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Abstract The ongoing pandemic is laying bare dra-

matic differences in the spread of COVID-19 across

seemingly similar urban environments. Identifying the

urban determinants that underlie these differences is an

open research question, which can contribute to more

epidemiologically resilient cities, optimized testing and

detection strategies, and effective immunization efforts.

Here, we perform a computational analysis of COVID-19

spread in three cities of similar size in New York State

(Colonie, New Rochelle, and Utica) aiming to isolate

urban determinants of infections and deaths. We de-

velop detailed digital representations of the cities and

simulate COVID-19 spread using a complex agent-based

model, taking into account differences in spatial layout,

mobility, demographics, and occupational structure of

the population. By critically comparing pandemic out-
comes across the three cities under equivalent initial

conditions, we provide compelling evidence in favor of

the critical role of hospitals. Specifically, with highly

efficacious testing and detection, the number and capac-

ity of hospitals, as well as the extent of vaccination of

hospital employees are key determinants of COVID-19

spread. The modulating role of these determinants is

reduced at lower efficacy of testing and detection, so

that the pandemic outcome becomes equivalent across

the three cities.
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1 Introduction

World-wide urban areas remain the major targets of the

ongoing COVID-19 pandemic due to their high popula-

tion densities, frequent human interactions, and daily

commutes [1,2]. Analyzing the spread in metropolitan

areas can help alleviate the epidemiological burden, by

supporting the design of policies for detection [3–5],
immunization [6,7], and intervention [8,9]. Alongside

with scientifically backed policy-making, research on

COVID-19 spread in urban environments can support

the identification of factors that reduce vulnerability

to future pandemics [10] and create epidemiologically-

resilient cities [11,12]. Predictably, population density

has been proposed as an important determinant of the

spread [13–15]. Empirical studies have also demonstrated

the impact of demographics [16–19], socio-economic fac-

tors [20,21], and climate [22] on the local spread of the

pandemic.

While evidence-based analysis is key to assess the

current state of the pandemic and identify causal associ-

ations, computational models of COVID-19 spread have

been instrumental in the simulation of several what-if

scenarios that have shaped public health policies across
the globe [23–27]. With a strong focus on major urban

areas, these models have helped quantify the benefits

of non-pharmaceutical interventions [28–30], identify

optimal schemes for prioritizing and administering vac-

cines [31–35], understand the implications of human

mobility [36–38], and devise safe reopening strategies

for the economy [39–42].

Several studies have investigated the spread in urban

environments, in search of characteristics that influence

the spread, often towards informing data-driven models.

For example, Bhowmik et al. [43] performed a county-

level analysis of the United States and proposed a model

of COVID-19 spread that is informed by demograph-

ics, socio-economic factors, and healthcare availability.

Aguilar et al. [44] analyzed different types of urban

layouts with respect to spread dynamics and effective-

ness of mobility restrictions. Through simulations of

an infectious disease in synthetic cities with different

geographical layouts, Brizuela et al. [45] demonstrated

that heterogeneous urban design may lead to a highly

non-uniform distribution of the epidemic, potentially

targeting the most vulnerable. In a study of 163 cities

across the World, Hazarie et al. [46] discovered that

COVID-19 contagion increases proportionally to human

mobility in densely populated areas. Li et al. [47] pro-

posed a series of major urban fabric contributors to

the initial COVID-19 epidemic in Wuhan, including the

distribution of public facilities, hospitals, roads, and

subway stations.

In this work, we complement these efforts through

a high-resolution computational model at the granular-

ity of a single individual for the spread of COVID-19

in three different cities in New York State: Colonie,

New Rochelle, and Utica. These cities are selected for

their similar size, but also because they differ by geo-

graphic layouts, population density of their residents,

demographics, socio-economic characteristics, and mo-

bility patterns within their populations [48]. COVID-19

spread is simulated within each city using an agent-

based model, which builds upon our previous work [34,
35,42]. By modeling the cities under equivalent initial

conditions for the contagion, we can successfully dis-

till urban determinants of COVID-19 spread. Unique

to this study is the estimation of the extent to which

different location types influence infections and deaths,

by selectively excluding one of them at a time from the

analysis. Likewise, we also detail the specific role of dif-

ferent agents in the spread in hospitals, from COVID-19

patients to staff.

Our results confirm the key role of testing and detec-

tion on the ability to shape the spread across different

urban environments. As highly efficacious testing and

detection is attained, our model projections suggest a

crucial effect of the number and capacity of hospitals

on the spread of the virus, making cities with large and

concentrated sanitary hubs more effective to combat

the spread than those with more scattered and smaller

hospitals. Moreover, vaccination of hospital employees

seems to be a further salient factor that contributes to

halting the spread. The modulating role of these fac-

tors is reduced for lower testing and detection efficacy,

whereby poor detection and testing lead to substan-

tially equivalent COVID-19 spreading dynamics across

the three cities. Our work highlights the importance of

testing and the need for reducing the spread from the

hospitals through case isolation and immunization of

the personnel. Urban planning should consider the loca-

tion and structure of hospitals, which may be critical in

containing the pandemic.

