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Introduction

This thesis comprises three essays { a theoretical and two empirical ones { which study

the dynamics of digital markets, focusing on regulation and competition. Each chapter

analyses a single aspect of this multi-faceted topic: consumer data and competition in the

�rst chapter; the impact of privacy regulation on website tra�c and visitor behaviour in

the second; how digital markets can a�ect traditional ones by looking at Airbnb’s impact

on the housing market in the third.

The �rst chapter investigates how a Data Broker (DB) can in
uence �rm entry and

downstream competition in oligopolistic markets by deciding how much data to sell and

to whom. The e�ect of data on competition is the focus of two main strands of literature.

The �rst one studies the impact of data exogenously available to �rms. A more recent

strand endogenises the information acquisition process, studying a monopolistic DB who

sells data to a downstream duopoly. While the �rst strand highlights a pro-competitive

e�ect of data, the second nuances it by showing that the DB can limit consumer surplus

gains by reducing competition through exclusive data sales. This work contributes to the

literature in two ways. First, by modelling an oligopoly market to analyse how the number

of competing �rms in
uences the DB’s strategy and the market outcomes. Second, by

endogenising �rm entry.

The model consists of a circular city with entry costs �a la Salop, where �rms can

enter the market and then acquire consumer data from a DB. Data are used by �rms to

identify consumers for price discrimination. The DB has information on all consumers,

and she decides to which �rms she sells data, the quantity sold to each one, and the price.

The results show that the DB has the incentive to limit �rm entry in the downstream

market, as she bene�ts from the increased market concentration by extracting �rms’

pro�ts through the price of data. Moreover, the DB has the incentive to under-serve the

market by selling data to a subset of �rms, so as to maximise their willingness to pay.

Overall, both these e�ects lead to a reduction in downstream competition. The analysis

shows that this reduction outweighs the pro-competitive e�ect of data highlighted by the
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previous literature. Consequently, consumer surplus is always lower in the presence of

a monopolistic DB. These results are robust to the introduction of a privacy cost and

to the reduction of the DB’s bargaining power. Moreover, when taking into account the

consumers’ loss of privacy, the entry barrier e�ect is mitigated since data become less

valuable to �rms. As such, raising consumers’ privacy awareness can be an e�ective lever

to reduce the consumer harm induced by the DB.

The second chapter assesses the impact on website tra�c and visitor behaviour of

the introduction of the European Union’s General Data Protection Regulation (GDPR).

From its adoption, the GDPR has attracted considerable interest from researchers, policy-

makers and industry players across the globe, spurring a fast-growing literature that

studies its impact on digital markets. So far, however, little attention has been devoted

to understanding the legislation’s e�ect on website’s ability to attract visitors and on the

way those users engage with website content. This work aims to �ll this gap.

The analysis exploits the fact that the GDPR applies to EU residents { leaving the

non-EU audience una�ected { to perform a di�erence-in-di�erences that relies on the

geographic origin of website tra�c. In particular, the treatment assignment identi�es the

tra�c originated from EU countries, using US tra�c as control group. Tra�c data from

about 5; 000 web domains in Europe and the US is used. The analysis documents an

overall tra�c reduction of approximately 15% in the long-run, and it �nds a measurable

reduction of user engagement with websites. These e�ects unfold fully with a delay,

several months after the date of GDPR entry into force, following the issuance of the �rst

large �ne by the French Authority on Google. The overall tra�c reduction is broken down

into detailed acquisition channels. Tra�c from direct visits, organic search, email, social

media, display advertising and referrals dropped signi�cantly, but paid search tra�c {

mainly Google search advertisement { was barely a�ected. The work �nds evidence of

an inverted U-shaped relationship between website size and tra�c reduction due to the

privacy regulation: the smallest and largest websites lost visitors, while medium ones were

not a�ected or even gained from it. The results appear consistent with the view that

users care about privacy and may avoid visiting a website in response to its data handling

policy. The results also highlight how privacy regulation can impact market structure and

may increase dependence on large advertising service providers. Enforcement matters as

well: the e�ects were ampli�ed considerably in the long-run, following the �rst signi�cant

�ne issued eight months after full entry into force of the legislation.
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The third chapter studies the impact of Airbnb’s di�usion on house prices and rents

in the Italian cities of Florence, Milan, Naples, Rome, and Turin. Airbnb’s claim is to

provide hosts with an additional source of income from unused capacity. Conversely, crit-

ics argue that { through the platform { landlords substitute from the long- to the short-

term rental market, increasing rents and house prices. A growing number of empirical

studies has recently started to inquire into the platform’s impact on the housing market,

with a recent strand of literature investigating the distributional e�ects of Airbnb’s het-

erogeneous presence within cities. This work adds to both strands by investigating the

impact of the platform at di�erent levels { overall, across cities, and in the centre and

suburbs { and by estimating the spillover e�ects of Airbnb presence in the city centre on

the rents and house prices in the periphery.

The empirical strategy accounts for endogeneity and simultaneity problems. The

analysis exploits an instrumental variable obtained from the interaction of an out-of-

sample measure of tourist attraction that varies within cities (derived from Tripadvisor),

and a measure of public awareness of Airbnb that varies over time (derived from Google

searches). The analysis documents an increase in rents and, especially, in sale prices

due to Airbnb’s di�usion. Overall, an increase of 1 percentage point in Airbnb density

rises house prices by 0.63%, translating to a 44.24 ¿/m2 rise over the period of the

analysis. However, the e�ect varies greatly across and within cities. Across cities, sale

prices increase everywhere, from 162.31 ¿/m2 in Milan to 19.37 ¿/m2 in Rome. Rents

are signi�cantly a�ected in Florence and Naples, with e�ects that are sizeable when

compared to price variations during the period of the analysis. The within-city e�ect

is extremely heterogeneous, with some cities where it interests centre and suburbs and

others where only the centre is a�ected. Whether the e�ect increases or reduces the gap

between them changes on a by city basis, depending on the initial conditions of the two

areas. Finally, the work �nds evidence that the increase in Airbnb density in central areas

has a negative e�ect on the property values in the suburbs. This is possibly due to the

centre’s increasing attractiveness at the expense of the suburbs following its increase in

localised amenities. The results speak of an overarching e�ect, but also of di�erentiated

impacts which require context-speci�c policies and evaluations.
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CHAPTER 1

User Data and Endogenous Entry in Online Markets*

Laura Abrardi, Carlo Cambini, Raffaele Congiu, Flavio Pino�

This work investigates how the presence of a Data Broker (DB), who sells
consumer information to downstream �rms, a�ects �rm entry and consumer
surplus in an oligopoly market with horizontally di�erentiated goods, in which
data allow �rms to price discriminate. We show that the DB reduces �rm
entry by choosing the price and quantity of data and by selling data only
to a subset of the entering �rms. By doing so, the DB maximises �rms’
willingness to pay for data. Overall, the presence of the DB reduces both
downstream competition and consumer surplus. Our results are robust to the
introduction of a privacy cost and to alternative selling mechanisms entailing
di�erent degrees of DB’s bargaining power.

*We thank Paul Belle
amme, Marc Bourreau, Antoine Dubus, Tommaso Duso, Johannes Johnen,
Elisabetta Iossa, Tommaso Valletti, as well as participants to the 2022 Lidam seminar (Louvain) for
useful comments.

�Politecnico di Torino, Department of Management, Corso Duca degli Abruzzi, 24, 10129 Turin,
Italy.
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1. Introduction

Invisible hands move the market of data, but they might not be those of competition.

Data Brokers (DBs) track consumers online, hoard massive amount of information and

sell that intelligence in the form of targeted market segments based on the customer’s

needs. Though consumers can bene�t from �rms’ targeted commercial o�ers, DBs might

also have the power to a�ect market entry and steer competition simply by choosing to

which �rms (and to what extent) data are sold. This paper analyses a market where

a DB sells consumer information to a number of horizontally di�erentiated downstream

�rms, which can use data for price discrimination. We highlight how the DB, by choosing

the �rms to which data are sold, and the price and quantity of data sold, can a�ect �rm

entry, �rm pro�ts and consumer surplus.

The advent of the digital economy has made personal data widely available. Once

aggregated and processed, these data can be used to perform market research, customer

base segmentation and targeted advertising. First degree price discrimination, once only

a theoretical possibility, has become a reality.1 However, collecting and processing data

at a scale that makes it valuable requires unique resources and capabilities. The demand

for such abilities has determined the growth of the DB sector, a highly concentrated in-

dustry whose revenue is estimated at USD 200 billion (FTC, 2014; Crain, 2018). DBs’

business model compounds both online and o�ine sources, collecting data from commer-

cial, government, and other publicly available sources { e.g., blogs, social media. Since

they typically do not get their data directly from consumers, DBs are often away from the

media’s spotlight or people’s awareness: yet, DBs are building intricate pro�les with thou-

sands of records on almost every household (FTC, 2014). Working in the background,

DBs mostly engage in business-to-business relations, selling the processed information to

downstream �rms who want to reach speci�c consumers with targeted o�ers.

Given the huge potential to in
uence downstream competition, policymakers have

often expressed concerns regarding the reach and the lack of transparency of this highly

concentrated, and yet virtually unregulated industry. Recent literature (see, e.g., Montes

et al., 2019) has pointed out how DBs have the incentive to increase some �rms’ market

power by selling data selectively in downstream duopolistic markets. However, little is

1Mikians et al. (2012) show that individual consumer data such as geolocalization are used by �rms
to price discriminate them, with price di�erences of up to 166%. Similarly, Aparicio et al. (2021) show
that the algorithms used by the leading online grocers in the U.S. personalise prices at the delivery
zipcode level.
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known on the strategies used by DBs when they serve markets populated by more than

two competing �rms, and how these strategies in
uence market entry and competition,

�rms’ pro�ts and consumer surplus.

The aim of this paper is to understand how a DB can in
uence �rm entry and down-

stream competition in oligopolistic markets by deciding to whom and how much data to

sell. We consider a circular city model with entry costs �a la Salop (1979), where �rms can

enter the market and then acquire consumer data from a DB. Data are used by �rms to

identify consumers for price discrimination. The DB has information on all consumers,

and she decides to which �rms she sells data { making them informed { how much data

she sells to each one (e.g., the full dataset or only a partition of it), and the price of data.

We �nd that the DB’ optimal strategy entails a reduction of �rm entry in the down-

stream market, relative to the benchmark case in which data are not available or are

provided exogenously to the �rms (as in Taylor and Wagman, 2014). Intuitively, a higher

level of market concentration increases the overall pro�ts of the market, which the DB

can then extract through a higher price of data. In addition to this entry barrier e�ect,

we also �nd that the DB in
uences the downstream market structure by selectively selling

data to a subset of the entered �rms. The possibility to compete having information that

is precluded to rivals increases the �rms’ willingness to pay for data, and therefore the

DB’s pro�ts. Overall, the DB lowers competition in the downstream market both by

reducing entry, and by providing a competitive advantage to some of the �rms. The re-

duction in competition ultimately harms consumers, who are all worse o� when compared

to a setting where data are not available.

We extend the basic model in three ways. First, we introduce a privacy cost for

consumers when they receive a tailored o�er (e.g., the annoyance of being contacted

by somebody they have not disclosed their data to). When we take into account the

consumers’ loss of privacy, we �nd that the entry barrier e�ect is mitigated, since data

become less valuable for �rms. As such, raising consumers’ awareness about privacy can

be an e�ective lever to reduce the consumer harm induced by the DB.

Second, we show that the entry barrier e�ect is robust to alternative selling mechan-

isms adopted by the DB, namely the auction mechanism with or without reserve prices

(see, e.g., Bounie et al., 2021) and Take It Or Leave It o�ers (as in Bergemann and

Bonatti, 2019).2 However, di�erently from the auction mechanism, under Take It Or

2The use of direct sales when selling data has been documented by the United States subcommittee
on antitrust (Judiciary Committee, 2020).
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Leave It o�ers the DB prefers to sell data to all entering �rms. Interestingly, the DB’s

equilibrium strategy depends on the value of transportation costs relative to the entry

cost. When transportation cost are low relative to the entry �xed cost, fewer �rms enters

the market, and the DB sells the whole dataset. Conversely, when transportation cost

are high relative to the entry �xed cost, the market is less concentrated and the DB sells

non-overlapping data partitions. Take It Or Leave It o�ers entail the highest consumer

surplus among the analysed selling mechanisms.

Finally, we explore the possibility that the data sale occurs prior to �rms’ entry. This

is the case, for instance, of emerging digital markets, where potential entrants anticipate

the value of obtaining consumer data and thus make their entry decision after having

obtained (or not obtained) data. Under this alternative timing, we �nd that the DB

always maximises her entry barrier e�ect, regardless of the selling mechanism. This

strategy allows her to increase concentration in the downstream market, leading to higher

pro�ts and higher consumer harm compared to the basic model.

The literature studying the impact of data on competition is growing. Firms can use

consumer data to identify naive consumers (Johnen, 2020), or to distinguish between con-

sumer groups with di�erent price sensitivities (Colombo, 2018). de Corni�ere and Taylor

(2020) provide a general framework in which data are a revenue-shifter, for a given level

of consumers’ utility. This framework usefully �nds a wide range of applications in which

data increase the quality of the information, but is ill suited for price discrimination in

spatial competition settings where data provide information on the type of consumers

(Armstrong and Vickers, 2001). When �rms exogenously have data, the literature high-

lights a pro competitive e�ect, both under monopoly (Belle
amme and Vergote, 2016)

and under competition.3 As informed �rms compete more �ercely, consumers bene�t

from lower prices. Although Taylor and Wagman (2014) show that the pro-competitive

e�ect of data limits �rm entry, this is due to the erosion of pro�ts stemming from the in-

tense competition, and not from the intervention of a DB who maximises the downstream

surplus. A more recent strand of literature has endogenised the information acquisition

process, either through �rms’ repeated interactions with consumers (Villas-Boas, 2004;

Acquisti and Varian, 2005; Liu and Serfes, 2004; Bergemann and Bonatti, 2011; Hagiu

and Wright, 2020) or by acquiring data from strategic actors (Bergemann and Bonatti,

3See for instance Thisse and Vives (1988), Sha�er and Zhang (1995), Bester and Petrakis (1996),
C. R. Taylor (2003), Liu and Serfes (2004), Taylor and Wagman (2014), Shy and Stenbacka (2016) and
Chen et al. (2020).
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2015; de Corni�ere, 2016; Gu et al., 2019). In particular, Braulin and Valletti (2016),

Montes et al. (2019) and Bounie et al. (2021) consider a monopolistic DB who sells data

to a downstream duopoly through a series of auctions with negative externalities, as in

Jehiel and Moldovanu (2000). These studies highlight how a DB can limit competition

between two existing �rms by selling data exclusively to one of them, thus extracting

higher industry pro�ts at the expense of consumer surplus. However, when three �rms

are present, Delbono et al. (2021) �nd that the DB always sells data to two or more �rms

{ depending on the selling mechanism { and thus exclusive sales are never part of the

equilibrium. A parallel stream of literature studies the role of competition between DBs

on data collection. In particular, Ichihashi (2021), by studying a market with many data

intermediaries and one downstream �rm, shows that the non-rivalrous nature of data can

lead to signi�cant concentration in data markets.

We contribute to the existing literature in two ways. First, we extend the duopolistic

setup to analyse how the number of competing �rms in an oligopoly market in
uences the

DB’s strategy and the subsequent market outcomes. Second, we endogenise the number

of �rms present in the market by modelling their entry. This allows to highlight a novel

e�ect of data, which we label as entry barrier e�ect, which emerges as a result of the

DB’s pro�t-maximising strategy. Our analysis shows that the reduction in competition

given by the DB’s entry barrier e�ect outweighs the pro-competitive e�ect of data, so

that consumer surplus is ultimately reduced. To our knowledge, this is the �rst paper to

highlight the entry barrier e�ect of the DB’s behaviour and its potential anticompetitive

nature.

From a policy perspective, a critical concern pertains to the concentration of the DBs’

market and its e�ects on consumers. A key insight of previous literature on monopolistic

DBs is that antitrust authorities should ban exclusive data deals to foster competition

and protect consumers when the downstream market is a duopoly. However, our results

suggest that in markets with more than two �rms, the harm to competition stems from

the entry barrier raised by a monopolistic DB. The negative e�ects of the entry barrier

on consumers can be reduced by enforcing data sharing obligations with all �rms or by

intervening on the selling mechanism adopted by the DB. We �nd that the DB sells data

to all �rms if Take It Or Leave It o�ers (TIOLI) are used for the data sale, so that the

TIOLI mechanism would be better for consumers than sales with auctions, especially in

markets with high transportation cost relative to the entry �xed cost. While both these
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measures would be an e�ective tool to raise competition in the market, they might also

involve a higher loss of consumer privacy.

The remainder of the paper is organised as follows. Section 2 presents the model, and

Section 3 computes �rms’ equilibrium prices. Section 4 computes the DB’s pro�ts and

her optimal strategy and discusses the consequent market outcomes. Section 5 analyses

three model’s extensions: introducing a privacy cost, reducing the DB’s bargaining power,

and allowing her to commit to data prices prior to �rm entry. Section 6 concludes by

discussing our results. All proofs are contained in the Appendix.

2. The Model

We consider a market where horizontally di�erentiated �rms sell a product to a mass

of consumers, whose preferences can be observed by a �rm only if it purchases customer-

speci�c data from a Data Broker (DB). For example, �rms sell their products via e-

commerce solutions, and the possibility of identifying the consumer through data acquired

from a DB allows the �rm to make personalised o�ers.

2.1. Consumers, Firms and the Data Broker

We consider a free-entry game with a market represented by a circular city of length 1

(Vickrey, 1964; Salop, 1979). Consumers are uniformly distributed on the circumference

and normalised to 1, and their locations are indexed by x 2 [0; 1) in counter-clockwise

order. Let us denote with n the number of symmetric �rms that enter the market, indexed

by i 2 f0; 1; 2; : : : ; n� 2; n� 1g.4 Their marginal cost of production is normalised to 0,

while their entry in the market entails a cost F . We can think of F as the total costs

incurred in the process of digitisation (see Anderson and Bedre-Defolie, 2021), such as

the creation of an online retail shop. We assume that �rms enter the market choosing

equally spaced locations, so that the location of a generic �rm i is indexed by i
n . Once

�rms enter the market, each consumer buys at most one unit of the product.

There is one Data Broker (DB) who has a dataset with the location of all consumers in

the market. The DB can sell this information to �rms that entered the market, allowing

them to perform �rst-degree price discrimination on the identi�ed consumers. The DB

o�ers to each �rm a data partition by setting up n auctions. Let us denote with di 2 [0; 1]

4As standard in the literature on markets with entry, we assume sequential entry to avoid coordination
problems and ignore integer constraints on n. A similar approach has been recently adopted in Rhodes
and Zhou (2021).
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the data partition o�ered to �rm i.5 A partition di allows a �rm to price discriminate on an

arch of size di that contains �rm i’s location.6 The partition set containing all partitions

o�ered by the DB is P = (d0; d1; d2; : : : ; dn�1). Once the auctions are concluded, we refer

to the partition set containing all partitions sold in equilibrium as P�.

If a �rm obtains a partition, it can o�er location-speci�c tailored prices pT
i (x) to

the identi�ed consumers and a basic price pB
i to the others. Note that the number of

consumers the �rm serves through tailored prices depends on the amount of data it

obtains.

