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The dissociation rate (koff) associated with ligand unbinding events from proteins is a
parameter of fundamental importance in drug design. Here we review recent major
advancements in molecular simulation methodologies for the prediction of koff. Next,
we discuss the impact of the potential energy function models on the accuracy of
calculated koff values. Finally, we provide a perspective from high-performance
computing and machine learning which might help improve such predictions.

Keywords: kinetics, drug discovery, QM/MM, parallel computing, machine learning, enhanced sampling, molecular
dynamics

1 INTRODUCTION

The kinetics of drugs unbinding from proteins is an important parameter for the drugs’ efficacy. (Pan
et al., 2013; Copeland, 2021). Indeed, the drug-target residence time (Copeland, Pompliano and
Meek, 2006) defined as the inverse of the dissociation rate koff, has emerged as an effective surrogate
measure of in vivo target occupancy, and it has been shown to correlate with clinical efficacy (Guo
et al., 2012; Lee et al., 2019; Van Der Velden et al., 2020) along with other factors (e.g., association
rates (Folmer, 2018; Lee et al., 2019) and target saturation (deWitte et al., 2018)). Residence time has
been related not only to long-lasting pharmacodynamics but also to the reduced toxicity of specific
inhibitors (Vauquelin et al., 2012).

Experimental approaches (most often combined with computations) measure ligand affinities and
provide ligand binding poses for structure-based drug design campaigns (Durrant and McCammon,
2011; De Vivo et al., 2016; Proudfoot et al., 2017; Emwas et al., 2020; Mazzorana et al., 2020). They
routinely also measure koff values (Pollard, 2010). However, they cannot usually access the structural
determinants of the transition states associated with ligand unbinding. This information would be
crucial to eventually design ligands with longer residence times. In contrast, all-atom molecular
simulations (in particular molecular dynamics (MD)) can provide a detailed map of protein-ligand
interactions and the atomic rearrangements that drive ligand unbinding. However, the residence time
of tight binders can be as long as several hours (Li et al., 2014), much longer than the timescales reached
by plain MD (milliseconds on dedicated, specialized machines) (Pan et al., 2019; Shaw et al., 2021).
Thus, koff predictions based on such a straightforward approach so far have been few in number (Pan
et al., 2017) or limited to model systems (Tang and Chang, 2018).
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Enhanced sampling is a more general approach to the
estimation of koff, regardless of the timescale of the unbinding
event. One group of methods (including metadynamics, Gaussian
Accelerated MD, scaled MD, and dissipation-corrected targeted
MD) employs biasing potentials designed to reduce the free
energy barrier determining the frequency of dissociations.
Because the bias affects the dynamics, correction terms are
required to recover the unbiased koff from the biased rates. A
second group is represented by path sampling approaches such as
weighted ensemble andmilestoning. These rigorously generate an
ensemble of trajectories by iteratively restarting the (unbiased)
simulations from selected configurations (typically closer to the
transition state than expected from the equilibrium distribution)
with the aim of increasing the likelihood of observing
dissociations. Finally, Markov state models (MSMs) can
provide a complete picture of the metastable states of the
system and transition rates between them by analyzing
molecular simulation data.

In this review, we summarize principles and applications of
the three approaches outlined above (Sections 2–4). Next, we
discuss the impact of force fields on the accuracy of the
calculations (Section 5). Finally, we provide a perspective on
how machine learning, along with exascale computing, could
constitute one way to address these challenges (Section 6).

1.1 Scope
Many methods have been developed for the calculation of rate
constants in biomolecular simulations. Here, we review
methodologies that have been applied to the calculation of
binding dissociation rates (koff) of protein-ligand complexes
with a focus on the effect of the potential energy function. In
particular, for the sake of conciseness, we do not cover methods
that have been applied only to other types of systems/problems
(e.g., supramolecular host-guest dissociations, peptide folding
rates) and methods that enable relative comparisons of koff
between different ligands.1 For these methods, we refer the
reader to the other excellent resources on the topic (Chong
et al., 2017; Bruce et al., 2018; Nunes-Alves et al., 2020).

2 BIASED MD METHODS

In this class of methods, the system is biased (by adding a
potential term to the Hamiltonian, or adding external forces)
to favor the observation of unbinding events. The bias is designed
to enhance the exploration along low-dimensional collective
variables (CV), which are represented as differentiable

functions s(x) of the atomic coordinates x. These describe the
slow degrees of freedom governing the unbinding process. The
CV must be able to distinguish the metastable states involved in
the process i.e., configurations in different states should
correspond to different values of the CV. The identification of
optimal CVs (whenever they are not intrinsic in the technique) is
a complicated task, and their identification is at the center of a
heated debate that is still open (Sittel and Stock, 2018). Because
biasing terms alter the dynamics, methods which recover the
kinetic parameters of the unbiased system from its free energy
surface have been devised. The majority of biased methods adopt
specific corrections based on Kramers’ rate theory

kAB � ωAκA
Zp

ZA
(1)

where kAB is the rate of transition from state A to B (in this case
the bound and unbound states),ωA is typically associated with the
curvature of the free energy surface, κA is the transmission
coefficient, and Zp and ZA are the configurational partition
functions of the transition state and state A, respectively.
These methods require the identification of the transition state
ensemble, defined as the set of conformations of highest free
energy along the (un)binding pathway. This is in general a
challenging task for drug binding processes, which can involve
multiple dissociation pathways due to the conformational
flexibility of the protein (Plattner and Noé, 2015). Approaches
of this kind have been developed for Gaussian accelerated
molecular dynamics (Miao et al., 2020) (see Section 2.1),
dissipation-corrected Targeted Molecular Dynamics (Wolf and
Stock, 2018) (see Section 2.2), and τ-random acceleration
molecular dynamics (Kokh et al., 2018) (see Section 2.3)2. If
no bias is deposited on the region of the transition state(s), the
kinetic correction can be assumed not to depend on κA and Zp

(Voter and Doll, 1985; Hänggi et al., 1990; Truhlar et al., 1996).
This simplifies dramatically the rate estimation, and it is used for
ligand unbinding in the kinetics-oriented flavors of
metadynamics (Tiwary and Parrinello, 2013; Wang et al.,
2018) (see Section 2.4).

2.1 Ligand Gaussian Accelerated MD
2.1.1 Basic principles
In this approach (Miao, 2018), two harmonic potentials are added
to the non-bonded component of the potential energy so as to
lower the binding/unbinding free energy barrier (Figure 1).
These potentials act on the following CVs: 1) the ligand-
environment potential energy and (optionally) 2) the rest of
the system potential energy. Both biasing potentials are capped
at user-defined thresholds. Computing the correction to recover
the unbiased transition rate requires the estimation of the
potential of mean force (PMF) profile and free energy barrier
as a function of a separate CV describing the binding process e.g.,
a distance between ligand and protein atoms (Miao, 2018). In the

1These techniques include, among others, scaled MD (Sinko et al., 2013; Bernetti
et al., 2018), steered MD (Paci and Karplus, 2000; Potterton et al., 2019; Spiriti and
Wong, 2021), targeted MD (Schlitter et al., 1994; Wolf et al., 2019), GAMBES
(Debnath and Parrinello, 2020) path-reweighting methods (Chodera et al., 2011;
Donati et al., 2017; Kieninger and Keller, 2021) metadynamics of paths (Mandelli
et al., 2020) and many transition path sampling-derived methods (Pratt, 1986;
Dellago et al., 1998; Van Erp et al., 2003). A brief review of some of these methods
(namely scaled MD, targeted MD and GAMBES) is given in the supplementary
material.

