of community
quality. Clearly, all backbones exhibit more strongly connected communities (i.e.,
higher modularity) than the original network.
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Since the different methods extract backbones with different topological struc-
tures, we further analyze how each method deals with noisy/irrelevant edges with
respect to edge weights. Specifically, Figure 6.3 shows the distributions of weights of
the edges retained in the backbone (i.e., salient edges) by each method. For com-
parison purposes, each graph in the figure also shows the distribution of edge weight
in the original (complete) network. Recall that, as discussed in the previous section,
the salience of an edge for the particular study of online discussions is not necessarily
related to edge weight, thus our goal was not to retain edges with a particular range
of weight values. Indeed, the figure shows some diversity in the weights of the edges
that are removed by each method. TriBE (Figure 6.3a) removes many edges with small
weights (notably all edges with weight equal to 1 are removed), as well as some edges
with larger weights (around 38). GloSS Filter (Figure 6.3b), in turn, is more aggressive
towards heavier edges, removing a fraction of edges through the whole range of values.
In particular, note that all edges with the heaviest weights are filtered out by this
method. MLF (Figure 6.3d) follows a similar pattern, though it is much less aggressive
towards the heavier edges. Indeed, unlike GloSS Filter, MLF retains all the heaviest
edges in the backbone. Finally, NC (Figure 6.3c) is the most conservative method,
removing a smaller fraction of the edges through the whole range of weight values. In
a nutshell, the results show that even though all four methods do share similarities
(e.g., they all capture the effects of user activity level and post popularity), they also
have their particularities when identifying an edge as salient, and may produce quite
different backbones.

6.4.5 Step 4 - Backbone Evaluation

Having extracted the backbones by the selected methods, we turn to the final step of
our methodology. We evaluate the quality of the extracted backbones from a topo-
logical and contextual perspectives, aiming at identifying the most adequate backbone
extraction method, out of those selected as candidates, to the study of online discus-
sions on Instagram.

6.4.5.1 Topological Evaluation

The topological properties of each backbone are presented in Table 6.2 and were dis-
cussed in the previous section. We here delve further into those results, aiming at
comparing the backbones produced by the methods. Specifically, we compare the
methods with respect to the structural quality of the communities identified in the cor-
responding backbones, as captured by the modularity metric, since communities are
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Figure 6.3. Online discussions on Instagram: Weight distribution for edges retained in the
backbone by each method (distribution for original/complete network shown for comparison
purposes).

graph structures representing the different collective patterns driving the phenomenon
under consideration.

As already mentioned, all four methods allow for better discrimination between
communities (higher modularity), which should lead to a better understanding of the
role of each community in promoting online discussions. The improvement in com-
munity structure (with respect to the original network) varies across methods. GloSS
Filter, for instance, produces the smallest improvement (modularity increases from 0.25
to 0.39), while TriBE shows the largest improvement (from 0.25 to 0.58).

We also evaluate how similar the communities in the backbones and in the original
network are, with respect to node membership. To that end, we employ the Normalized
Mutual Information (NMI) metric which allows for comparison of two partitions even
with different numbers of communities [Vinh et al., 2010]. Figure 6.4 shows a heatmap
of the NMI values computed as a pairwise comparison between all four backbones as
well as the original network. We note that the NMI for two backbones (or a backbone
and the original network) is computed considering only the common subset of nodes
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in both graphs. In general, the results range from 0.49 to 0.65, suggesting low to
medium similarity. The similarity is greater among the backbones produced by NC
and MLF and the original network, which is consistent with other topological metrics
shown in Table 6.2. As these two methods retain a much larger fraction of the original
edges, the resulting backbones tend to have more structural similarities to the original
network, including the number and composition of identified communities. And even
for the methods that retain a smaller and similar percentage of edges, such as TriBE
and GloSS, there is a difference in terms of the communities that these edges form.
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Figure 6.4. Online discussions on Instagram: Similarity of communities, estimated by
Normalized Mutual Information (NMI), present in different backbones and original network.

6.4.5.2 Contextual Evaluation

We now shift our analysis to the quality of the backbones from a contextual point of
view, that is, we assess how well the edges present in each backbone are able to capture
phenomenon-specific properties. As described in Section 6.3, we do so by building a
linear regression model that aims at explaining the weights of the edges retained in a
backbone using a number of phenomenon-specific covariates. For comparison purposes,
we do the same for the edges in the original network.

We build the regression models considering the following key assumption: If two
given users i1 and i2 do indeed engage in the same discussions by commenting on the
same posts, the activities (comments) performed by each user individually are strongly
correlated with the joint activities performed by both users (i.e., comments on the same
post). If, however, comments posted by one user (or both) are mostly reactions to
popular content or to some automatic tool (e.g., advertising or personalization mech-
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anisms), or simply sporadic and random behavior, the activities of the user, taken
individually, are only weakly correlated (at best) with the joint behavior of both users.

Based on this assumption, we build a regression model for each backbone and
the original network. Given the edge weight γ(i1, i2) as dependent variable, the ex-
planatory covariates are: (i) number of posts that user i1 commented on, (ii) number
of posts that user i2 commented on, (iii) number of influencers that user i1 commented
on, and (iv) number of influencers that user i2 commented on. We capture user ac-
tivities by considering both the number of influencers and the number of posts each
user commented on because, as reported in Section 5, it is often the case that the
same influencer has multiple posts on different topics, each one attracting a different
group of users (community). Thus, we expect that edges representing user interactions
driven by joint engagement of both users in the same discussions to be reasonably well
explained by these covariates, whereas edges reflecting random or sporadic behavior to
be only poorly explained by these covariates. These edges should be removed from the
backbone. Thus, the better the fitting of the model to the edge weights in a backbone,
the better the quality of this backbone, from a contextual perspective.

Before discussing the results, we note that we did examine whether the covari-
ates considered are indeed linearly related to the dependent variable, key assumption
to use a linear regression model. We found that such linear relationship exists if a
log transformation is applied to all covariates and to the dependent variable. Such
transformation is often employed in variables with very skewed distributions, which is
the case of edge weights (see Figure 6.3) and measures of user activity in social media
applications [Schwartz et al., 2013; Malik et al., 2015].

Table 6.3 shows the results of model fitting for the four backbones as well as for
the original network. As discussed in Section 6.3, we assess the quality of model fitting
using the coefficient of determination R2 and the NMRSE for the training edges and
the NMRSE for the test edges.

Table 6.3. Online discussions on Instagram: Contextual evaluation of backbones by regres-
sion analysis.