2 Methods

Our computational framework consists of two compo-

nents: a detailed database of the cities and their popu-

lation, and an agent-based model of COVID-19 spread

with the resolution of the single individual. The core

framework is described in our earlier publications [34,35,

42], to which we point the interested reader for further

details.
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2.1 Database

The database of each city contains the coordinates of all

the public and residential buildings along with resident

demographics. With this information, we are able to

recreate synthetic cities – the fabric upon which soft-

ware agents mimicking individuals will live, interact,

and contract the infection. The locations of schools,
retirement homes, and hospitals were collected using

OpenStreetMap [49] and Google Maps [50]. The number

of students in each primary, middle, and high school

was estimated using the data from the National Center

of Education Statistics [51]. Capacities of daycares were

assessed using the U.S. child care database and build-

ing sizes [52–54]. The number of students in colleges

and the number of residents of retirement homes were

estimated using websites of specific institutions. The

number of in-patients in hospitals due to conditions

other than COVID-19 in New Rochelle and Utica repre-

sented about 60% of the bed capacity recorded by New

York State Department of Health [55] and the American

Hospital Directory [56]. For Colonie, we hypothesized

that hospitals would be able to treat COVID-19 patients,

although, in practice, these hospitals were clinics that do

hospitalize patients. Consistent with the premise of lack

of hospitalization, we assumed that none of the virtual

bed capacity of Colonie was allocated to non-COVID-19

patients.

The residents work in and outside of their city; their

workplace locations were determined using the U.S. Cen-

sus data [48] and SafeGraph [57]. The public transit com-

mute patterns were gathered from Google Maps [50]. Our

model also includes various non-essential businesses and

locations, such as restaurants, malls, and grocery stores.

Similar to workplaces, non-essential business locations

were determined using SafeGraph [57]. The database

also includes several major schools, retirement homes,

or hospitals located in close proximity of the city but

outside its administrative boundaries due to the high

likelihood of residents using and frequenting those places.

All the private and public modeled locations are dis-

played in Figure 1a).

The geographic coordinates of residential buildings

were collected using ArcGIS [58], without distinguish-

ing the number of individual units in each residential

building. A proxy for the distribution of buildings with

multiple units was instantiated in our model using the

U.S. Census data [48]. While the local layout of such

units may differ from the real one, we made sure that

the real and the modeled distributions are statistically

equivalent. This procedure simplifies our previous ap-

proach [34,42], in which all the building locations and

types were manually collected, toward the systematic

automation of the data collection phase. Details of this

approach for the collection of site locations and the

verification of its validity with respect to the manual

collection technique proposed in [34,42] are described

in the Supplementary Material.

To recreate city populations we used the U.S. Census

data on age distribution, household and family structure,

commute times and modes, and employment characteris-

tics [48]. All the generic workplaces and agents working

in them were divided into five occupational categories,

as shown in Figure 1b). Such a fine categorization is an
important improvement with respect to our previous

work [34,42], in which we only distinguished between

schools, retirement homes, and hospital employees [34,

42].

The rationale for such a fine categorization lies in

the need to capture the different employment structure

of the three cities and the corresponding variation of

workplace-related infection risks. In our model, we ex-

plicitly simulate COVID-19 spread in the workplaces

that are in the cities. Each of these locations has an

assigned occupational category and a category-specific

transmission rate, contributing to the infection risk for

all the agents employed therein. Contrarily, the occupa-

tional category of an agent who works outside of city

is a characteristic of the agent, rather than the loca-

tion. This stems from the fact that our model avoids

simulations of the entire region by approximating the

contagion in the out-of-city locations. The workplace-

related infection risk for an agent working out-of-city

corresponds to the estimated fraction of infected people

in the region multiplied by occupation type transmission

rate. Overall, the employment type distribution matches
the U.S. Census [48] data with details on its distribution

and rate computation enclosed in the Supplementary

Material.

The age distributions of the cities’ residents are

shown in Figure 1c), while other characteristics of the
cities are summarized in Table 1. The three cities differ

in some characteristics, such as spatial layout, popula-

tion density, fraction of residents in the 0–9 age cohort,

unemployment rates, commute patterns, workplace lo-

cations, and percentage of people working in low- versus

high-risk occupations. At the same time, the three cities

have similar household and family structure and age

distribution of older children and adults.

2.2 Agent-based model

In our model, each city resident is represented by a simu-

lated agent who mirrors residents’ lifestyles. The agents

could live together in distinct households, retirement

homes, and be admitted to hospitals. They could work,
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Fig. 1 a) Public and residential locations in the three cities that are considered in the model, b) occupation categories of the
employed residents, and c) age distribution of the population.