2A Kramers’ rate theory correction has been developed for scaled MD as well but it
has not been applied to the calculation of full dissociation rates (see
Supplementary Material S3.3).
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closely related Pep-GaMD method, developed specifically for
simulating peptides unbinding from their target protein, the
harmonic “boost” potentials are applied to the total potential
(both non-bonded and bonded components) along the CVs
(Wang and Miao, 2020). The application of the additional
boost potential to the bonded component of the peptide
potential energy accelerates the sampling of its conformational
flexibility.

2.1.2 Applications
So far, the approach has been successfully applied to the ligand
benzamidine targeting the trypsin enzyme (Miao, Bhattarai and
Wang, 2020), using the AMBER14SB (Maier et al., 2015) and
GAFF (Wang et al., 2004) force-fields. The calculated koff = 3.53 ±
1.41 s−1 was two orders of magnitude smaller than the
experimental value of 600 ± 300 s−1 (Guillian and Thusias,
1970). The simulations required a cumulative 5 μs of MD for
the estimation of koff. Pep-GaMD has been used to investigate the
un/binding of three model peptides that target the SH3
domain—one of which (PDB:1CKB) has an experimentally
determined koff available for comparison to the computed
value. Employing the AMBER14SB (Maier et al., 2015) force
field and an aggregate simulation time of 3 μs, a koff of 1.45 ± 1.17 ·
103 s−1 was computed for 1CKB; a result that is in close agreement
with the experimental value of 8.9 · 103 s−1 (Xue et al., 2014).

2.2 Dissipation-Corrected Targeted
Molecular Dynamics (dcTMD)
2.2.1 Basic principles
This method (Wolf and Stock, 2018) assumes that unbinding
processes (along with binding processes) can be described by the
1-dimensional Langevin dynamics of a suitable CV. The
approach requires the determination of the free energy profile
and the Langevin friction coefficient as a function of such a CV.

These can be calculated from a nonequilibrium targeted
molecular dynamics simulation (Schlitter et al., 1994) (see
Supplementary Material S4), where a pulling force drives the
system at a constant speed along the CV. Dissociation rates could
then be obtained by performing the unbiased 1-dimensional
Langevin dynamics simulations (Wolf and Stock, 2018).
Despite the simplification, the timescales of ligand unbinding
processes at room temperature still lead to prohibitively
expensive simulations. To tackle this problem, the authors
later introduced an approach that uses Kramers’ theory to
correct the rates obtained from Langevin simulations
performed at higher temperatures. (Wolf et al., 2020).

2.2.2 Applications
Themethod has been successfully applied to the calculation of koff
of the trypsin-benzamidine complex, and the complex between a
resorcinol scaffold-based inhibitor and the HSP90 protein. The
calculated values 270 ± 40 s−1 and 1.6 ± 0.2 · 10–3 s−1 respectively,
agree well with the experimental values of 600 ± 300 s−1 (Guillian
and Thusias, 1970) and 3.4 ± 0.2 · 10–2 s−1 (Amaral et al., 2017)
These predictions required an aggregate of ~ 1.5 × 104 ms of
Langevin simulations and used the AMBER99SB* force-field
(Best and Hummer, 2009).

2.3 τRAMD
2.3.1 Basic principles
The τ-random acceleration molecular dynamics (τRAMD) (Kokh
et al., 2018) protocol is a quasi-biased method that evolved from
random acceleration molecular dynamics (RAMD) (Lüdemann
et al., 2000). τRAMD simulations of ligand-protein systems
proceed similarly to standard MD simulations, without the
need for any prior parameter fitting, characterization of CVs
or binding pathways. The user specifies the magnitude of a
randomly oriented force that is applied to the ligand to
accelerate its dissociation from the binding pocket at each

FIGURE 1 | Schematic of a LiGaMD Simulation. The LiGaMD potential (ΔUboost) acts when the potential energy of a protein-ligand complex (black line) is below a
predefined threshold (dashed line), adding a harmonic potential to raise the energy of the system (cyan line) and favor the exploration of the conformational space of the
ligand-protein complex.
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checkpoint, allowing for the observation of dissociation pathways
within several nanoseconds of simulation time. The magnitude of
the force dictates the duration of simulation time that is required
and is reported to have a minimal effect on the accuracy of
computed residence times. The direction of the force is reassigned
after each checkpoint until the ligand COM moves past a certain
distance threshold from its previous position. If the deviation of
the ligand COM meets or exceeds this threshold after the force is
applied, the direction of the force is retained until the following
checkpoint. An ensemble of unbinding simulations is spawned
from different starting configurations and velocities, and the
ensemble-averaged residence time is calculated from the
bootstrapped distribution of the time taken for dissociation
to occur.

2.3.2 Applications
The earliest applications of τRAMD for unbinding kinetics
focused on qualitatively ranking ligands according to their
computed koff values (see Supplementary Material S5) (Kokh
et al., 2018, 2019, 2020). Recently, the first quantitative τRAMD
application was demonstrated by Maximova and co-workers
(Maximova et al., 2021), who formulated a Kramers’ rate
theory-based rescaling factor to correct for the influence of the
applied force on the receptor-ligand coupling (which previously
limited the method to qualitative ranking) to obtain a quantitative
koff estimate for the drug Isoniazid unbinding from the catalase
enzyme. Using seven trajectories (with applied forces of different

magnitudes), and the CHARMM36 forcefield (Best et al., 2012), a
koff of 2.8 ± 3.7 · 10–2 s−1 was computed—a result which agreed
very well with the experimental equivalent of 2.0 ± 0.3 · 10–2
(Singh et al., 2008).

2.4 Metadynamics-Derived Methods
2.4.1 Basic principles
Well-tempered Metadynamics (MetaD) (Laio and Parrinello,
2002) is an exact free-energy method (Barducci et al., 2008;
Dama et al., 2014). It draws inspiration from earlier CV-based
enhanced sampling techniques such as local elevation (Huber
et al., 1994), Wang-Landau (Wang and Landau, 2001),
conformational flooding (Grubmüller, 1995), and adaptive
umbrella sampling techniques (Hooft et al., 1992; Bartels and
Karplus, 1997). In MetaD, a history-dependent bias potential
Bt(s) is built iteratively by adding Gaussian functions (as
approximations of CV histograms) to the potential at regular
intervals throughout the simulations. Several different bias-
deposition schemes have been devised (Bussi and Laio, 2020).
Ultimately, convergence is achieved when the sum of the free
energy surface and the bias potential produces a flat landscape
that results in diffusive dynamics in CV space (see Figure 2). It is
then possible to compute the free energy surface along the CV via
reweighting methods, such as Weighted Histogram Analysis
Method (WHAM) (Kumar et al., 1992), Multistate Bennet
Acceptance Ratio (MBAR) (Shirts and Chodera, 2008), or
other estimators (Tiwary and Parrinello, 2015; Schäfer and
Settanni, 2020).