Network Model Training edges Test edges (20% of common edges)
R2 NRMSE NRMSE

Original network 0.25 0.48 0.72

TriBE’s backbone 0.87 0.20 0.23
GloSS’s backbone 0.65 0.28 0.36
NC’s backbone 0.26 0.48 0.70

MLF’s backbone 0.28 0.49 0.72

Focusing first on the results for the training edges, we see that both TriBE and
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GloSS Filter produce large improvements over the original network, with respect to
both R2 and NMRSE. These two methods indeed are able to filter out a lot of noisy
edges, retaining those that are more closely related to the phenomenon being studied, as
reflected in the covariates used to build the regression models. TriBE, in particular, by
explicitly considering both user activity level and post popularity to build its reference
model, leads to the best results, with a very high R2 of 0.87 and a small NRMSE of
only 0.20. The other two methods, NC and MLF, in turn, despite filtering out many
edges (as shown in Table 6.2), lead to only marginal improvements (if any) over the
original network. This result is consistent with our observation in the last section that
the backbones produced by these two methods exhibit greater topological similarity
with the original network.

The same conclusion holds for the test edges. Compared to the original network,
the model fittings for both TriBE and GloSS Filter present notable reductions in
NRMSE, whereas the results for both NC and MLF remain very similar, with no
improvement. This suggests that the edges considered as salient by NC and MLF
deviate the most from the common set of edges considered salient by all methods.
This observation suggests, in turn, that these two methods retain a large fraction of
possibly non-salient edges, which ultimately impacts the fitting of the regression model.

In conclusion, when considering both topological and contextual metrics, we make
two final observations. First, evaluating backbone quality based solely on one perspec-
tive may be misleading. For example, as shown in Table 6.2, the backbone extracted
by NC has one of the largest values of modularity. Yet, the regression analysis reveals
that, though well organized into strongly connected communities, the edges identified
as salient by NC do not offer a more clear understanding of user behavior patterns
driving the online discussions than the (poorly structured) original network. In con-
trast, the backbone extracted by GloSS Filter has the lowest modularity of all four
backbones, even though the edges considered salient by this method are more strongly
related to our study than the edges retained by NC and MLF (as captured by the
regression model). Though keeping a large fraction of edges closely related to online
discussions, Gloss Filter leaves out some important edges for the identification of the
communities leading such discussions. Second, TriBE, in turn, stands out as the best
approach in terms of both topological quality of the communities that emerge in the
extracted backbone (modularity) and how well the selected edges are able to capture
the user interactions that indeed are driving the online discussions.
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6.5 Case Study 2: Coordinated Behavior on

WhatsApp

We now turn to our second case study, which we examine in this chapter. Nevertheless,
since this is the first time it is considered in this dissertation, we give a more detailed
description in the next section.

6.5.1 Characterization of the Phenomenon

Our second case study concerns coordinated actions to disseminate information in
WhatsApp groups. WhatsApp is a free messaging app widely used in many countries,
with over 2 billion active users worldwide6. The platform connects users in end-to-
end as well as group conversations. Despite being limited to only 256 simultaneous
members, WhatsApp groups have been shown to be effective channels for the large
dissemination of information [Resende et al., 2019a; Reis et al., 2020; Nobre et al., 2020,
2022], notably misinformation [Nobre et al., 2022], in spite of WhatsApp’s recent efforts
to mitigate such phenomenon (e.g., by limiting message forwarding [de Freitas Melo
et al., 2019]).

We here adopt the following widely used definition of coordination [Cao et al.,
2014; Yu et al., 2015; Pacheco et al., 2020, 2021]:

Coordinated behavior: coordinated users typically exhibit a repetitive and synchro-
nized pattern of activity.

With such definition as background, we have recently unveiled the presence of
communities of WhatsApp users for whom there is strong evidence of coordinated ef-
forts to spread information at large by repeatedly sharing the same content in different
groups [Nobre et al., 2020, 2022]. Such work, though not a central part of this dis-
sertation, is worth mentioning as it represents collaboration in the application of our
general approach. We find that these communities often transcend the formal group
boundaries enforced by WhatsApp. They have members in multiple groups building
an underlying network capable of sharing the same piece of content at very large scale
on the platform. To reveal these communities, we applied a specific backbone extrac-
tion method to the network that connects users sharing similar content. Specifically,
we applied the disparity filter (DF) as a strategy to filter out edges that do not offer
strong evidence of coordination. For example, a highly popular piece of content is

6https://backlinko.com/whatsapp-users#whatsapp-statistics
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most likely shared by multiple users independently, resulting in multiple edges in the
network, even without any kind of user orchestration. However, the presence of a set of
users who repeatedly spread similar content (more frequently than would be expected
by pure chance) is a clearer indication that some coordination is taking place.

In contrast to these previous studies, our present goal is not to identify and
study coordination (i.e., communities) of information spread on WhatsApp but rather
to compare the use of alternative backbone extraction methods to such study. We
aim at evaluating how well different strategies are able to extract the aforementioned
underlying network of information spread over WhatsApp groups, uncovering commu-
nities for which greater evidence of coordination exists. Thus, once again, the present
effort aims at identifying the most adequate backbone extraction method to be applied
to a study of the given phenomenon (as those reported in [Nobre et al., 2020, 2022]).

Our present investigation relies on a dataset of anonymized messages shared in
publicly accessible political-oriented WhatsApp groups in Brazil [Nobre et al., 2020,
2022], originally collected by the WhatsApp Monitor [Resende et al., 2019a]. We focus
our analysis on the month of the general presidential election in Brazil (October 2018),
a time of great political mobilization and strong evidence of message coordination and
orchestration in WhatsApp [Resende et al., 2019b,a; Maros et al., 2020; Nobre et al.,
2020, 2022]. In summary, we analyze 4 341 users who participated in 155 groups and
shared 91 417 unique pieces of information, in the form of text messages, images, audios
and videos.

6.5.2 Step 1 - Building the Network Model

Before describing the network model, we should explain the components of such a
system in terms of our general approach. Fundamentally, these user interactions,just
like those discussed in Chapters 4 and 5, can be modeled as a many-to-many network as
follows. The individuals are WhatsApp users, i.e., users who have shared at least one
piece of content during the observed time period and thus form the set of individuals
IWhatsApp = {i1, i2, ..., ij}. Here, opportunities are taken as the pieces of content. In
this way, we define the set of opportunities containing all the pieces of content posted
as OWhatsApp = o1, o2, ...om. We consider all users who shared the (near-)duplicate
piece piece of content as a co-interaction. Thus, each opportunity (post) ok leads
to a single co-interaction in the set C(ok). Collectively, all opportunities during the
observed period lead to a set CWhatsApp. Having defined these elements, we use the
same network model adopted in [Nobre et al., 2020, 2022], referred to as media-centric
network, which is defined as an undirected and weighted graph GWhatsApp=(V,E) such
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that:

• V is the set of nodes representing users who shared at least one message in one
of the monitored groups during the period of analysis;

• E represents the set of edges, where each edge connects two users if they share
similar content in the same or different groups. The similarity between message
content was estimated using a set of heuristics for filtering and identifying (near-
)duplicate content. We refer the reader to [Nobre et al., 2022] for more details on
these heuristics. The edge weight represents the number of times the two users
shared similar content, regardless of the group in which the sharing was made.