2.2. Payo�s and Timing

When buying from �rm i, a consumer located in x derives a net utility equal to:

U(x; i) = v � pT
i (x)� t �D(x; i)

if �rm i has data on that consumer, or

U(x; i) = v � pB
i � t �D(x; i)

if it does not, where v is the gross utility, pT
i (x) � 0 is the tailored price of the product

set by �rm i to the identi�ed consumer in position x, pB
i � 0 is the basic price set by

�rm i for the unidenti�ed consumers, t > 0 is the transportation cost and D(x; i) is the

shortest arch between the consumer and �rm i. A consumer in x buys from the �rm

i that maximises her utility U(x; i). We assume that the market is fully covered: i.e.,

the gross utility is high enough that all consumers make a purchase. The location of an

indi�erent consumer between �rms i and i+1 is bxi;i+1, i.e., U (bxi;i+1; i) = U (bxi;i+1; i+1).

A �rm’s pro�ts can thus be de�ned as the integral of its prices over its market segment.

Given that a �rm o�ers a constant basic price to unidenti�ed consumers, we can write

its pro�ts prior to paying for data as

�i =
Z i

n + di
2

i
n�

di
2

pT
i (x) dx+ pB

i (bxi;i+1 � bxi�1;i � di)

where the �rst term on the right-hand side represents �rm’s pro�ts over the identi�ed

consumers, while the second term represents its pro�ts over the unidenti�ed consumers.

From this general expression we can see how the amount of data di in
uences �rm i’s
5By assuming public DB’s o�ers, we rule out situations like secret contracting games as in Hart and

Tirole (1988). In our model, �rms are ex-ante identical and the DB’s decision to sell data to any speci�c
�rm does not depend on the �rm’s identity.

6Through price discrimination, �rms can extract more surplus from consumers who are close to their
location. Since the DB’s pro�ts are directly proportional to �rms’ pro�ts (gross of the price paid for
data), her best strategy requires selling partitions containing �rms’ locations (see Bounie et al., 2021).
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strategy. First, di determines the number of consumers the �rm can o�er a tailored price

to. Second, di also in
uences the pro�ts �rm i makes from unidenti�ed consumers, as a

higher amount of data implies a smaller share of unidenti�ed consumers, and thus less

pro�ts extracted through �rm i’s basic price. Finally, �rm i’s basic price, and in turn its

pro�ts, are in
uenced by its rivals’ basic prices, which in turn depend on the amount of

data they obtain. As such, �rm i’s prices, and thus its pro�ts, depend on P. We denote

�rm i’s basic price and pro�ts under a partition set as pB
i (P) and �i(P) respectively.

Following Bounie et al. (2021), we assume that the DB sells data through a system of

auctions with reserve prices. This assumption implies that the DB has all the bargaining

power and can thus extract all surplus from �rms (we relax this assumption in Section

5.2, where we assume alternative selling mechanisms, namely auctions without reserve

prices and Take It Or Leave It o�ers). The DB chooses the partition set P and sets

up n auctions. In each auction, all �rms can participate and the DB sells a partition

di that is particularly valuable to a speci�c �rm, being centred on that �rm’s location.

We denote a �rm’s pro�ts when it wins its auction as �W
i (P), while its pro�ts when it

loses are denoted as �L
i (P) : While a generic �rm i can bid in every auction, it is mostly

interested in the one where di is sold. Thus, �rm i valuation of di is not matched by any

other �rm. As such, �rm i could bid lower than its true valuation and still obtain di:

this would result in the DB not being able to extract all surplus. To avoid this scenario,

the DB sets a reserve price wi for each auction that is equal to �rm i’s true valuation of

di. We de�ne a �rm’s true valuation of data as the di�erence in �rm’s pro�ts between

winning or losing its speci�c auction under a partition set P:

wi = �W
i (P)� �L

i (P)

The vector of reserve prices is denoted as w = (w0; w1; w2; : : : ; wn�1). This selling

mechanism implies that, while any �rm could bid in any auction, the DB can tailor each

auction to maximise the willingness to pay of some �rms. As such, when the DB sets up

an auction that awards a partition centred on �rm i’s location, we interchangeably refer

to it as an o�er made to �rm i or as �rm i’s auction.

Finally, similar to Bounie et al. (2021), the DB declares the maximum number of

auctions she is going to ful�l, k, which is common knowledge prior to �rms’ bidding.

A ful�lled auction { or won auction, from the viewpoint of the �rm { is one where

the transaction takes place. Declaring the maximum rather than the actual number of
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ful�lled auctions is functional to minimise �rms’ pro�ts if they lose their auction.7 The

DB ful�ls a subset J of auctions after the �rms have placed their bids. The reserve price

wi allows the DB to set the price of data equal to �rm i’s true valuation of data, as priorly

described. As such, DB’s pro�ts can be written as the sum of �rms’ winning bids, which

are equal to their reserve prices:

�DB(P;J) =
X

i2J

wi

We denote the cardinality of J as j: as such, j � k is the number of ful�lled auctions.

The timing of the model is as follows:8

Stage 1. Firms enter the market and pay the �xed cost F .

Stage 2. The DB chooses a partition set P, the reserve prices w, and the max-

imum number of auctions she will ful�l k. All this information is common know-

ledge and o�ers are non-renegotiable.

Stage 3. Firms that entered the market individually and simultaneously bid in

the auctions.

Stage 4: The DB observes the bids and chooses a subset J of auctions to ful�l.

The winning �rms receive their respective partitions and pay their price to the

DB, corresponding to wi = �W
i (P)� �L

i (P).

Stage 5. Firms set basic prices pB
i for the anonymous consumers.

Stage 6. Firms set tailored prices piT(x) for the identi�ed consumers if they have

won an auction. Consumers purchase the product and pro�ts are made.

7In a Hotelling setting with two �rms, the DB’s optimal strategy involves setting up two auctions
and declaring that only one will be ful�lled (Montes et al., 2019; Bounie et al., 2021). This way, a �rm
knows that if it loses its auction, the other �rm will win it. This strategy allows the DB to maximise
�rms’ valuation of data, as �rms are informed and competing against an uninformed rival if they win,
and the opposite if they lose. However, declaring the number of ful�lled auctions is no longer optimal
when moving to a circular city with n � 3, as �rms always face two direct rivals. In this setting, the DB
can maximise �rms’ evaluation of data only if she can change the number of ful�lled auctions depending
on �rms’ behaviour. Consider a case where n = 3. A �rm’s pro�ts are maximised when it is informed
and competing against uninformed rivals, and thus when only its speci�c auction is ful�lled. On the
other hand, a �rm’s pro�ts are minimised when it is uninformed and competing against both informed
rivals, resulting in two ful�lled auctions. As such, declaring the exact number of ful�lled auctions would
be suboptimal for the DB, as she would not be able to simultaneously maximise �rms’ pro�ts when they
win and minimise them if they lose. By instead declaring the maximum number of ful�lled auctions, the
DB can maximise �rms’ valuation of data. Sticking to the example with n = 3, the DB can declare that
she will ful�l a maximum of two auctions. If all �rms do not deviate from their equilibrium strategies,
only one auction will be concluded, maximising the winning �rm’s pro�ts. On the other hand, �rms
know that if they deviate, the DB can let both of their rivals win their respective auctions and thus
minimise their pro�ts.

8Stage 6 follows Stage 5 to ensure the existence of an equilibrium in pure strategies. See also Montes
et al. (2019) for an analogous approach.
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In the following sections we proceed by backward induction, identifying the �rms’ basic

and tailored prices, and the DB’s optimal strategy.

2.3. DB’s Strategies

The DB can in
uence the degree of downstream competition by determining if and

to what extent a �rm and its rivals have access to consumer data. As already noted, she

does so by deciding the maximum number of ful�lled auctions k, the subset of ful�lled

auctions J, the reserve prices w and the partition set P. Although this would leave us

with a conspicuous set of strategies, we can reduce them by eliminating some strategies

that can never be part of an equilibrium, as stated by the following proposition.

Proposition 1. Only two candidate equilibrium strategies are possible: i) the DB

sells equally sized partitions to all the �rms that entered, or ii) the DB sells equally sized

partitions to half of the entered �rms, alternating between informed and uninformed ones.

Proof. See Appendix I. �

Proposition 1 states that the set of candidate equilibria includes only two types of

strategies, namely either selling data to all entered �rms, or selling data to every other

�rm. Intuitively, our circular city can be seen as a concatenation of Hotelling segments

with symmetric �rms located at their extremes. In equilibrium, the DB adopts the

pro�ts-maximising strategy in one of these Hotelling segments and replicates it on all

other segments. By doing so, the DB can only have two viable strategies. First, she

can sell equally sized partitions to both �rms of each Hotelling segment. Replicated on

all segments, this strategy implies that the DB sells equally sized partitions to all the

�rms that entered the market. We refer to this strategy as the sale to all �rms, and we

denote it with the subscript A. Second, the DB can sell data to one of the two �rms of

each Hotelling segment. Replicated on all segments, this strategy implies that the DB

sells equally sized partitions to half of the �rms, alternating those with data and those

without. We refer to this strategy as the sale to alternating �rms, denoting it with the

subscript H. Notably, under both strategies a �rm always faces direct rivals that obtain

same-sized partitions: as such, in equilibrium the DB o�ers partitions that are centred on

�rms’ locations. Suppose that �rm i is o�ered a partition di: since both its direct rivals

obtain equally sized partitions, in equilibrium the DB sells to �rm i a partition such that

it can identify consumer segments of size di
2 on each arch on which it competes.
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Under the sale to all �rms, the DB sets di = dA 8 i, thus o�ering a partition set

PA = (dA; dA; : : : ; dA). Since the DB ful�ls all auctions, k = j = n, and the partition

set o�ered to �rms is equal to the partition set resulting in equilibrium, PA = P�A. To

better explain the implications of this strategy, we focus on a generic �rm i. If �rm i

wins its auction, its pro�ts are �W
i (P�A) = �W

i (dA; dA; : : : ; dA; dA; dA; : : : ; dA): that is, it

is an informed �rm competing against informed rivals. If �rm i loses, it becomes the only

uninformed �rm in the market, with pro�ts �L
i (P�A) = �L

i (dA; dA; ; : : : ; dA; 0; dA; : : : ; dA).

While this strategy maximises the number of paying �rms, it does not maximise individual

�rms’ willingness to pay. Previous literature on Hotelling settings (Thisse and Vives,

1988) has highlighted how data have two e�ects on �rms’ pro�ts. An informed �rm can

extract more surplus from the identi�ed consumers, increasing its pro�ts. Moreover, an

informed �rm engages in price wars as it tries to poach the consumers of its rivals. These

two e�ects are referred to by the literature as surplus extraction e�ect and competition

e�ect respectively. The �rst one increases �rms’ pro�ts, while the second one decreases

them. In particular, when an informed �rm faces informed rivals, the competition e�ect

dominates the surplus extraction e�ect, and �rms’ pro�ts decrease. As such, an individual

�rm’s willingness to pay under the sale to all �rms is lower than under the sale to

alternating �rms.

Under the sale to alternating �rms, the equilibrium outcome entails di = dH 8 i 2

f0; 2; 4; : : : ; n � 2g, and di = 0 8 i 2 f1; 3; 5; : : : ; n � 1g. Therefore, the partition set

relative to the equilibrium outcome is P�H = (dH; 0; dH; 0; : : : ; dH; 0). Since the DB may

decide not to ful�l some auctions, the partition outcome P�H may di�er from the partition

set o�ered to �rms, denoted as PH. In particular, to achieve the partition outcome P�H,

the optimal partition set PH o�ered by the DB under the sale to alternating �rms is

de�ned by the following proposition.

Proposition 2. Under the sale to alternating �rms, given the partition set outcome

P�H = (dH; 0; dH; 0; : : : ; dH; 0), the DB o�ers the partition set PH = (dH; 1; dH; 1; : : : ; dH; 1).

Proof. See Appendix II. �

Proposition 2 states that, under the sale to alternating �rms., the DB o�ers the whole

dataset in all auctions that will not be ful�lled in equilibrium, and she o�ers dH in all

auctions that will be ful�lled. This strategy maximises the willingness to pay of the �rms

whose auctions will be ful�lled by the DB in equilibrium. The intuition is the following.
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The DB is not constrained to ful�l all auctions, as she may ful�l only a subset of the

auctions she sets up. In particular, in the sale to alternating �rms, the DB can set up

auctions for all �rms, even though she means to ful�l only half of them. By doing so,

the DB can use the auctions she will not ful�l as a threat to increase �rms’ willingness

to pay for data, and consequently her pro�ts. In fact, the DB’s pro�ts are equal to the

di�erence between �rms’ pro�ts when winning their auction and when losing it. If �rm i

is o�ered di = dH and wins it auction, it competes against uninformed direct rivals (i.e.,

i+1 and i�1). This raises �rm i’s pro�ts, as it becomes an informed �rm competing

against uninformed rivals. Conversely, if �rm i loses its auction, the DB lets �rm i’s

rivals win their respective partitions and sets such partitions to the full dataset. This

minimises �rm i’s pro�ts when losing, as it would be forced to compete without data

against completely informed rivals. Overall, the DB’s strategy of o�ering the full dataset

in auctions that are not meant to be ful�lled hurts �rm i the most if it loses its speci�c

auction, increasing �rm i’s willingness to pay for data and, in turn, DB’s pro�ts.9

To maximise the threat posed on �rms receiving dH, the DB declares that she will

ful�l at most k = n
2 + 1 auctions. Under this strategy, if �rm i loses its auction, the DB

can make both its rivals win their respective auctions, since k = n
2 + 1.

In the following sections we focus on subgame perfect Nash equilibria under these two

strategies.

3. Equilibrium Prices

We proceed by backward induction, and �nd the equilibrium prices and �rms’ pro�ts

under the DB’s strategies described in Section 2.3.

As a benchmark, we refer to the Salop (1979) model with marginal costs normalised

to 0. In this setting, each �rm sets a price pi� = t
n and obtains a market share of 1

n ,

resulting in pro�ts �i� = t
n2 � F . The number of entering �rms is n� =

q
t
F , resulting in

�rms’ prices pi� =
p
tF and pro�ts �i� = 0. Consumer surplus is CS = v� 5

4

p
tF , which

is also equal to total surplus (Taylor and Wagman, 2014).

In our setup, the indi�erent consumers between �rms i�1 and i, and between i and

i+1, are:

bxi�1;i =
2i� 1

2n
+
pB
i � pB

i�1

2t
and bxi;i+1 =

2i+ 1
2n

+
pB
i+1 � pB

i

2t
(1)

9As already pointed out by Bounie et al. (2021; footnote 14), who obtain an analogous result in a
duopoly setup, the threat of selling the full dataset to �rm i’s rivals is not renegotiation proof. In Section
5.2 we extend our model to other selling mechanisms in which the DB’s strategy is renegotiation proof.
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If �rm i wins the auction, it obtains the data di and o�ers a tailored price pT
i (x) to the

identi�ed consumers for each arch in which it competes, matching the competitor’s o�er

in utility level and resulting in

pT
i (x) =

8
><

>:

pB
i�1 + 2tx� t

n(2i� 1) for x 2 [ in �
di
2 ;

i
n ]

pB
i+1 � 2tx+ t

n(2i+ 1) for x 2 [ in ;
i
n + di

2 ]
(2)

Notice that tailored prices decrease as the rival’s basic price decreases: as the competitive

pressure rises, �rms lower their tailored prices to match the rival’s basic price. Depending

on the amount of data di obtained, �rm i can serve both identi�ed and anonymous

consumers on both arches. When �rm i is o�ered di and wins the auction, its pro�ts

prior to paying for data are given by:

�W
i (P) =

Z i
n

i
n�

di
2

pT
i (x) dx+

Z i
n + di

2

i
n

pT
i (x) dx+ pB

i (P) (bxi;i+1 � bxi�1;i � di)� F (3)

given the o�ered partition set P 2 fPH;PAg. The �rst two components of Equation

(3) represent pro�ts on the identi�ed segment on the two sides of �rm i and depend

on the tailored price, while the third component represents pro�ts on the anonymous

segment and depends on the basic price. The pro�ts on the identi�ed segments are due

to a surplus extraction e�ect: as �rm i can identify consumers, it can o�er them tailored

prices to exactly match their willingness to pay for its product. Using the expression of

the indi�erent consumers from Equation (1) and of the tailored prices in Equation (2),

we can rewrite the pro�ts of the generic informed �rm i in Equation (3) as

�W
i (P) =

di
2n
�
2t+ npB

i�1 (P) + npB
i+1 (P)� ntdi

�

+ pB
i (P)

 
n
�
pB
i+1 (P) + pB

i�1 (P)� 2pB
i (P)

�
+ 2t

2nt
� di

!

� F (4)

Conversely, if �rm i loses the auction, it becomes uninformed obtaining pro�ts

�L
i (P) = pB

i (P)

 
n
�
pB
i+1(P) + pB

i�1(P)� 2pB
i (P)

�
+ 2t

2nt

!

� F (5)

given the o�ered partition set P 2 fPH;PAg. By taking the �rst-order condition of

Equations (4) and (5) with respect to pB
i (P), we obtain the �rm’s reaction function on

basic prices:

pB
i(W) (P) =

t
2n
�
tdi
2

+
pB
i+1 (P) + pB

i�1 (P)
4

(6)

pB
i(L) (P) =

t
2n

+
pB
i+1 (P) + pB

i�1 (P)
4

(7)
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The reaction function in Equation (6) is analogous to the reaction function of the standard

Salop (1979) model, except for the term � tdi
2 in the expression of pB

i(W)(P). The term � tdi
2

is related to the competition e�ect of data: as �rm i acquires more data, the anonymous

consumers it reaches are on average farther from its location, requiring the �rm to lower

its basic price.

3.1. Sale to Alternating Firms

Recall that, from Proposition 2, under the strategy of selling to alternating �rms, a

subset of �rms are o�ered a positive partition of data dH, whereas others are o�ered the

full dataset { although their auctions will not be ful�lled.

Let us �rst analyse the equilibrium in the subgame in which the �rms that are o�ered

di = dH win their auction, while the �rms that are o�ered the full dataset lose their

auctions. In particular, let i; i+2; i+4 : : : be the �rms that obtain dH and thus exhibit

the reaction function expressed in Equation (6), while �rms i�1; i+1; i+3 : : : compete

without data and thus present the reaction function expressed in (7). The system of

reaction functions for all �rms allows us to obtain the equilibrium basic prices and, by

using (4), �rm i’s pro�ts, as illustrated in the following proposition.

Proposition 3. Under the sale to alternating �rms, if �rm i wins its auction and

obtains dH while its direct rivals lose their respective auctions, �rm i’s basic price is

decreasing in dH if dH < 3
2n , and is zero otherwise:

pB�
i (P�H) =

8
><

>:

t
n �

2
3tdH for dH < 3

2n

0 for dH � 3
2n

Firm i’s pro�ts follow an inverse U-shaped curve with respect to data for dH < 3
2n , and

are constant otherwise:

�W�
i (P�H) =

8
><

>:

t
n2 + 2dHt

3n �
7td2

H
18 � F for dH < 3

2n

9t
8n2 � F for dH � 3

2n

Moreover, �rm i’s pro�ts are always higher than in the benchmark case.