Table 1 Characteristics of the three modeled cities.

Colonie New Rochelle Utica

Population 82,797 79,205 59,750
Population/sqmi 1,459 7,445 3,714
Unemployment rate 3.1% 6.1% 8.2%
Use of public transit 1.02% 8.5% 0.77%
Workers out of the city 19.7% 31.2% 15.6%

go to school, visit non-essential businesses, visit each

other, and travel to work through various transit means,

consistent with the database described in Section 2.1.

COVID-19 spreads through contacts that agents

make in the locations they visit through a probabilistic

mechanism. Specifically, the transmissibility of COVID-

19 is dependent on the location type and agent role and

is quantified through transmission rates, as explicitly

detailed in our previous work [34,42]. To capture the

transmission levels associated with different occupations,

we use the empirical data published by the Washington

State Department of Health [59,60]. Details about this

procedure and exact values of the infected fractions and

rates are included in the Supplementary Material.

Once infected, agents can develop symptoms or re-

main asymptomatic. Infected agents (both asymptomatic

and symptomatic) and those with symptoms similar to

COVID-19 but from other diseases can be tested with a

certain probability. We refer to this likelihood as testing

and detection efficacy (low, moderate, or perfect). A low

efficacy corresponds to the detection of 63% of the symp-
tomatic agents and 44% of the asymptomatic, following

our model calibration for the first wave [34]. Moderate

efficacy implies that 82% of symptomatic and 72% of

asymptomatic agents are detected, and perfect efficacy

means that all infected agents are tested. With the ex-

ception of hospital employees, when an agent “signs up”
for a test, they are immediately home-isolated. This

mimics local practices, whereby healthcare staff do not

isolate until they are confirmed COVID-19 positive or

develop symptoms of the disease. Tests are performed

in hospitals or in independent testing sites, where the

latter locations are assumed to pose no risk of transmis-

sion. Agents who tested positive can be treated at home,

through routine hospitalization, or in ICUs, depending

on the severity of the disease, which is determined in

a stochastic fashion, consistent with COVID-19 clini-

cal data [61]. The disease progression terminates with

either a recovery or death. The exact COVID-19 pro-

gression used in this work follows the progression model

described in [42].

Similar to our previous work [42], our model con-

templates vaccination for agents. In our simulations, we

mimic a continuously progressing vaccination campaign.

A portion of the agents is immunized at the beginning

of the study and the number of vaccinated individuals

increases linearly as the simulation progresses. Once
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Fig. 2 Simulations of the spread of COVID-19 in Colonie (blue curves), New Rochelle (red curves), and Utica (orange curves)
over a time-window of three months, for three different testing and detection efficacies. Solid lines represent the average of of
400 independent realizations; dashed lines are the 25th and 75th percentiles.

vaccinated, we assume that individuals are granted full

immunity to COVID-19. Despite being simplistic, such

an assumption should be realistic for the short-term sim-

ulation window (through Summer 2021) considered in

this work. Non-ideal effectiveness of vaccines and waning

immunity has been incorporated within our simulation
framework in a separate publication [35].

The core parameters used in the model are described

in detail in our previous works. Following our most re-

cent study [35], we simulate the Delta variant of the

virus with epidemiological parameters calibrated on clin-

ical estimations [62,63]. Because our goal was to analyze

the impact of non-epidemiological factors, such as pop-

ulation density and employment distributions, on the

spread of COVID-19, all three cities were simulated with

the same initial percentage of infected agents, patients

in various stages of COVID-19, and vaccinated agents,

chosen uniformly at random in the population. All cities

are assumed to have the same risk levels from travels

from and to neighboring cities, transmission in public

transit, and frequency of visiting non-essential business
locations. The detailed parameter list is enclosed in the

Supplementary Material.
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3 Results

3.1 COVID-19 spread in the three cities

Starting from the same initial conditions, we simulated

three months of COVID-19 spread in the three cities

for different testing and detection efficacies. Since the

initialization of the system and the contagion model are

governed by probabilistic mechanisms, for each analyzed
condition, we estimated the outcome of the spreading

process via Monte Carlo simulations, by averaging over

400 independent realizations. Results shown in Figure 2

indicate that under low and moderate testing and detec-

tion efficacy, the three cities of Colonie, New Rochelle,

and Utica do not experience significant differences in

the COVID-19 toll, either in terms of total infections

or in total deaths. However, under perfect efficacy, the

case and death counts in New Rochelle are considerably

smaller than in the other two cities.

3.2 Identification of major COVID-19 hubs under

perfect testing and detection efficacy

To shed light on the factors that determine the signifi-

cantly lower spread in New Rochelle for perfect testing

and detection efficacy, we performed two additional

analyses. In the first analysis, we selectively excluded

different location types from the spread by assuming

that no transmission can happen in that type of loca-

tions (formally, by setting the corresponding transmis-

sion rate to 0). In this way, we simulated the spread in

the three cities without agents being infected at generic

workplaces, schools, hospitals, retirement homes, or non-

essential business locations, respectively.