MetaD has been extended to allow recovery of the kinetics of
the unbiased ensemble. The method speeds up the calculation of
kinetic rates by filling up the starting free energy basin so as to
reduce the activation free energy barrier to ~ kBT. This way, the
biased residence time of the system in the initial state is small
enough to allow multiple observations of the transition.
Transition times obtained in the biased ensemble are then
scaled to recover the unbiased kinetics. Following the
approaches of Grubmüller (Conformational flooding
(Grubmüller, 1995)) and Voter (Hyperdynamics (Voter,
1997)) the unbiased transition time is connected to the biased
time by:

tunbiased � α tbiased

� ∑
tbiased

t�0
exp(βBt(s(t)))Δt (2)

where β =(kBT)
−1, Bt(s) is the history-dependent bias potential,

and Δt is the time step. For this last equation to be valid, no bias
should be present on the transition state. In the so-called
infrequent MetaD variant (Tiwary and Parrinello, 2013), the
Gaussians are deposited less frequently in barrier regions than
they are in standard MetaD, thus lowering the probability of
adding bias to the transition state. In frequency-adaptive (FA)
MetaD (Wang et al., 2018), the time interval between bias
depositions is gradually increased as the system approaches
the transition state. After an initial fast filling of the free
energy minimum, the same deposition rate as infrequent
MetaD is achieved. This way, results are obtained at a lower

FIGURE 2 | Schematic of a Metadynamics Simulation. On the CV-
projected FES (red line), MetaD deposits a series of gaussians that sum up
(from dark blue to white) until the system becomes diffusive in the CV space.
This approach can be exploited to reduce the barrier height to have a
reasonable transition time and reweight it a posteriori for an estimation of the
kinetic constants (see Text).
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computational cost compared to standard infrequent MetaD.
Recently, an alternative method to infrequent and frequency-
adapted MetaD has been presented. (Ansari et al., 2022) This
method builds on a variant of MetaD called on-the-fly probability
enhanced sampling (OPES). (Invernizzi and Parrinello, 2020) In
the new approach, called OPES-flooding, the bias is constructed
in a fast but controlled manner to fill the starting metastable basin
up to a user-defined threshold value to automatically avoid
depositing bias on the transition state. Usually, the standard
protocol adopted in infrequent, FA-MetaD and OPES-flooding
consists of running multiple independent simulations that yield
an empirical distribution of residence times. A statistical analysis
based on the Kolmogorov-Smirnov (KS) test (Salvalaglio et al.,
2014), details in Supplementary Material S1) is then used to
verify a posteriori that the transition state was indeed untainted.

2.4.2 Applications
Infrequent MetaD simulations based on the OPLS force-field
(Kaminski et al., 2001) were used to study the unbinding of the
ligand dasatinib from its target c-Src kinase (Tiwary et al., 2017).
The CVs were the distance between the ligand and the binding
pocket and the solvation state of the binding pocket. The
calculated koff of 4.8 ± 2.4 ·10–2 s−1 of dasatinib to c-Src
obtained from 12 unbinding trajectories agreed well with an
experimental value (5.6 · 10–2 s−1, measured indirectly from kon)
published by (Shan et al., 2009), but differed from a second value
obtained for a fluorophore-tagged analogue (1.8 · 10–4 to 7.9 ·
10–4 s−1) (Kwarcinski et al., 2016). A similar protocol was used to
calculate koff for 1-(3-(tert-butyl)-1-(p-tolyl)-1H-pyrazol-5-yl)
urea), an inhibitor of p38 MAP II kinase belonging to the
BIRB-796 family, this time using AMBER99SB-ILDN (Hornak
et al., 2006; Lindorff-Larsen et al., 2010) and GAFF force-fields
(Wang et al., 2004; Wang J. et al., 2006). After 17 independent
unbinding events, the calculated koff (0.020 ± 0.011 s−1

(Casasnovas et al., 2017)) was almost one order of magnitude

lower than the experimental value of 0.14 s−1 (Regan et al., 2003).
Two other CVs yielded very similar results simulating 10
unbinding events each, suggesting that the discrepancy
between the calculated and experimental values most likely
arises from uncertainty in the force field rather than the
choice of CVs.

FA-MetaD and Infrequent MetaD were used by Wang and
co-authors (Wang et al., 2018) to obtain koff values for benzene
and indole ligands from the binding pocket of the L99A
mutant of T4 lysozyme using CHARMM22 (MacKerell
et al., 1998; MacKerell et al., 2004) and CGenFF
(Vanommeslaeghe et al., 2011). The calculated koff for
benzene lay within the range of 4–10 s−1, around 100-fold
lower than the experimental value of 950 ± 20 s−1 (Feher et al.,
1996). Both MetaD protocols used the same force-field, sample
size (20 replicas), and path-CVs (Branduardi et al., 2007; Wang
et al., 2017). CHARMM36-based (Best et al., 2012) infrequent
MetaD simulations (Mondal et al., 2018) yielded a koff for
benzene (270 ± 100 s−1) that was considerably closer to the
experimental value. Although only the displacement between
binding pocket and ligand centers-of-mass was used as the CV,
and the sample size was smaller than that of the previous study
by Wang et al, it is tempting to conclude that even a different
version of the same force-field (CHARMM in this case) may
significantly impact the result.

More recently, AMBER14SB-based (Maier et al., 2015) FA-
MetaD simulations were applied to study the unbinding kinetics
of a radioligand, iperoxo, from the M2 human muscarinic
acetylcholine receptor (Capelli et al., 2020). The calculated koff
(3.7 ± 0.7 · 10−4 s−1) was two orders of magnitude smaller than the
experimental value (1.0 ± 0.2 · 10−2 s−1). Density Functional
Theory (DFT)-based QM/MM calculations suggested that this
estimation discrepancy may be ascribed, at least in part, to the
lack of polarization and charge transfer effects lacking in standard
biomolecular force fields (Capelli et al., 2020).

FIGURE 3 | Simplified schematic depiction of the MSM construction pipeline. (A) Several continuous MD trajectories are simulated in parallel. (B) The trajectories
are discretized. (C) A reversible transition probability matrix is calculated from a matrix of state-to-state transition counts (D) Probability fluxes between states (gray
arrows, with line thickness representing the magnitude of the flux) indicate the highest likelihood transition paths and can be used to calculate the mean first passage time
(MFPT) between states.
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OPES-flooding simulations based on AMBER14SB (Maier
et al., 2015) and GAFF (Wang et al., 2004) were recently applied
to study the unbinding kinetics of the trypsin-benzamidine
complex, unveiling the role of water in regulating the
residence time. Notably, the authors identified two different
unbinding pathways and were able to calculate the
corresponding rates separately. The slowest rate of 687 s−1

that is supposed to dominate the residence time is in good
agreement with the experimental value of 600 ± 300 s−1

(Guillian and Thusias, 1970).

3 MARKOV STATE MODELS

3.1 Basic Principles
Markov state models (MSMs) (Singhal et al., 2004) are discrete
models describing the dynamics of a system in terms of
transition probabilities between a finite set of metastable
states. The fundamental ingredients of the method are 1) a
discretization of the conformational space into (kinetically
fast) microstates and 2) a transition matrix that describes
the probability of observing the system in another
microstate after a fixed lag time t. An interpretable, coarse-
grained model is then built by defining kinetically metastable
macrostates as collections of microstates, and this model can
provide koff values. Figure 3 shows a simplified schematic
depiction of the MSM construction pipeline. The lag time t
must be long enough to ensure that transitions between states
are approximately Markovian4 and short enough for the model
to represent all relevant fast processes. It should be chosen to
be faster than association events to avoid systematic
overestimation of the residence time (Paul et al., 2017).
When this is not possible, koff can still be estimated from
rate matrices rather than transition matrices (Kalbfleisch and
Lawless, 1985; Crommelin and Vanden-Eijnden, 2009).
However, rate matrix estimation is not unique and different
approaches can result in residence times that differ even by an
order of magnitude (Paul et al., 2017).

