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ABSTRACT

Recent results have shown that there is an acceleration in the spread of the size distribution of droplet populations in the region bordering
the cloud and undersaturated ambient. We have analyzed the supersaturation balance in this region, which is typically a highly intermittent
shearless turbulent mixing layer, under a condition where there is no mean updraft. We have investigated the evolution of the cloud–clear air
interface and of the droplets therein via direct numerical simulations. We have compared horizontal averages of the phase relaxation,
evaporation, reaction, and condensation times within the cloud–clear air interface for the size distributions of the initial monodispersed and
polydisperse droplets. For the monodisperse population, a clustering of the values of the reaction, phase, and evaporation times, that is
around 20–30 s, is observed in the central area of the mixing layer, just before the location where the maximum value of the supersaturation
turbulent flux occurs. This clustering of values is similar for the polydisperse population but also includes the condensation time. The
mismatch between the time derivative of the supersaturation and the condensation term in the interfacial mixing layer is correlated with the
planar covariance of the horizontal longitudinal velocity derivatives of the carrier air flow and the supersaturation field, thus suggesting that
a quasi-linear relationship may exist between these quantities.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090664

I. INTRODUCTION

The large-scale dynamics of warm atmospheric clouds is closely
coupled with small-scale phenomena. Lukewarm clouds are a stage of
a complex interplay between competing turbulent and microphysical
processes, which determine their evolution over time. However, many
physical processes that are relevant for cloud dynamics have not yet
been completely unraveled and still constitute a matter of debate in
the cloud physics and turbulence communities. In recent years, a great
deal of attention has been paid to the effect of turbulent mixing
at cloud boundaries as well as its impact on droplet condensation
(evaporation) and collision. The interfacial mixing of cloud and clear
air has often been identified as the main cause of the observed broad-
ening of droplet size distributions and the rapid onset of precipitation.

Warner1 suggested the importance of mixing at a growing cloud
top in unstable environments. Latham and Reed2 and Baker et al.3

were the first to recognize a difference between homogeneous and
inhomogeneous mixing, where the microphysics timescale can be
either longer or shorter than the timescale of the turbulent motions.
The ratio between the turbulent timescale and the microphysical time-
scale is represented by the Damk€ohler number, Da. The same

turbulent flow encompasses a wide range of Da along the energy cas-
cade.4 Several timescales have been used to define the Damk€ohler
number5 and to parameterize the impact of the entrainment and mix-
ing of clear air at cloud boundaries. These scales include evaporation,
phase relaxation, and reaction timescales. The fundamental variable
that drives the condensation (evaporation) of a droplet is supersatura-
tion S ¼ RH � 1, where RH is the relative humidity.6 S varies over
both time and space and is determined by the local, instantaneous
concentration of water vapor qv and temperature T through the
Clausius–Clapeyron equation. However, supersaturation S has often
been described as a somewhat global property of a cloud parcel,7 and
the local value of the vertical velocity and the microphysical properties
are generally taken into account for its estimation. The supersaturation
balance within a cloud is often described by means of a production–
condensation model of the type proposed by Twomey,8 where the
mean updraft velocity w and the mean radius of the droplet popula-
tion �R are the main contributors to the time derivative of S

dS
dt
ffi c1w�

S
sphase

; (1)

Phys. Fluids 34, 067103 (2022); doi: 10.1063/5.0090664 34, 067103-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0090664
https://doi.org/10.1063/5.0090664
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0090664
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0090664&domain=pdf&date_stamp=2022-06-02
https://orcid.org/0000-0002-5109-8779
https://orcid.org/0000-0002-9354-866X
https://orcid.org/0000-0002-4639-0572
mailto:daniela.tordella@polito.it
https://doi.org/10.1063/5.0090664
https://scitation.org/journal/phf


where sphase ¼ ðc2nd�RÞ�1 is the phase relaxation timescale,9,10 nd is
the droplet number density, and c1 and c2 are coefficients that depend,
albeit only slightly, on the temperature, c1, and temperature/pressure,
c2.

11 Cooper12 described a theoretical framework in which the variabil-
ity of S, and the subsequent broadening of the droplet size distribution
is determined by the value of the integral radius as well as by the
covariance of the integral radius and the vertical velocity fluctuation.

Sardina et al. generalized Twomey’s model to a scalar transport
equation that they used in their direct numerical simulation (DNS)
study of cloud cores.13 They showed that the contribution of the diffu-
sive effect is negligible for large Reynolds numbers. Chandrakar
et al.,14 in a laboratory experiment, used the stochastic condensation
model of Ref. 13 to investigate the effects of an aerosol concentration
on the broadening of the droplet size distribution. They argued that
supersaturation fluctuations determine diverse growth conditions
inside cloud cores with low aerosol (and droplet) concentrations,15

who studied the impact of turbulent temperature and water vapor
density fluctuations on supersaturation by performing in situmeasure-
ments of shallow-cumulus clouds, suggested the same. Their data
show a reduction in the standard deviation of supersaturation inside
cloud cores compared to regions where few or no droplets are located.
They used the phase relaxation time sphase as the microphysical time-
scale in the Damk€ohler number. Prabhakaran et al.16 used the stochas-
tic condensation approach to study the activation of dry-sodium
chloride aerosols as well as droplet nucleation and growth via labora-
tory experiments. They used a climate chamber where statistically
steady-state Rayleigh–B�enard turbulence had been generated. They
claimed that their results can be extended to a context in which the
effects of entrainment and mixing are important, and that, in this case,
droplet activation is governed by a fluctuation-dominated regime,
even though such a region is subsaturated on the whole.