In light of the definition of coordination adopted, presented in the previous sec-
tion, salient edges are those whose weights are unusually high, considering individual
patterns or not. However, as defined, the network may contain a number of noisy
edges, that emerge due to sporadic or weak interactions. For example, endogenous
factors (e.g., temporary common interest or even large popularity of some particular
content) may cause different users to share similar content, which may overshadow
the actions of coordinated users who regularly and repeatedly share the same content.
Therefore, the interest is to separate users who persistently engage in such common
sharing from users who only sporadically exhibit such behavior. This separation implies
favoring as salient those edges with heavier weights, either taking a local perspective
(e.g., other edges incident to the same two nodes) or a global perspective (i.e., all
edges in the network). This principle is used as guideline in the selection of candidate
backbone extraction methods, as discussed next.

6.5.3 Step 2 - Selection of Candidate Backbone Extraction

Methods

As argued, we aim at selecting methods that explore the heterogeneity of the network
by identifying as salient the edges with unusually heavier weights, based on individ-
ual (local) or network (global) patterns, as representative of persistent and repetitive
interactions. As argued in Section 6.3.2.1, Threshold, HSS and RECAST are global
methods that explore the heterogeneity of the edge weight distribution, favoring as
salient the edges with heavier weights in the whole network. From a local perspective,
Polya Urn Filter and Disparity Filter (DF) select as salient those edges whose weights
are heavier compared to the weights associated with a subset of the edges (e.g., edges
incident to the same pair of nodes). Thus, we define the set M of candidate methods as
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M = {Threshold, HSS, RECAST, Poly Urn and DF}. Recall that both Threshold and
HSS explore structural properties, whereas the other three methods rely on statistical
reference models to identify the salient edges.

6.5.4 Step 3 - Backbone Extraction

Table 6.4 summarizes the topological characteristics of the original network and the
backbones extracted by each candidate method. As performed in the first case study,
we here also disregard from the backbones and from the original network any connected
component with up to 3 nodes. We note that the candidate methods have different
parameters, which were set as follows. Disparity Filter (DF), Polya Urn Filter (Polya)
and RECAST require a p-value. We here report results for p-value equal to 0.05,
which are representative of those found for other values, as presented in Table A.2
(A). The Polya Urn method also requires a second parameter α, which is related to
network heterogeneity. This parameter was set to 0.25, following a fine tuning process,
as briefly mentioned in Section 2.3. The High Salient Skeleton (HSS) and Threshold
approaches, on the other hand, take an arbitrary threshold value τ as input parameter.
In both cases, we select τ so as to retain the top-k% most important edges, given the
definition of salience adopted by each method. That is, we consider the distribution of
the network feature exploited each approach (i.s., number of shortest paths in which
an edge participates for HSS, and edge weight for Threshold), and select τ such that
the top k% edges in the network, according to the given feature, are considered salient.
Table 6.4 shows results for values of τ corresponding to the top 5% edges,7 but we also
tested for other values of k (thus of τ), as reported in Table A.2.

To further support the following discussions, we show visualizations of the orig-
inal network and each backbone in Figure 6.5, focusing on their largest connected
component8. In each graph, nodes belonging to the same community are represented
by the same color, and edge weights are represented by both edge thickness and color
(heavier/lighter edges are colored in red/blue).

As shown in the table and in the graphs, DF, Polya and Threshold retain some-
what similar fractions of nodes (11-17%) and edges (3-4%) in the extracted backbones.
Despite such large removal of nodes and edges, all three backbones have a number of
connected components similar to the original network. Interestingly, we also find that

7We note that, according to Table 6.4, the fractions of edges retained by both HSS snd Threshold
are slightly below 5%. This deviation is due to the removal of very small components (up to 3 nodes)
of the backbone and of the original network.

8Note that the number of communities shown in these figures does not match the number in the
Table6.4, as we are only showing the giant component for illustrative purposes.
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Table 6.4. Coordinated behavior on WhatsApp: Topological metrics of the network and
backbones extracted by each candidate method (Columns 2-3 contain total numbers for the
original network and corresponding percentages for backbones).

Network Model Nodes Edges Avg. Deg. Density Avg. Clust. # C.C. # Comm. Gini Index Mod.
Original network 4341 221002 103 0.0241 0.62 4 14 0.41 0.24
DF’s backbone 16.51% 3.51% 21 0.0310 0.53 5 15 0.42 0.52

Polya’s backbone 17.15% 4.76% 28 0.0391 0.59 5 15 0.47 0.48
Threshold’s backbone 11.56% 4.29% 38 0.0776 0.73 3 8 0.35 0.45
RECAST’s backbone 7.31% 0.85% 11 0.0384 0.49 2 8 0.49 0.37

HSS’s backbone 43.42% 4.86% 11 0.0062 0.21 135 147 0.66 0.30

(a) Original network (b) Disparity Filter’s back-
bone

(c) Pólya Urn Filter’s back-
bone

(d) Threshold’s backbone (e) RECAST’s backbone (f) HSS’s backbone

Figure 6.5. Coordinated behavior on WhatsApp: Largest connected component of the
original network and extracted backbone (node color indicates community membership, edge
thickness and color indicates edge weight – heavy/light edges colored in red/blue).

these backbones have greater density (especially the backbone extracted by Threshold)
and comparable (if not higher) average clustering coefficient to the original network.
RECAST, in turn, is the most aggressive method, retaining only around 7% of the
original nodes and fewer than 1% of the original edges. This leads to smaller number
of components and average clustering coefficient, though the backbone’s density is still
comparable to that of the DF’s and Polya’s backbones. Moreover, it becomes much
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more clear, from the network visualizations in Figures 6.5-b) and 6.5-c), the large pres-
ence of heavier (red) edges in the backbones, especially if compared to the quite noisy
original network. In the other extreme, HSS extracts a quite large backbone, with over
40% of the original nodes. This backbone has a very different topological structure
compared to the others, being much sparser (lower density and average clustering) and
much more fragmented (much larger number of connected components), as can be seen
in Figure 6.5-f).