The input data to build MSMs can come from an ensemble
of unbiased MD trajectories that sample dissociation events.
However, generating this data is usually prohibitively
expensive. Hence, several powerful schemes have been
designed to enable the estimation of second-long residence
times from relatively short MD simulations. These include
adaptive restarting strategies (Bowman et al., 2010; Wan and
Voelz, 2020) and/or biased simulations (Wu et al., 2016; Paul
et al., 2017; Stelzl et al., 2017). In particular, recently developed
estimators such as transition-based reweighting analysis
TRAM (Wu et al., 2016) and its MBAR variant
TRAMMBAR (Paul et al., 2017) require only irreversible
visits to metastable states in the unbiased MD (as long as
these states are sampled reversibly in the biased ones) and can
greatly alleviate the sampling problem.

3.2 Applications
MSM calculations on the trypsin-benzamidine complex (Plattner
and Noé, 2015) (methodological details in Supplementary
Material S6) yielded a koff of 131 ± 109 × 102 s−1, which
compares fairly well with experiments (koff = 600 ± 300 s−1)
(Guillian and Thusias, 1970). However, the high level of
uncertainty suggests that sampling of unbinding events might
be insufficient despite the large amount of aggregate simulation
time (149.1 μs in this case). The dissociation of benzene from the
L99A mutant T4 Lysozyme was investigated in a hybrid MSM/
infrequent MetaD study (Mondal et al., 2018) using the
CHARMM36 force-field (Best et al., 2012). The MSM was
constructed from unbiased MD trajectories, and gave a koff of
310 ± 130 s−1, which was marginally closer to the experimental
koff (950 ± 20 s−1) (Feher et al., 1996) than the value reported by
the accompanying infrequent MetaD simulations (koff = 270 ±
100 s−1) (Mondal et al., 2018) and considerably closer than the
previous FA-MetaD-based predictions (see Table 1) (Wang et al.,
2018) However, the statistical uncertainty in the MSM-derived
koff was quite large, and the calculation required more simulation
time (60 μs) compared biased MD approaches to obtain similar
uncertainties: FA-MetaD/Infrequent MetaD studies typically
require 6–12 μs (Casasnovas et al., 2017; Wang et al., 2018;
Capelli et al., 2020) and LiGaMD (Miao et al., 2020) required
~ 5 μs.

The use of biased simulations can greatly reduce the sampling
requirements. Wu et al., (2016) showed that by integrating
unbiased MD with umbrella sampling simulation data, only
5%–10% of the unbiased data was necessary to estimate the
dissociation rate of the trypsin-benzamidine complex up to
statistical significance (koff = 1170s−1 [617s−1, 2120s−1]). A
combination of 500 μs of unbiased MD and 1 μs of
Hamiltonian replica exchange simulation was used to create
an MSM model describing the binding of the oncoprotein
fragment Mdm2 and a peptide inhibitor PMI. Estimates based
on two different post-processing schemes yielded values of koff =
0.125 s−1 [0.025 s−1, 0.66 s−1] and koff = 1.13 s−1 [0.48 s−1,
1.33 s−1], corresponding to a 10–30-fold overestimation
relative to experiments (koff = 0.037 s−1 [0.029 s−1, 0.04 s−1])
(Paul et al., 2017).

4 PATH SAMPLING METHODS

Path sampling methods focus on generating an ensemble of
transition pathways between bound and unbound states.
Typically, this class of methods accelerates the unbinding
event by exploiting restarting strategies to favor the sampling
of short trajectories in the vicinity of the transition state, which
are then used to reconstruct the full unbinding process. Weighted
Ensemble (WE) (Huber and Kim, 1996), milestoning (Cho et al.,
2006; Elber, 2007), transition state-partial path interface sampling
(TS-PPTIS) (Juraszek et al., 2013), and adaptive multilevel
splitting (AMS) (Cérou and Guyader, 2007; Cérou et al., 2011)
are path sampling methods that were employed in calculations of
koff for ligand/protein complexes.

4i.e., the probability of observing the system in a state y after the lag time given that
it was in state x does not depend on the states of the system before x.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 8998056

Ahmad et al. Estimation of Ligand Binding Kinetics

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


TABLE 1 | Quantitative in silico calculations (we highlighted in boldface the simulations that are below one order of magnitude for the predicted results with respect to the
experimental ones)

Target Technique T
[K]

Force field koff (sim) [s−1] koff
(Exp)
[s−1]

Simulation
time [µs]

Ref Year

Trypsin/Benzamidine SEEKR 298 Amber14SB +
GAFF

83 ± 14 600 ± 300 19 10.1021/
acs.jpcb.6b09388

2017

Trypsin/Benzamidine SEEKR 298 Amber14SB +
GAFF

174 ± 9 600 ± 300 4.4 10.1021/
acs.jctc.0c00495

2020

Trypsin/Benzamidine SEEKR2 298 Amber14SB +
GAFF

990 ± 70 600 ± 300 5 10.26434/chemrxiv-
2021-pplfs

2021

Trypsin/Benzamidine M-WEM 298 Amber14SB +
GAFF

791 ± 197 600 ± 300 0.48 10.1021/
acs.jctc.1c00803

2022

Trypsin/Benzamidine Inf-MetaD 300 Amber99SB-
ILDN

9.1 ± 2.5 600 ± 300 5 10.1073/
pnas.1424461112

2015

Trypsin/Benzamidine Inf-MetaD 300 Amber14SB +
GAFF

4176 ± 324 600 ± 300 — 10.1021/
acs.jctc.8b00934

2019

Trypsin/Benzamidine MSM 298 Amber99SB +
GAFF

(9.5 ± 3.3)·104 600 ± 300 50 10.1073/
pnas.1103547108

2011

Trypsin/Benzamidine MSM — — 2.8 ·104 600 ± 300 7.7 10.1021/ct400919u 2014
Trypsin/Benzamidine MSM — Amber99SB +

GAFF
131 ± 109 600 ± 300 149.1 10.1038/ncomms8653 2015

Trypsin/Benzamidine MSM 298 Amber99SB +
GAFF

1170 [617, 2120] 600 ± 300 58.28 10.1073/
pnas.1525092113

2016

Trypsin/Benzamidine WExplore 300 Charmm36 +
CGenFF

5.56 ·104 600 ± 300 4.1 10.1016/
j.bpj.2017.01.006

2017

Trypsin/Benzamidine REVO 300 Charmm36 +
CGenFF

2660 600 ± 300 8.75 10.1063/1.5100521 2019

Trypsin/Benzamidine LiGaMD 300 Amber14SB +
GAFF

3.53 ± 1.41 600 ± 300 5 10.1021/
acs.jctc.0c00395

2020

Trypsin/Benzamidine dcTMD 290 Amber99SB* 270 ± 40 600 ± 300 10000c 10.1038/s41467-020-
16655-1

