
13 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Understanding Reinforcement Learning Control in Cyber-Physical Energy Systems / Lorenti, Gianmarco; Moraglio,
Francesco; Repetto, Maurizio.. - ELETTRONICO. - (2022). (Intervento presentato al convegno Workshop on modelling
and simulation of cyber-physical energy systems tenutosi a Milan (Italy) nel 03-03 May 2022)
[10.1109/MSCPES55116.2022.9770172].

Original

Understanding Reinforcement Learning Control in Cyber-Physical Energy Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MSCPES55116.2022.9770172

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2965124 since: 2022-05-30T17:24:32Z

IEEE

Understanding Reinforcement Learning Control in
Cyber-Physical Energy Systems

Maurizio Repetto
Energy Department

Polytechnic University of Turin
10129 Turin, Italy

maurizio.repetto@polito.it

Francesco Moraglio
Energy Department

Polytechnic University of Turin
10129 Turin, Italy

francesco.moraglio@polito.it

Gianmarco Lorenti
Energy Department

Polytechnic University of Turin
10129 Turin, Italy

gianmarco.lorenti@polito.it

Abstract—The possibility of modeling a renewable energy
system as a Cyber-Physical Energy System (CPES) offers new
possibilities in terms of control. More precisely, this document
discusses the applicability of Reinforcement Learning (RL) tech-
niques to CPES. By considering a benchmark algorithm, we
focus on conceptual and implementation details and on how
such details relate to the problem of interest. In this case, we
simulate how a RL model can optimize the energy storage control
in order to reduce energy costs. The work also discusses the
issues that arise in RL models and the possible approaches to
these difficulties. Specifically, we propose investigating a better
exploitation of the memory mechanism.

Index Terms—Reinforcement Learning, Memory, Cyber-
Physical Energy System, Control, Simulation, Energy Storage.

I. INTRODUCTION

Optimal control of power systems is a well-established
area of research, both in academia and industry. Today,
the chance of formally treating a complex Energy System
(ES) as Cyber-Physical Energy System (CPES) brings new
opportunities in terms of resolutive approaches and testing
accuracy.
This modeling possibility arises from the growing interest
and recent developments in the areas of Smart Metering (SM)
and Digital Twins (DT). On the one hand, SM provides us
access to large amounts of data, for example those collected
by sensors located in plants. On the other hand, DT models
reached satisfying leves of accuracy, customizability and
computational efficiency, thus becoming an ideal testbed for
ES research. More precisely, we consider the application of
Reinforcement Learning (RL) techniques to the domain of ES
control. The high penetration of renewables into the energy
mix of real-world systems requires the control strategy to
exihibit higher degrees of adaptability and autonomy. In fact,
solar and wind power generation are intermittent by nature,
while contemporary commodity markets show strongly bullish
trends and, consistently with the inverse leverage effect [10],
high levels of price volatility. The exposure of the system to
such environmental conditions makes the problem of control
considerably non-linear in the space of observable variables,
whose dynamics typically shows significant stochasticity and
unpredictability.

Fig. 1. Agent-Environment interaction in a CPES.

From another point of view, effective management of
the Energy Storage System (ESS) could lead to remarkable
economic and environmental benefit. In fact, storage is the
enabling technology to catch arbitrage oppurtunities in such
an high-volatility scenario. For example, excess production
in off-peak hours can be stored and sold during peak hours.
This becomes particulary interesting in the current period, as
markets continue seeing high values of the peak-base spread.
In other words, good exploitation of production, price and
consumption patterns which appear to the control entity is an
highly desirable property for any operational strategy. Hence,
the metaphor of RL as way to perform behavioural learning
seems particularly suited to this context. The idea is modeling
the control unit as a learning entity which adapts the CPES
behaviour consistently with the feedback signals it receives
from the surrounding environment. Fig. 1 gives a schematic
representation of this hypothetical situation. Still, RL models
are intrinsecally abstract and moving from concepts to imple-
mentations is often challenging.

Some authors [5] applied RL to CPES control problems,
often employing the most advanced available algorithms. Nev-
ertheless, to the best of our knowledge, few studies analyze

algorithmic details, especially when dealing with deep RL,
whose introduction is very recent [7]. That means, these papers
usually give little attention to topics such as applicability
issues and model interpretability. This can become particulary
problematic, as there are several factors in the implementation
of this method that are crucial to its success [6]. We wrote this
work with the intention of stimulating new reaserch directions
in this field.
The paper is structured as follows. Section II contains the-
oretical remarks on RL, while Section III describes the
examined algorithm in detail. In Section IV we define a
benchmark problem and in following Section V we sum up
implementation details for the problem under consideration.
Section VI contains experimental results, while final Section
VII discusses a theoretical and applicative issue, proposing
possible solutions.