According to the results shown in Figure 3, the

spread in Colonie and Utica are comparable to the one

in New Rochelle only if hospitals are excluded from trans-

mission. This result can be traced back to different rules

applied to hospital employees compared to the general

population. Under perfect testing and detection efficacy,

nearly all the agents who become infected during the

simulated time-window are successfully detected. How-

ever, as opposed to any other agent, hospital employees

do not home-isolate before receiving their positive test

result or developing disease symptoms. As such, they

are allowed a wider period for potentially spreading

the infection in the hospital and outside. Furthermore,

New Rochelle has only one hospital with 345 employees,

which is much less than Colonie (six hospitals, 1,552 em-

ployees) and Utica (four hospitals, 962 employees). As

such, New Rochelle provides less routes for COVID-19

to spread from hospital employees who are positive but

still performing their duties.

Fig. 3 Final COVID-19 toll (infections and deaths) after
simulating a three-month window and excluding the indicated
location types from the spread. The bottom and top edges of
the box plots mark the 25th and 75th percentiles, the solid
lines represent the median, and the whiskers span the entire,
outlier-free dataset.

While our simulation results are suggestive of a key

role of hospital in relaying the infection outside of their

facilities, the question about possible causes of transmis-

sion within facilities, with the associated risk of gener-

ating outbreaks, remains open. To this aim, our second

analysis sought to identify the types of agents that con-

tributed the most to the spread within hospitals. In

particular, we performed a series of simulations where

we excluded from the transmission dynamics select types

of agents in hospitals. The types of agents that we ex-

cluded were patients who were originally admitted to

the hospital due to conditions other than COVID-19,

agents that get tested at a hospital, hospital employees,

routinely hospitalized COVID-19 patients, and patients

treated for COVID-19 in an ICU, respectively. The re-

sults in Figure 4 show that the reduction of spread in

Colonie and Utica is achieved only when excluding the

agents who are routinely hospitalized for COVID-19,
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Fig. 4 Final COVID-19 toll (infections and deaths) after
simulating a three-month window and excluding the indicated
agent type from the spread within hospitals. In-patients refer
to agents originally admitted to the hospital due to conditions
other than COVID-19, Tested are agents having their test in a
hospital, Staff are the healthcare employees, Regular patients
are the agents routinely hospitalized for COVID-19, and ICU
patients are the agents treated for COVID-19 in ICUs. The
bottom and top edges of the box plots mark the 25th and
75th percentiles, the solid lines represent the median, and the
whiskers span the entire, outlier-free dataset.

suggesting their prominent role as main spreaders within

hospital facilities.

3.3 Effect of vaccinating hospital employees

Results in Figure 4 leads us to formulate the hypothesis

that an important route for COVID-19 generates from

hospitals, among patients, and spreads outside, due

to infected employees who could interact with others

between the time the infection is contracted and the

emergence of symptoms or the positive outcome of a test.

Under this premise, it becomes of paramount importance

to vaccinate hospital employees.

To further back this claim, we performed an addi-

tional simulation in which we vaccinated all the initially

healthy hospital employees. Under the assumption of

perfect immunity, results in Figure 5 confirm that vacci-

nation of healthcare employees greatly reduces the toll

of the epidemic. Importantly, the immunity of hospi-

tal employees also changes the previous trends, with

Colonie presenting the least number of cases due to its

larger number of hospital and hospital employees. Given

that the vaccines in reality do not fully protect against

COVID-19 and their effects wane with time, this best-
case scenario further highlights the need of mandatory

(or extremely incentivized) immunization of healthcare

workers.

4 Discussion

Our work offers a unique, comparative study of different

U.S. cities toward elucidating the urban determinants

of COVID-19 spread. Through a high-resolution agent-
based model, we simulated the spread of COVID-19 in

three similar-sized cities in New York state (Colonie,

New Rochelle, and Utica), differing in spatial layout,

population demographics and lifestyles, and occupa-

tional characteristics. We matched the initial COVID-

19-related conditions in the three cities to facilitate the
isolation of non-epidemiological, urban determinants.

Acknowledging the critical importance of testing and

detection in fighting the pandemic, our analysis included

different testing and detection scenarios, from low (rem-

iniscent of the first wave) to perfect efficacy.

Our computational results indicate that the three

cities experience similar COVID-19 infections and deaths

for low and moderate efficacies of testing and detection.