2020

Trypsin/Benzamidine AMS 298 Charmm36 +
CGenFF

260 ± 240 600 ± 300 2.3 10.1021/
acs.jctc.6b00277

2016

Trypsin/Benzamidine OPES 300 Amber14SB +
GAFF

687 600 ± 300 3.2 arXiv:2204.05572 2022

T4L L99A-Benzene In-MetaD 300 Charmm22* 6.0 ± 2.2 950 ±
200a

6.7 10.1039/c7sc01627a 2017

T4L L99A-Benzene FA-MetaD 300 Charmm22* 5.7 ± 2.3 950 ±
200a

5.5 10.1063/1.5024679 2018

T4L L99A-Benzene In-MetaD 303 Charmm36 270 ± 100 950 ± 200 — 10.1371/
journal.pcbi.1006180

2018

T4L L99A-Benzene MSM 303 Charmm36 310 ± 130 950 ± 200 60 10.1371/
journal.pcbi.1006180

2018

T4L L99A-Indole In-MetaD 300 Charmm22* +
CGenFF

9.8 ± 10.2 325 ± 75b 4.5 10.1063/1.5024679 2018

T4L L99A-Indole FA-MetaD 300 Charmm22* +
CGenFF

6.0 ± 3.7 325 ± 75b 2.0 10.1063/1.5024679 2018

µOpioid receptor-
morphine

In-MetaD 300 Charmm36 +
CGenFF

(5.7 ± 0.5)·10–2 (2.3 ±
0.2)·10–2

6 10.1063/5.0019100 2020

µOpioid receptor-
bruprenorphine

In-MetaD 300 Charmm36 +
CGenFF

(2.1 ± 0.3)·10–2 (1.8 ±
0.3)·10–3

19 10.1063/5.0019100 2020

µOpioid receptor-Fentanyl In-MetaD 310 Charmm36m +
CGenFF

(2.6 ± 0.8)·10–2 (HID) (3.8 ±
1.4)·10–1 (HIE) 1.1 ± 0.3 (HIP)

4.2 · 10–3 6 10.1021/
jacsau.1c00341

2021

TSPO-PK11195 REVO 300 Charmm36 +
CGenFF

(D1)6.4 · 10–5 (D2)6.67·101
(D3)6.4 · 10–3 (D4)4.1 · 10–3
(4RYI)6.0 · 10–4 (D1-D4
different docked poses)

4.9 · 10–4 40 10.1016/
j.bpj.2020.11.015

2021

c-Src kinase-dasatinib In-MetaD 300 OPLS (4.8 ± 2.4)·10–2 5.6 · 10–2
1.1 · 10–3

~7–8 10.1126/
sciadv.1700014

2017

Src kinase - imatinib TS-PPTIS 305 Amber99SB*-
ILDN + GAFF
(QM/MM)

0.026 0.11 ±
0.08

— 10.1021/
acs.jctc.8b00687

2018

(Continued on following page)
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4.1 Weighted Ensemble Methods
4.1.1 Basic principles
A set of unbiased molecular dynamics trajectories with equivalent
statistical weights are spawned in parallel from a ligand/protein
complex in the ground-state configuration (Huber and Kim, 1996).
The configuration space is then subdivided into bins, which the
trajectories/walkers navigate through. The weighted ensemble
(WE) method aims to maintain a fixed number (N) of walkers
per bin. Thus, the occupancy of the bins is calculated at specific
resampling intervals τint. If the number of walkers in a given bin is
lower than N, one or more of the walkers are cloned, with each
daughter trajectory receiving a fraction of the weight of the original.
Conversely, in regions populated by a number of walkers exceeding
N, two ormore trajectories aremerged, with the resulting trajectory
inheriting the weights of its constituents (Zuckerman and Chong,
2017). This process results in a resampled trajectory space
spanning the bound, intermediate and unbound states from
which koff values can be obtained (Zhang et al., 2010).

Notably, the method does not require a detailed a prori
definition of differentiable collective variables, and it is
embarrassingly parallel. Given that the availability of Tier-0 and
Tier-1 machines has grown significantly since the method was first
formulated, several scalable open-source implementations have
emerged. These include WExplore (Dickson and Brooks, 2014),
Wepy (Lotz and Dickson, 2020), and REVO (Resampling of
Ensembles by Variation Optimization) (Donyapour et al., 2019).
The latter is a method featuring a novel resampling algorithm
replacing bins in configurational space with a system-specific all-
to-all pairwise distance matrix between walkers, thereby decreasing
the correlation between trajectories. The novel concurrent adaptive
sampling (CAS) algorithm (Ahn et al., 2017) builds on the
traditional WE method by adaptively constructing macrostates

(represented by n-dimensional Voronoi cells) while approximating
the committor function of each macrostate, and clustering the
macrostates according to their committor functions as the
simulation progresses. This improves the efficiency of WE
simulations in high-dimensional systems, by directing
computational power to sampling portions of configuration
space that are closer to the “product” configuration.

4.1.2 Applications
The koff of the trypsin-benzamidine complex as calculated by
WExplore (5560 s−1) (Dickson and Lotz, 2017) overestimated by
one order of magnitude the experimental value (600 s−1) (Guillian
and Thusias, 1970). This value was calculated from five
independent WExplore runs, corresponding to an aggregate
simulation time of 4.1 μs. Using clustering-based confirmation
space network analysis techniques (Dickson and Brooks, 2013),
three distinct ligand exit pathways were unearthed from the
trajectories. The trypsin-benzamidine system was later
investigated again with REVO (Donyapour et al., 2019). Based
on five independent REVO runs, giving a total of 8.75 μs, a koff of
2660 s−1 was predicted—a minor improvement onWExplore, but
an overestimation nonetheless. WExplore was also employed to
estimate the dissociation rate of the TPPU inhibitor from soluble
epoxide hydrolase. The calculated koff (2.4 · 10–2 s−1 [3.6 · 10–3 s−1,
4.4 · 10–2 s−1]) was one order of magnitude greater than the
experimental value of 3.6 · 10–3 s−1. (Lotz and Dickson, 2018), and
required 6 μs of simulation time to compute. However, the reason
for the systematic overestimations of koff is not explicitly
addressed. REVO was recently employed (Dixon et al., 2021)
to quantify koff values for five distinct bound poses of the PK-
11195 radioligand in complex with TSPO (see Table 1), using a
cumulative 5.18 μs of simulation time per pose. The calculated

TABLE 1 | (Continued) Quantitative in silico calculations (we highlighted in boldface the simulations that are below one order of magnitude for the predicted results with
respect to the experimental ones)

Target Technique T
[K]

Force field koff (sim) [s−1] koff
(Exp)
[s−1]

Simulation
time [µs]

Ref Year

Epoxide Hydrolase-TPPU WExplore 300 Charmm36 +
CGenFF

2.4 · 10–2 [3.6 · 10–3 s−1, 4.4 ·
10–2 s−1]