II. THEORETICAL RECALL

RL is an area of Machine Learning concerned with the
problem of learning from interaction. In general, we think
of a learning and decision making entity, named Agent, that
continually interacts with its surrounding Environment.
Consider for example Fig. 1. Here the control unit of the CPES
represents the Agent, while we can describe the Environment
as a number of observable variables: electric load, photovoltaic
production, ESS state of charge and market prices.
At each step t of the learning process, the Environment
presents a state st to the Agent, which chooses and executes
an action at. The Environment in turn responds to the Agent
by presenting a new state st+1; this state transition also has a
cost for the Agent, that is ct. Roughly speaking, the ultimate
goal of the learner is minimizing the long-run expenditure.
We typically deal with RL problems using the Markov Deci-
sion Process (MDP) formulation. More precisely, an MDP is
a tuple (S,A, T,C, γ):

• S is the state space.
• A is the (Agent’s) action space.
• T is the transition function, which determines the dynam-

ics of the model. For instance, one could have

T : S ×A× S −→ [0, 1]

(s, a, s′) 7−→ P(s′|s, a), (1)

that is, the probability of transitioning to state s′ after
executing action a in state s.

• C is a cost function,

C : S ×A× S −→ R
(s, a, s′) 7−→ c = C(s, a, s′). (2)

It returns the cost of transitioning to state s′ after choos-
ing action a in state s.

• γ ∈ (0, 1) is a discount factor that determines how
significant short-term costs are compared to long-term
costs.

Solving an MDP [1], i.e. solving the problem of control in an
MDP, means finding a policy

π : S −→ A, (3)

which is a function that, for each observed state s ∈ S, returns
the optimal action to be taken, a = π(s) ∈ A. The objective
of the optimization is minimizing the expected cumulative
discounted cost:

Eπ

[∞∑
t=0

γtct

]
, (4)

where Eπ denotes the expectation w.r.t. policy π (i.e. when
the Agent chooses actions according to π) and

ct = C(st, at, st+1)

is the cost of the (t+ 1)-th state transition; t is the timestep.
A policy that minimizes (4) is denoted π⋆.
In this context, algorithms for MDPs need a way to link
the optimality criterion (which refers to long-run costs) to
policy functions (which are ”instantaneous”). A very common
approach consists in exploiting the so-called Value Functions
(VFs), which measures how convenient it is to be in a certain
state (or choosing a certain action). In particular, the state-
action VF, also known as Q-function, is

Qπ : S ×A −→R

(s, a) 7−→ Qπ(s, a) =Eπ

[∞∑
k=0

γkct+k|st = s, at = a

]
. (5)

Denote by Q⋆ the Q-function for the optimal policy π⋆. One
can show [2] Q⋆ satisfies a recurrence relation named Bellman
Optimality Equation (BOE). If state space S is discrete, BOE
reads

Q⋆(s, a) =
∑
s′∈S

T (s, a, s′)
[
C(s, a, s′) + γmin

a′
Q⋆(s′, a′)

]
,

s ∈ S, a ∈ A. (6)

For each s ∈ S, we can determine the optimal action greedily
from Q⋆ by selecting

π⋆(s) = argmin
a∈A

Q⋆(s, a), (7)

thus explicitely defining an optimal policy π⋆.
A widespread algorithm named Q-Learning [2] [4] relies upon
these (6) (7) properties to estimate Q⋆ and to compute π⋆

from it. This algorithm initializes the Q-values at random and
iteratively improves its estimates by sampling state transitions
and rewards. More precisely, Q-Learning improves the Q-
function estimate by the following update rule:

Qt+1(st, at) =

Qt(st, at) + α

(
ct + γmin

a∈A
Qt(st+1, a)−Qt(st, at)

)
, (8)

where t denotes the timestep and α ∈ (0, 1] is the step-size
parameter.