In the case of perfect detection and testing efficacy, the

COVID-19 toll in New Rochelle remarkably drops below

the other two cities. Through additional analysis on the

influence of different locations on the spread, we demon-

strated that the reason behind this difference is due

to the spread in hospitals. Specifically, we found that

contagion within hospitals is dominated by routinely
hospitalized COVID-19 patients and hospital employ-

ees who could serve as vectors from the hospitals out

to the city. Predictably, our numerical simulations also

indicate that vaccination of healthcare workers is suc-

cessful in preventing these contagions, thereby reducing

the COVID-19 toll in the three cities. Our results con-

tribute a valuable outlook on testing, immunization, and

isolation of infected cases in urban environments.

Overall, the results of our study highlight the im-

portance of timely and efficacious testing and detection,

consistent with claims from our previous analyses [34,
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Fig. 5 Spread of COVID-19 with perfect testing and detection and fully vaccinated hospital employees. Solid lines represent
the mean out of 400 independent realizations. Dashed lines are the realizations corresponding to the 25th and 75th percentiles.

35,42] and work of other research groups [28,64]. By im-

proving the efficacy of testing and detection from low to

perfect, the case count drops as much as six fold, result-

ing in up to five times fewer deaths. With reduced test-
ing and detection, differences between the fabrics of the

cities have a limited impact on COVID-19, resulting in

equivalent epidemic patterns. In this vein, despite their

differences, the burden of undetected cases bears similar,

dramatic consequences on the three cities. These claims

are aligned with strategic plans implemented world-wide

in an effort to curb the COVID-19 pandemic through

immunization and non-pharmaceutical interventions [65,

66].

With perfect testing and detection efficacy, New

Rochelle had, on average, two times less infection cases

and deaths compared to Colonie and Utica. We attribute

this variation to differences in COVID-19 spread in hos-

pitals. The severity of the spread in hospitals has been

documented by other works [67–70], while hospitals have

been identified as dominant COVID-19 hubs have been

identified in various computational studies [47,71]. With

respect to urban planning and epidemiological crisis mit-

igation, our results highlight the importance of proper

isolation of the hospitalized infected individuals [69,

72]. Following successful implementations [73–75], cities

should consider establishing fewer, more isolated hos-

pitals to treat COVID-19 patients. Ongoing solutions

aiming to reduce COVID-19 spread from hospitals is the

utilization of mobile pre-screening applications before a

visit [76], and delegating some of the diagnostic services

to online meetings rather than live interactions [77].

In our model, only hospital employees spread COVID-

19 from the hospitals to the general population, which

is consistent with restrictions that are placed in health

care facilities on guests’ admission and efforts to perform

remote diagnosis when possible [77,78]. The intensity of

the spread is linked to the nature of their work, prevent-

ing hospital employees from quarantining unless tested

positive or developing symptoms [79,80]. Vaccinating

these individuals in our simulations resulted in twenty

times fewer cases and ten times less casualties. While

we have assumed that vaccines grant full, long-lasting
immunity, it is tenable that equivalent, albeit reduced,

benefits would persist under more realistic conditions,

in line with other studies [67,68]. The importance of

vaccinating healthcare workers pointed out in our study

is particularly relevant, as many governments across the

globe are hesitant in mandating their immunization [81,

82], facing criticism from the employees and the public.

When interpreting the results of our work, one should
keep in mind several of its limitations. First, our test-

ing and detection procedure is very conservative, with

agents isolating as soon as they decide to get tested.

This is likely a more optimistic scenario than what is

encountered in reality, especially after relaxing local

quarantine rules for the fully vaccinated [83]. Second,

the model does not accommodate any form of contact

tracing, which is still a major component of COVID-19

curbing. Third, the vaccines are also assumed to act in

an idealized fashion, and there are no limits to their

application, like agents’ age or hesitancy. Fourth, our

model does not account for additional deaths that may

result from the overburden of hospitals and the reduc-

tion of hospital employees due to infection. Adding such

a feature may partly reduce differences in the number

of deaths between the three cities.

In conclusion, our study indicates that enhancing

the effectiveness of testing and detection policies would

make urban determinants essential factors of the epi-

demic outcome. Conversely, prioritizing urban modifica-

tions over improvement on testing may nullify such an

effort. In the absence of highly efficacious testing and

detection, cities appear to be equivalently vulnerable

to COVID-19 spread. If highly efficacious testing and

detection are practiced, our analysis points to hospitals

as major sources of epidemic spread, with hospitalized
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individuals causing local outbreaks and employees fa-

cilitating the spread across the community. Our results

imply that an epidemiologically resilient city should pos-

sess well-developed detection infrastructure providing

high-quality and timely tests; fewer, dedicated health-

care facilities that provide good isolation of treated

individuals; and strongly incentivized vaccination of its

healthcare workers.
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Supplementary Information for Urban determinants
of COVID-19 spread: A comparative study across
three cities in New York State

S1: Creation of households

All agents who are not residents of retirement homes or hospital patients are
assigned a household. Household structure follows the U.S. Census data on
housing statistics [17] on household size, percentage of families, single and two-
parent families, and fraction of households with senior citizens. Households can
be stand-alone buildings or be a part of multiunit structures. Agent location
is the same as the geographic coordinates of the household they are assigned
to. The geographic coordinates are used to assign each agent a workplace and
several non-essential businesses that they may frequent as described in our
previous publication [14]. The frequency with which agents visit non-essential
businesses is selected as the average value of available records across the three
cities, collected during early spring 2021.