Turning to the analysis of the communities (3 rightmost columns of the table),
we observe that the number of communities varies greatly across the backbones and
the original network, being smaller for the backbones extracted by Threshold and
RECAST. The former is possibly a result of the much denser backbone, whereas the
latter possibly relates to the fewer nodes in the backbone. Nevertheless, the inequality
in the distributions of community sizes is moderately similar, as captured by the Gini
index. This can be observed also in the visualizations of Figures 6.5. The exception
is, once again, HSS, whose backbone has a very large number of communities (147)
with sizes more unevenly distributed, which most probably is a side effect of the more
fragmented backbone. Indeed, as Figure 6.5-f) shows, it is much harder to distinguish
these communities than those in the other backbones. Finally, once again we observe
that all backbones have more strongly connected communities, as captured by the
modularity metric, than the original network, including the backbone extracted by
HSS (though to a lesser extent).

To further understand how the selected methods work, we analyze the distribu-
tion of edge weights. Figure 6.6 shows the distributions for each backbone and for
the original network. The figure illustrates mainly how HSS differs from the other
methods. All other four methods remove mostly edges with small weights, though
DF and especially RECAST also remove small fractions of edges with more moderate
weights. In particular, all edges with weights between 1 and 3 are removed by all four
methods. HSS, in contrast, removes large fractions of edges across the whole range of
weight values. In particular, it removes most of the heaviest edges, while still retaining
a large fraction of edges with very small weights (between 1 and 3). Recall that, as
presented in Section 2.3, HSS aims at retaining as salient those edges that are both
heavy and are fundamental to keeping nodes connected. Our results suggest that, for
the WhatsApp media-centric network studied here, it achieves neither of these goals,
possibly due to a mismatch of them in the network structure. Indeed, we find that the
fraction of shortest paths associated with each edge (main metric explored by HSS) is
mostly uncorrelated with edge weight (Spearman coefficient of correlation of -0.026).
As we will see in the next section, HSS’s backbone is inferior to the others both from
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Figure 6.6. Coordinated behavior on WhatsApp: Weight distribution for edges retained in
the backbone by each method (distribution for original/complete network shown for compar-
ison purposes).

a topological perspective and with respect to how well it captures edges that most
probably are related to the phenomenon under investigation.

6.5.5 Step 4 - Backbone Evaluation

As our final step, we compare the five selected methods with respect to topological and
contextual properties of the extracted backbones.
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6.5.5.1 Topological Evaluation

As in our first case study, the results presented in Table 6.4 and illustrated in Figure
6.5 show that all backbones are composed of more strongly connected and more clearly
discriminated communities than the original network. The improvements in community
structure, as captured by the modularity metric, are particularly large for the DF,
Poly Urn and Threshold approaches. The backbones extracted by these methods are
mostly composed of well structured communities of users who repeatedly share the
same content, which favors the information spread at large. RECAST and HSS, in
turn, produce backbones with weaker community structures, for the reasons discussed
in the previous section.

Delving deeper into the membership of the identified communities, we again com-
pute the pairwise NMI value for all five backbones and the original network. Results
are shown in Figure 6.7. Once again, we observe greater similarity in community
membership for the backbones extracted by DF, Polya Urn and Threshold, while HSS
has the most dissimilar community composition. Interestingly, the backbone extracted
by RECAST has perfect NMI value in the comparison with all other backbones and
with the original network. This suggests that the communities identified in RECAST’s
backbone are also present in all other graphs. However, being very aggressive in node
and edge removal, RECAST’s backbone offers only a partial and very limited view of
the existing communities and their members, which is limited to the nodes with the
heaviest edges and also the most connected to their respective neighbors.
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Figure 6.7. Coordinated behavior on WhatsApp: Similarity of communities, estimated by
Normalized Mutual Information (NMI), present in different backbones and original network.
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Table 6.5. Coordinated behavior on WhatsApp: Contextual evaluation of backbones by
regression analysis.

Network Model Training edges Test edges (20% common edges)
R2 NMRSE NMRSE

Original network 0.21 1.33 0.89

DF’s backbone 0.40 0.39 0.43
Polya Urn’s backbone 0.30 0.41 0.45
Threshold’s backbone 0.22 0.37 0.43
RECAST’s backbone 0.23 0.51 0.56

HSS’s backbone 0.25 1.31 0.86

6.5.5.2 Contextual Evaluation

Our contextual evaluation of the backbone extraction methods is guided by the fol-
lowing key assumption: If two users i1 and i2 are acting in coordination to share the
same pieces of content repeatedly in one or multiple groups, such coordination should
be reflected in their content sharing patterns. Guided by this assumption, we build a
regression model where the dependent variable γ(i1, i2) is correlated with the following
11 explanatory variables: (i) total number of messages shared by i1 (i2); (ii) number
of distinct messages shared by i1 (i2); (iii) number of messages with new content intro-
duced (i.e., shared first) by i1 (i2); (iv) number of groups i1 (i2) participates in (inferred
by the groups he/she shared content at least once); (v) Gini index of the number of
messages shared by i1 (i2) across different groups; and (vi) number of common groups
both i1 and i2 participate in. Note that all variables, but the last one, are computed
separately for i1 and i2, thus contributing as two covariates to the model. They capture
different facets of user activity, notably content sharing frequency, content diversity,
introduction of new content, participation in different groups, and user preference to-
wards particular groups or not (as captured by the Gini index). The only variable
related to the joint behavior of both users is the number of common groups, which
indirectly captures whether or not the two users act in the same subset of observed
groups. For example, users may act in a coordinated manner by frequently sharing
the same content (i.e., heavy edge), even though the number of groups in which both
participate is small. This could indicate, for example, that each of them forwards con-
tent to a particular subset of groups. As in our first case study, we also tested for
the assumption of linearity, finding that it holds reasonably well after a square root
transformation is applied to all covariates and to the dependent variable.

Table 6.5 summarizes the results of the model fitting for each backbone as well as
for the original network, for both training and test edges. Compared to our first case
study, the fittings are in general poorer (note, for instance, the much lower R2 values
in the training edges). We emphasize that it is much more challenging to perform
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a contextual evaluation of the network and backbone structures in this case study
because, as described, the dataset used consists of a sample of messages shared in
only 155 groups. All monitored groups belong to the same context (political domain)
and are strongly interconnected as many users belong to multiple groups. However,
these groups offer only a very partial view of the phenomenon, as the same users
most probably participate in other (unobserved) groups, where they share and forward
content, contributing to the information spread at large (see [Resende et al., 2019a]).
Thus, our analysis is inevitably constrained by the lack of an unknown number of edges
that most probably exist in the real underlying network connecting these users.