Traditional variants of Q-Learning work by storing and updat-
ing a tabular representation of the Q-function (e.g. using an
hash table with keys (s, a), s ∈ S, a ∈ A). Still, if the state
space S is inherently large or continuos, the Q⋆ estimate is
typically implemented via Function Approximation (FA) [1].
The essential idea is fitting a regression model to the dataset
of observed system transitions, which allows generalization to
new experience.

III. ALGORITHM

The model we are considering in this study is a simplified
version of Deep Q-Network (DQN), first appeared in [7]. For
convenience, we named our model Simple Q-Network (SQN).
More precisely, we are considering a threefold extension to the
classical Q-learning that includes the following improvements.

1) The model approximates the Q-function with a Multi-
Layer Perceptron (MLP), which is trained in batch
mode. This idea was firstly introduced in [8] and devel-
oped further in [7]. In particular, the latter work proposes
a deep convolutional architecture for FA and this kind of
neural net is becoming increasingly popular also in RL
[5]. Despite these networks offer significant advantages
in terms of accuracy and generalization capability, we
preferred sticking to simpler models, which are compu-
tationally much more permissive. More details on FA
can be found in Section V.

2) SQN, just like DQN, implements a mechanism known
in literature as Experience Replay (ER). That is, the
algorithm relies upon storing and maintaing a large
memory buffer of previous experiences, i.e. state transis-
tions and rewards. When the model updates the network
parameters, mini-batches of experience of size B are
drawn uniformly at random from the buffer.
Notice the training procedure is run only every K ∈ N
steps.

3) SQN also inherits from DQN an improvement named
Target Network (TN). Everytime the algorithm runs
a training void, it transforms the sampled batch of
experience to a training dataset. where also the response
values are predicted using a neural net. This is typically
the same net used in determining optimal actions (i.e. the
Q-Network). Introducing a TN means using a separate
net to predict target values. The TN shares the same
architecture of the Q-Network, but its parameters are
updated only every KT ≥ K iterations. This enhance-
ment results in increased training stability.

Algorithm 1 gives a schematic representation of SQN. This
model includes a few other technicalities we briefly enumerate
below.

• According to the classic literature about Q-learning [2],
we make use of the ϵ-greedy exploratory policy. That is,
in order to balance the exploration-exploitation tradeoff,
random actions can be drawn with probability ϵ. In our
case, this probability is initialized to 1 and then linearly
annealed to its final value ϵ.

• Memory Buffer M is typically implemented with a
(fixed) maximum size m; this way the Agent only stores
the last m experienced state transitions.

• Gradient Descent (GD) updates are performed using the
classic method with learning rate η, inlcuding a momen-
tum β.

This model is simpler than deep-learning-based methods that
tend to appear in recent publications on the application of RL
to ES [5]. In fact, we remark that our goal is understanding the
possibilities and drawbacks of applying RL methods to CPES,
rather than devoloping a performing model for a specific
problem.
Last but not least, a remarkable difference between DQN
and SQN is that the former is tailored for episodic (that is,
finite-horizion) tasks, while the latter is, at least in principle,
thought for optimizing control in an infinite-horizon setting:
recall the objective function in (4). The choice was made
since we consider this setting more natural to the ES domain;
nevertheless a finite-horizon setting could increase overall
model performace.

Algorithm 1 Simple Q-Network (SQN)
Require: ϵ, γ, B, K, KT

Initialize action-value net Q with weights θ
Initialize target net QT with weights θT = θ
Initialize memory buffer M
for all timestep t ∈ {0, . . . , tmax − 1} do

Observe state st
ϵt ← ϵ+ (1− ϵ) ∗

(
1− t

tmax

)
Draw u← random(0,1)
if u < ϵt then

at ← random(A) {Select random action}
else

at ← argmin
a∈A

Q⋆(st, a; θ)

end if
Execute action at
Observe new state st+1 and cost ct
Save transition (st, at, st+1, ct) in M
if t mod K = 0 then

Sample B transitions (sk, ak, sk+1, ck) from M
for all transitions k do
yk ← ck + γmina∈A QT (sk+1, a; θ

T)
end for
Perform gradient descent update on θ {Run training
procedure}

end if
if t mod KT = 0 then

θT ← θ {Update target parameters}
end if

end for

IV. ENERGY SYSTEM CASE STUDY

Below we describe the simple ES model we used to assess
the behaviour of the proposed RL algorithm.