To spatially distribute the households, we use the U.S. Census on single
and multiunit residential buildings listed in Table S1. Below, we outline the
algorithm for generating households and their coordinates

1. Collect coordinates of all residential buildings
Spatial coordinates of the buildings are collected manually using ArcGIS [3].

2. Create single unit households
The number of single unit households, N1H, in our model is

N1H = N1−A +N1−D +NM +NO, (S1)

which corresponds to the total number of the relevant U.S. Census categories
outlined in Table S1: 1-unit attached (N1−A), 1-unit detached (N1−D),
mobile homes (NM), and other (NO), which represents boats, RVs, etc. In
this step, we randomly choose locations collected in Step 1 and turn them
into single households.

3. Create two-unit households
The number of buildings with two households, N2H, is computed following
the data in Table S1 as:

N2H =
⌊nu,2

2

⌋
, (S2)

where nu,2 is the number of households located in two unit buildings and
⌊·⌋ indicates rounding off to the lowest integer. The buildings are then
randomly assigned to the locations that were not selected as 1-unit in
Step 2. Each of such geographic locations will thus have two households
assigned to it.
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4. Create households characterized by ranges of units
Part of the multi-unit structures in the U.S. Census data are characterized
by a range of units, for example, 5–9. To create those households, we

(a) Select the average number of units in the building, ni that is within
the reported range as listed in Table S1.

(b) Calculate the number of buildings with ni units, NiH:

NiH =

⌊
nu,i
ni

⌋
, (S3)

where nu,i is the number of units in buildings with ni households.

(c) If enough locations are available after assigning single- and two-unit
households, randomly assign NiH buildings to a subset of the same

(d) If there are not enough available locations, randomly select NiH

buildings with more than one unit and add ni households to them.

5. Generate households with more than 20 units
For multi-unit buildings that represent complexes with 20 or more house-
holds, we follow a procedure similar to that summarized above, specifically,

(a) Calculate the number of buildings with at least 20 units, N20H:

N20H =
⌊nu,20

20

⌋
+NE. (S4)

where nu,20 is the number of units in buildings with 20 or more
households and NE is the number of buildings remaining due to
rounding operations in the previous steps.

(b) If there are enough available locations, randomly assignN20H buildings
to have 20 household each and create the households.

(c) If there are not enough locations, randomly select N20H buildings with
more than one unit and add 20 households to them. This will create
buildings with more than 20 households, which is still consistent with
the data reported in U.S. Census.

The approach described here is different from how residential building capacity
was collected in our previous work [13]. Specifically, in our previous work, multi-
unit buildings were identified manually and the number of units within them
were estimated based on the floor count of each structure. While our current
approach involves significantly less manual assignment, it also results in a more
evenly distributed population. To verify that this coarser approach of household
assignment does not skew our analysis, we compare the spread of infection
along three different testing efficacies in the city of New Rochelle created using
manual assignment of household capacity with that using the approach described
here. Figure S1 shows the number of active cases, infections, and deaths over a
three-month period for three different testing and detection efficacies. Results
indicate close agreement between the two approaches, effectively validating the
simplified strategy for household capacity assignment for small urban areas.
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Figure S1: Simulation of the spread of COVID-19 in New Rochelle using manual
assignment of household capacity and location, as implemented in our previous
study [13], (blue curves) and the random assignment proposed in this work
(red curves) over a time-window of three months, for three different testing
and detection efficacies. Solid lines represent the average of of 400 independent
realizations; dashed lines are the 25th and 75th percentiles.
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Units in structure ni Colonie, nu,i New Rochelle, nu,i Utica, nu,i

1-unit attached, N1−A 1 1,150 1,364 959
1-unit detached, N1−D 1 23,273 10,316 10,774
Mobile home, NM 1 448 0 79
Other, NO 1 0 0 0
2 units 2 2,152 1,749 7,881
3-4 units 3 1,240 3,676 3,428
5-9 units 7 1,269 623 1,646
10-19 units 14 2,481 1,127 699
20+ units 20 4,551 10,791 2,703

Table S1: U.S. Census data on housing units characteristics used in this work.
We do not cite the exact tables as the reported data is subject to regular changes.

Occupation category Colonie, %
New
Rochelle, %

Utica, %

Management, business, sci-
ence, and art

47.75 47.84 28.35

Service 16.15 16.59 28.5
Sales and office 23.67 19.31 21.98
Natural resources, con-
struction, and mainte-
nance

5.37 6.19 6.63

Production, transporta-
tion, and material moving

7.07 10.05 14.55

Table S2: U.S. Census occupational data in the three cities used in our work.