Proof. See Appendix III. �

From the expression of �rm i’s basic price in Proposition 3, we observe that this price

is positive only if dH < 3
2n . When dH < 3

2n , �rm i’s basic price is decreasing in dH, while

its pro�ts follow an inverse U-shaped curve with respect to dH. At �rst, the surplus
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extraction e�ect is stronger than the competition e�ect, increasing pro�ts. However, the

marginal surplus extraction is decreasing in dH while the competition e�ect is linear,

causing pro�ts to peak and then decrease. After dH � 3
2n , �rm i’s basic price reaches

zero and the e�ect of incremental data vanishes, because �rm i cannot poach additional

consumers: those who are close to the uninformed rivals always prefer them over the

informed �rm due to their positional advantage. Note that �rm’s pro�ts are negatively

related to n. In fact, a higher number of �rms intensi�es competition, lowering basic

prices, and at the same time it reduces �rms’ market segments.

We now focus on the subgame where �rm i is o�ered dH but loses its auction, while its

direct rivals are o�ered di+1 = di�1 = 1 and win their auctions. Then, �rm i becomes an

uninformed �rm competing against informed rivals. By o�ering the full dataset to �rm

i’s rivals and choosing to ful�l their auctions, the DB minimises �rm i’s pro�ts when it

loses the auction.

In this scenario, �rm i’s pro�ts are expressed by Equation (5), where P = PH and

pB
i+1 = pB

i�1 = 0 because, being di+1 = di�1 = 1 > 3
2n , they earn all of their pro�ts through

tailored prices. Firm i’s equilibrium price and pro�ts when losing the auction, given the

o�ered partition set P = PH expressed in Proposition 2, are summarised in the following

proposition.

Proposition 4. Under the sale to alternating �rms, if �rm i loses its auction while

its direct rivals obtain di+1 = di�1 = 1, �rm i’s basic price and pro�ts are respectively

pB�
i (PH) = t

2n and �L�
i (PH) = t

4n2 � F .

Proof. See Appendix IV. �

Proposition 4 highlights that �rm i’s pro�ts when losing the auction do not depend on

dH and are always lower than its pro�ts in the benchmark case. Moreover, by comparing

the results of Propositions 3 and 4, we note that �rm i’s pro�ts when losing the auction

are always lower than its pro�ts when it wins its auction.

It is worthwhile to note that �rms’ pro�ts are positive even when they lose the auction

and compete against fully informed rivals, due to their horizontal di�erentiation which

ensures them a market share near their location. Therefore, uninformed �rms can still

make a pro�t. This feature has important implications for the number of entering �rms,

as we highlight in Section 4.1.
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3.2. Sale to All Firms

We now consider the alternative DB’s strategy of the sale to all �rms. We �rst

analyse the subgame in which a generic �rm i wins its auction, and then we proceed to

the subgame in which it loses it { given that all other �rms win their respective auctions

and receive data.

If the o�ered partition set is P = PA and all �rms win their respective auction, �rm

i’s pro�ts are expressed by Equation (4), for all i, and all �rms obtain a partition of size

di = dA centred on their respective location. Firms’ reaction functions are expressed by

(6), where P = PA and di = dA, for all i. The system of all reaction functions allows

us to obtain the equilibrium basic prices and �rms’ pro�ts, as reported in the following

proposition.

Proposition 5. Under the sale to all �rms, if all �rms win their respective auctions

and obtain data dA, �rm i’s basic price is

pB�
i (PA) =

8
><

>:

t
n � tdA for dA < 1

n

0 for dA � 1
n

for all i. Firm i’s pro�ts are

�W�
i (PA) =

8
><

>:

t
n2 �

td2
A

2 � F for dA < 1
n

t
2n2 � F for dA � 1

n

Proof. See Appendix V. �

By observing the expressions of pB�
i (PA) and �W�

i (PA) in Proposition 5, we note that

�rm i’s basic price and pro�ts when all �rms win their auction are both decreasing in dA

if dA < 1
n , and zero otherwise.

Absent data, the indi�erent consumer is in the middle of the arch between two �rms

(i.e., at a distance 1
2n from the �rms’ locations), and each �rm sets an equal basic price.

As the data dA sold to the two �rms increases, the location of the indi�erent consumer

remains the same due to �rms’ symmetry, but �rms start price discriminating on ever

more consumers. This causes the surplus extraction e�ect that increases pro�ts. At

the same time, however, the competition e�ect lowers all basic prices, and thus pro�ts.

Moreover, as the rival reduces its basic price, so does �rm i with its tailored price, to

match the rival’s o�er. This lowers the positive impact on pro�ts of the surplus extraction

e�ect. Although pro�ts are a�ected by the two opposite forces of the competition and
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surplus extraction e�ect, the �rst is dominant due to the symmetry of �rms’ information,

which intensi�es their competition and produces a strong reduction of prices, thereby

reducing pro�ts.

However, above a threshold { namely, dA � 1
n { �rms identify all consumers up to

the indi�erent one in the middle of the arch. Since now �rm i only serves identi�ed

consumers through tailored prices, it has an incentive to set pB
i (PA) as low as possible

to try expanding its market segment, as the basic price in this scenario only in
uences

the indi�erent consumer’s location. After this threshold, additional data stop having an

impact since they identify consumers who are too close to �rms’ rivals to be poached.

We now focus on the subgame in which �rm i loses its auction, while its competitors

obtain data. Although this subgame is o� the equilibrium path, it is necessary to know

�rm i’s payo� in this subgame to assess its willingness to pay for data. Since �rm i does

not obtain data, its pro�ts are de�ned by Equation (5), while all other �rms’ pro�ts can

be expressed as in (4). From the system of all reaction functions, we obtain the following

result.

Proposition 6. Under the sale to all �rms, if �rm i loses its auction while all �rms

i0 6= i win it and obtain dA > 0, �rm i’s basic price and pro�ts are strictly decreasing in

the quantity of data if dA < 3
2n , and are constant otherwise.

Proof. See Appendix VI. �

Being the only uninformed �rm in the market, �rm i is at a disadvantage vis-�a-vis its

rivals. First, �rm i cannot adopt targeted pricing, thus limiting the pro�ts it can extract

from consumers. Second, the decrease in basic prices caused by the competition e�ect

can be partially bene�cial to informed �rms: since they can lower their basic price more

than the uninformed �rm, they can expand their market segments. This second e�ect is

stronger the closer the informed competitor is to the uninformed �rm.

To gain further insights on this second e�ect, without loss of generality, let us focus on

�rm i+1: on one side, it competes against an uninformed �rm (i.e., i), while on the other

it competes against an informed one (i+2). In this situation, �rm i+1 optimal strategy

is to maximise the pro�ts on the arch shared with �rm i, on which it has an advantage,

while sacri�cing some pro�ts on the arch shared with �rm i+2. To do so, �rm i+1

undercuts �rm i’s basic price, thus expanding its market share and increasing its pro�ts

on that arch. Firm i+1’s direct rival (i.e., i+2) can in turn increase its pro�ts by slightly
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undercutting �rm i+1’s basic price: as such, �rm i+2 expands its market segment on

the arch it shares with �rm i+1. In short, all �rms expand their market segments on the

arch closer to the uninformed �rm, while they reduce their market segment on the other

arch. When dA is relatively low, all informed �rms serve both identi�ed and anonymous

consumers, and thus set positive basic prices. After dA reaches a �rst threshold, �rm

i+1 only serves identi�ed consumers on the arch it shares with i+2, while it still serves

anonymous consumers on the arch it shares with �rm i.10 Finally, after dA reaches a

second threshold (i.e., dA � 3
2n), �rm i+1 only serves identi�ed consumers, and the e�ect

of additional data becomes nil.

By comparing �rm i’s pro�ts when winning or losing its auction, we �nd that �rms

are always better o� when winning it by paying the DB’s reservation price. Figure 1

provides a graphical representation of �rms’ pro�ts functions in the two subgames.11

Figure 1. Firms’ Pro�ts in the Sale to All Firms

This �gure shows �rms’ pro�ts under the benchmark case (i.e., without data) and when win-
ning or losing the auction prior to paying for data. n = 4 and t = 20:

As shown in Proposition 5, when all �rms obtain data, their pro�ts (represented by

the solid line in Figure 1) are strictly decreasing for dA � 1=n, and constant otherwise.

The threshold identi�es the amount of data above which all consumers are identi�ed in

the market, and additional data have no impact on �rms’ strategy. The greater amount
10This threshold depends on the number of entering �rms, and it is always lower than 1

n . See Appendix
VI for details.

11While we show pro�ts functions for speci�c parameters values, we observe the same trends for all
parameters values that grant market coverage (i.e., any value that does not violate the model’s basic
assumptions).
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of data sold in the downstream market makes the competition e�ect outweigh the surplus

extraction e�ect, resulting in �rms being worse o� under the presence of a DB. However,

�rms experience a prisoner’s dilemma: while they would be better o� not buying data, the

threat of being uninformed and competing against informed rivals leads them to prefer

participating in the DB’s auctions.

4. DB’s Equilibrium Pro�ts

Having analysed the e�ect of data on �rms, we can obtain DB’s pro�ts and maximise

them with respect to dH and dA under the two strategies. We recall that the DB sets the

auctions’ reserve prices w equal to �rms’ willingness to pay for data: as such, she extracts

all surplus from the �rms that win the auctions. As a tie-breaker rule, we assume that

if a �rm is indi�erent between winning or losing its auction, it prefers winning it. The

DB’s pro�ts can be written as

�DB(P;J) =
X

i2J

wi =
X

i2J

�W
i (P)� �L

i (P) (8)

As such, �rms’ pro�ts after winning their auction and paying for data are equal to

�W
i (P)� wi = �W

i (P)�
�
�W
i (P)� �L

i (P)
�

= �L
i (P)

That is, �rms’ remaining pro�ts after paying for data are equal to their pro�ts when

losing their auction. Since �rms enter the market as long as they make positive pro�ts,

the number of entering �rms is given by the condition

�L
i (P) = 0 (9)

As a useful benchmark, we can refer to the standard Salop (1979) model (see Section

3) where, absent the DB, the number of entering �rms is en� =
q

t
F . In the following

sections we solve the game under the two strategies and compare the outcomes to assess

the DB’s preferred one.

4.1. Sale to Alternating Firms

When the DB opts for the sale to alternating �rms, we can rewrite her pro�ts as

�DB(PH;J) =
X

i2J

wi =
n
2
�
�W�
i (PH)� �L�

i (PH)
�

(10)

The DB sets d�H so as to maximise �rms’ willingness to pay for data (10), for a given

number of entering �rms n. The solution of the DB’s pro�t maximisation problem is

expressed by the following proposition.
25



Proposition 7. Under the sale to alternating �rms, the DB o�ers d�H = 6
7n in the

auctions she wants to ful�l and di = 1 in the ones she does not want to ful�l.

Proof. See Appendix VII. �

From Proposition 7, the amount of data sold in equilibrium by the DB to every other

�rm is d�H = 6
7n , which is lower than the amount of data 3=(2n) that would allow �rms to

identify all consumers on their market segment. This implies that the DB only sells data

about high valuation consumers, located closer to the winning �rms’ positions, so that

in equilibrium informed �rms serve both identi�ed and unidenti�ed consumers. The DB

adopts this strategy to temper downstream competition. In fact, letting informed �rms

identify all their consumers would result in price wars that would deplete their pro�ts

and, in turn, their willingness to pay for data.

4.2. Sale to All Firms

When the DB opts to sell data to all �rms, her pro�ts are:

max
dA

�DB = n
�
�W�

i (PA)� �L�
i (PA)

�
(11)

The amount of data d�A sold by the DB to each �rm depends on the number of entering

�rms and is de�ned by the following proposition.

Proposition 8. Let n̂ be the number of entering �rms such that the DB’s pro�ts

when selling non overlapping partitions are equal to those when selling dA � 3
2n . Under

the sale to all �rms, the DB’s strategy depends on the number of entering �rms:

� If n < n̂, the DB o�ers d�A = 1 in all auctions and ful�ls all of them.

� If n � n̂, the DB o�ers non overlapping partitions in all the auctions and ful�ls

all of them.

Proof. See Appendix VIII. �

As shown in the Appendix, the value of n̂ is approximately equal to 3.34. The DB’s

strategy depends on the number of entering �rms because �rms’ valuation of data depends

on n. When n is su�ciently high, �rms have small market shares. This implies that their

average consumers are closer to their locations. Since data allows �rms to extract more

surplus from consumers closer to their locations, the DB opts to temper downstream

competition by selling non-overlapping partitions. By doing so, the DB allows �rms to

extract more surplus from consumers, via the price of data. Conversely, when n is low,
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selling non-overlapping partitions would not be as e�ective, as consumers are on average

farther from �rms’ locations. Thus, the DB o�ers the whole dataset to all �rms: this

strategy minimises �rms’ pro�ts when losing their auction, as they risk to face completely

informed rivals.

4.3. DB’s Optimal Strategy

By comparing the DB’s pro�ts under the two possible strategies described in Propos-

itions 7 and 8, we can identify the DB’s optimal choice. Results are summarised in the

following proposition.

Proposition 9. In equilibrium, the DB sells data to alternating �rms. The number

of entering �rms is n�H = 1
2

q
t
F , i.e., n�H = en�

2 .

Proof. See Appendix IX. �

The sale to alternating �rms dominates the sale to all �rms, implying that the DB

prefers under-serving the market by excluding some �rms from the data sale. In fact,

selling data to alternating �rms allows her to maximise �rms’ willingness to pay for data,

as it increases the informed �rm’s pro�ts when it competes against an uninformed rival

while also maximising the threat posed to �rms if they lose. While previous literature

(e.g., Montes et al., 2019) advocated for oversight by policymakers of exclusive data

arrangements in a duopoly setting, the result of Proposition 9 suggests that, in a less

concentrated market, the DB under-serves the market even in the absence of exclusive

deals, as she excludes some �rms from the data sale.

Moreover, Proposition 9 highlights that the DB’s optimal strategy reduces �rms’ entry

relative to the benchmark case where data are absent. This entry barrier e�ect is due to

the reduction of �rms’ pro�ts, as they either pay for data (if they win) or face informed

rivals (if they lose). Interestingly, the number of entering �rms in equilibrium cannot be

lower than en�

2 , i.e., the entry deterrence caused by data is limited, as additional data stop

reducing �rms’ pro�ts after a threshold (due to the horizontal di�erentiation setting).

This result expands the entry barrier e�ect of data identi�ed by de Corni�ere and Taylor

(2020) in a setting in which data a�ect the quality of the information held by �rms. Our

analysis shows that the entry barrier e�ect emerges also when data carry information on

the consumers’ preferences and can thus be used for price discrimination.
27



4.4. Consumer and Welfare Analysis

In the previous section we characterised the equilibrium, which sees the entry of n�H
�rms and their purchase of the partition set P�H = (d�H; 0; :::; d�H; 0). In this section we

focus on the implications of this equilibrium on welfare and consumer surplus.

In our model, total welfare comprises consumer surplus, �rm pro�ts and the DB’

pro�ts. In particular, let us express it as

TW = CS +
n�1X

i=0

�i + ��DB (12)

where � 2 [0; 1] is the weight of DB’s pro�ts in the welfare function. The following

proposition summarises the impact of the DB’s equilibrium strategy on consumers surplus

and welfare.

Proposition 10. In equilibrium, consumer surplus is lower and, if � is su�ciently

high, total welfare is higher than in the case in which consumer data are not available.

Proof. See Appendix X. �

Proposition 10 compares the result of our model in terms of consumer surplus and

welfare to the result of the standard Salop model. We �nd that the DB’s entry barrier

e�ect lowers consumer surplus. In fact, in our setup, consumer surplus under the sale to

alternating �rms can be expressed as

CS = u�
5t
4n

+
ntd2

H

9
(13)

The �rst two terms in Equation (13) are the consumer surplus in the standard Salop

model: as more �rms enter the market, consumers have lower transportation costs, and

their surplus increases. The third term represents the e�ect of data on consumer surplus

for a given number n of �rms. A higher quantity of data intensi�es competition between

the entered �rms and lowers basic prices, raising the surplus of (unidenti�ed) consumers.

Therefore, if the number of �rms is given, the third term is positive and increasing in

data, implying that the DB’s presence has a positive impact on consumer surplus, as

evidenced also by previous literature (Braulin and Valletti, 2016; Montes et al., 2019;

Bounie et al., 2021).

However, our results highlight that, when �rm entry is endogenous, an entry barrier

e�ect of data arises. The limited entry hurts consumers: as fewer �rms enter the market,

the average transportation cost paid by consumers increases, more than o�setting the

decrease in basic prices caused by the competition e�ect of data.
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It should be noted that the reduction of consumer surplus stems from the e�ect of

endogenous entry in the presence of a DB. In fact, Taylor and Wagman (2014) analyse

a Salop model with �rm entry where all �rms can price discriminate on all consumers

without the need of purchasing data, �nding that consumer surplus is higher than in the

standard Salop model. The presence of a monopolist DB who owns data and can sell

them to �rms can shape the downstream competition, resulting in consumer harm.

Proposition 10 also �nds that total welfare is higher than in the benchmark case,

although it is mostly appropriated by the DB. As a monopolist, the DB addresses the

problem of excessive entry identi�ed by Salop (1979), limiting the number of �rms to the

e�cient level. By doing so, the DB maximises industry pro�ts which she can subsequently

extract. If the weight � of the DB’s pro�t in the welfare function is su�ciently low

(speci�cally, in the proof of Proposition 10 in the Appendix we show that it must be � �

0:84), total welfare is lower than in the benchmark. This result shows how the increase

in welfare is mainly driven by the increase of the DB’s pro�ts, causing redistributive

concerns from a policymaking point of view.

5. Extensions

In this section, we extend our basic model along several directions. First, we show

how the reduction in �rms’ entry and, in turn, in consumer surplus is robust to the

introduction of a consumer privacy cost. Second, we introduce variations in the DB’s

bargaining power by exploring di�erent selling mechanisms for the data sale. Third, we

analyse a scenario where the DB can commit to the price of data before �rms’ entry

decision. This alternative timing allows the DB to take into account the e�ect of data

on the number of entering �rms when choosing her strategy, and provides her with more

bargaining power than in the basic model.

5.1. Introducing a Privacy Cost

In this section we assume that, when a consumer is o�ered a tailored price, she incurs

a disutility c > 0 due to her loss of privacy, for example due to the annoyance at being

price discriminated. Thus, when a consumer accepts a tailored o�er, she obtains a utility

U(x; i) = v � pT
i (x)� t �D(x; i)� c

Focusing on consumers between �rm i and i+1, we can express �rm i’s tailored price as

pT
i (x) = pB

i+1 � 2tx+
t
n

(2i+ 1)� c
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The privacy cost reduces the surplus that �rms can extract through tailored prices. An

informed �rm o�ers tailored prices to a consumer located in x only if

pT
i (x) � pB

i (P) (14)

That is, only if the tailored price allows the �rm to extract more surplus from that speci�c

consumer than the basic price. Results under the sale to alternating �rms in the presence

of a privacy cost are summarised by the following proposition.

Proposition 11. In equilibrium, if consumers incur a disutility c > 0 when they are

o�ered a tailored price:

a) Consumer surplus is increasing in the privacy cost, i.e., @CS
@c > 0.

b) Total welfare is decreasing in the privacy cost, i.e., @TW
@c < 0.

c) DB’s pro�ts are decreasing in the privacy cost, i.e., @�DB
@c < 0.

d) If c is su�ciently high, �rms o�er their basic prices regardless of data, and we

obtain the results of the standard Salop model.