1.5 · 10–3 6 10.1021/jacs.7b08572 2018

p38 kinase/1-(3-(tert-
butyl)-1- (p-tolyl)-1H-
pyrazol-5-yl)urea

In-MetaD 300 Amber99SB-ILDN
+ GAFF

0.020 ± 0.011 0.14 6.8 10.1021/jacs.6b12950 2017

M2 muscarinic receptor/
iperoxo

FA-MetaD 310 Amber14SB +
GAFF

(3.7 ± 0.7)·10–4 (1.0 ±
0.2)·10–2

8 10.1021/
acs.jpclett.0c00999

2020

HSP90-inhibitor dcTMD 300 Amber99SB +
GAFF

(1.6 ± 0.2)·10–3 (3.4 ±
0.2)·10–2

5000c 10.1038/s41467-020-
16655-1

2020

Mdm2/PMI MSM 300 Amber99SB-ILDN 0.125 [0.025, 0.66] 1.13
[0.48, 1.33] (Different rate

matrix estimators)

0.037
[0.029,
0.04]

500 10.1038/s41467-017-
01163-6

2017

Mdm2/p53 MSM 300 Amber99SB-
ILDN-NMR

1.9·105 2.1 831 10.1016/
j.bpj.2017.07.009

2017

SH3 Domain—1CKB Pep-GaMD 300 Amber14SB (1.45 ± 1.17)·10–3 8.9 · 10–3 3 10.1063/5.0021399 2020

MtKatG—Isonazid τRAMD +
extrapolation

300 CHARMM36 +
SwissParam

(2.8 ± 3.7)·10–2 (2.0 ±
0.3)·10–2

— 10.1021/
acs.jpclett.1c02952

2021

aThe Authors in the original work considered the experimental koff at 293 K (800 ± 200 s−1), while they simulated the system at 300 K. Here we choose to put the value at the closest
temperature available in experiments (303K—950 ± 200 s−1). Both the experimental values come from (Feher et al., 1996).
bThe experimental value has been measured at 293 K.
cFor dcTMD, computational time is referred to 1D Langevin simulator, and the authors says that “1 ms of simulation time at a 5 fs time step take ~6 h of wall-clock time on a single CPU”.
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values for the poses spanned five orders of magnitude, and the
pose with the most favorable docking score (pose D1, koff = 6.4 ×
10–5 s−1) exhibited the closest agreement with the experimental
value (4.9 × 10–4 s−1) out of all the docked poses. All the of the
studies described here made use of the CHARMM36 (Best et al.,
2012) and CGenFF (Vanommeslaeghe et al., 2011) force fields. At
present, the CAS method described in Section 4.1.1 has been
successfully applied to host-guest systems only (Ahn et al., 2020).

4.2 Milestoning
4.2.1 Basic principles
Here, the configuration space is treated as a coarse mesh
characterized by slowly relaxing variables, such as native
contacts and/or distances between chemical groups that
describe the ligand unbinding process (Cho et al., 2006; Elber,
2007). The mesh must be coarse enough for distinct long-lived
metastable states to emerge, but fine enough to ensure that
transitions between the interfaces between the mesh’s cells or
“milestones” are accessible in MD simulations. Equilibrium
configurations for each milestone are usually generated with
“pulling” SMD simulations, or with a series of MD
simulations in which the diffusing group is harmonically
restrained to the milestone surface. Afterward, a set of
trajectories is spawned from each milestone, and whenever a
trajectory reaches a new neighboring milestone, it is terminated.
In practice, the criteria for termination of trajectories vary
depending on the implementation. The lifetime and flux
(i.e., number of trajectories passing through the milestone per
unit time) associated with each milestone may be used to
compute the ligand residence time (Elber, 2020).

Practical implementations of milestoning in ligand unbinding
studies fall into two categories: 1) The Simulation Enabled
Estimation of Kinetic Rates (SEEKR) (Votapka et al., 2017)
approach, which exploits milestoning theory in a multiscale
framework based on MD and Brownian Dynamics (BD)
simulations (Luty et al., 1993). The milestones are nested
spherical shells surrounding the binding pocket. Transitions
between milestones close to the binding pocket are simulated
using all-atom MD. Meanwhile, transitions between the more
diffuse milestones further away are described by cheaper BD
simulations—where fast sampling of rigid body interactions is
more important than detailed sampling of ligand conformations.
An updated implementation of SEEKR, named MMVT SEEKR,
has been subsequently proposed (Jagger et al., 2020): it
circumvents the need to compute the equilibrium distribution
for all the milestones, reducing the computational time needed to
compute kinetics constants. 2) The recently formulated weighted
ensemble milestoning (WEM) methods combine milestoning
theory with WE methods. Here, the configurational space
between the milestones is split into bins, and WE simulations
are run in between milestones to achieve faster convergence (Ray
and Andricioaei, 2020).

4.2.2 Applications
All applications to kinetics of biological systems so far are based
on AMBER14SB (Maier et al., 2015) and GAFF (Wang et al.,
2004) force fields and applied to the trypsin-benzamidine

complex. SEEKR yielded a koff of 83 ± 14 s−1 for the trypsin-
benzamidine system using 19 μs of aggregate MD and ten
spherical milestones. These results underestimate the
experimental value (600 ± 300 s−1) (Guillian and Thusias,
1970). MMVT SEEKR improved the koff estimate (174 ±
9 s−1), with only a quarter of the aggregate simulation time
(4.4 μs) used in the prior SEEKR study. WEM (Ray and
Andricioaei, 2020) gave a further improvement koff = 791 ±
197 s−1, using a mere 0.5 μs of simulation time (Ray et al., 2022).

4.3 Transition State-Partial Path Transition
Interface Sampling
4.3.1 Basic principles
In transition state-partial path transition interface sampling (TS-
PPTIS) (Juraszek et al., 2013) an initial metadynamics calculation
is performed to determine the transition state and the free energy
barrier along a given CV. Then, the transmission coefficient is
estimated, similarly to the PPTIS method (Van Erp et al., 2003;
Moroni et al., 2004) by foliating the barrier region along the CV
with interfaces and sampling short trajectories spanning three
consecutive interfaces. These trajectories are sampled using
transition path sampling (Pratt, 1986; Dellago et al., 1998).
Under the assumptions that the dynamics in the barrier region
is diffusive and there are nomemory effects for travelled distances
beyond two interfaces, the kinetic rates are independent of
the CV.

4.3.2 Applications
TS-PPTIS was used to compute the koff of the imatinib-Src kinase
complex (Morando et al., 2016). The calculation used 5 CVs: 2
path collective variables (Branduardi et al., 2007), a CV counting
the number of water molecules interacting with the ligand and the
binding cavity, and two distances between key residues of Src
characterizing the motion of the kinase A-loop. Using
AMBER99SB*-ILDN and GAFF, the authors computed a value
of koff = 0.0114 s−1 [0.001 s−1, 0.139 s−1], which is slow (but within
statistical significance) compared to experiments (koff = 0.11 ±
0.08 s−1). In a separate work (Haldar et al., 2018), the authors
refined the prediction by computing a free energy correction from
the MM to a hybrid quantum mechanics/molecular mechanics
Hamiltonian using a replica exchange thermodynamic
integration scheme (Woods et al., 2003) and Metropolis-
Hastings Monte Carlo sampling (Woods et al., 2008). This
correction does not account for dynamical effects but only for
changes in the free energy. The computed correction to koff was
small but consistent with faster dissociation dynamics obtaining a
corrected value of koff = 0.026 s−1.