Under this constraint, the contextual evaluation leads to results that mostly agree
with those of the topological evaluation. The backbones extracted by DF, Polya Urn
and Threshold have the lowest errors (NMRSE) in both training and test sets. In terms
of R2, the results are in general poor, as discussed, but better for DF and Polya Urn.
Threshold performs comparable to the original network in this metric, and clearly
worse than DF and Polya, suggesting that the global approach may leave out some
important edges for the investigation. Indeed, as shown in Figure 6.6, both DF and
Polya do retain a more diversified set of edges, in terms of edge weights. In the other
extreme, RECAST and especially HSS perform quite poorly, with the latter offering
mostly no improvement over the original network.

In sum, we find that both DF and Polya Urn are the best methods for revealing
evidence of user coordination to sharing similar content in WhatsApp, with very similar
results in terms of both topological and contextual properties. If one method is to be
picked, DF is possibly the best choice as it extracts a backbone with slightly stronger
community structures.

6.6 Discussion

We have proposed a principled methodology to select and evaluate the best methods
for extracting the network backbone that more accurately represents the collective
behavior driving a given phenomenon of interest. This methodology includes 4 steps
to apply, evaluate and select the best method(s) for a given target phenomenon. We
used two case studies with different requirements: Online discussions on Instagram
and coordinated behavior in WhatsApp groups to validate it. Our characterization
and application confirm that these are very different scenarios that require different
solutions and illustrate the complexity of selecting appropriate methods for backbone
extraction.
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Moreover, we found that some methods extract rather useless backbones, while
others are particularly suitable to capture and describe the phenomenon under study,
taking into account a trade-off between topological and contextual measures. In this
sense, we hope that our methodology helps to highlight and demonstrate the risks of
using inappropriate and inadequate backbone extraction techniques.

6.7 Summary

In this chapter, we formalized and proposed a methodology for backbone extraction.
This effort contributes, fundamentally and systematically, to several recent network-
oriented studies relying on backbone extraction strategies to unveil useful knowledge
about various phenomena of interest. In particular, our work fills a gap in the literature
by emphasizing the need to: (1) carefully match assumptions and properties of the
method with characteristics of the given phenomenon, showing that different methods
may, in fact, extract quite different backbones, some which offer little (if any) useful
knowledge to the study, and (2) consider different criteria to evaluate the quality of
alternative backbones, especially when there is no ground truth (which is often the
case).

In addition, we offered a reasoned characterization of nine state-of-the-art meth-
ods, including TriBE we proposed here, for extracting backbones and discussed their
assumptions, properties, and issues to consider when applying them in practice. This
characterization, developed based on our experience with the methods, advances exist-
ing knowledge available in the literature and is intended to aid in selecting candidate
methods for a particular study. We also combine alternatives for validating the ex-
tracted backbones, both structurally (based on topological measures extracted from
the network) and contextually (based on phenomenon-specific attributes). In this way,
we filled the gap of a systematic procedure for comparing and selecting backbones
by proposing a principled methodology for selecting the most appropriate backbone
extraction method for a given phenomenon.





Chapter 7

Conclusions and Future Work

This chapter concludes this dissertation and is organized as follows: Section 7.1 presents
the conclusions, followed by Section 7.2, which summarizes our main publications.
Next, Section 7.3 discusses some limitations we observed during the development of
this work. Finally, Section 7.4 describes possible future work.

7.1 Conclusions

For several years, researchers have used network-based models, particularly projections
that we refer to here as many-to-many networks, to study various phenomena in the
physical and online worlds. These models have indeed made it possible to extract
an immeasurable range of knowledge in different knowledge domains. However, little
attention has been paid to the various challenges naturally faced by these models. This
dissertation set out to model and analyze collective behavior captured by many-to-
many networks. We addressed several neglected challenges, most notably the presence
of noise in the network and its drastic impact on the analysis. To achieve this, we
defined three research goals:

• RG1: Uncovering topological and contextual properties of communities in many-
to-many networks.

• RG2: Modeling the temporal dynamics of communities in many-to-many net-
works.

• RG3: Establishing a methodology for selecting and evaluating network back-
bone extraction methods in the face of a phenomenon modeled in many-to-many
networks.

157



158 Chapter 7. Conclusions and Future Work

We addressed the first two research goals with results in the context of two very
different case studies. Specifically, we were interested in uncovering and modeling
structural, contextual, and temporal properties of communities in the context of a
phenomenon under study. To this end, we proposed a general approach consisting of
a sequence of steps that primarily address several challenges that have been mostly
neglected in previous efforts to model collective behavior, especially when considered
together. For some of these challenges, we proposed alternative solutions to those
available in the literature. We then applied our general approach to these two very
different case studies, bringing to light fundamental insights about the phenomena
under study that would not have been observed without the challenges addressed
here. We then extend this general approach by proposing a methodology that allows
us to select and evaluate the backbone strategy that better captures the structural
and contextual properties of the phenomenon. Finally, we analyzed this methodology
in the face of two phenomena, one of those studied in the previous research goals and
a new one. Thus, our main contributions to the modeling and analysis of collective
behavior in many-to-many networks for RG1, RG2, and RG3 in the context of these
three case studies can be summarized as follows:

RG1: Uncovering topological and contextual properties of communities in
many-to-many networks

In the first case study, presented in Chapter 4, we were interested in examining
the behavior of politicians, particularly members of the House of Representatives, dur-
ing the legislative session in order to infer their political ideologies. To this end, we
modeled roll call votes as a many-to-many network. In such system, the latent rela-
tionships that exist among congressmen who vote alike on roll call votes correspond
to our notion of co-interaction. Thus, the collective behavior of interest in this case-
the emergence of groups of congressmen with similar political ideologies- over time
through co-interactions. As a natural consequence of such structure, some of these
co-interactions are noisy and, when projected into a network, form a complete network
(i.e., density equals one) and hide the actual ideological similarities that exist among
congressmen. We have taken up the challenge of such modeling and analysis for two
very different party systems (Brazil and the United States) covering a large 15-year
period.

To identify the salient edges and remove the noisy ones from the network, we
deliberately explored two strategies through contextual and structural information and
uncovered the backbones and their topological and contextual properties. Specifically,
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we first applied a global threshold-based approach where the choice of the value to judge
whether an edge is salient or not in each scenario is guided by contextual information
(i.e., partisan discipline). In this way, we highlight how contextual information, which
is often overlooked, can be used to identify salient edges. Yet, in characterizing such
ideological communities and their structural and contextual properties, we found that
they were nebulous to some degree in some periods, which is a particular feature of
this phenomenon in Brazil. For this reason, we went a step further and proposed
to apply a second local neighborhood-based aimed at extracting a backbone composed
mainly of ideological communities composed only of the more polarized members. This
approach allowed us to refine the originally extracted backbone structure as needed and
to uncover new properties about the phenomenon that had not been observed before:
more structured and more polarized ideological communities.