Proof. See Appendix XI. �

For low values of c and d, Inequality (14) is satis�ed for all consumers who belong to

�rm i’s market segment. Then, �rm i o�ers tailored prices to all identi�ed consumers.

However, the reduction in surplus caused by the privacy cost lowers �rm pro�ts, if com-

pared to the case where the privacy cost is absent.

For su�ciently high values of c and dH, the tailored price for distant consumers does

no longer cover the privacy cost, and the informed �rm prefers o�ering them its basic

price, even if it can identify them. In particular, an informed �rm uses data as long as

dH � 3
2n �

3c
2t . After this threshold, the informed �rm prefers serving those consumers

through basic prices. Note that, if c � t
n , informed �rms prefer o�ering their basic price

to all consumers and avoid using data.

We also �nd that the disutility c reduces the surplus extraction e�ect, but it does not

in
uence the competition e�ect. In particular, when c � 2t
3n , informed �rms’ pro�ts are

decreasing in data: even if Inequality (14) is satis�ed for some consumers { i.e., a �rm

can extract more surplus from some consumers by o�ering them tailored prices instead

of the basic price { the drop in its basic price results in overall lower pro�ts.

Furthermore, the privacy cost reduces the DB’s entry barrier e�ect. In fact, as already

noted, when consumers face a privacy cost, a completely informed �rm would still serve
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some consumers through its basic price. As a consequence, an uninformed �rm faces

milder competition, which results in higher pro�ts and more �rms entering the market.

In a setup with privacy cost, the number of entering �rms is

n�H =
t

2
p
tF � c

The number of entering �rms increases with c: when c � t
n� , no �rms uses data, and the

number of entering �rms is equal to that of the standard Salop model, n�H =
q

t
F .

The magnitude of the privacy cost also a�ects the DB’s optimal strategy.

� For c < 2t
3n�

H
= 4

5

p
tF , �rms’ pro�ts �rst follow an inverse U-shaped curve and

then become constant, similar to the ones shown in Figure 1: as such, the DB

o�ers the optimal amount of data d�H = 6
7n�

H
� 9c

7t to maximise �rms’ pro�ts, and

�rms o�er their tailored prices to all the identi�ed consumers.

� For 4
5

p
tF = 2t

3n�
H
� c < t

n�
H

=
p
tF , �rms’ pro�ts are decreasing with data, as

the competition e�ect always outweighs the surplus extraction e�ect: as such,

the DB o�ers d�H = 0 in the auctions she wants to ful�l. Firms accept only to

avoid facing informed rivals, which would result in lower pro�ts.

� For c � t
n�

H
=
p
tF , data has no value for �rms since they prefer reaching all

consumers through basic prices. In this situation, the DB sells no data.

Overall, we conclude that, when using data for price discrimination entails a privacy

loss to consumers, consumer surplus increases via the reduction of the entry barrier e�ect.

The entry of a higher number of �rms allows consumers to buy products closer to their

preferences, resulting in higher surplus. However, total welfare decreases, because the

total costs of entry increases with the number of entering �rms.

5.2. Decreasing DB’s Bargaining Power: Alternative Selling Mechanisms

In the basic model, in line with the previous literature, we assume that the DB has

all the bargaining power. In fact, she is able to charge the maximum price for data by

threatening �rms to sell massive amounts of data to their rivals through auctions with

reserve prices (AR). In this section, we relax this assumption in two ways. First, we

consider a case where a DB sets auctions without reserve prices (AU). In this case, �rms

can underbid, thus reducing the DB’s pro�ts. Second, we assume that the DB sells data

through a Take It Or Leave It (TIOLI) mechanism. In this scenario, the DB o�ers a

partition to each �rm, and each �rm individually and simultaneously accepts or declines
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the o�er. Therefore, under the TIOLI mechanisms, and di�erently from auctions, the

DB cannot subsequently decide not to ful�l an o�er, thus eroding her bargaining power.

We �nd that the selling mechanism adopted does not a�ect the DB’s strategy under

the sale to all �rms, so that the results of Proposition 8 hold also under AU and TIOLI.

In fact, �rms face the same choice under all selling mechanisms: if a �rm accepts the

DB’s o�er, all �rms in the market are informed; if the �rm declines it, it becomes the

only uninformed one. Conversely, the selling mechanism a�ects the DB’s strategy under

the sale to alternating �rms.

Let us focus on AU. When the DB cannot set reserve prices, a �rm can win its auction

simply by bidding above the valuations of the other �rms, which are lower than its own

owing to their distance. Then, selling di�erent partitions to �rms would be detrimental

for the DB, as it would increase �rms’ underbidding. Indeed, the DB maximises her

pro�ts by o�ering same-sized partitions in all auctions, even in those that are not meant

to be ful�lled. The absence of reserve prices ultimately reduces the DB’s pro�t because

she cannot simultaneously maximise �rms’ pro�ts when winning and minimise them when

losing.

Let us now focus on TIOLI. Under this mechanism, the DB has no ex-post control on

the number of transactions she wants to conclude. In fact, di�erently from AR, the DB

must ful�l all her o�ers under TIOLI. Then, under the sale to alternating �rms under

TIOLI, the DB o�ers the partition set PTIOLI
H =

�
dTIOLI

H ; 0; : : : ; 0; dTIOLI
H ; 0; : : : ; dTIOLI

H ; 0
�
,

alternating the sale of same-sized data partitions and no data. To better understand the

implications of this selling mechanism, suppose that �rm i refuses the DB’s o�er. Under

TIOLI, the DB cannot threat �rm i to sell data to its direct rivals, and �rm i would thus

face uninformed rivals even when refusing the DB’s o�er.

The main e�ects of adopting the alternative selling mechanisms AU or TIOLI, which

reduce the DB’s bargaining power, are summarised in the following proposition.

Proposition 12. Under AU and TIOLI, the quantity of data sold to downstream

�rms, the number of entering �rms and consumer surplus in equilibrium are higher than

under AR. While under AU the DB in equilibrium opts for the sale to alternating �rms,

under TIOLI she adopts the sale to all �rms strategy.

Proof. See Appendix XII. �
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The reduction of the DB’s bargaining power improves consumer surplus. Depending

on the selling mechanism and on the number of entering �rms, consumer surplus can

either be lower or higher than in the absence of the DB. Under AR, the DB can always

threaten �rms to make them face completely informed rivals. Thus, the DB sets dAR
H so

as to maximise �rms’ pro�ts when they win. However, this is no longer the case when

the DB’s bargaining power is reduced.

Under AU, if a �rm loses its auction, its rivals obtain partitions of the same size

as the �rm’s one. The threat of being uninformed is thus reduced when compared to

AR, where a losing �rm always faces completely informed rivals. The DB’s equilibrium

strategy under AU involves the sale to alternating �rms and the o�er of dAU�

H = 4
3n , which

is larger than the partition sold under AR. Selling a larger partition allows the DB to

increase the threat to �rms when losing their auction, thus increasing their willingness

to pay.

Under TIOLI, the sale to alternating �rms would be suboptimal: the DB cannot

properly threaten �rms under this selling mechanism, and this would result in a lower

willingness to pay. As a consequence, in equilibrium under TIOLI the DB opts for the

sale to all �rms, following the same strategy described in Section 4.2.

The change in the DB’s strategy also spurs �rms’ entry. Under AU, a losing �rm does

not face completely informed rivals when losing, as they obtain dAU�

H = 4
3n . Firms’ pro�ts

when losing are thus higher than under AR, thus reducing the number of entering �rms

by 4
9 with respect to the benchmark. Conversely, under TIOLI, the number of entering

�rms is reduced by a half when n� < n̂, and it is reduced by slightly less than 1
4 when

n� � n̂.

As shown in Section 4.3, consumer surplus increases with the partition size and with

the number of entering �rms. Since both are greater or equal under AU and TIOLI than

under AR, consumer surplus increases when decreasing the DB’s bargaining power. In

particular, we �nd that consumer surplus is at its highest under TIOLI. When n� < n̂, the

high amount of data sold to �rms compensates the strong entry barrier e�ect: however,

consumer surplus is still lower than in the benchmark. On the other hand, when n� � n̂,

consumer surplus is higher than in the benchmark, as the quantity of data sold more

than o�sets the small reduction in �rms’ entry.

To sum up, we �nd that lowering the DB’s bargaining power by adopting selling

mechanisms based on TIOLI o�ers is an e�ective way to reduce the consumer harm
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caused by her presence. However, consumers are only better o� when the DB is forced

to sell through TIOLI and the downstream market is highly competitive.

5.3. Committing to the Price of Data: An Alternative Timing

In our baseline setup, �rms enter the market in the initial stage, and then participate

in auctions to acquire data. This framework is for example consistent with markets that

are already established before the introduction of digital technologies and the possibility

to price discriminate through data. However, such a timing may be less intuitive in

the case of emerging digital markets, in which �rms know already before entering that

obtaining consumer data would give them an edge over competition. In this section,

we explore the possibility that the DB sets up the auctions prior to �rms’ entry. As a

consequence, �rms make the entry decision only after observing the o�er of data by the

DB. In particular, the timing we analyse in this section is as follows:

Stage 1. The DB chooses a partition set P, the reserve prices w, and the max-

imum number of auctions she will ful�l k. All this information is common know-

ledge.

Stage 2. Firms individually and simultaneously bid in the auctions.

Stage 3: The DB observes the bids and chooses a subset J of auctions to ful�l.

The winning �rms receive their respective partitions and pay their price to the

DB, corresponding to wi = �W
i (P)� �L

i (P).

Stage 4. Firms enter the market and pay the �xed cost F .

Stage 5. Firms set basic prices pB
i for the anonymous consumers.

Stage 6. Firms set tailored prices piT(x) for the identi�ed consumers if they have

won an auction. Consumers purchase the product and pro�ts are made.

Note that, in this setup, �rms’ equilibrium prices are de�ned by the same functions as in

Section 3, as �rms’ price setting stage takes place in the �nal stages of the game, as in

our baseline timing. However, the DB’s strategy substantially departs from that of our

basic model. In fact, in the basic model, the DB picks her strategy by taking the number

of entering �rms as given. Conversely, under this alternative setting, the DB explicitly

anticipates the e�ect of the data sale on �rms’ entry. We analyse the DB’s strategy under

all the selling mechanisms presented in Section 5.2. The main outcomes of this setting

are summarised in the following proposition.
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Proposition 13. If �rms purchase data before entering the market, in equilibrium

the DB adopts the following strategies:

� Under the auction with reserve prices, the DB opts for the sale to alternating

�rms, and o�ers d�H in the auctions she wants to ful�l and the full dataset in the

ones she does not want to ful�l;

� Under the auction without reserve prices, the DB opts for the sale to alternating

�rms and o�ers the full dataset in all auctions;

� Under Take It Or Leave It o�ers, the DB opts for the sale to all �rms and o�ers

the full dataset to all entering �rms.

All these strategies maximise the DB’s entry barrier e�ect, and the number of entering

�rms is n�AR = n�AU = n�TIOLI = en�

2 . DB’s pro�ts are greater or equal, and consumer

surplus is lower or equal than in the basic model.

Proof. See Appendix XIII. �

When the DB anticipates the e�ect of her strategy on �rms’ entry, we �nd that she

always bene�ts from maximising the entry barrier e�ect: as competition in the down-

stream market is reduced, entering �rms make higher pro�ts, which the DB can then

extract through the price of data. To better understand the implications of the di�erent

timing, let us focus on speci�c selling mechanisms.

Under the auction with reserve prices (AR), the DB’s strategy maximises her pro�ts

for any given number of entering �rms, as �rms’ pro�ts when losing their auction do not

depend on dH . In equilibrium, �rms’ expected pro�ts when entering the market are the

same as in our basic model, leading to the same market outcomes.

Conversely, the alternative timing alters the DB’s strategy under the auction without

reserve prices (AU). While she still opts for the sale to alternating �rms, as in our basic

model, she instead o�ers dAU�

H = 1 (i.e., the whole dataset), as opposed to the amount

of data dAU�

H = 4
3n o�ered under our baseline timing. By doing so, the DB minimises

�rms’ pro�ts when they lose, and in turn the number of entering �rms. Although the DB

cannot maximise her pro�ts by maximising winning �rms’ pro�ts, she can still do so by

minimising competition in the downstream market.

Finally, under Take It Or Leave It (TIOLI), the DB o�ers the whole dataset to all

entering �rms, regardless of n. The aim of this strategy is again to minimise competition

in the downstream market to extract higher pro�ts, and it departs from the strategy

adopted under our baseline timing, which depends on the number of entering �rms.
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To sum up, we �nd that if the data sale occurs before �rms’ entry, the DB always

maximises her entry barrier e�ect. As her bargaining power is reduced, the DB 
oods the

downstream market with data as a way to decrease �rms’ expected pro�ts and, in turn,

their entry. Her strategy ultimately harms consumers, who are always worse o� than in

the benchmark due to the increase of downstream market’s concentration. Nonetheless,

we �nd that consumer harm is minimised under TIOLI, consistently with the result

obtained in Section 5.2.

6. Conclusions

With the steady growth of online services, DBs have become central players in the di-

gital economy. Their ability to extract valuable information from consumers’ data allows

them to in
uence competition in retail markets, with important welfare implications. Our

work contributes to the growing literature on the competitive e�ects of DBs by modelling

an oligopoly market where the number of �rms is endogenous.

We show that the presence of a DB reduces the entry of �rms in the downstream

market. The DB bene�ts from the increased concentration, as she can then extract �rms’

pro�ts through the price of data. Previous literature on price discrimination in spatial

competition settings has often highlighted a pro-competitive e�ect of data, as �rms engage

in price wars over the identi�ed consumers. We show that, when entry endogenously

depends on the DB’s strategy, the entry barrier e�ect dominates the competition e�ect,

leading to an overall decrease in competition in the market.

We also �nd that the DB has the incentive to under-serve the market by selling data

to only a subset of �rms. This result expands the insight developed in previous literature

(Braulin and Valletti, 2016; Montes et al., 2019; Bounie et al., 2021), which advocates for

a ban on exclusive data deals to bene�t of consumers. We show that, when the number

of �rms is endogenous, the ban of exclusive deals should address single portions of the

market. However, we also �nd that alternative mechanisms for the data sale (e.g., Take

It Or Leave It o�ers) could induce the DB to avoid exclusive deals.

Overall, our results show that consumer surplus is lower in the presence of a mono-

polistic DB, while total welfare is mostly appropriated by the DB. As a consequence, if

the weight of the DB’s pro�ts in the welfare function is su�ciently low, the presence of

a DB is welfare decreasing.

The use of data by �rms has implications not only for competition, but also in terms

of privacy. We show that, if the use of data for price discrimination entails a privacy
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loss to consumers, the potential of the DB to raise entry barriers through data sales is

reduced. As more �rms enter the market, competition and consumer surplus increase.

Thus, our results imply that an increase in consumers’ privacy awareness can limit the

consumer harm caused by the DB.

From a policymaking point of view, our results suggest that the presence of a DB

that can manipulate the competitive dynamics by raising entry barriers is detrimental

for consumers, despite the fact that the use of data intensi�es competition between �rms.

However, we also �nd that consumer surplus can be raised by properly regulating the

DB’s selling mechanism. In particular, a competition authority could either mandate the

sale of data to all entering �rms, or enforce the use of direct sales (i.e., TIOLI o�ers).

Such policies would e�ectively lower the DB’s bargaining power, but would also lead to

an increase in the amount of data sold. Therefore, the ensuing increase in competition

would also be accompanied by a lower degree of consumer privacy.

Finally, we �nd that the DB’s negative e�ect on welfare is stronger if �rms purchase

data before they decide to enter the market, as in this scenario the DB always chooses

a strategy that minimises �rms’ entry, further reducing consumer surplus. Similarly to

what we �nd in the basic model, reducing the DB’s bargaining power would have positive

e�ects on consumers. However, it would also lead the DB to 
ood the downstream market

with data, as this strategy allows her to minimise the number of entering �rms.

An important issue that remains to be addressed deals with the presence of com-

petition in the collection of data at the DB’s level. Indeed, competition between DBs

would further limit the individual DB’s bargaining power, possibly tempering their entry

barrier e�ect. A careful analysis is needed to fully assess the implications of competition

between DBs for entry in the downstream market and for consumers.
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Appendix

I. Proof of Proposition 1

This proof proceeds in two steps. First, we demonstrate that the DB sells equally

sized partitions to all even-indexed �rms and to all odd-indexed �rms. In particular, the

DB can only o�er partitions of size bd to even-indexed �rms and of size ed to odd-indexed

�rms. Thus, the DB only has four viable strategies:

1. Setting bd 6= ed; bd > 0; ed > 0. That is, she sells partitions of di�erent sizes to all

�rms, alternating between the partitions’ sizes.

2. Setting bd = ed > 0. That is, she sells equally sized partitions to all �rms.

3. Setting bd 6= ed; bd = 0; ed > 0 That is, she only sells data to odd-indexed �rms,

while she does not o�er data to even-indexed �rms

4. Setting bd = ed = 0: That is, she does not sell data.

Second, we show that strategies 1. and 4. are always suboptimal for the DB, and thus

that only strategies 2. and 3. can be the only Nash equilibria in pure strategies.

(I) The DB Sells Equally Sized Partitions to All Even-Indexed Firms and to All Odd-

Indexed Firms

DB’s pro�ts are equal to the sum of the di�erence between �rms’ pro�ts when they

obtain their respective partition and when they do not obtain it:

�DB =
n�1X

i=0

��i (A.1)

where

��0 = f (d0; d1; : : : ; di�1; di; : : : ; dn�1)

��1 = g (d0; d1; : : : ; di�1; di; : : : ; dn�1)

��2 = h (d0; d1; : : : ; di�1; di; : : : ; dn�1)

: : :

The di�erent functions (e.g., f; g; h : : :) derive from the fact that, while �rms’ pro�ts

depend on all �rms’ partitions, the way they do depends on the distribution of the

partitions compared to the analysed �rm’s location.