4.4 Adaptive Multilevel Splitting
4.4.1 Basic principles
Similarly to WE, adaptive multilevel splitting (AMS) (Cérou and
Guyader, 2007; Cérou et al., 2011) relies on a set of trajectories
that are systematically cloned or killed. However, AMS does not
require bins. Instead, the algorithm is initialized by generating a
set of “loop” trajectories starting and ending in the bound state.
At each iteration, the replica that travelled the least distance d
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from the bound state (measured through a CV) is killed, and a
new loop is created by restarting a simulation from a point at the
same distance d previously visited by one of the remaining
replicas. This is repeated until all loops travelled a distance
above a threshold value (defining the unbound state) before
returning to the bound state. The dissociation rate is then
estimated from this collection of trajectories.

4.4.2 Applications
AMS was used to calculate the dissociation rate of trypsin-
benzamidine using the CHARMM36 force field (Best et al.,
2012) for trypsin and CGenFF (Vanommeslaeghe et al., 2011)
for the ligand (Teo et al., 2016). As the CV, the authors used the
distance between the center of mass of benzamidine and the alpha
carbons of the amino acids close to the binding site. A suitable
value for the threshold value of the CV was obtained through a
steered MD simulation. Furthermore, 130 ns unbiased MD
simulation was run to estimate the average time of a looping
trajectory under the assumption that the short loops thus sampled
represented the large majority of loops and thus dominated the
average loop duration. In total, 2.3 μs of simulations were used to
obtain a koff = 260 s−1 ± 240 s−1, in good agreement with
experimental measurements.

5 LIMITATIONS ASSOCIATED WITH FORCE
FIELDS

Table 1 summarizes the koff predictions of various ligand/protein
systems obtained using the methods discussed in previous
sections. For completeness, we also report the temperature,
total simulation time, and force field used. In about one-third
of the cases, spanning all different classes of methodologies and
force fields, the theoretical predictions are in the same order of
magnitude as the experimental values, and in a few cases (shown
in boldface in Table 1) reproduce them within statistical error. In
most cases, however, calculated values show discrepancies from 1
to 2 orders of magnitude, regardless of the method and force field.
Similarly, the only predictive study reported so far (Paul et al.,
2017) reports values with an error of 1–2 orders of magnitude
(albeit with large statistical errors) relative to experimental data
performed afterwards.5 All these results, taken together, lead us to
suggest that regular force fields may be, at times, not accurate
enough to predict koff values.

Determining the source of the observed errors is a difficult task
without dedicated studies as the accuracy of the predictions
depends on methodological aspects, sampling accuracy, and
the potential energy function, which are subject to mutual
cancellation (or amplification) of error. In this and the next
section, we discuss the literature focusing on the effect of the
potential.

5.1 Force Field Dependence of the Results
The published data indicate that careful parametrization of the
force fields is essential to obtain koff predictions. Comparison
between the results obtained from brute force MD calculations
on a set of ligands binding to a β-cyclodextrin (βCD) host
showed that koff predictions parametrizing βCD with the
Q4MD force field (Cézard et al., 2011) were consistently
more accurate (within one order of magnitude of
experimental values) than the GAFF-based (Wang et al.,
2004) estimates (Tang and Chang, 2018). On the other
hand, the kon estimates were consistently better for the
GAFF model, which points to the difficulty of obtaining
transferable potentials. In the case of benzene unbinding
from L99A T4 lysozyme, infrequent MetaD simulations
using CHARMM22 (MacKerell et al., 1998; MacKerell Jr.
et al., 2004) yielded a significantly underestimated koff in
the range of 4–10 s−1 (Wang et al., 2018), while the same
method combined with CHARMM36 (Best et al., 2012)
produced a koff (270 ± 100 s−1) (Mondal et al., 2018)
considerably closer to the experimental value of 950 ±
20 s−1 (Feher et al., 1996). Although different CVs were
used in these two works (see Section 2.4.2), the effect of
the force field cannot be ruled out. Indeed, the two force
fields differ only in a few dihedral potential terms (Best
et al., 2012) that control the rigidity of secondary
structures, and in particular two helices of T4 which control
benzene’s access to the binding pocket. Finally, we mention
here the work of (Vitalini et al., 2015), where it was shown that
slow relaxation timescales of two small peptides using five
protein force fields (AMBER99SB-ILDN (Lindorff-Larsen
et al., 2010), AMBERff03 (Duan et al., 2003), OPLS-AA/L
(Kaminski et al., 2001), CHARMM27 (MacKerell et al., 2000),
and GROMOS43a1 (Daura et al., 1998)) differ up to two orders
of magnitude. Given the importance of slow protein
conformational changes in unbinding kinetics (Plattner and
Noé, 2015), this result further highlights the role of force fields
for accurate rate calculations.

5.2 Polarization andCharge Transfer Effects
Traditional force fields describe electrostatics using fixed point
charges. This representation is extremely efficient and works
remarkably well, even in the case of systems with high electric
fields (Mironenko et al., 2021). However, such a scheme cannot
adapt to changes in the electrostatic environment observed
during ligand unbinding. Recently, some of us (Capelli et al.,
2020) found that electrostatic effects contribute significantly to
the force field misrepresentation of protein-ligand interactions
at the transition state of the M2-iperoxo complex.
Furthermore, the work of Haldar and coworkers (Haldar
et al., 2018) showed that accounting for changes in charge
distribution resulted in free energy corrections ranging from
1.9 to 4.7 kcal/mol as the ligand progressed from the
hydrophobic binding pocket to the solvated state.
Metalloenzymes (representing 40%–50% of all proteins in
the PDB database (Chen et al., 2019)) and highly charged
protein-ligand systems are also quite challenging to describe
with traditional force fields (Li and Merz, 2017). Indeed, for the

5All the other studies in Table 1 are instead retrospective, and large-scale
benchmarks in prospective settings (which are now common for binding
affinity calculations) (Parks et al., 2020; Schindler et al., 2020) are missing.
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latter systems, FF-based binding free energy calculations resulted in
significant systematic errors (Rocklin et al., 2013). Overall, these
results show that going beyond standard fixed-chargedmodels is in
many cases desirable to improve accuracy.

6 PERSPECTIVES: FROM POLARIZABLE
FORCE FIELDS TO QM/MM
CALCULATIONS TOWARDS THE
EXASCALE

Force fields have been overwhelmingly successful in predicting
equilibrium properties such as free energies of binding (Karplus
and McCammon, 2002; Wang et al., 2015; Robustelli et al., 2022).
Indeed, force fields are traditionally fitted to reproduce
equilibrium experimental measurements (ensemble averages)
and geometries obtained with quantum mechanical methods.
As a result, their performance is expected to peak in the regions
near the free energy minima (e.g., the bound state) rather than
near the kinetically relevant transition states, where small errors
are exponentially amplified in koff predictions.

6 After observing
discrepancies of two orders of magnitude in the kinetic
predictions of several force fields, Vitalini and coworkers
(Vitalini et al., 2015) suggested that kinetic information should
be included in the fitting process. In general, designing new
parametrization strategies for force fields is still a very active
area of research (He et al., 2020; Giannos et al., 2021; Qiu et al.,
2021). This is not surprising, given the issues discussed in Section
5. For example, methods to include polarization effects within a
fixed-charge scheme (Kelly and Smith, 2020) and multisite
models for transition metal ions have been developed (Li and
Merz, 2017).