S2: distribution of agent occupation types

Here, we summarize the procedure for assigning occupation types to the agents us-
ing U.S. Census statistics. Occupation types and percentages of people employed
in them are listed in Table S2.

Agents are assigned workplaces as follows: we first assign occupations to
in-city employees; next, we determine occupations of the agents working out-of-
city such as to match the U.S. Census statistics on occupational types shown in
Table S2.

S3: transmission rates for different occupational
categories

Agents modeling employees can either work in the city or in its vicinity, with
workplaces contributing to an agent’s total risk of infection. At any time step, a
working susceptible agent can get infected with COVID-19 at time t with the

4



probability
pi(t) := 1− e−∆tΛi(t), (S5)

where ∆t = 0.25 day is the duration of a time-step. Λi (t) represents a combined
risk from all the locations that the agent i is associated with,

Λi (t) :=λHh,fHh(i) (t) + λW,fW(i) (t) + λSc,fSc(i) (t) + λRh,fRh(i) (t)

+ λHsp,fHsp(i) (t) + λTr,fTr(i) (t) + λN,fN(i,t) (t) ,
(S6)

where λ•,ℓ(t) represents the risk of infection at location ℓ at time t. The possible
types of locations are: households - Hh, workplaces - W, schools - Sc, retirement
homes - Rh, hospitals - Hsp, public transit and carpooling - Tr, and non-essential
businesses - N. Function f•(i) selects the location type that agent i is assigned
to. Below, we explain the workplace contribution, λW,fW(i) (t), and the reader is
referred to our previous publications for further details [13–15].

The infection risk contribution for retirement home, hospital, and school em-
ployees is associated with corresponding dedicated terms, λRh,fRh(i) (t), λHsp,fHsp(i) (t),
and λSc,fSc(i) (t) respectively. In those cases, the generic workplace contribution
is set to zero, that is, λW,fW(i) (t) = 0. If an agent works in a generic workplace,
λW,fW(i) (t) ≠ 0 while other contributions will depend if they are a student
and are getting tested or treated for COVID-19. The form of the contribution
λW,fW(i) (t) itself depends on whether the agent works in the city or in the region
around it.

The workplaces inside the cities have an occupational type assigned to
them based on the SafeGraph data used to locate them [12]. The contribution
λW,fW(i) (t) of such a workplace becomes a function of all other agents working
at that location,

λW,ℓ(t) =
1

nℓ

∑
j:fW(i)=ℓ

(
Ej,W(t)ρjβ

k
W + Syj,W(t)cjρjψWβ

k
W

)
, (S7)

where Ej and Syj are indicator functions that identify when an agent is exposed
or symptomatic, respectively; ρj ≥ 0 accounts for the variability in infectiousness
among the agents; cj > 1 reflects the increased infectiousness of a symptomatic
agent compared to an exposed one; ψW denotes the fraction of agents who will
still be present at their workplace, regardless of having COVID-19 symptoms;
and βk

W is the transmission rate of the workplace of occupational type k, as
outlined in Table S2. This transmission rate may, in principle, differ among
workplaces of various types, reflecting the unequal infection risk in them. For
in-city workplaces, βk

W is tied to a specific location and applies to any agent
working in that particular workplace. That is, for agent i working in an in-
city workplace, the βk

W in Equation S7 has the value that corresponds to that
workplace occupational type.

Infection risk from working out-of-city is approximated as

λWO = βk
WχI , (S8)
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where βk
W is the transmission rate for occupation type k and χI is the regional

COVID-19 prevalence, estimated from officially reported data for the entire
region in vicinity of the city, where the agents work.

In our model, all agent occupations are characterized by their own trans-
mission rates, βk

W, reflecting different working conditions and their associated
infection risks. To compute them, we use empirical data published by the
Washington State Department of Health [20, 21] on positivity rates recorded
within different occupational categories. The report groups occupations using
the North American Industry Classification System (NAICS) [18], as opposed to
our categorization which relies on U.S. Census Bureau Occupational Codes [16].
To utilize the results from the report, we group the NAICS occupations into the
U.S. Census defined categories utilized in our model, as outlined in Table S3.
We then set the positivity rate associated with each category to an average value
across all grouped occupations as detailed in Table S4.

To calculate the infection rates for each occupational type k, we use scaling
relative to the healthcare employees,

βi
W =

χi

χHSP
βHSP. (S9)

Here, χi is the average percentage of COVID-19 cases reported for industry
categories classified under occupation i, χHSP is the percentage of infected
healthcare workers, and βHSP is our previously established healthcare employees
transmission rate.