Let us focus on ��0: the pro�ts that the DB extracts from �rm 0 depend on the

partitions she sells to all �rms. Not every partition in
uences ��0 in the same way. For

example, the partition obtained by �rm 1 (i.e., d1) will have a di�erent e�ect on ��0
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than the partition obtained by �rm 2 (i.e., d2) has on ��0. However, the symmetry of

the model allows us to draw conclusions regarding the e�ects of partitions obtained by

�rms that are equidistant from �rm 0. Since �rm 1 and �rm n�1 are identical and both

distant 1
n from �rm 0, their partitions have the same e�ect on ��0. The same holds true

for every pair of �rms that are equidistant from �rm 0, since �rms are equally spaced on

the circle. We thus have

@��0

@dj
=
@��0

@dn�j
8 j 2

n
0; 1; 2; : : : ;

n
2

o
(A.2)

By symmetry, condition (A.2) can be applied to all i, obtaining

@��i
@dj

=
@��i
@dn�j

8 j 2
n

0; 1; 2; : : : ;
n
2

o
; i 2 f0; 1; 2; : : : ; n�1g (A.3)

Let us now focus on the relationship between ��0 and ��1. By the symmetry of �rms,

the e�ect of d1 on ��1 is same that d0 has on ��0. The same holds true when analysing

the e�ect of equally distant �rms. As an example, the e�ect of d1 on ��0 is same of d0

on ��1, as it is the e�ect that a direct rival’s partition has on the analysed �rm’s pro�ts

di�erence. We can thus write

@��i
@di+j

=
@��k
@dk+j

8 i; k 2 f0; 1; 2; : : : ; n�1g ; j 2
n

0; 1; 2; : : : ;
n
2

o
(A.4)

We can now bring together (A.1), (A.3) and (A.4). The DB chooses the partition set

P = (d0;d1;d2; : : : ; dn�1) to maximise the sum of ��i. Thus, at the equilibrium we have

@�DB

@d0
=
@��0

@d0
+
@��1

@d0
+
@��2

@d0
+ : : :+

@��n�1

@d0
= 0

@�DB

@d1
=
@��0

@d1
+
@��1

@d1
+
@��2

@d1
+ : : :+

@��n�1

@d1
= 0

@�DB

@d2
=
@��0

@d2
+
@��1

@d2
+
@��2

@d2
+ : : :+

@��n�1

@d2
= 0

: : :

From (A.4), we know that @��1
@d0

= @��0
@d1

, and the same can be applied to all the elements

on the right side of the equation. We can thus rewrite @�DB
@d0

as

@�DB

@d0
=
@��0

@d0
+
@��0

@d1
+
@��0

@d2
+ : : : =

n�1X

i=0

@��0

@di

By applying (A.4), we can trace back every partial derivative of �DB to the same form.

In a general form, we obtain

@�DB

@dk
=

n�1X

i=0

@��0

@di
8 k 2 f0; 1; 2; : : : ; n�1g (A.5)
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Equation (A.5) implies that the DB’s pro�ts are in
uenced in the same way by the

partitions sold to any �rm. Thus, the DB aims to maximise a given �rm’s di�erence in

pro�ts, and then she applies the same strategy to all other �rms. We focus our analysis

on a generic �rm i. From (A.3), we know that ��i is in
uenced in the same way by

di+1 and di�1. As such, in equilibrium the DB sets di+1 = di�1. The same holds true

for any pair di+j; di�j, as described in (A.3).The same reasoning can be applied when

focusing on all other �rms. For example, by looking at �rm 1 we can conclude that

d1+j = d1�j 8 j 2
�

0; 1; 2; : : : ; n2
	

. By putting together all the equations, we �nd that

the DB sells equally sized partitions to all even-indexed �rms, which we denote as bd, and

equally sized partitions to all odd-indexed �rms, which we denote as ed. Note how, under

this strategy, a �rm always faces direct rivals that obtain same sized partitions: as such,

in equilibrium the DB o�ers partitions that are centred on �rms’ locations. Suppose that

�rm i is o�ered a partition ed: since both its direct rivals obtain bd, in equilibrium the DB

sells �rm i a partition such that it can identify consumer segments of size ed
2 on each arc

on which it competes.

(II) the DB Either Sells Equally Sized Partitions to All Firms or Equally Sized Partitions

to Alternating Firms

Step (I) leaves the DB with four possible strategies, as priorly described. We now

want to demonstrate that strategies 1. and 4. are suboptimal for the DB. First, we can

discard strategy 4.: since in our model the DB does not sustain any costs, her minimum

pro�ts are 0. As such, a strategy where the DB sets bd = ed = 0, which results in her

pro�ts being 0, can never dominate any other strategy.

We move on to strategy 1., where the DB sets bd 6= ed; bd > 0; ed > 0. We show that this

strategy is always dominated by strategy 2., where the DB sets bd = ed > 0. To do so,

we solve the model under strategy 1. The DB o�ers a partition set P =
�
ed; bd; ed; : : : ; bd

�
.

Without loss of generality, we focus on a generic �rm i, to which the DB o�ers a partition
ed. The indi�erent consumers between �rms i, i+1 and i�1 can be obtained by equating

utility levels, and they are:

bxi�1;i =
2i� 1

2n
+
pB
i � pB

i�1

2t
and bxi;i+1 =

2i+ 1
2n

+
pB
i+1 � pB

i

2t
(A.6)
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Firm i o�ers a tailored price pT
i (x) to the identi�ed consumers, matching the competitor’s

o�er in utility level. It sets a tailored price for each arc where it competes, resulting in

pT
i (x) =

8
><

>:

pB
i�1 + 2tx� t

n(2i� 1) for x 2 [ in �
di
2 ;

i
n ]

pB
i+1 � 2tx+ t

n(2i+ 1) for x 2 [ in ;
i
n + di

2 ]
(A.7)

Firm i’s pro�ts are thus given by:

�W
i (P) =

Z i
n

i
n�

ed
2

pT
i (x) dx+

Z i
n + ed

2

i
n

pT
i (x) dx+ pB

i (P)
�
bxi;i+1 � bxi�1;i � ed

�
� F (A.8)

Using the expression of the indi�erent consumers from (A.6) and of the tailored prices in

(A.7), we can rewrite the pro�ts of the generic informed �rm i in (A.8) as

�W
i (P) =

ed
2n

�
2t+ npB

i�1 (P) + npB
i+1 (P)� nted

�

+ pB
i (P)

 
n
�
pB
i+1 (P) + pB

i�1 (P)� 2pB
i (P)

�
+ 2t

2nt
� ed

!

� F (A.9)

Similarly, the pro�ts of its rival i+1 �rm are

�W
i+1 (P) =

bd
2n

�
2t+ npB

i (P) + npB
i+2 (P)� ntbd

�

+ pB
i+1 (P)

 
n
�
pB
i (P) + pB

i+2 (P)� 2pB
i+1 (P)

�
+ 2t

2nt
� bd

!

� F (A.10)

By taking the �rst-order condition of (A.9) with respect to pB
i (P) and of (A.10) with

respect to pB
i+1(P), we obtain �rms’ reaction function on basic prices

pB
i (P) =

t
2n
�
ted
2

+
pB
i+1 (P) + pB

i�1 (P)
4

and

pB
i+1 (P) =

t
2n
�
tbd
2

+
pB
i (P) + pB

i+2 (P)
4

(A.11)

The system of equations (A.11) for all i = 0; : : : ; n�1 allows us to obtain the equilibrium

basic prices and, by replacing them in (A.9), �rm i’s pro�ts. In matrix form we have

A � p = b, where p is the price vector, and b is the known terms vector. Assuming that
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the DB o�ers ed to even indexed �rms, we obtain
2

666666666666666664

4 �1 : : : 0 0 0 : : : �1

�1 4 : : : 0 0 0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

0 0 : : : 4 �1 0 : : : 0

0 0 : : : �1 4 �1 : : : 0

0 0 : : : 0 �1 4 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

�1 0 : : : 0 0 0 : : : 4

3

777777777777777775

�

2

666666666666666664

pB
0 (P)

pB
1 (P)

: : :

pB
i�1 (P)

pB
i (P)

pB
i+1 (P)

: : :

pB
n�1 (P)

3

777777777777777775

=

2

666666666666666664

2t
n � 2ted
2t
n � 2tbd

: : :
2t
n � 2tbd
2t
n � 2ted
2t
n � 2tbd

: : :
2t
n � 2tbd

3

777777777777777775

Matrix A is circulant, tridiagonal and symmetric. The inverse of this type of matrix has

been computed by Searle (1979). We obtain

A�1 =

2

666664

a0 a1 : : : an�1

an�1 a0 : : : an�2

: : : : : : : : : : : :

a1 a2 : : : a0

3

777775

where, in our speci�c case, aj = � 1
2
p

3 �
�

(2+
p

3)j

1�(2+
p

3)n � (2�
p

3)j

1�(2�
p

3)n

�
. A property of this

type of matrix is that aj = an�j 8j 6= 0; n2 if n is even. Moreover, in our particular case,
Pn�1

j=0 aj = 1
2 . We can now write p = A�1 � b. We obtain

2

666664

p0

p1

: : :

pn�1

3

777775
=

2

666664

a0 a1 : : : an�1

an�1 a0 : : : an�2

: : : : : : : : : : : :

a1 a2 : : : a0

3

777775
�

2

666664

2t
n � 2ted
2t
n � 2tbd

: : :
2t
n � 2tbd

3

777775

Thus, we can write

pB
i =

 
2t
n
�
n�1X

j=0

aj

!

� 2t

n�2
2X

j=0

eda2j � 2t

n�2
2X

j=0

bda2j+1

Since
Pn�1

j=0 aj = 1
2 , we can simplify and obtain

pB
i =

t
n
� 2t

n�2
2X

j=0

eda2j � 2t

n�2
2X

j=0

bda2j+1
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Due to the symmetry properties of the coe�cients aj; we also obtain a similar form for

pB
i�1 and pB

i�1:

pB
i�1 = pB

i+1 =
t
n
� 2t

n�2
2X

j=0

bda2j � 2t

n�2
2X

j=0

eda2j+1

We �nd that in our case
Pn�2

2
j=0 a2j = 1

3 and
Pn�2

2
j=0 a2j+1 = 1

6 . Thus, we can rewrite basic

prices as

pB
i =

t
n
�

2
3
ted�

1
3
tbd and pB

i�1 = pB
i+1 =

t
n
�

2
3
tbd�

1
3
ted (A.12)

By replacing the basic prices from (A.12) in �rms’ pro�ts functions (A.9) and (A.10), we

obtain

�W
i (P) =

t
9n2

�
9� 2n

�
nbded+ ed

�
7
4
ned� 3

�
� nbd2 + 3bd

��
� F (A.13)

�W
i�1 (P) = �W

i (P) =
t

9n2

�
9� 2n

�
nbded+ bd

�
7
4
nbd� 3

�
� ned2 + 3ed

��
� F (A.14)

We now compute �rms’ pro�ts when they do not obtain their partition. Suppose that

�rm i does not obtain its partition: as such, in equilibrium di = 0. By imposing it in

(A.9), we obtain that �rm i’s pro�ts are

�L
i (P) = pB

i (P)

 
n
�
pB
i+1 (P) + pB

i�1 (P)� 2pB
i (P)

�
+ 2t

2nt

!

� F (A.15)

We can again compute �rms’ basic prices by solving the n-equations system. The only

di�erence from the already analysed subgame is that �rm i’s known term has di = 0

instead of di = ed. As such, we can compute the new basic prices by simply subtracting
edai�j from the basic prices pB

j computed in (A.12). Thus, we obtain

pB
i =

t
n
� 2ted

�
1
3
� a0

�
�

1
3
tbd and pB

i�1 = pB
i+1 =

t
n
�

2
3
tbd� 2ted

�
1
6
� a1

�
(A.16)

By replacing the basic prices of (A.16) in (A.15), we obtain

�L
i (P) =

t
9n2

�
6a0ned� 2ned� nbd+ 3

��
�6a0ned+ 6a1ned+ ned� nbd+ 3

�
� F (A.17)

Following the same procedure, we obtain �rm i+1’s pro�ts in the subgame where it does

not obtain data:

�L
i+1 (P) =

t
9n2

�
6a0nbd� 2nbd� ned+ 3

��
�6a0nbd+ 6a1nbd+ nbd� ned+ 3

�
� F (A.18)

Finally, we compute DB’s pro�ts. We can write them as

�DB =
n
2
�
�W
i (P)� �L

i (P)
�

+
n
2
�
�W
i+1 (P)� �L

i+1 (P)
�

(A.19)
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Replacing �rms’ pro�ts from (A.17) and (A.18) and simplifying, we obtain

�DB =
t
3

�
6na2

0

�
ed2 + bd2

�
� 6na0a1

�
ed2 + bd2

�
� 3na0

�
ed2 + bd2

�

+2na1

�
ed2 + bd2 + edbd

�
� 3a1

�
ed+ bd

�
�
n
4

�
ed2 + bd2

�
� nedbd+

3
2
ed+

3
2
bd
�

(A.20)

By computing FOCs of (A.20) for both ed and bd, we �nd that both partitions have the

same e�ect on DB’s pro�ts; to maximise them, the DB would set ed = bd. However, since
ed 6= bd by hypothesis, we �nd that setting ed 6= bd is suboptimal for the DB. On the other

hand, this case does not test the corner solution where either ed = 0 or bd = 0. Thus, we

are left with two cases: ed = bd or ed 6= bd; ed = 0 or bd = 0, which are the strategies 2. and 3.

II. Proof of Proposition 2

DB’s pro�ts are equal to the sum of the reserve prices wi, which in turn are set equal

to �rms’ di�erence in pro�ts between winning or losing their speci�c auction. We can

thus write

�DB(PH;J) =
X

i2J

wi

with

wi = �W
i (PH)� �L

i (PH)

From the proof of Proposition 1, we know that under the sale to alternating �rms the

DB only ful�ls half of the auctions: as such, the subset J is given and has a cardinality

j = n
2 . We refer to the partition set sold in equilibrium as P�H, while the partition set

o�ered to �rms is PH. The DB can also in
uence �rms’ willingness to pay through the

auctions she does not ful�l. This is due to the fact if a �rm loses its speci�c auction,

other �rms can win theirs, and by the DB’s ability to claim the maximum number of

auctions k she is going to ful�l. First, we focus on �rms’ pro�ts when they win their

respective auctions, which are equal to those at the equilibrium. Therefore, these pro�ts

do not depend neither on the auctions that are not ful�lled nor on the maximum number

of auctions that will be ful�lled, since in equilibrium the DB will ful�l the subset J which

is given under the sale to alternating �rms. On the other hand, �rms’ pro�ts when losing

their respective auctions are in
uenced by k and, in turn, by the partitions o�ered by the

DB in the auctions she does not want to ful�l. Suppose that the DB o�ers a partition set

PH = (dH; d; : : : ; d; dH ; d; : : : ; dH; d). At the equilibrium, the DB only ful�ls the auctions

where she o�ers dH, resulting in P�H = (dH; 0; : : : ; 0; dH; 0; : : : ; dH; 0). Suppose that the

DB o�ers dH to �rm i, and that she claims k = n
2 . Then, if �rm i loses, the DB could
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ful�l one of the auctions where she o�ers d. In particular, she could ful�l the auctions of

one of �rm i’s direct rivals, i+1 and i�1. This would reduce �rm i’s pro�ts when losing

its auction, as it would result in it being uninformed while facing an informed rival.

As such, the DB wants to set PH and k to minimise �rms’ pro�ts when they lose their

respective auctions in which she o�ers them dH. Intuitively, a �rm’s pro�ts are minimised

when it is uninformed and competing against direct rivals who obtain all consumer data,

as already observed by Bounie et al. (2021) in a duopoly setting. Thus, the DB sets

PH = (dH; 1; : : : ; 1; dH ; 1; : : : ; dH; 1) and k = n
2 + 1. This way, if �rm i loses its auction,

the DB can ful�l both auctions of its direct rivals i+1 and i�1. This minimises �rm i’s

pro�ts when losing its auction, and in turn maximises its willingness to pay.

III. Proof of Proposition 3

We organise this proof by computing equilibrium prices and pro�ts under two cases.

First, when winning �rms serve both unidenti�ed and identi�ed �rms: focusing on �rm

i, this condition holds as long as

i
n

+
dH

2
< bxi;i+1 (A.21)

that is, as long as winning �rms cannot identify the indi�erent consumers. When condi-

tion (A.21) holds, winning �rms set basic prices greater than 0, as they still serve some

unidenti�ed consumers. When condition (A.21) is no longer satis�ed, winning �rms only

serve identi�ed consumers and we fall in the second case. Using the non-negative price

constraint (see, e.g., Montes et al., 2019 and Bounie et al., 2021), we assume that winning

�rms set their basic prices equal to 0, and additional data do not longer in
uence �rms’

decisions as they do not allow to conquer any new consumers.

(I) Winning Firms Serve Both Identi�ed and Unidenti�ed Consumers

When condition (A.21) holds, we need to solve an n-equations systems to compute

�rms’ equilibrium prices, where the equations alternate between

pB
i (PH) =

t
2n
�
tdH

2
+
pB
i+1 (PH) + pB

i�1 (PH)
4

and pB
i+1 (PH) =

t
2n

+
pB
i+2 (PH) + pB

i (PH)
4
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In matrix form we have A �p = b, where p is the price vector, and b is the known terms

vector. Assuming that the DB o�ers dH to �rms 0; 2; : : : ; i�2; i; ::; n�2, we obtain
2

666666666666666664

4 �1 : : : 0 0 0 : : : �1

�1 4 : : : 0 0 0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

0 0 : : : 4 �1 0 : : : 0

0 0 : : : �1 4 �1 : : : 0

0 0 : : : 0 �1 4 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

�1 0 : : : 0 0 0 : : : 4

3

777777777777777775

�

2

666666666666666664

pB
0 (PH)

pB
1 (PH)

: : :

pB
i�1 (PH)

pB
i (PH)

pB
i+1 (PH)

: : :

pB
n�1 (PH)

3

777777777777777775

=

2

666666666666666664

2t
n � 2tdH

2t
n

: : :
2t
n

2t
n � 2tdH

2t
n

: : :
2t
n

3

777777777777777775

Matrix A is circulant, tridiagonal and symmetric. The inverse of this type of matrix has

been computed by Searle (1979). We obtain

A�1 =

2

666664

a0 a1 : : : an�1

an�1 a0 : : : an�2

: : : : : : : : : : : :

a1 a2 : : : a0

3

777775

Where, in our speci�c case, aj = � 1
2
p

3 �
�

(2+
p

3)j

1�(2+
p

3)n � (2�
p

3)j

1�(2�
p

3)n

�
. It is worth noting that

aj > aj+1 8j 2 f0; n2�1g. Another property of this type of matrix is that aj = an�j 8j.

Moreover, in our particular case,
Pn�1

j=0 aj = 1
2 . We can now compute the vector of prices

p as p = A�1 � b. We can thus write
2

666666666666666664

pB
0 (PH)

pB
1 (PH)

: : :

pB
i�1 (PH)

pB
i (PH)

pB
i+1 (PH)

: : :

pB
n�1 (PH)

3

777777777777777775

=

2

666666666666666664

a0 a1 : : : ai�1 ai ai+1 : : : an�1

an�1 a0 : : : ai�2 ai�1 ai : : : an�2

: : : : : : : : : : : : : : : : : : : : : : : :

an�i+1 an�i+2 : : : a0 a1 a2 : : : an�i
an�i an�i+1 : : : an�1 a0 a1 : : : an�i�1

an�i�1 an�i : : : an�2 an�1 a0 : : : an�i�2

: : : : : : : : : : : : : : : : : : : : : : : :

a1 a2 : : : ai ai+1 ai+2 : : : a0

3

777777777777777775

�

2

666666666666666664

2t
n � 2tdH

2t
n

: : :
2t
n

2t
n � 2tdH

2t
n

: : :
2t
n

3

777777777777777775

We �rst focus on pB
i . We have

pB
i (PH) =

 
2t
n
�
n�1X

j=0

aj

!