Consider an MDP describing the control of a storage-
integrated photovoltaic (PV) system that also has to satisfy
a load; also suppose this CPES can purchase energy from the
grid. By contrast, market sales operations are not allowed,
that is any excess PV power which exceeds load, if the ESS
is full, is injected to the grid without any economic reward.
This assumption is based on two considerations.

1) This model is a benchmarking system: excluding the
possibility of market operations results in a simpler
policy to be learned. For example, this decision implies
smaller action space size.

2) In the domain of smartgrids, current European regu-
lations give more relevance to self-consumption rather
than to market activity.

State space S is continuous and each s ∈ S is a real-valued
vector of the observable variates, namely

st =
[
t,SOCt, P

PV
t , PUE

t , cEL
t

]
, (9)

where for each time step t and considering an hourly dis-
cretization of time

• SOCt is battery State-Of-Charge;
• PPV

t is photovoltaic power production;
• PUE

t denotes (electric) load and
• cEL

t is the current electricity price.
The battery control unit represents the Agent in this prob-

lem, that has to understand the dynamics of the system in order
to better handle the ESS. We consider for simplicity binary
BESS operations (all-or-nothing). We consequently assume
that SOCt takes discrete values. Hence, action space A is finite
and, for each s ∈ S, feasible actions are a subset A(s) ⊆ A:

A = {"DISCHARGE","IDLE","CHARGE"}

The cost function in this case is the (hourly) expense for power
purchasing, namely

ct = cEL
t ∗ PP

t , (10)

where PP
t , which denotes the purchased power at each

timestep t, can be easily derived from the dynamics of the
system.
The goal of the Agent is thus learning to minimize the long-
run energy-purchasing expenditure (while it is given only
instantaneous observations).

V. IMPLEMENTATION DETAILS AND CONSIDERATIONS

A. Simple Q-Network

The model described here as SQN has been implemented
using Python programming language. We have tried to
translate the (relative) conceptual simplicity of the algorithm
to the implementation level. In other words, only few external
libraries have been used:

• Numpy;
• Scikit-Learn (MLP implementation);
• Pandas (dataset handling).

Many hyperparameters concurrently determine the behaviour
of the algorithm, with the possibility of observing opposite
effects. Repeated testing and intuitive reasoning lead us to the
values summarized in Table I.
The model is very sensitive to the choice of the discount factor
γ. Even slightly lower values, such as γ = 0.95, resulted in
an impossibility of learning the mid-run behaviour of the state
variables.
In the setting of CPES, also the ER mechanism is of crucial
importance. In fact, commodity-related time series data (e.g.
prices, load etc.) typically exihibit evident temporal patterns
such as strong seasonalities. Statistically speaking, this means
highly correlated data is input to the model, thus resulting in
high estimation variance [3] even if training is run in batch
mode. By contrast, sparse sampling from a (large) memory
buffer significantly reduces data covariance.

TABLE I
HYPERPARAMETER SETTINGS IN SQN

PARAMETER DESCRIPTION VALUE
γ Discount factor 0.99
ϵ Final exploration 0
B Batch size 8
m Maximum size of memory buffer 1000
K Update action net every K steps 4
KT Update target net every KT steps 24

B. Function Approximation

Consider the MLPs used in FA and target computation. The
topology consists two hidden layers of ten neurons each and
it relies on the ReLU activation function. Both specifications
were determined as the result of a trial-and-error procedure.
At each step t, the model process the state vector as defined
in (9): the Agent only observes the instantaneous values that
each enivronmental variable takes. Including past experience
would obviously increase model perfomance, but we preferred
sticking to this simpler represantion for better understandabil-
ity.
State data were rescaled to [−1, 1] according to heuristically
determined ranges, while battery actions were mapped to the
set {−1, 0, 1}.
The learning rate of the net is fixed and set to η = 10−3, while
the (fixed) momentum is β = 0.9. Our model also applies a
slight weight regularization with coefficient α = 10−6 (w.r.t.
the L2-norm of parameter vector θ).
During the early development stages of this model, we were
considering the possibility of employing an even simpler
method for FA, that is linear regression. Neverthless, after
obtaining poor results, we moved to such simple MLPs. We
think the results obtained with linear learners were so bad
because the Q-function could be highly nonlinear even for
the simplest CPES control problems. In fact, literature [1]
explains that linear FA performs poorly without careful design
of the regression features, that typically includes the use of
basis functions. This process, which requires an high level of
domain-specific knowledge, was not intuitive (even) for the

problem under discussion.
The implementation of a TN also appears useful in the control
of CPES. In fact, it can be seen as a periodic weight reset
mechanism for the network which determines the ”direction”
of learning for the action network. This becomes particularly
useful if the reset period KT corresponds to the intrinsic
seasonality of the data under observation.