A different direction pursued by the modeling community is
instead to use potential energy functions that go beyond the
biomolecular force fields’ simple representation of electrostatics
(e.g., polarizable force fields, hybrid quantum mechanics/
molecular mechanics (QM/MM) calculations, machine
learning potentials). Without any claim of being
comprehensive, here we provide a brief perspective on the role
of these methods in the upcoming era of exascale computing.

6.1 Polarizable Force Fields
Polarizable force fields for biomolecules (Jing et al., 2019)
including AMBER ff02pol (Wang Z. X. et al., 2006),
AMOEBA (Ponder et al., 2010) CHARMM Drude (Baker
et al., 2010), CHARMM-FQ (Patel and Brooks, 2003; Patel
and Brooks, 2004), SIBFA (Piquemal et al., 2007), and
ABEEMσπ (Liu et al., 2017) aim at providing an empirical
description electronic polarizability. Simulations based on
these potentials could dramatically improve the modeling of
transition states in cases where electronic polarization and

charge transfer may be linked to non-trivial rearrangements of
hydrogen bonds and hydrophobic interactions (Schmidtke et al.,
2011; Schiebel et al., 2018). Although polarizable force fields have
recently shown excellent accuracy in prospective predictions of
binding affinities in model systems (Amezcua et al., 2022), to the
best of our knowledge, they have not been used for protein-ligand
koff predictions yet. Notably, in a very recent paper (Yue et al.,
2022), it was shown how using a polarizable force field improved
the accuracy of the predictions of anion permeation rates in
fluoride channels compared to predictions based on standard
fixed charge schemes, highlighting the necessity of using
polarizable models for treating such processes. Although this
is not a ligand/protein system, this work further showcases the
limitations of conventional force fields in treating electrostatic
interactions as well as the potential of polarizable models.

6.2 QM/MM Simulations
DFT-based QM/MM simulations treat a small region of interest
(in our case this could be a ligand and the protein residues
interacting with it) at the DFT level, while the overall
computational cost is balanced by MM treatment of other
regions (Kulik, 2018). The form of the potential energy is a
hybrid model between classical mechanics and quantum
chemistry:

U � UQM + UMM + UQM/MM (3)
where UQM/MM denotes the interaction between atom groups
assigned to the QM region and MM region. DFT-based QM/
MM simulations include both electronic polarizability and charge
transfer effects (Blumberger, 2008; Capelli et al., 2020), and they
address the problem of transferability, as they do not rely on
optimizations against predefined training data sets. These
approaches can tackle important biomedicine problems such as
the study of transition-metal-based drugs binding to proteins
(Calandrini et al., 2015) or the description of enzymatic reactions.
(Carloni et al., 2002; Liao and Thiel, 2013; Roston et al., 2016;
Caldararu et al., 2018; Kulik, 2018; Piniello et al., 2021) However,
these simulations are orders of magnitude more expensive than any
of the potentials described so far, and hence achieving high statistical
accuracy with such an approach is obviously extremely challenging.

6.2.1 Parallel Computing in DFT-Based QM/MM
Modern supercomputers are currently breaching the exascale
limit in the United States (Schneider, 2022), Japan, and China.7

Exascale calculations however remain one of the major challenges
in molecular simulations (Hospital et al., 2015; Páll et al., 2015).
Recent advances in massively scalable QM/MM codes, such as
that developed in Juelich in collaboration with European
universities (Olsen et al., 2019; Bolnykh et al., 2020a) (see

6The koff values depend exponentially on the height of the dissociation free energy
barrier, so even small inaccuracies in the potential energy may impact dramatically
kinetics calculations.

7According to the Top500 list (https://www.top500.org/), which ranks computers
based on their performance on the HPLinpack benchmark (Dongarra et al., 2003),
currently there are no machines that have exceeded the exascale limit. The Fugaku
supercomputer in Japan showed performances above one EFlop/s, but on a
different benchmark (Kudo et al., 2020). In China, one or two exascale
supercomputers might be already operating(Ma et al., 2022; Schneider, 2022).
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Supplementary Material S7) and their successful applications to
predict free energy landscapes associated with biological
processes (Bolnykh et al., 2020a; Chiariello et al., 2020) brings
us to suggest that in a not-too-far future QM/MM calculations
may exploit the unprecedented power of exascale computing for
direct MD simulations of ligand (un)binding (Bolnykh et al.,
2020b, Bolnykh et al., 2021).

6.2.2 Machine Learning in QM/MM
Neural network models of the potential energy function have
emerged as a promising route to obtaining near-DFT accuracies
(Unke et al., 2021; Kocer et al., 2022) at a computational cost only
1–2 orders of magnitude slower than force fields. Applications to
the kinetics of chemical reactions have been published (Stocker
et al., 2020; Yang et al., 2022) and in principle, they could be used
to model DFT-based QM/MM predictions of ligand poses during
the unbinding process. However, ML potentials are currently still
limited to small molecule applications and robust solutions to
model long-range interactions have yet to emerge (Yue et al.,
2021). The advent of exascale computing could dramatically
expand the domain of applicability of such approaches (Lu
et al., 2021). Moreover, several approaches to solve these
issues have been proposed based on hybrid machine learning/
molecular mechanics models (Shen and Yang, 2018; Rufa et al.,
2020; Böselt et al., 2021; Gastegger et al., 2021) (see
Supplementary Material S8 for details).

7 CONCLUSION

We have reviewed an array of rather diverse methods able to
predict unbinding kinetics constants using atomistic
representations of the biomolecules involved. These techniques
have shown tremendous progress in the last years: considering
trypsin-benzamidine as a benchmark system (as seen in Table 1),
we start from 2–3 orders of magnitude in koff error in the
pioneering MSMs of De Fabritiis and co-workers (Buch et al.,
2011) to an error of less than 1 order of magnitude in some of the
most recent calculations (Plattner and Noé, 2015; Votapka et al.,
2017; Brotzakis et al., 2019; Wolf et al., 2020). Despite these
impressive methodological advances, the domain of applicability
and accuracy appears to be still limited by current force fields.
Better parametrization and polarizable force fields (Lin and
MacKerell, 2019) promise to improve the quality of the
potential energy model at a reasonable cost at a reasonable
computational cost (Lemkul et al., 2016). Another possibility is
the use of massively parallel DFT-QM/MM complemented by
ML techniques, which include electronic polarizability as well as
charge transfer. This approach could address the issue of

transferability of current biomolecular force fields. However,
the accuracy of these approaches is yet to be established.

Traditionally, computational drug discovery has used a
combination of methods such as docking (Ferreira et al.,
2015), quantitative structure-activity relationship (QSAR)
modeling (Dossetter et al., 2013), free-energy methods
(Cournia et al., 2017), and (recently) ML-based approaches
(Zhao et al., 2020) to improve the binding affinity of a
compound during lead optimization. Computer-aided ligand
design campaigns could enormously profit from the design of
so-called transition state analogues which, in the case of enzyme
inhibitors, have been correlated with release rates that are orders
of magnitude slower than product release (Schramm, 2013;
Schramm 2015; Svensson et al., 2015). We hope that
approaches beyond the use of standard force fields, such as
those discussed here, will lead in a not-too-distant future to
the accurate description of the energetics and structural
determinants of the unbinding transition states, giving an
unprecedented boost to the discovery of promising new small
molecules and the optimization of known drugs.
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