Most importantly, such strategy sheds light on the debate about the possibility
of combining different methods to extract the backbone. So far, we have found that
the above questions have been fundamental to gaining insights into the analyzed phe-
nomenon, mainly considering that the original networks modeled are complete and do
not favor the extraction of the patterns observed according to our strategies.

We then moved on to a second case study, presented in Chapter 5, which focuses
on the study of online discussions, particularly in social media applications. Here, we
focused on user comments on Instagram and proposed studying the co-interactions be-
tween users commenting on the same post by an influencer. We re-applied our general
approach to four different scenarios (two political and two non-political) from two very
different countries to investigate this phenomenon. Our novelty for modeling and ana-
lyzing collective behavior (online discussions) starts with networks of co-commenters,
capturing the concept of co-interactions when groups of users collectively co-comment
on the same post. In doing so, we found that the network model we used here is
unprecedented in the literature because it captures co-interactions from the many-to-
many perspective that can occur on topics of interest.

However, social media applications have characteristics that make hard the mod-
eling and analysis of user behavior. Most notably, these include the heavy tail nature
of content popularity and user activity, resulting in many edges that are not necessarily
relevant to this study. Despite this, we have not found any backbone extraction tech-
niques in the literature that explicitly exploit this information to identify salient edges.
We then proposed TriBE, an alternative to backbone extraction that works by build-
ing a reference model under the null assumption independent behavior and considers
these two main factors into account. Accordingly, we found that TriBE can capture
co-interactions represented by edges arising from triggers that lead users to interact
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with certain content, thus reflecting real interactions driven by potentially interesting
topics and not suffering from side effects such as those mentioned above.

Analyzing the structural and contextual properties of the backbones study ex-
tracted from TriBE, we found that there are stronger and well-structured communities
representing groups of users who frequently participate in online discussions that
were not seen in the original modeled networks without the application of TriBE.
Moreover, under the assumption of independent behavior, we observed a much higher
volume of interactions and thus intense discussions in the political context that, when
characterized, reveal the presence of multiple triggers (e.g., topics) and patterns of
communication and interest. Overall, TriBE has demonstrated its ability to capture
how these interactions occur. When applied in four different contexts, both interesting
similarities and topological and contextual differences between them became apparent.

RG2: Modeling the temporal dynamics of communities in many-to-many
networks

We addressed the temporal properties of our two case studies discussed in RG1.
Beginning with the first case study, i.e., a study of the behavior of House of Repre-
sentatives politicians, we extracted patterns about the permanence and community
affiliation of congressmen in the backbones over the observed period. Yet, we found
that these metrics and others in the literature capture such community-level dynamics
but do not track individual members over time. In addition, while strategies based
on low-dimensional latent representations, such as embeddings, were beginning to be
explored over time, we found that there were few and very limited efforts in this di-
rection at the time. We then proposed a new method to jointly learn temporal node
embeddings from a sequence of networks modeled by discrete-time windows - a partic-
ular contribution of this dissertation that builds on this case study. In summary, our
method is based on two state-of-the-art approaches and allows us to obtain a temporal
representation of the target system in the direction of temporal patterns. Furthermore,
the results show that it is possible to capture the dynamics at the member level, which
is an important contribution to the field as it allows a wide range of analyses.

In our second case, examining online discussions led by commenters on Insta-
gram, we again quantified patterns related to the persistence and organization of
individuals in communities extracted from the backbone over the analyzed period. We
have shown that interest in particular debates changes dramatically over the weeks.
This reflects the shifts in interest that occur in real-world society, particularly during
election periods such as the one analyzed here. In addition, we also highlighted the
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dynamics of the discussion topics in which communities participate. In this regard,
we observed a great diversity in dynamics, while some topics attract attention only
for a short period, while others remain active for a longer time.

RG3: Establishing a methodology for selecting and evaluating network
backbone extraction methods in the face of a phenomenon modeled in
many-to-many networks

Finally, we dove into the major step of our general approach and addressed how
to select and evaluate potential backbone methods in a studied phenomenon when
ground truth is constantly lacking. To this end, we proposed a methodology in which
we reviewed nine backbone extraction methods, characterize their assumptions and
requirements, and discussed aspects to consider for their applicability in practice. Next,
we identified the network characteristics that these approaches exploit by showing how
they can be used to study different phenomena. Thus, our methodology explicitly
considers the characteristics and correspondence of both methods and phenomenon as
a step in method selection. In particular, our methodology brings together metrics
for backbone quality that capture both structural and contextual (i.e., phenomenon-
specific) aspects. Thus, it evaluates the resulting backbone from the perspective of the
emerging structure and the extent to which it captures the phenomenon under study.

We applied the proposed methodology to two large-scale case studies related to
phenomena with different requirements. Compared to other similar previous studies
[Dai et al., 2018; Neal et al., 2021; Mukerjee et al., 2022], we offered a thorough and
reasoned investigation that includes a larger number of state-of-the-art methods. Our
results confirmed our interpretation that different methods can lead to very different
backbones and that choosing the most appropriate method is paramount to gaining
insight into the phenomenon under investigation. In particular, we found that our
proposed method, TriBE, yielded the best results when analyzing online discussions on
Instagram. In summary, we filled the gap of a systematic procedure for selecting and
evaluating backbones by proposing a principled methodology for selecting the most
appropriate backbone extraction method for a given phenomenon.

7.2 Publications

The results obtained according to our research goals were summarized in the following
publications:
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• Ferreira, C. H. G.; Souza, B. M.; Almeida, J. M.. Analyzing Dynamic Ideo-
logical Communities in Congressional Voting Networks. In: 10th International
Conference on Social Informatics, 2018. (RG1 and RG2).

• Ferreira, C. H. G.; Ferreira, F. M. ; Souza, B. M.; Almeida, J. M.. Modeling
Dynamic Ideological Behavior in Political Networks. In: The Journal of Web
Science, v. 1, p. 1-14, 2019. (RG1 and RG2).

• Ferreira, C. H. G.; Murai, F.; Da Silva, A. P. C.; Almeida, J. M.; Trevisan, M.;
Vassio, L.; Drago, I.; Mellia, M.. Unveiling Community Dynamics on Instagram
Political Network. In: 12th ACM Conference on Web Science, 2020. (RG1 and
RG2).

• Ferreira, C. H. G.; Murai, F.; Da Silva, A. P. C.; Almeida, J. M.; Trevisan, M.;
Vassio, L.; Drago, I.; Mellia, M.. On the Dynamics of Political Discussions on
Instagram: A Network Perspective. In: Elsevier Online Social Networks and
Media Journal, 2021. (RG1 and RG2).