VI. DATA AND EXPERIMENTAL RESULTS

In order to understand the working of SQN, we repeatedly
tested it over simple, synthetic data. All data have hourly
resolution and daily period, that is T = 24 hours.

• The PV production curve was obtained by averaging a
month of daily profiles retrieved from PVGIS [14]. The
PV plant is a set of panels whose nominal maximum
power is 15 kWp.

• We derived the load profile by scaling the aggregate load
of a multiutility company. Fig. 2 is a representation of
the curve.

• We computed synthetic market prices with a sinusoidal
curve, namely

cEL
t =

cmax − cmin

2
sin

(
2πt

τ

)
+

cmax + cmin

2
, (11)

where cmax = 80 and cmin = 10 denote maximum and
minimum electricity prices expressed in euros, respec-
tively, while τ = 2

3T = 16 is a heuristic value.
Total dataset length is tmax = 17520, that is two years of
hourly time series data.
Maximum energy capacity of the ESS is 10 kWh. The dis-
cretization of charge and discharge actions has a step of 1
kWh. By convention, negative values correspond to charge
actions, while positive values to discharge operations.
With slight abuse of term, we used the first 90 % of the data
as ”training” set. That is, exploration stops after 90% ∗ tmax
steps and ϵ, the probability of choosing random actions, is set
to zero.
The model gradually learns how to reduce the daily expen-
diture, as shown in Fig. 3. Here, as a benchmark we also
reported the minimum cost obtained with the true optimal
policy π⋆. We are able to do so since the setting is completely
determined and Mixed-Integer Linear Programming (MILP)
techniques can solve this problem. Oscillations in the curve
indicate the presence of instability and, possibly, forgetting
phoenomena (see next Section VII). Fig. 4 shows the final
policy (i.e. the one obtained after the end of the training
period) with pink triangles. What the model obtains is both
heuristically and quantitatively good. We can infer this from a
comparison with π⋆, in green boxes. Plot also shows the net
load PN

t = PUE
t − PPV

t and the synthetic prices.

VII. OPEN ISSUES

Several difficulties arise when applying RL methods to
solve control problems in CPES. The devoloper should take
diverse, non-intuitive decisions, especially when dealing with
the implementation phase. Many examples can be found in

Fig. 2. The sampled and scaled load curve.

previous Sections III and V.
From a more general viewpoint, however, it is worth mention-
ing an intrinsic problem of neural-fitted Q-Learning, which is
particularly evident in CPES control (see below why). This
issue is known in neural network literature as catastrophic
forgetting [9].
Recall that the network of the Agent, in SQN, does not
learn a policy directly, but it learns Q-values, which can be
interpreted as a proxy for the policy1. It might happen, during
network training, than successive improvements of the Q-
approximation imply the choice of suboptimal actions [6].
Such suboptimal actions drive the system towards unconve-
nient areas in the state space, thus potentially causing the
beginning of a vicious cycle:

• Agent chooses suboptimal actions;
• Agent observes ”bad” states as a result of suboptimal

actions;

1There exists a class of RL algorithms, namely Policy Gradient (PG)
methods, which directly optimize a policy. Despite PG models do not suffer
from value-related biases, they tend to be much more unstable [1].

Fig. 3. The model optimizes its behaviour in order to decrease daily cost.

Fig. 4. Battery operation during a day.

• Agent pays high costs regardless of the action it chooses;
• Agent tries adapting its policy to this unstable condition,

causing its net to ”forget” previous experience.