� 2tdH (an�i + an�i+2 + : : :+ a0 + : : :+ an�i�2) (A.22)
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Using the properties described before, we can rewrite (A.22) as

pB�
i (PH) =

t
n
� 2tdH

0

@a0 + an
2

+ 2

n
4�1X

j=1

a2j

1

A =
t
n
�

2
3
tdH (A.23)

Following the same method, prices of uninformed �rms are

pB�
i+1 (PH) = pB�

i�1 H =
t
n
�

1
3
tdH (A.24)

We obtain indi�erent consumers’ locations by replacing (A.23) and (A.24) in (1), obtain-

ing

bxi�1;i =
2i� 1

2n
�
dH

6
and bxi;i+1 =

2i+ 1
2n

+
dH

6
(A.25)

We can compute �rm i’s pro�ts by replacing (A.23), (A.24) and (A.25) in �rm i’s pro�ts

function, obtaining

�W�
i (PH) =

t
n2 +

2dHt
3n
�

7td2
H

18
� F

In the same way we can compute �rm i+1’s pro�ts, leading to

�L�
i+1 (PH) =

t
n2 �

2dHt
3n

+
td2
H

9
� F

(II) Firms Only Serve Identi�ed Consumers

We now focus on the case where winning �rms only serve identi�ed consumers. This

happens when
i
n

+
dH

2
� bxi;i+1 =

2i+ 1
2n

+
dH

6
(A.26)

Solving (A.26), we obtain that �rms only serve identi�ed consumers when

dH �
3

2n
(A.27)

While (A.27) holds, �rm i sets its basic price pB�
i H = 0, and we can rewrite its pro�ts

function as

�W
i (PH) =

Z i
n

bxi�1;i

pT
i (x) dx+

Z bxi;i+1

i
n

pT
i (x) dx� F

While its rival’s pro�ts are

�L
i+1 (PH) = pB

i+1 (PH)

 
n
�
pB
i+2 (PH) + pB

i (PH)� 2pB
i+1 (PH)

�
+ 2t

2nt

!

� F (A.28)

Since pB
i+2 (PH) = pB

i (PH) = 0, We can derive pB
i+1 (PH) by taking the FOCs of (A.28),

obtaining pB�
i+1 (PH) = t

2n . The same reasoning can be applied to �rm i�1 due to
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symmetry. By replacing the basic prices in the pro�ts functions, we obtain

�W�
i (PH) =

9t
8n2 � F and �L�

i+1 (PH) =
t

4n2 � F

IV. Proof of Proposition 4

When �rm i loses its auction, both its rivals obtain the whole dataset (i.e., di+1 =

di�1 = 1). This subgame is specular to the case where �rm i wins the auction and di � 3
2n .

As such, �rm i’s basic price and pro�ts are equal to �rm i+1’s ones in Step (II) of the

proof of Proposition 3, leading to

pB�
i (PH) =

t
2n

and �L�
i (PH) =

t
4n2 � F

V. Proof of Proposition 5

This proof separately examines two cases. The �rst is the case in which �rm i serves

both identi�ed and non-identi�ed consumers. The second is the one in which �rm i serves

only identi�ed consumers.

(I) Firm i Serves Both Identi�ed and Unidenti�ed Consumers

Let us solve the n-equations system in its matrix form, which is

2

666666666666664

4 �1 0 0 : : : 0 �1

�1 4 �1 0 : : : 0 0

0 �1 4 �1 : : : 0 0

0 0 �1 4 : : : 0 0

: : : : : : : : : : : : : : : : : : : : :

0 0 0 0 : : : 4 �1

�1 0 0 0 : : : �1 4

3

777777777777775

�

2

666666666666664

pB
0 (PA)

pB
1 (PA)

pB
2 (PA)

pB
3 (PA)

: : :

pB
n�2 (PA)

pB
n�1 (PA)

3

777777777777775

=

2

666666666666664

2t
n � 2tdA

2t
n � 2tdA

2t
n � 2tdA

2t
n � 2tdA

: : :
2t
n � 2tdA

2t
n � 2tdA

3

777777777777775

We can compute the vector of prices as p = A�1 � b; obtaining
2

666666666666666664

pB
0 (PA)

pB
1 (PA)

: : :

pB
i�1 (PA)

pB
i (PA)

pB
i+1 (PA)

: : :

pB
n�1 (PA)

3

777777777777777775

=

2

666666666666666664

a0 a1 : : : ai�1 ai ai+1 : : : an�1

an�1 a0 : : : ai�2 ai�1 ai : : : an�2

: : : : : : : : : : : : : : : : : : : : : : : :

an�i+1 an�i+2 : : : a0 a1 a2 : : : an�i
an�i an�i+1 : : : an�1 a0 a1 : : : an�i�1

an�i�1 an�i : : : an�2 an�1 a0 : : : an�i�2

: : : : : : : : : : : : : : : : : : : : : : : :

a1 a2 : : : ai ai+1 ai+2 : : : a0

3

777777777777777775

�

2

666666666666666664

2t
n � 2tdA

2t
n � 2tdA

: : :
2t
n � 2tdA

2t
n � 2tdA

2t
n � 2tdA

: : :
2t
n � 2tdA

3

777777777777777775
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We can thus write �rm i’s basic price as pB
i (PA) = (2t

n � 2tdA) �
Pn�1

j=0 aj, obtaining

pB�
i (PA) = t

n � tdA. By replacing the basic prices in �rm i’s pro�ts function, we obtain

�W�
i (PA) =

t
n2 �

td2
A

2
� F

(II) Firm i Only Serves Identi�ed Consumers

Let us apply the non-negative price constraint. Since pB�
i (PA) = t

n�tdA, we conclude

that �rm i only serves identi�ed consumers when dA � 1
n . This corresponds to �rm i

identifying the consumer at the centre of the arch between itself and its rivals. Since all

�rms have the same amount of data, all of them set their basic prices equal to 0. By

replacing these basic prices in �rm i’s pro�ts, we obtain �W�
i (PA) = t

2n2 � F .

VI. Proof of Proposition 6

We organise this proof by examining three cases, depending on the �rms’ ability to

identify consumers. In the �rst case, all informed �rms serve at least some unidenti�ed

consumers. In the second, all informed �rms except �rm i’s direct rivals only serve iden-

ti�ed consumers. In the third, all informed �rms only serve identi�ed consumers.

(I) All Informed Firms Serve Both Identi�ed and Unidenti�ed Consumers

When �rm i loses its auction under the sale to all �rms, it becomes the only un-

informed �rm in the market. We can rewrite the vector of prices as in the proof of

Proposition 5, except that the i-th component of vector b is 2t
n instead of 2t

n � 2tdA, as

�rm i is uninformed. By using the aj coe�cients’ properties, we can write the basic prices

as

pB�
i (PA) =

t
n
� tdA +2tdAa0 and pB�

i�j (PA) = pB�
i+j (PA) =

t
n
� tdA +2tdAaj (A.29)

We recall that aj > aj+18j 2 f0; n2 � 1g. As such, �rm i sets the highest basic price,

and each �rm’s basic price decreases with its distance from �rm i. By replacing (A.29)

in �rm i’s pro�ts function, we obtain

�L�
i (PA) =

�
t
n
� tdA + 2tdAao

��
2dA (a1 � a0) +

1
n

�
� F (A.30)

(II) All Informed Firms Except Firm i’s Direct Rivals Only Serve Identi�ed Consumers

As above, the fact that �rm i is the only uninformed �rm in the market creates an

asymmetry, which causes �rms’ basic prices to decrease with their distance from �rm
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i. This also implies that the indi�erent consumers’ positions are skewed toward �rm i’s

location. Without loss of generality, let us focus on �rms i�2 and i�1. The former sets a

lower basic price than the latter, as it is more distant from �rm i. As such, the indi�erent

consumer placed between them bxi�2;i�1 is located closer to �rm i�1 instead of at the

centre of the arch like in the proof of Proposition 5. By replacing the basic prices, the

indi�erent consumer is located in bxi�2;i�1 = 2i�3
2n + dA(a1 � a2). Firm i�2 can identify

consumers up to i�2
n +dA. As such, we derive that if dA � 1

2n( 1
2 +a1�a2) , then �rm i�2 only

serves identi�ed consumers and sets its basic price equal to 0. For simplicity, we refer to

this threshold as d1. Moreover, as (aj � aj+1) decreases with j, all other informed �rms

except i+1 and i�1 also set their basic prices equal to 0. Without loss of generality, we

focus on �rms i�1 and i, as the model is symmetric with respect to �rm i. Under these

conditions, �rm i�1 identi�es all consumers on the arch it shares with �rm i�2, while it

still serves some unidenti�ed consumers on the arch it shares with �rm i. We can write

�rms’ pro�ts functions as

�W
i�1 (PA) =

Z i�1
n

bxi�2;i�1

pT
i�1;i�2(x) dx+

Z i�1
n +dA

i�1
n

pT
i�1;i(x) dx

+ pB
i�1 (PA)

�
bxi�1;i �

i� 1
n
� dA

�
� F (A.31)

The �rst term on the right-hand side represents �rm i�1’s pro�ts on the arch it shares

with �rm i�2. The second represents the pro�ts it extracts from the identi�ed consumers

on the arch it shares with �rm i. The third represents the pro�ts �rm i�1 makes on the

unidenti�ed consumers on the arch it shares with �rm i. Firm i’s pro�ts are instead

�L
i (PA) = 2pB

i (PA)
�
i
n
� bxi�1;i

�
� F (A.32)

as the arches on which it competes are symmetric. We now replace the tailored prices

and the indi�erent consumers’ location with the formulas provided in Equation (1) and

(2). By computing FOCs of (A.31) and (A.32) we obtain the equilibrium basic prices,

which are

pB�
i�1 (PA) =

t (3� 2ndA)
5n

and pB�
i (PA) =

t (4� ndA)
5n

(A.33)

Replacing the basic prices from (A.33) into �rm i’s pro�ts function, we obtain

�L�
i (PA) =

t(ndA � 4)2

25n2 � F (A.34)
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(III) All Informed Firms Only Serve Identi�ed Consumers

Finally, we focus on the case where also �rms i�1 and i+1 only serve identi�ed

consumers. With respect to �rm i, this subgame is the same as the one analysed in the

proof of Proposition 4 where an uninformed �rm competes against completely informed

rivals. As such, we �nd the same solution: when dA � 3
2n , all informed �rms set their

basic prices equal to 0, leading to

pB�
i (PA) =

t
2n

and �L�
i (PA) =

t
4n2 � F (A.35)

To sum up, we put together results from the three cases when the DB opts for the

sale to all �rms and �rm i loses its auction. Firm i’s basic price, as shown in (A.29),

(A.33) and (A.35) is

pB�
i (PA) =

8
>>>><

>>>>:

t
n � tdA + 2tdAa0 for dA < d1

t(4�ndA)
5n for d1 � dA < 3

2n

t
2n for dA � 3

2n

while its pro�ts, as shown in (A.30), (A.34) and (A.35) are

�L
i (PA) =

8
>>>><

>>>>:

� t
n � tdA + 2tdAao

� �
2dA (a1 � a0) + 1

n

�
� F for dA < d1

t(ndA�4)2

25n2 � F for d1 � dA < 3
2n

t
4n2 � F for dA � 3

2n

VII. Proof of Proposition 7

The DB solves the problem

max
dH

�DB =
n
2
�
�W�
i (PH)� �L�

i (PH)
�

(A.36)

where

�W�
i (PH) =

8
><

>:

t
n2 + 2dHt

3n �
7td2

H
18 � F for dH < 3

2n

9t
8n2 � F for dH � 3

2n

�L�
i (PH) =

t
4n2 � F for 0 � dH � 1

(A.37)

Thus, we can rewrite DB’s pro�ts by replacing (A.37) in (A.36), obtaining

max
dH

�DB =

8
><

>:

n
2

�
3t

4n2 + 2dHt
3n �

7td2
H

18

�
for dH < 3

2n

n
2

� 7t
8n2

�
for dH � 3

2n
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When the DB sets dH < 3
2n , she opts for d�H = 6

7n and derives pro�ts ��DB = 29t
56n .

When she sets dH � 3
2n , then her pro�ts are constant and equal to ��DB = 7t

16n . By

directly comparing the two results, we �nd that the DB maximises her pro�ts by setting

d�H = 6
7n .

Finally, the number of entering �rms would be such that their pro�ts after paying for

entry and data are 0. We obtain the number of entering �rms by solving

�L�
i (PH) =

t
4n2 � F = 0

which results in

n�H =
1
2

r
t
F

(A.38)

VIII. Proof of Proposition 8

By using the expressions for �W�
i (PA) and �L�

i (PA) obtained in the proof of Propos-

ition 5 and 6, we can express the DB’s pro�ts as

max
dA

�DB =

8
>>>>>>>><

>>>>>>>>:

n
�

t
n2 �

td2
A

2 �
� t
n � tdA + 2tdAao

� �
2dA (a1 � a0) + 1

n

��
for dA < d1

n
�

t
n2 �

td2
A

2 �
t(ndA�4)2

25n2

�
for d1 � dA < 1

n

n
�

t
2n2 � t(ndA�4)2

25n2

�
for 1

n � dA < 3
2n

n
� t

2n2 � t
4n2

�
for dA � 3

2n

First, we prove that the second and third part of DB’s pro�ts are always suboptimal.

By computing FOC of the second part with respect to dA, we �nd that it is monotonically

decreasing in dA over its domain. Thus, the DB would always prefer the �rst part to the

second one. By computing FOC of the third part with respect to dA, we �nd that it is

monotonically increasing in dA over its domain. Thus, the DB would always prefer the

fourth part to the third one.

To assess the DB’s equilibrium strategy, we maximise her pro�ts with respect to dA.

If the DB sets dA < d1, her pro�ts are maximised for

d�A =
1� 2a1

n (�8a2
0 + a0 (8a1 + 4)� 4a1 + 1)

(A.39)

By substituting (A.39) in DB’s pro�ts, we obtain

�DB =
t
2

(1� 2a1)d�A (A.40)

Instead, if the DB sets dA � 3
2n , her pro�ts are equal to

�DB =
t

4n
(A.41)
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We now compare (A.40) and (A.41) to assess the DB’s equilibrium strategy. The DB sets

dA = d�A if
(1� 2a1)2

(�8a2
0 + a0(8a1 + 4)� 4a1 + 1)

�
1
2

(A.42)

While we are not able to �nd an explicit solution to (A.42), we �nd that the inequality

is satis�ed for n � n̂ � 3:34. Thus, when n < n̂, the DB sets dA � 3
2n ; when n � n̂, the

DB sets dA = d�A.

Having found the DB’s equilibrium strategy as a function of n, we now proceed to

the �rms’ entry stage.

If n < n̂, the number of entering �rms is given by solving

�L�
i (PA) =

t
4n2 � F = 0

leading to n�A = 1
2

q
t
F .

If instead n � n̂, the number of entering �rms is given by solving

�L�
i (PA) =

�
t
n
� td�A + 2td�Aao

��
2d�A(a1 � a0) +

1
n

�
= 0 (A.43)

To isolate all the terms that depend exponentially from n, it is useful to rewrite d�A as

d�A =
�(n)
n

(A.44)

where

�(n) =
1� 2a1

�8a2
0 + a0(8a1 + 4)� 4a1 + 1

By replacing (A.44) in (A.43), we can rewrite it as

(1� �(n) + 2a0�(n)) (2(a1 � a0�(n) + 1) =
F
t
n2 (A.45)

We refer to the left-side of the equation as A(n). By studying A(n), we �nd that it is

monotonically decreasing in n and quickly approaches an asymptote:

lim
n!1

A(n) =
36
p

3� 99
1644
p

3� 2915
To �nd the number of entering �rms, we approximate A(n) with

A(n) �
1
n3 +

36
p

3� 99
1644
p

3� 2915
(A.46)

This approximation overestimates the true value of A(n) by less than 1% over its domain

(i.e., n � 2). We recall however that in our basic model the DB chooses her strategy

given n: as such, this approximation does not a�ect the DB’s strategy, and it is only

done to estimate the possible e�ect of the DB’s strategies on �rm entry.
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By replacing (A.46) in (A.45), we obtain

1
n3 +

36
p

3� 99
1644
p

3� 2915
�
F
t
n2 = 0 (A.47)

To �nd an explicit solution to (A.47), we use the Newton-Raphson approximation method.

This method starts by providing a �rst guess of the solution, denoted as x0, and iteratively

improving the approximation:

x1 = x0 �
f(x0)
f 0(x0)

By looking at (A.47), we see that the solution is close to 3
4

q
t
F . Thus, by posing x0 = 3

4

q
t
F

we obtain

n�A �
r

t
F

4096
�
1644
p

3� 2915
� F
t + 243

�
1708
p

3� 3091
�q t

F

8
�
1644
p

3� 2915
� �

512Ft + 81
q

t
F

� (A.48)

By analysing (A.48), we �nd that the number of entering �rms when the DB sets dA = d�A
is slightly above 3

4

q
t
F .

IX. Proof of Proposition 9

We directly compare results from the proof of Proposition 7 and 8. Under the sale to

alternating �rms, the DB obtains ��DB(PH) = 29t
56n .

Under the sale to all �rms, when n < n̂, the DB obtains ��DB(PA) = t
4n . By comparing

pro�ts with the sale to alternating �rms, we �nd that the DB prefers it over the sale to

all �rms.

When n � n̂, DB’s pro�ts are equal to

��DB(PA) =
t
2

(1� 2a1)d�A

where

d�A =
1� 2a1

n (�8a2
0 + a0 (8a1 + 4)� 4a1 + 1)

The DB opts for the sale to alternating �rms if

29
56

>
1
2

(1� 2a1)2

�8a2
0 + a0 (8a1 + 4)� 4a1 + 1

Which is always satis�ed for n � 2. We can thus conclude that the DB always opts for

the sale to alternating �rms, regardless of n.
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X. Proof of Proposition 10

Consumer utility after purchasing the product from a �rm is equal to

U(x; i) = v � pi(x)� t
�
x�

i
n

�

where pi;i+1(x) can either be pB�
i (PH) if �rm i does not identify the consumer located in

x or pT
i (x) if it identi�es it. Due to the model’s symmetry, we can derive the consumer

surplus by �rst computing it on the arch between �rms i and i+1, and then by simply

multiplying this result by n.

In equilibrium, the DB sets d�H = 6
7n�

H
, as concluded in Proposition 7. Suppose that the

DB o�ers d�H to �rm i: as such, �rm i serves both identi�ed and unidenti�ed consumers,

and it sets a basic price equal to pB�
i (PH) = t

n �
2
3tdH, while its rivals set a basic price

pB�
i+1 (PH) = pB�

i�1 (PH) = t
n�

1
3tdH. Firm i’s tailored price is pT�

i;i+1(x) = pB�
i+1 (PH)�2tx+

t
n(2i + 1). Finally, the indi�erent consumer is located in bxi;i+1 = 2i+1

2n + dH
6 . All these

results have been previously obtained in the proof of Proposition 3. We can now compute

consumer surplus on the arch between �rms i and i+1. Consumers located between i
n

and i
n + dH

2 buy from �rm i and pay the tailored price; consumers between i
n + dH

2 and

bxi;i+1 buy from �rm i and pay the basic price; consumers between bxi;i+1 and i+1
n buy from

�rm i+1 and pay its basic price. The sum of these terms must then be multiplied by n

to obtain the overall consumer surplus. Formally, we have

CS = n

 Z i
n + dH

2

i
n

v � pT�
i;i+1(x)� t

�
x�

i
n

�
dx+

Z bxi;i+1

i
n + dH

2

v � pB�
i (PH)� t

�
x�

i
n

�
dx

+
Z i+1

n

bxi;i+1

v � pB�
i+1 (PH)� t

�
i+ 1
n
� x
�
dx

!