• Ferreira, C. H. G.; Murai, F.; Da Silva, A. P. C.; Trevisan, M.; Vassio, L.; Drago,
I.; Mellia, M., Almeida, J. M.. On network backbone extraction for modeling
online collective behavior. Submitted to Plos One, 2022. (RG3).

Our general approach and particular efforts developed here have been used in
some collaborations. Therefore, we also note our involvement in those studies, which,
although not part of this dissertation, should be mentioned because they are closely
related to the efforts pursued here. We list the publications as results of these collab-
orations and explain our contribution in each case:

• Souza, B. M.; Ferreira, C. H. G.; Almeida, J. M.. Analisando a governabilidade
presidencial a partir de padrões de homofilia na Câmara dos Deputados: Estudos
de Casos no Brasil e nos EUA. In: VII Brazilian Workshop on Social Network
Analysis and Mining, 2018.

• Nobre, G. P.; Ferreira, C. H. G.; Almeida, J. M.. Beyond Groups: Uncovering
Dynamic Communities on the WhatsApp Network of Information Dissemination.
In: 12th International Conference on Social Informatics, 2020.

• Nobre, G. P.; Ferreira, C. H. G.; Almeida, J. M.. Misinformation Dissemina-
tion on WhatsApp: A Hierarchical Network-Oriented Analysis. In: Information
Processing & Management, 2021.
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• Malagoli, L. G., Stancioli, J., Ferreira, C. H., Vasconcelos, M., Couto da Silva,
A. P., Almeida, J. M.. A look into COVID-19 vaccination debate on Twitter. In:
13th ACM Web Science Conference, 2021.

• Barros, M. F., Ferreira, C. H., Santos, B. P. D., Júnior, L. A., Mellia, M.,
Almeida, J. M.. Understanding mobility in networks: A node embedding ap-
proach. In: Performance Evaluation Review, 2022.

In summary, the first work is a parallel effort to understand more aspects re-
lated to political governance issues on the phenomenon studied in our first case study
(Chapter 4.1). The next two works focused on the spreading (mis-)information on
WhatsApp by using our overall solution for modeling and analyzing many-to-many
networks. However, only one method was used to extract the backbone, and the focus
was on analyzing the content properties and propagation dynamics of users involved
in misinformation, considering three perspectives: Individuals, WhatsApp groups, and
communities of users. Next, the work of Malagoli et al. had our contribution in terms
of the use of contextual characterization strategies, which we used in Chapter 5, for
the study of a similar phenomenon but in a different case study (specifically Twitter).
Finally, the work of Barros et al. is an extension and application of the temporal em-
bedding method proposed here for the context of computer networks and focuses on
the extraction of mobility patterns of groups of people.

7.3 Limitations

This dissertation investigated and addressed several challenges in modeling collective
behavior through network modeling. However, the results should be considered in
light of the existing limitations that are listed below.

Community Detection:

All of our case studies were based on a single community definition and a single
algorithm was used to capture that definition. However, the definition of community
in networks is very broad in the literature. As mentioned in Section 3.2, other
algorithms consider different definitions to uncover different patterns of collective
behavior. In addition, there is the possibility of exploring algorithms that consider
both the structure and attributes of the network [Chunaev, 2020]. The growing
interest in approaches of this type would allow exploration of contextual attributes to
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enrich the knowledge of the phenomenon and favor identifying communities that best
capture the patterns of interest.

Temporal dynamics:

We have analyzed the dynamics of users, whether at the community or individual
level, at various points in this dissertation. In particular, at the community level, we
measured the extent to which individuals switch communities using normalized mutual
information. Although this provides us with insights into community dynamics, this
measure is limited from a community evolution perspective. In addition, other metrics
available in the literature could be used to assess community dynamics [Rossetti et al.,
2019]. A second limitation of the temporal context relates to the size of the fixed
duration time windows. No studies were conducted to quantify the impact of this
parameter on network modeling.

Sampled dataset:

In the case study of information dissemination via WhatsApp explored in
Chapter 6, we used datasets that represent samples of the existing political WhatsApp
groups. Thus, the media co-sharing network we built represents the potential channels
through which information can be disseminated, but we cannot state if or when these
channels were actually used as we only see a subset of the entire network. This
is a limitation inherent in many social media applications due to crawling or API
limitations, privacy issues, or even difficulties in managing and processing the often
large amounts of data involved [Campan et al., 2018; Kumar and Carley, 2019].

Scalability:

We have not evaluated the computational cost and, consequently, the scalability
of the different backbone extraction methods we used in this dissertation. However,
given the modeling of larger-scale phenomena, this may be an important and limiting
factor. Moreover, evaluating this aspect would allow for a more rational decision on
which method is most appropriate for a given phenomenon, taking into account not
only performance in capturing structural and contextual properties, but also execution
time.
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7.4 Future Work

We address here the main future work that offers a range of possibilities and, most
importantly, explores most of the limitations mentioned above.

Social Phenomena Evolution:

Society changes, and as a direct consequence, the properties of phenomena
change as well. In this way, co-interactions can take place in different ways, which
poses some challenges to the choice of the backbone extraction method. In addition
to the immediate application of the entire methodology developed here in other
phenomena, the proprieties of both phenomena and the methods certainly need to be
updated over time. Another point is that different strategies can be used to explore
the notion of co-interaction based on contextual features that open up new immediate
possibilities. For example, in the context of coordinated behavior, this possibility has
recently been explored in various ways in [Pacheco et al., 2021].

Temporal dynamics:

One way to analyze the evolution of these communities in more detail is to char-
acterize them in terms of events, particularly births, deaths, mergers, and splits of
communities. An alternative for modeling such events that trigger such dynamics is
the heuristic event graph formalism [Cazabet and Rossetti, 2019]. By adopting such a
model, it would be possible to analyze in more detail how the phenomenon evolves in
terms of community membership, how it differs in the original network and the back-
bone, and ultimately provide another measure to quantify the presence of noise in the
original network.

Another possibility to be explored is the proposal of backbone extraction tech-
niques that consider temporal properties over a sequence of time windows. The idea is
to identify the best backbone consisting of users that remain essentially stable in their
interactions across different time windows. Furthermore, considering such dimension
allows us to study phenomena where consistent user interactions may be of central
importance, e.g., co-authorship, coordinated behavior, mobility, and others. Finally,
we highlighted that this issue of community stability could be quantified using a latent
space obtained through our temporal node embedding technique proposed in Chapter
5.

As for temporal dynamics, another possibility is to analyze the effects of time
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windows of different sizes. Indeed, this has already been discussed in the literature
[Krings et al., 2012; Ribeiro et al., 2013; Valdano et al., 2015], but only recently we
observe an advance in approaches that are quantitatively interpretable and allow us
to determine the impact of the size of the chosen time window [Orman et al., 2021;
Chiappori and Cazabet, 2021]. Thus, there is the possibility of dynamically exploring
the identification of the time window when the co-interactions become more extensive
than generally observed.