The mechanism of ER partially reduces this problem: pre-
senting past situations to the learning Agent prevents it from
optimizing its policy on unfair state space areas. Still, the
algorithm may run into catastrophic forgetting due to the
intrinsic limit of Q-function approximation.
We think the main drawback of this class of algorithms is the
inefficient handling of the memory buffer. DQN was originally
developed to learn old videogames [7], whose mechanics are
usually repetitive and this repetitiveness makes the choice of
a strongly randomized memory more suitable. By contrast,
controlling a CPES requires an higher degree of adaptability,
together with a better exploitation of past information, which
exihibits more variability. Consider for example the yearly
seasonalities of energy demand: the state transitions the model
has observed in past winters should be better exploited in the
following winter.
Take for instance Michigan-Style Learning Classifier Systems
(LCS) [12]. These are genetic-based ML models designed to
solve a RL problem. Optimization operates at the level of
individuals, but the solution is given by the entire rule popu-
lation. Each rule, or detector, is evolved to recognize certain
patterns in input data and to respond properly. We remark
that this pattern-recognition capability is also a fundamental
feature of antibodies in Artificial Immune Systems (AIS) [11].
Recent research [13] shows there are several other conceptual
similarities between AIS and RL: we can, at least theoreti-
cally, reformulate adaptive immunity as a network-based RL
problem. We think these ideas from the metaheuristics area
could be really helpful in developing more suitable memory
management strategy. Nevertheless, neither LCS nor AIS can
be intuitively applied to this context.
In fact, LCS have been developed for domains where we
can naturally apply binary representation of features and
conventional genetic operators (mutation, crossover). This is
not the case in the inherently continuous domain of CPES.

Moreover, the population of solutions in Michigan LCS di-
rectly represents the policy, while in SQN the memory buffer
is a technicality to improve the estimate of the Q-function,
from which the policy is derived.
As for AIS, their principal charachteristic is the possibility of
performing pattern recognition, rather than function optimiza-
tion (possibly, a behavioural function). More precisely, it is the
population of antibodies (the immune memory) that recognizes
patterns in new observations, typically with similarity-based
techniques. We think such behaviour could be really helpful
if hybridized with RL, but designing a reasonable solution is
not trivial. In particular, it seems diffcult to properly define
affinities in the state-action space.

VIII. CONCLUSION

This paper takes under examination the possibility of apply-
ing RL methods to the control of CPES. Researchers should
give particular attention to algorithmic details, since these
often result in highly unpredictable behaviour.
Certain instabilities can be tackled on the hyperparametric
level, e.g. by properly searching adequate values. By contrast,
other issues come from intrinsic limits in the design of
common RL algorithms. For this reason we hope this paper
will encourage insiders to dive deeper into the understanding
of the fundamental logics of RL.
For our part, we are already reasoning about possible ways to
better define the ER and memory mechanism, as we think RL
could be fundamental in the proper control of future energy
systems.

REFERENCES

[1] Wiering, M. and Otterlo, M. (2012). Reinforcement Learning: State-Of-
The-Art. Springer.

[2] Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An
Introduction. Second Edition. The MIT Press.

[3] Hastie, T.J., Tibshirani, R. and Friedman, J.H. (2001). The Elements of
Statistical Learning. Springer.

[4] C. J. C. H. Watkins (1989). Learning from delayed rewards Ph.D.
dissertation, King’s College, Cambridge, England, 1989.

[5] Perera, A.T.D. and Kamalaruba, P. (2020) Applications of reinforcement
learning in energy systems. Renewable and Sustainable Energy Reviews.
137 (2021).

[6] Roderick, M., MacGlashan, J. and Tellex, S.
(2017). Implementing the Deep Q-Network. ArXiv.
https://arxiv.org/abs/1711.07478

[7] Mnih, V. et al. (2015). Human-level control through deep reinforcement
learning. Nature 518, 529–533 (2015).

[8] Riedmiller, M. (2005). Neural Fitted Q Iteration - First Experiences with
a Data Efficient Neural Reinforcement Learning Method. ECML’05:
Proceedings of the 16th European conference on Machine Learning.
317-328. Springer

[9] Ratcliff, R. (1990). Connectionist models of recognition memory:
constraints imposed by learning and forgetting functions. Psychological
review, 97 2, 285-308.

[10] Geman, H. (2005). Commodities and Commodity Derivatives. Wiley.
[11] Read, M., Andrews, P.S. and Timmis, J. (2012). An Introduction to

Artificial Immune Systems. Originally published in Rozenberg, G. et al.
Handbook of Natural Computing. (2012). Springer.

[12] Michalewicz, Z. (1999). Genetic Algorithms + Data Structures =
Evolution Programs . Springer.

[13] Kato, T. and Kobayashi, T.J. (2021). Understanding adaptive immune
system as reinforcement learning Phys. Rev. Research 3, 013222

[14] Photovoltaic Geographical Information System (PVGIS). Solar Radia-
tion Tool. https://ec.europa.eu/jrc/en/pvgis