(A.49)

By replacing the prices and the indi�erent consumer’s location in (A.49), we obtain

CS = u�
5t
4n

+
ntd2

H

9
(A.50)

Since d�H = 6
7n�

H
and n�H = 1

2

q
t
F , we can further rewrite (A.50) as

CS = u�
229
98
p
tF (A.51)

Consumer surplus where data are absent is equal to CSBENCH = u � 5t
en� with en� =

q
t
F .

This results in CSBENCH = u� 5
4

p
tF , which is always higher than the consumer surplus

reported in (A.51) (i.e., when the DB is present).
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We now compute total welfare. DB pro�ts, as shown in the proof of Proposition 7,

are equal to

��DB =
29t

56n�H
=

29
28
p
tF (A.52)

We recall how �rms that win their auction are left with �L
i (PH) = t

4n�2
H
�F after paying for

data, while �rms that do not win their auctions obtain �L�
i+1 (PH) = t

n�2
H
� 2d�

Ht
3n�

H
+ td�2

H
9 �F .

We can thus rewrite total �rms’ pro�ts as

���rms =
n�1X

i=0

�L
i (PH) =

n�H
2

�
t

4n�2H
� F

�
+
n�H
2

�
t
n�2H
�

2d�Ht
3n�H

+
td�2H

9
� F

�
(A.53)

By replacing d�H = 6
7n�

H
and n�H = 1

2

q
t
F , in (A.53), we obtain

���rms =
43
196
p
tF (A.54)

Finally, we compute total welfare as the sum of (A.51), (A.52) and (A.54). We obtain

TW = CS + ��DB + ���rms = u�
229
98
p
tF +

29
28
p
tF +

43
196
p
tF = u�

53
49
p
tF (A.55)

When data are absent, total welfare is equal to consumer surplus since �rms make

pro�ts equal to 0. As such, we �nd that total welfare increases under the DB’s presence.

On the other hand, most of the total welfare is appropriated by the DB. To show this, we

compare total welfare under the DB’s absence and presence, and we weight her pro�ts

by a coe�cient �. The aim is to show for which weight � total welfare in the presence of

a DB is lower than in the benchmark case. We can write

u�
5
4
p
tF > u�

229
98
p
tF +

43
196
p
tF + �

29
28
p
tF (A.56)

from which we obtain

�� <
170
203

(A.57)

Thus, as long as (A.57) holds, total welfare is lower than under the benchmark case.

XI. Proof of Proposition 11

We introduce a disutility c > 0 that consumers incur when �rms o�er them tailored

prices. We analyse this extension under the sale to alternating �rms, which we have

proven being optimal for the DB. First, we compute �rms’ pro�ts when winning or losing

their respective auctions. Then, we assess the DB’s optimal strategy and her pro�ts.

Finally, we compute consumer surplus and total welfare.
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(I) Equilibrium Prices

We focus on �rm i, assuming that the DB o�ers it di = dH. Due to the added disutility,

�rm i sets tailored prices equal to

pT
i (x) =

8
><

>:

pB
i�1 + 2tx� t

n(2i� 1)� c for x 2 [ in �
dH
2 ;

i
n ]

pB
i+1 � 2tx+ t

n(2i+ 1)� c for x 2 [ in ;
i
n + dH

2 ]
(A.58)

By substituting (A.58) in (4) we obtain

�W
i (PH) =

dH

2n
�
2t+ npB

i�1 (PH) + npB
i+1 (PH)� ntdH � 2nc

�

+ pB
i (PH)

 
n
�
pB
i+1 (PH) + pB

i�1 (PH)� 2pB
i (PH)

�
+ 2t

2nt
� dH

!

� F (A.59)

While its rivals’ pro�ts are

�L
i+1(PH) = pB

i+1(PH)

 
n
�
pB
i+2(PH) + pB

i (PH)� 2pB
i+1(PH)

�
+ 2t

2nt

!

� F (A.60)

Comparing the pro�ts functions with Equation (4) and (5), we can see how the disutility

does not a�ect �rm i or �rm i+1’s basic prices. As such, we obtain the same basic prices

as in Section 3.1:

pB�
i (PH) =

t
n
�

2
3
tdH and pB�

i+1 (PH) =
t
n
�

1
3
tdH (A.61)

By substituting (A.61) in (A.59) and (A.60), we obtain

�W�
i (PH) =

t
n2 + dH

�
2t
3n
� c
�
�

7
18
td2

H � F

and

�L�
i+1 (PH) =

t
n2 �

2tdH

3n
+

1
9
td2

H � F

(A.62)

These pro�ts functions hold as long as �rm i bene�ts from o�ering tailored prices instead

of basic prices to all identi�ed consumers. Given the model’s symmetry, we focus on the

arch between �rm i and i+1 without loss of generality. Thus, the pro�ts functions hold

as long as

pB�
i (PH) � pT

i (x)

We rewrite it as
t
n
�

2
3
tdH �

t
n
�

1
3
tdH � 2tx+

t
n

(2i+ 1)� c (A.63)

The inequality (A.63) must hold for any consumer identi�ed by �rm i. We recall that,

on the arch between �rm i and �rm i+1, �rm i identi�es consumers up to the location
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i
n + dH

2 . If (A.63) holds for the farthest identi�ed consumer, then it also holds for all the

other identi�ed consumers, as tailored prices allow to extract more surplus from closer

consumers (while the surplus extraction through basic prices is independent from the

consumers’ locations). By setting x = i
n + dH

2 and solving with respect to dH, we �nd

dH �
3

2n
�

3c
2t

(A.64)

Thus, as long as (A.64) holds, �rm i o�ers tailored prices to all identi�ed consumers.

After this threshold, �rm i o�ers its basic price to the newly identi�ed consumers, as

doing so grants it higher pro�ts. From (A.64) we can also see how, if c � t
n , then �rm i

would never opt for the use of tailored prices. As such, we can conclude that, if c � t
n ,

no �rm would buy data.

We now consider the case in which (A.64) does not hold. In this case, �rm i only

o�ers its tailored prices to consumers located between i
n �

3
4n + 3c

4t and i
n + 3

4n �
3c
4t . We

can thus rewrite its pro�ts as

�W
i (PH) =

Z i
n

i
n�

3
4n + 3c

4t

pT
i (x) dx+

Z i
n + 3

4n�
3c
4t

i
n

pT
i (x) dx

+ pB
i (PH)

�
bxi;i+1 � bxi�1;i �

�
3

2n
�

3c
2t

��
� F

which can be rewritten as

�W
i (PH) =

3(cn� t)
8tn2

�
cn� 2t� 2npB

i+1 (PH)� 2npB
i�1 (PH)

�

+ pB
i (PH)

 
n
�
pB
i+1 (PH) + pB

i�1 (PH)� 2pB
i (PH) + 3c

�
� t

2nt

!

� F (A.65)

On the other hand, its rivals’ pro�ts maintain the same form presented before. We

compute FOCs of (A.60) and (A.65) with respect to the basic prices, obtaining

@�W
i (PH)

@pB
i (PH)

= 4pB
i (PH)� pB

i+1 (PH)� pB
i�1 (PH)� 3c+

t
n

= 0

@�W
i+1 (PH)

@pB
i+1 (PH)

= 4pB
i+1 (PH)� pB

i (PH)� pB
i+2 (PH)�

2t
n

= 0

(A.66)

We solve the n-equations system in its matrix form, and obtain

pB�
i (PH) =

�
3c�

t
n

�0

@a0 + an
2

+ 2

n
4�1X

j=1

a2j

1

A+
2t
n

0

@1
2
� a0 � an

2
� 2

n
4�1X

j=1

a2j

1

A

=
1
3

�
3c�

t
n

�
+

1
6

2t
n

= c (A.67)
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pB�
i+1 (PH) = pB�

i�1 (PH) =
�

3c�
t
n

�0

@1
2
� a0 � an

2
� 2

n
4�1X

j=1

a2j

1

A

+
2t
n

0

@a0 + an
2

+ 2

n
4�1X

j=1

a2j

1

A =
1
6

�
3c�

t
n

�
+

1
3

2t
n

=
t

2n
+
c
2

(A.68)

By substituting (A.67) and (A.68) in the pro�ts functions, we obtain

�W�
i (PH) =

9t2 � 6cnt+ 5c2n2

8tn2 � F and �L�
i+1 (PH) =

(t+ cn)2

4tn2 � F

(II) DB’s Pro�ts

Like in the basic model, DB’s pro�ts are equal to the sum of the di�erence in �rms’

pro�ts between winning and losing their auction. When a �rm wins, it obtains di = dH;

when it loses, both its direct rivals obtain the whole dataset. We also recall that, if c � t
n ,

then no �rms would buy data, and the DB’s pro�ts would thus be 0. DB’s pro�ts are

equal to

max
dH

�DB =

8
><

>:

n
2

�
t
n2 + dH

� 2t
3n � c

�
� 7

18td
2
H �

(t+cn)2

4tn2

�
for dH � 3

2n �
3c
2t

n
2

�
9t2�6cnt+5c2n2

8tn2 � (t+cn)2

4tn2

�
for dH > 3

2n �
3c
2t (A.69)

We start from the case where dH � 3
2n �

3c
2t . We can rewrite DB’s pro�ts as

�DB =
3t
8n

+
dHt
3
�
c
4
�
c2n
8t
�

cndH

2
�

7ntd2
H

36
(A.70)

By computing the FOC of (A.70) with respect to dH, we obtain

d�H =
6

7n
�

9c
7t

(A.71)

The number of entering �rms is instead given by equating to 0 �rms’ pro�ts when losing

their auction. Since a losing �rm faces completely informed rivals, we obtain the number

of entering �rms by solving

�L�
i =

(t+ cn)2

4tn2 � F = 0

from which we obtain

n�H =
t

2
p
tF � c

(A.72)

By replacing (A.72) in the inequality c � t
n , we obtain that, if c �

p
tF , no �rm would

buy data and the DB’s pro�ts would be 0. We can rewrite the optimal partition size set
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by the DB, (A.71), as

d�H =
12
p
tF

7t
�

15c
7t

(A.73)

The partition size d�H is greater than 0 only if c < 4
5

p
tF . After this threshold, the DB is

better o� not o�ering data in the auctions she wants to conclude, while still threatening

�rms to sell the whole dataset to their rivals. The reason is the following: when c � 4
5

p
tF ,

�rm i’s pro�ts when winning its auction become monotonically decreasing in dH. The

disutility in using tailored prices is so high that, while tailored prices could still extract

more surplus on individual consumers than the basic prices, the overall e�ect on pro�ts is

negative due to the competition e�ect. As such, the DB is better o� o�ering a partition

of size 0. Thus, when dH � 3
2n �

3c
2t , DB’s pro�ts are

��DB =

8
><

>:

9
p
tF

14 �
39c
28 + 11tF

14(2
p
tF�c) for c < 4

5

p
tF

(
p
tF�c)(3

p
tF�c)

2(2
p
tF�c) for 4

5

p
tF � c <

p
tF

(A.74)

We refer to the �rst part as �clow�
DB , and to the second as �chigh�

DB

We now move to the case where dH > 3
2n �

3c
2t . The number of entering �rms is still

n�H = t
2
p
tF�c

. Thus, we can rewrite DB’s pro�ts as

��DB =
5c2 � 12c

p
tF + 7tF

4
�

2
p
tF � c

� (A.75)

By comparing (A.74) and (A.75), we �nd that DB’s pro�ts are always maximised when

dH � 3
2n �

3c
2t for any 0 � c <

p
tF , t > F > 0. Moreover, DB’s pro�ts are decreasing in

c.

(III) Consumer Surplus and Total Welfare

We start by computing consumer surplus when c < 4
5

p
tF . First, we note that �rms’

basic prices are not in
uenced by the disutility c. Second, as shown in Step (I), �rms

internalise the disutility by subtracting c from their tailored prices. As such, the direct

net e�ect on consumers is 0: while consumers incur it, they are compensated with a

reduced price. As such, the computation of consumer surplus under this scenario is equal

to the one shown in the proof of Proposition 10, and we obtain

CS = u�
5t

4n�H
+

4
9
n�Hd

�2
H t (A.76)
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However, both the number of entering �rms and the amount of data sold depend on c:

by substituting (A.72) and (A.73) in (A.76) we �nd

CSclow = u�
5
4

�
2
p
tF � c

�
+

�
5c� 4

p
tF
�2

98
p
tF � 49c

(A.77)

By computing the FOC with respect to c, we �nd that (A.77) is increasing in c. When
4
5

p
tF � c <

p
tF , at the equilibrium no �rm has data, and the general formula for

consumer surplus is the same as in the standard Salop model: however, the number of

entering �rms is still in
uenced by the DB’s presence and the disutility, as they a�ect

�rms’ willingness to pay for data. Thus, we obtain

CSchigh = u�
5t

4n�H
= u�

5
4

�
2
p
tF � c

�
(A.78)

which is also increasing in c.

Finally, we need to compute total �rms’ pro�ts to assess the e�ect of privacy loss on

total welfare. First, winning �rms are left with zero pro�ts after paying the entry cost

F , as the DB extracts all the extra pro�ts they can make. Thus, total �rms’ pro�ts are

only composed of the pro�ts of �rms that do not obtain data. When c < 4
5

p
tF , the DB

sells partitions of size d�H = 12
p
tF

7t �
15c
7t , and total �rms’ pro�ts are

�clow�
�rms =

n�H
2
�L�
i+1 (PH) =

n�H
2

�
t
n�2H
�

2td�H
3n�H

+
1
9
td�2H � F

�

which we can rewrite as

�clow�
�rms =

t
4
p
tF � 2c

0

B@

�
7
�

2
p
tF � c

�
+
�

5c� 4
p
tF
��2

49t
� F

1

CA (A.79)

On the other hand, when 4
5

p
tF � c <

p
tF , at the equilibrium the DB does not sell

data. Firms’ pro�ts are thus equal to the ones in the standard Salop model, although

the number of entering �rms still depends on the disutility c. We �nd

�chigh�
�rms =

n�H
2

�
t
n�2H
� F

�
=
c2 � 4c

p
tF + 3tF

4
p
tF � 2c

(A.80)

64



We can now compute total welfare. When c < 4
5

p
tF , total welfare is given by the

sum of (A.74), (A.77) and (A.79), obtaining

TW clow =
9
p
tF

14
�

39c
28

+
11tF

14
�

2
p
tF � c

� + u�
5
4

�
2
p
tF � c

�
+

�
5c� 4

p
tF
�2

98
p
tF � 49c

+
t

4
p
tF � 2c

0

B@

�
7
�

2
p
tF � c

�
+
�

5c� 4
p
tF
��2

49t
� F

1

CA

When 4
5

p
tF � c <

p
tF , total welfare is the sum of (A.74), (A.78) and (A.80), obtaining

TW chigh =

�p
tF � c

��
3
p
tF � c

�

2
�

2
p
tF � c

� + u�
5
4

�
2
p
tF � c

�
+
c2 � 4c

p
tF + 3tF

4
p
tF � 2c

By computing the FOC with respect to c under both scenarios, we �nd that total welfare

is always decreasing in c.

XII. Proof of Proposition 12

To analyse the e�ects of decreasing the DB’s bargaining power, we search for the DB’s

equilibrium strategies under the auction without reserve prices (su�x AU) and Take It

Or Leave It (su�x TIOLI) mechanisms. We recall how the sale to all �rms leads to the

same result under all selling mechanisms, so that the results of proofs of Proposition 5,

Proposition 6 and Proposition 8 are still valid under these selling mechanisms. Instead,

we need to solve the model again under the sale to alternating �rms.

(I) Auction Without Reserve Prices

Under the sale to alternating �rms, the partition set sold is P�H= (dH; 0; dH; 0; : : : ; dH; 0).

However, as discussed in Section 2.3, the DB can o�er a partition set PH which is di�er-

ent from P�H, as she can decide to not ful�l some of the auctions she sets up. When the

DB can set reserve prices, she o�ers a partition set PH= (dH; 1; dH; 1; : : : ; dH; 1) and then

only ful�ls the auctions where she o�ers dH; as shown in the proof of Proposition 2. In-

stead suppose that the DB o�ers a generic partition set PH= (dH; d1; dH; d3; : : : ; dH; dn�1).

First, due to the result on model’s symmetry obtained in the proof of Proposition 1, we

can conclude that the DB would set d1 = d3 = : : : = dn�1 = d. Second, since we know

that in equilibrium the DB sells data to half of the �rms, the cardinality of the subset J

of ful�lled auctions is j = n
2 . Without loss of generality, we focus on �rms 0 and 1. If

�rm 0 wins its auction, all other �rms that are o�ered dH win, as they are identical to
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it and have access to the same set of information. On the other hand, if �rm 0 loses, all

the �rms that are o�ered dH lose. The same reasoning can be applied to �rm 1 and the

other �rms that are o�ered d. Thus, �rms’ willingness to pay for data are equal to

�W
0 (dH; 0; dH; 0; : : : ; dH; 0)� �L

0 (0; d; 0; d; : : : ; 0; d)

and

�W
1 (0; d; 0; d; : : : ; 0; d)� �L

1 (dH; 0; dH; 0; : : : ; dH; 0)

We want to show that d = dH in equilibrium. Suppose that d > dH (the opposite case

is solved similarly): then it is straightforward to show that

�W
1 (0; d; 0; d; : : : ; 0; d)� �L

1 (dH; 0; dH; 0; : : : ; dH; 0 >

�W
0 (dH; 0; dH; 0; : : : ; dH; 0)� �L

0 (0; d; 0; d; : : : ; 0; d)

That is, �rm 1’s willingness to pay is higher than �rm 0’s one. Since there are no reserve

prices, �rm 1 can win its auction by o�ering �rm 0’s willingness to pay plus "; where "

is an arbitrary small number. As such, the DB chooses d as low as possible to maximise

�rm 0’s willingness to pay and, in turn, �rm 1’s: that is, she chooses d = dH:

Under AU, the DB o�ers a partition set PH= (dH; dH; dH; dH; : : : ; dH; dH), and the par-

tition set sold in equilibrium is P�H= (dH; 0; dH; 0; : : : ; dH; 0). Since all �rms are symmetric

and are o�ered same-sized partitions, the DB is indi�erent between ful�lling the auctions

of even-indexed or odd-indexed �rms. This change from the auction with reserve prices

(AR) has implications on �rms’ expected pro�ts when they lose their auction. Under

AR, a �rm knew that, if it tried to deviate, the DB would ful�l its direct rivals’ auctions.