For consistency, we apply this procedure to recompute the original infection
rates for school and retirement home employees. The NAICS classification and
rates for these categories are also shown in Tables S3 and S4.

S4: Model parameters

The model parameters used in our work can be found in our previous publica-
tion [14]. Here, we list only the parameters that unique to this work except
the workplace-related transmission rates that are already detailed in Section .
Specifically, we report transmission rates adjusted to reflect the spread of the
more infectious Delta variant [7].

1Scaled down to city size, time-step, and doubled following calibrated percentage of asymp-
tomatic adults in Ref. [13], used as a proxy for underdetection.

2Scaled down to city size, time-step, and doubled following calibrated percentage of asymp-
tomatic adults in Ref. [13], used as a proxy for underdetection; computed based on the total
number of cases recovering from COVID-19 during an average recovery period used in Ref. [13]

3Scaled down to city size and time-step.
4Average over all the areas where the people from a city work and scaled down to a

time-step.
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Occupational category from
U.S. Census [16] and this
work

NAICS categories [18]

Management, business, science,
and art

• Finance and insurance

• Public administration

• Professional, scientific, and technical
services

• Information

Service

• Other services

• Arts, entertainment, and recreation

• Accommodation and food services

• Administrative, support, waste man-
agement, and remediation services

Sales and office

• Retail trade

• Wholesale trade

• Information

• Professional, scientific, and technical
services

Natural resources, construction,
and maintenance

• Agriculture, forestry, fishing, and
hunting

• Construction

• Mining

Production, transportation, and
material moving

• Manufacturing

• Transportation and warehousing

School employees Educational services

Retirement home employees

• Healthcare and social assistance

• Accommodation and food services

• Other services

Table S3: Grouping of NAICS categories into occupation classification used in
this work.
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Occupational category Transmission rate, βk
W

Healthcare employees 2.05
Management, business, science, and art 0.2347
Service 0.3413
Sales and office 0.3627
Natural resources, construction, and mainte-
nance

0.7253

Production, transportation, and material mov-
ing

0.6827

School employees 0.3413
Retirement home employees 0.9958

Table S4: Grouping of NAICS categories into occupation classification used in
this work.
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Parameter Value References

Household transmission rate -
untreated

1.1 day−1 [4] scaled by 1.41

Household transmission rate -
home-isolated

0.768 day−1 Assumption

Retirement home resident
transmission rate - untreated

1.1 day−1 Assumption

Retirement home resident
transmission rate - home-
isolated

0.768 day−1 Assumption

School student transmission
rate

2.13 day−1 [4] scaled by 1.41

Transmission rate of hospital
patients with a condition dif-
ferent than COVID-19

2.21 day−1 Estimated based on data
from a clinical consultant

Transmission rate of hospital-
ized agents

1.63 day−1 Estimated based on data
from a clinical consultant

Transmission rate of ICU hos-
pitalized agents

2.14 day−1 Estimated based on data
from a clinical consultant

Transmission rate of infected
hospital visitors being tested
for COVID-19

2.8 day−1 Estimated based on data
from a clinical consultant

Transmission rate of agents in
a carpool

1.1 day−1 Assumed to be equal to
βHh,Ut

Transmission rate of agents
visiting other agents house-
holds

1.1 day−1 Assumed to be equal to
βHh,Ut

Transmission rate of agents
visiting non-essential busi-
nesses

0.3648 day−1 [8]

Table S5: COVID-19 transmission parameters. Assumed values were based on
discussions with Clinical consultant. Transmission rates where additionally scaled
by a factor of 1.6 to reflect the increased infectiousness of the then dominant
Delta variant [7].
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Parameter Value References

Latency period

log-normal
distribu-
tion with
1.225 mean
and 0.418
standard
deviation,
days

[9, 10]

Fraction of the population ini-
tially infected in the city

1.32× 10−4 [2]1

Fraction of agents that are ini-
tially active COVID-19 cases

1.39× 10−3 [6]2

Fraction of agents that are ini-
tially vaccinated

0.217 [11]3

Current vaccination rate in
the city, %(population)/day

0.58 [11]

Fraction of the population
that is estimated to be in-
fected in the area at a time-
step, χI

1.32× 10−4 [1, 2, 19]4

Current capacity of public
transit compared to its maxi-
mum capacity, ζ

0.697 [5] for public transit

Fraction of the nominal trans-
mission rate at workplaces,
public transit, carpools, and
leisure locations associated
with current reopening stage
(Phase 4)

0.63 [5] for workplaces

Initial fraction of agents go-
ing to leisure locations at each
time-step, β

N

0.2 Assumption

Final fraction of agents go-
ing to leisure locations at each
time-step, β

N

0.2 Assumption

Table S6: Other parameters. The fractions and the vaccination rate are averages
of reported data across the three cities. The city populations are 82,797, 79,205,
and 59,750 for Colonie, New Rochelle, and Utica, respectively [17].
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