Sampled dataset:

When working with a sampled dataset, one question that arises is how to achieve
a reliable extraction of the backbone since the sampling procedure may directly impact
the topological structure of the network and, consequently, on the salience analysis of
an edge. Some works have addressed the challenges of working with samples from the
perspective of potential bias [González-Bailón et al., 2014; Miranda Filho et al., 2015]
and sampling strategies [Gjoka et al., 2010; Liakos et al., 2017]. Another related work
has proposed a strategy based on the noise-corrected backbone extraction method to
select edges in networks based on sampling processes [Coscia, 2021]. The goal is to
select edges to achieve the largest information gain over the entire network structure.
This first effort opens new possibilities for other backbone extraction techniques that
can be extended to address this problem.

In addition, an immediate opportunity is to quantify how sensitive backbone
extraction techniques are to sampled networks by using full networks as a ground
truth. This can be done using the Instagram dataset that we used in Chapter 5.
Given the crawling date, our dataset is complete because it contains all users who
commented on the posts of the target influencers. In this way, it is possible to apply
several sampling alternatives described in the literature, simulate the criteria of APIs
such as Twitter that provide samples of only 1% of tweets, and compare the backbones
extracted from the networks with and without sampling methods to quantify the
extent to which this affects the study of a particular phenomenon.

Scalability:

It is not new that the volume of stored data is growing every year, as it is the
interest in various phenomena that can be studied with those data. Therefore, scala-
bility is an issue that arises in the methods used here. In terms of network modeling
and community detection, there are several approaches that explore parallel and dis-
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tributed execution, such as Apache Sparth Graphx1, Neo4j2, and Distributed Graph
Analytics (DGA)3. However, for backbone extraction, a few studies evaluate the scala-
bility of the approaches reviewed here [Radicchi et al., 2011; Coscia and Neffke, 2017],
but even those do not take advantage of parallel and distributed computing. Thus,
there is an opportunity to make a rather technical but very valuable contribution to
the performance analysis and parallelization of backbone extraction methods, which
hopefully, after this dissertation, will be considered a crucial step for the modeling and
analysis of many-to-many networks.

1https://spark.apache.org/docs/latest/graphx-programming-guide.html
2https://neo4j.com/
3https://sotera.github.io/distributed-graph-analytics/

https://spark.apache.org/docs/latest/graphx-programming -guide.html
https://neo4j.com/
https://sotera.github.io/distributed-graph-analytics/
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Appendix A

Parameter Sensitivity Analysis

We report in this appendix additional results from a sensitivity analysis we performed
to parameterize the backbone extraction methods. Table A.1 shows results of the
impact of the p-value (input parameter) on the methods selected as candidates for the
study of online discussions on Instagram (case study 1 reported in Section 6.4). Table
A.2 shows corresponding results for the methods selected as candidates for the study
of coordinated behavior on WhatsApp (case study 2, discussed in Section 6.5). For
the latter, we note that, for some of the parameter values tested (e.g., p-values lower
than 0.05), empty set of edges in the intersection of all backbones is empty. Such
empty intersection renders our method comparisons unfeasible, from the contextual
perspective, since we rely on training and test sets selected among edges common
to all backbones to perform the regression analysis (see Section 6.3). Therefore, we
disregard such cases, marked as ‘-‘ in the table. Also, as discussed in Section 6.5, both
HSS and Threshold methods are parameterized by setting a threshold equivalent to
retaining at most top-k% of the edges. Table A.2 presents results as we vary k.
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Table A.1. Online discussions on Instagram: Impact of method parameters on topological
and contextual metrics.

Strategy % N % E # Comm. Mod. Parameter R2 NMRSE
(Test)

TriBE 28.32 0.03 44 0.74

p-value

0.001 0.95 0.16
TriBE 52.83 0.48 19 0.69 0.010 0.89 0.22
TriBE 70.06 0.91 10 0.58 0.005 0.87 0.22
TriBE 99.86 9.43 6 0.43 0.100 0.80 0.23
GloSS 68.29 2.58 7 0.32

p-value

0.100 0.35 0.28
GloSS 65.45 0.73 6 0.39 0.050 0.65 0.36
GloSS 58.59 0.27 7 0.58 0.010 0.71 0.40
GloSS 51.72 0.11 9 0.73 0.001 0.66 0.91
NC 100.00 24.63 5 0.58

p-value

0.001 0.21 1.46
NC 100.00 30.63 5 0.57 0.010 0.23 0.88
NC 100.00 39.58 5 0.52 0.050 0.26 0.70
NC 100.00 46.62 5 0.48 0.100 0.27 0.57

MLF 98.79 16.16 7 0.51

p-value

0.100 0.17 0.60
MLF 94.78 10.27 19 0.49 0.050 0.28 0.72
MLF 74.61 3.95 8 0.55 0.010 0.47 0.79
MLF 49.78 1.16 12 0.62 0.001 0.49 1.28

Table A.2. Coordinated behavior on WhatsApp: Impact of method parameters on topolog-
ical and contextual metrics.

Strategy % N % E # Comm. Mod. Parameter R2 NRMSE
(Test)

DF 22.96 5.74 14 0.49

p-value

0.100 0.41 0.50
DF 16.51 3.51 15 0.52 0.050 0.40 0.43
DF 9.48 1.21 14 0.55 0.010 - -
DF 4.18 0.26 12 0.59 0.001 - -

Polya 19.36 6.20 12 0.46

p-value

0.100 0.30 0.52
Polya 17.15 4.76 15 0.48 0.050 0.30 0.45
Polya 11.82 2.66 12 0.48 0.010 - -
Polya 7.62 1.21 11 0.50 0.001 - -

Threshold 19.55 8.13 12 0.42

Threshold / k

10% 0.24 0.57
Threshold 11.56 4.29 10 0.45 5% 0.22 0.43
Threshold 4.06 0.94 6 0.41 1% - -
Threshold 1.54 0.10 4 0.32 0.1% - -
RECAST 7.31 0.85 7 0.37

p-value

0.100 0.22 0.49
RECAST 7.31 0.85 8 0.37 0.050 0.23 0.56
RECAST 2.80 0.14 8 0.36 0.010 - -
RECAST 2.80 0.14 8 0.38 0.001 - -

HSS 56.90 9.93 135 0.25

Threshold / k

10% 0.24 1.36
HSS 43.42 4.86 148 0.30 5% 0.25 0.86
HSS 23.15 0.88 141 0.56 1% - -
HSS 6.26 0.09 70 0.98 0.1% - -
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