On the other hand, under AU, an even-indexed �rm knows that, if it loses its auction,

the DB will ful�l all the odd-indexed �rms’ auctions. Without loss of generality, we can

focus on �rm 0. If �rm 0 wins, its pro�ts are

�W AU
0 (dH; 0; dH; 0; : : : ; dH; 0)

If it loses, they are

�L AU
0 (0; dH; 0; dH; : : : ; 0; dH)

Firm 0’s pro�ts when winning have already been computed in the proof of Proposition

3. We �nd

�W AU�
0 (PH) =

8
><

>:

t
n2 + 2dHt

3n �
7td2

H
18 � F for dH < 3

2n

9t
8n2 � F for dH � 3

2n

(A.81)
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In a similar way, �rm 0’s pro�ts when losing are equal to �rm i+1’s pro�ts derived in the

proof of Proposition 3. We �nd

�L AU�
0 (PH) =

8
><

>:

t
n2 � 2dHt

3n + td2
H

9 � F for dH < 3
2n

t
4n2 � F for dH � 3

2n

(A.82)

Thus, we can compute DB’s pro�ts as

max
dH

�AU
DB =

8
><

>:

n
2

�
t
n2 + 2dHt

3n �
7td2

H
18 � F �

�
t
n2 � 2dHt

3n + td2
H

9 � F
��

for dH < 3
2n

n
2

� 9t
8n2 � F �

� t
4n2 � F

��
for dH � 3

2n

which we can rewrite as

max
dH

�AU
DB =

8
><

>:

dHt(8�3dHn)
12 for dH < 3

2n

7t
16n for dH � 3

2n

(A.83)

When dH < 3
2n , we obtain DB’s pro�ts by equating to 0 the FOC of the �rst part of

(A.83) with respect to dH, obtaining d�H. Since 4t
9n >

7t
16n is always satis�ed, we �nd that

the DB’s equilibrium strategy under the sale to alternating �rms implies d�H = 4
3n .

We now compare the DB’s pro�ts under the sale to all �rms and the sale to alternating

�rms, following the same approach as in the proof of Proposition 9. Under the sale to

alternating �rms, the DB obtains �AU�

DB (PH) = 4t
9n .

Under the sale to all �rms, when n < n̂, the DB obtains �AU�

DB (PA) = t
4n . By

comparing pro�ts with the sale to alternating �rms, we �nd that the DB prefers the

latter.

When n � n̂, DB’s pro�ts are equal to

��DB(PA) =
t
2

(1� 2a1)d�A

where

d�A =
1� 2a1

n (�8a2
0 + a0 (8a1 + 4)� 4a1 + 1)

The DB opts for the sale to alternating �rms if

4
9
>

1
2

(1� 2a1)2

�8a2
0 + a0 (8a1 + 4)� 4a1 + 1

which is always satis�ed for n � 2. To sum up, the DB always opts for the sale to

alternating �rms, regardless of n.
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We now derive the number of entering �rms, which is is given by binding the �rst

part of the piecewise function (A.82), so that

t
n2 �

2d�Ht
3n

+
td�H

2

9
� F = 0 (A.84)

Solving (A.84) with respect to n gives us

n�H =
9
p
tF � 3d�Ht

9F � td�H
2 =

5
9

r
t
F

(A.85)

leading to DB’s pro�ts being

�AU�
DB =

4
5
p
tF

To compute consumer surplus, we can use the general formula for the sale to altern-

ating �rms provided in the proof of Proposition 10. In our case, we obtain

CSAU = u�
5t

4n�H
+
n�Htd�2H

9
(A.86)

where d�H = 4
3n�

H
and n�H = 5

9

q
t
F . By replacing these values, we can rewrite (A.86) as

CSAU = u�
341
180
p
tF

(II) Take It Or Leave It O�ers

Under TIOLI, the DB cannot o�er a partition set di�erent from the one that results

in equilibrium, as she has to ful�l all the o�ers she makes if �rms are willing to pay

the corresponding price. In the proof of Proposition 1, we concluded that the DB o�ers

same-sized partitions to every other �rm, i.e., P =
�
ed; bd; ed; : : : ; bd

�
. We proved that ed

and bd could not be di�erent: however, our demonstration did not rule out the corner

solution where either ed or bd were equal to 0. This is because, under both AU and AR,

�rms that at the equilibrium do not obtain data could have had data o�ered to them in

auctions that the DB did not ful�l, and these o�ers in
uence �rms’ willingness to pay.

This is not the case under TIOLI. As already shown in the proofs of Proposition 3 and 5,

�rms are always better o� when they obtain data. As such, under this mechanism, only

those �rms to which the DB does not o�er data will have no data at the equilibrium.

Thus, under TIOLI, the analysis shown in the proof of Proposition 1 allows us to also

discard the corner solution, leaving only the sale to all �rms as a viable strategy. As

already derived in the proof of Proposition 8, the DB’s strategy depends on the number

of entering �rms.
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If n < n̂, the DB o�ers the whole dataset to all �rms. The number of entering �rms

is n�A = 1
2

q
t
F , and her pro�ts are

�TIOLI�
DB =

1
2
p
tF

Regarding consumer surplus, we �rst note that all �rms set basic prices equal to 0, as

they identify all the consumers they serve. As such, indi�erent consumers are located at

the centre of each arch, which is split in two identical halves. We can thus write consumer

surplus as

CSTIOLI = 2n�A

0

@
Z 2i+1

2n�
A

i
n�

A

v � pT�
i (x)� t

�
x�

i
n�A

�
dx

1

A (A.87)

where

pT
i (x) = �2tx+

t
n�A

(2i+ 1) (A.88)

By substituting (A.88) in (A.87) and solving, we obtain

CSTIOLI = u�
3t

4n�A
= u�

3
2
p
tF

Instead, when n � n̂, the DB sets

d�A =
1� 2a1

n (�8a2
0 + a0 (8a1 + 4)� 4a1 + 1)

In the proof of Proposition 8, we have approximated the number of entering �rms as

n�A �
r

t
F

4096
�
1644
p

3� 2915
� F
t + 243

�
1708
p

3� 3091
�q t

F

8
�
1644
p

3� 2915
� �

512Ft + 81
q

t
F

�

DB’s pro�ts are equal to

�TIOLI
DB =

t
2

(1� 2a1)d�A

Note how all �rms o�er equal basic prices and have equal market shares. As such, we

can compute consumer surplus as that gained on an arch between a �rm’s location and

its closest indi�erent consumer, multiplied by 2n�A. We can thus write

CS = 2n�A

0

@
Z i

n +
d�

A
2

i
n

v � pT�
i;i+1(x)� t

�
x�

i
n

�
dx+

Z bxi;i+1

i
n +

d�
A
2

v � pB�
i (PA)� t

�
x�

i
n

�
dx

!

(A.89)

Under the sale to all �rms, �rm i’s basic price is pB�
i (PA) = t

n�
A
� td�A, the indi�erent

consumer is located in bxi;i+1 = i
n�

A
+ 1

2n�
A

and �rm i’s tailored price is pT�
i;i+1(x) = pB�

i+1 �
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2tx + t
n�

A
(2i + 1). By replacing these values in (A.89), we can rewrite consumer surplus

as

CS = v �
5t

4n�A
+ 2n�Atd

�
A

2

As we can see, consumer surplus is increasing in n�A: thus, our overestimation of the

number of entering �rms in (A.48) is an upper bound on consumer surplus. To properly

compare results, we do a second approximation by underestimating A(n): this in turn

underestimates the number of entering �rms, and gives us a lower bound on consumer

surplus. We �nd that

A(n) �
1
n3 +

53
100

(A.90)

always underestimates A(n). Through the Newton-Raphson approximation method, we

�nd that the lower bound for the number of entering �rms is

n�A low �
102400Ft + 11799

q
t
F

200
�

512
t
F

3
2

+ 81
� (A.91)

By comparing DB’s pro�ts, consumer surplus and the quantity of data sold under

the di�erent selling mechanisms, we conclude that the �rst decreases while the others

increase, as the DB’s bargaining power is lowered. Moreover, consumer surplus is higher

than in the benchmark only under TIOLI when n � n̂, even when underestimating n as

in (A.91), while it is lower in all the other scenarios.

XIII. Proof of Proposition 13

This proof is organised in �ve parts. First, we assess the sale to all �rms, as its

outcomes do not vary when changing the selling mechanism. Then, we individually

assess the DB’s strategy in equilibrium under the three selling mechanisms: auctions

with reserve prices (AR), auctions without reserve prices (AU) and Take It Or Leave It

o�ers (TIOLI). Finally, we compare our �ndings. We recall that, since the DB anticipates

the e�ect of her data sale on �rm entry, the DB �rst anticipates the number of entering

�rms with respect to her strategy, and then she chooses the amount of data she sells so

as to maximise her pro�ts. Moreover, the number of entering �rms is given by posing

�rms’ pro�ts after paying for entry and data equal to 0.

(I) Sale to All Firms

The proof for the sale to all �rms proceeds in two steps. First, we show that the
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DB either sets dA < d1 or dA � 3
2n , where d1 = 1

2n( 1
2 +a1�a2) . Then, we show that she

maximises her pro�ts by setting dA � 3
2n .

(I.1) The DB Either Sets dA < d1 or dA � 3
2n

By using the expressions for �W�
i (PA) and �L�

i (PA) obtained in the proof of Propos-

ition 5 and 6, we can express the DB’s constrained maximisation problem as

max
dA

�DB =

8
>>>>>>>><

>>>>>>>>:

n
�

t
n2 �

td2
A

2 �
� t
n � tdA + 2tdAao

� �
2dA (a1 � a0) + 1

n

��
for dA < d1

n
�

t
n2 �

td2
A

2 �
t(ndA�4)2

25n2

�
for d1 � dA < 1

n

n
�

t
2n2 � t(ndA�4)2

25n2

�
for 1

n � dA < 3
2n

n
� t

2n2 � t
4n2

�
for dA � 3

2n

subject to the following constraint:

s.t.

8
>>>><

>>>>:

� t
n � tdA + 2tdAao

� �
2dA (a1 � a0) + 1

n

�
� F � 0 for dA < d1

t(ndA�4)2

25n2 � F � 0 for d1 � dA < 3
2n

t
4n2 � F � 0 for dA � 3

2n

where the constraint is equal to �rms’ pro�ts after paying for the entry cost and data.

We focus on the second, third and fourth part of the DB’s pro�ts function: in particular,

we want to show that, if the DB sets dA � d1, then she sets dA � 3
2n . To do so, we

�rst note from Figure 1 how the constraint regarding entering �rms is decreasing in dA,

and it becomes �xed for dA � 3
2n . Moreover, DB’s pro�ts are inversely proportional to

the number of entering �rms, while they are directly proportional to �rms’ willingness

to pay for data. Thus, if a given dA grants a higher willingness to pay by �rms and a

smaller number of entering �rms than another one, then the former strategy dominates

the latter.

The number of entering �rms is minimised when dA � 3
2n . As such, strategies where

d1 � dA < 1
n or 1

n � dA < 3
2n can only be optimal if they allow the DB to extract more

surplus from individual �rms than the strategy where dA � 3
2n .

Suppose that the number of entering �rms n is given: we can rewrite DB’s pro�ts

when d1 � dA < 1
n as

�DB

�
d1 � dA <

1
n

�
=

9t
25n

+
8dAt
25
�

27d2
Atn

50

Which is a downward facing parabolic function with its maximum in dA = 8
27n . Since

8
27n < d1 8 n, we �nd that this function is decreasing in dA over its domain. As such, if
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the DB sets d1 � dA < 1
n , she opts for d�A = d1 = 1

2n( 1
2 +a1�a2) . On the other hand, when

the DB sets dA � 3
2n , her pro�ts are

�DB

�
dA �

3
2n

�
=

t
4n

We want to show that

�DB

�
dA �

3
2n

�
> �DB (d1) 8 n

We can rewrite the inequality as

1 >
36
25

+
32nd1

25
�

108d2
1n2

50
(A.92)

The right-hand side of (A.92) is monotonically increasing in n, and

lim
n!1

36
25

+
32nd1

25
�

108d2
1n2

50
� 0:85 < 1

Thus, we can conclude that the DB would opt for dA � 3
2n instead of d1 � dA < 1

n , as

it allows her to better extract surplus from �rms and to further hinder their entry. We

can apply the same reasoning for the case where 1
n � dA < 3

2n . From Figure 1 we can see

how �rms’ pro�ts when winning are the same when 1
n � dA < 3

2n or when dA � 3
2n , while

their pro�ts when they lose are minimised when dA � 3
2n . Thus, setting dA � 3

2n enables

the DB to extract more surplus from �rms. Since this amount of data also minimises the

number of entering �rms, we can conclude that the set of strategies where 1
n � dA < 3

2n

is also dominated by setting dA � 3
2n . By putting together the two results, we conclude

that if the DB sets dA � d1, then she opts for dA � 3
2n .

(I.2) DB’s Pro�ts Are Maximised When Setting dA � 3
2n

For simplicity, we refer to the DB setting dA � 3
2n as dhigh, while we refer to the DB

setting dA < d1 as dlow. When the DB sets dA � 3
2n , she maximises

�DB(PA
dhigh) =

t
4n

(A.93)

under the constraint

�iL(PA
dhigh) =

t
4n2 � F � 0 (A.94)

Firms enter as long as (A.94) holds. By binding the constraint { i.e., setting �iL(PA
dhigh) =

0 { we obtain

n�dhigh
=

1
2

r
t
F

(A.95)

By replacing (A.95) in (A.93) we obtain

�DB(PA
dhigh) =

1
2
p
tF (A.96)
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The DB maximises

�DB(PA
dlow) = n

�
t
n2 � td

2
low �

�
t
n
� tdlow + tdlowao

�
�
�

2dlow (a1 � a0) +
1
n

��

which can be rewritten as

�DB(PA
dlow) = t

�
dlow (1� 2a1)� n

d2
low

2
(1 + 4 (1� 2a0) (a0 � a1))

�
(A.97)

under the constraint

�iL(PA
dlow) =

�
t
n
� tdlow + 2tdlowao

��
2dlow (a1 � a0) +

1
n

�
� F � 0 (A.98)

We want to show that

�DB(PA
dlow) < �DB(PA

dhigh) (A.99)

for all relevant values of dlow; t and F . In particular, we recall that 0 � dlow < 1
n , t > 0,

F > 0, t > F . The last condition is needed so that at least one �rm enters the market

(as such, n � 1). It is useful to express F
t = k, with 0 < k < 1. We can rewrite (A.99) as

2dlow (1� 2a1)� nd2
low (1 + 4 (1� 2a0) (a0 � a1)) <

p
k (A.100)

To solve (A.100), we bind the constraint (A.98), �nd the number of entering �rms and

replace it in (A.97). However, we recall that a0 and a1 are exponential functions in n,

and as such they heavily complicate this process. To �nd an explicit solution, we operate

a series of round ups on the left-hand side of (A.100). By showing that the left side

is smaller than the right side even after the round ups, we prove that also the original

inequality holds.

First, we compute the number of entering �rms when d = dlow. Since �rms enter as

long as their outside option is no lower than 0, the number of entering �rms is given by

binding the constraint (A.98):

�iL(PA
dlow) =

�
t
n
� tdlow + 2tdlowao

��
2dlow (a1 � a0) +

1
n

�
� F = 0 (A.101)

By replacing the explicit forms of a0 and a1 in (A.101), we can rewrite it as

1
n2 �

2dlowp
3n
f(n) +

1
3
d2

lowf(n)2 �
F
t

= 0 (A.102)

where

f(n) =
�p

3� 1
� �

2 +
p

3
�n

+
�
1 +
p

3
� �

2�
p

3
�n
� 2
p

3
�
2 +
p

3
�n

+
�
2�
p

3
�n
� 2

(A.103)

Our objective would be to solve (A.102) with respect to n, to obtain n(dlow). However,

(A.102) depends on n both linearly and exponentially, which increases the complexity of

�nding an explicit form of n(d). On the other hand, the equality is a second-order
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polynomial in dlow: as such, we can easily obtain d(n). By solving (A.102) with respect

to d we obtain

d�1(n) =

p
3
�
n
p
k + 1

�

nf(n)
and d�2(n) = �

p
3
�

1� n
p
k
�

nf(n)
(A.104)

where k = F
t . From Salop (1979) we know that, if a DB is absent, the number of

entering �rms is n =
q

t
F . As such, our solution must satisfy dlow

�q
t
F

�
= 0, which

gives us dlow = d�2(n). Having found dlow(n), we need to invert the function to obtain

n(dlow). However, the presence of the exponential function f(n) still poses problems

when searching for an explicit solution. As such, we round f(n) to �nd an explicit

form of n(dlow). We recall that we want to round up �DB(PA
dlow), which is inversely

proportional to n. As such, we need to round down n(dlow), which requires rounding up

f(n). Through a study of the function, we �nd that 0:61971:0489n�1:0566
0:7806n�0:4757 is always higher

than f(n) 8 n � 1, while it closely approximates its trend. As such, we approximate

(A.103) as

f(n) � 0:6197 �
1:0489n� 1:0566
0:7806n� 0:4757

(A.105)

Replacing (A.105) in the correct solution from (A.104), we obtain

dlow(n) = �

p
3
�

1� n
p
k
�

(0:7806n� 0:4757)

n � 0:6197(1:0489n� 1:0566)
(A.106)

We can now replace (A.106) in (A.102), obtaining

n2
�

0:6197 + 1:0489dlow + 0:7806
p

3k
�

� n
�

0:6197 � 1:0566dlow + 0:7806
p

3 + 0:4757
p

3k
�

+ 0:4757
p

3 = 0

Being a second-order polynomial in n, we �nd two explicit solutions:

n (dlow) =
0:66dlow + 0:4757

p
3k + 0:7806

p
3

1:3d+ 1:56
p

3k

�
1:31

r
�0:277

p
3
�

2:6dlow + 3:12
p

3k
�

+
�

0:5dlow + 0:363
p

3k � 0:597
p

3
�2

2:6dlow + 1:56
p

3k

Since we know that n(0) =
q

t
F =

q
1
k , we can conclude that the correct solution is the

one with the plus sign.

We have obtained n (dlow) rounded down, which in turn rounds up �DB(PA
dlow). Next,

we aim to round the exponential terms present in the left side of (A.100) to increase it.

We �rst focus on (1� 2a1). This function is monotonically increasing in n, and its limit
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is

lim
n!1

(1� 2a1) = 2�
2
p

3
The term (1� 2a1) has a positive e�ect on the left side of (A.100); as such, by rounding

up (1� 2a1) we are also rounding up the left side of (A.100). Thus, we approximate

(1� 2a1) � 2�
2
p

3
(A.107)

Next, we focus on (1 + 4 (1� 2a0) (a0 � a1)) : This function is monotonically increasing in

n, and has a negative e�ect on the left side of (A.100); since we want to round up that side,

we need to round down (1 + 4 (1� 2a0) (a0 � a1)). Through a study of the function, we

�nd that the function 1:368n�1
8n+2 is always lower than (1 + 4 (1� 2a0) (a0 � a1)) 8 n � 1,

while it closely approximates its trend. As such, we approximate

(1 + 4 (1� 2a0) (a0 � a1)) � 1:36
8n� 1
8n+ 2

(A.108)

By replacing (A.107) and (A.108) in (A.100) and setting n = n (dlow) we obtain
�

2�
2
p

3

�
2dlow � n (dlow) d2

low

�
1:36

8n (dlow)� 1
8n (dlow) + 2

�
�
p
k < 0 (A.109)

The inequality (A.109) only depends on dlow and k, with 0 < dlow < 1
n(dlow) , and

0 < k < 1. As such, we can plot the left-hand function for all the proper couples (dlow; k).

As we can see in Figure A.1, the inequality always holds: thus, the DB’s strategy is the

same as the one adopted in the basic model when n < n̂: the DB sets dA � 3
2n�

A
with

n�A = 1
2

q
t
F , obtaining �DB(PA

dhigh) = 1
2

p
tF , while consumer surplus is equal to

CS = u�
3t

4n�A
= u�

3
2
p
tF
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