However, many DNS studies have focused on both statistically
steady-state and transient shearless mixing layers located at a vertical
droplet-laden, cloud–clear air interface.17,18 Kumar et al.19 investigated
the effects of the range of the energy cascade on the relative dispersion
of a droplet population, which was observed to increase for larger ini-
tial values of the domain size-based Da. Miller and Bellan20 performed
direct numerical simulations (DNS) of a droplet-laden shear layer that
featured a two-way interphase coupling and a Lagrangian tracking sys-
tem for the droplets. Onishi et al.21 studied the influence of gravity on
droplet collision and coalescence. Sidin et al.22 used a synthetic turbu-
lent field to investigate the impact of both large and small-scale turbu-
lent eddies on droplet condensation and evaporation. Their DNS
model did not take into account the effects of condensation and evap-
oration. Golshan et al.23 have recently performed direct numerical
simulations of a horizontal, droplet-laden, interfacial shearless mixing
layer subject to unstable stratification. They observed a remarkable
acceleration in the dynamics of the droplet population in the mixing
layer, in particular in the temporal evolution of the droplet collision/
evaporation rates and in their spectrum broadening. These findings
were linked to the large intermittency of the small-scale turbulence,
which is driven by the anisotropy of the carrier flow shearless layer
and by the active scalars transported there.

The aim of the present work is twofold: first, to compute and
compare the various microphysical timescales in the cloudy–clear air
interfacial layer so far proposed in the literature, second, to infer a pos-
sible source term for Twomey’s equation (1) that accounts for the

small-scale statistics of the carrier flow at a cloud-top boundary where
the updraft is null. We have used the dataset computed from the afore-
mentioned direct numerical simulation campaign performed by
Golshan et al.23 We have adopted a high-resolution pseudospectral
method that allows us to observe the temporal evolution of the super-
saturation fluctuations and the velocity derivative statistics across the
horizontal turbulent shearless mixing layer (for the gas phase dynam-
ics, see Tordella and Iovieno24).

The physical model of a shearless cloud–clear air interface,
together with the relevant governing equations of the direct numerical
simulations, is presented in Sec. II. The obtained results are discussed
in Sec. III, and the conclusions are drawn in Sec. IV.

II. PHYSICAL PROBLEM AND MATHEMATICAL
FRAMEWORK
A. Physical model and governing equations

The aim here has been to study the transient decay of a top
cloud–clear air interface by performing direct numerical simulations
of a turbulent shearless mixing layer. This idealized interfacial layer
separates two regions. A warmer, droplet-laden cloud region is located
at the bottom half of the domain, and it is rich in water vapor and
kinetic energy. A clear air less energetic area lies in the top half of the
computational domain, which is a parallelepiped made up of two adja-
cent cubes, see Fig. 1, panels (a) and (b).

A turbulent layer without mean shear is a reasonable model of
turbulence at the boundary between atmospheric clouds and the sur-
rounding undersaturated air. This flow is considered simple because it
is free of the complications associated with the production of turbu-
lence due to the mean flow. However, in reality, it is home to dynamic
aspects that are not obvious and have not yet been fully described or
understood. We briefly list some of them hereafter. To form a shear-
free turbulent layer, it is sufficient that two contiguous non-sheared
regions with a different integral scale and the same kinetic initial
energy interact. This, in time, can generate a shear-free layer that hosts
a gradient of kinetic energy.25 All the shear-free turbulent layers are
in-homogeneous, thus anisotropic, and also intermittent at the small
scale level. Anisotropy appears in the main diagonal of the velocity
fluctuation gradient, which is characterized by a substantial absence of
significant off diagonal terms.24,26 The growth or reduction of the
thickness of the layer is controlled to a great extent by the concomitant
action of the local kinetic energy and spatial macroscale gradients. If
these gradients have opposite signs across the layer, the thickening of
the layer decelerates, and vice versa, if the signs are concordant.27 If
the layers are stratified in density, substrates are formed. In the case of
stable stratification, the energy collapses below the two formation
region levels. Flow transport across the layer is blocked. In the case of
unstable stratification, the sublayer hosts an accumulation of energy,
and transport is enhanced.28

Moreover, it should be noted that for the case where the most
energetic portion in addition to the layer (cloud region) hosts both
supersaturated water vapor and water droplets, recent results have
shown that (i) the small-scale intermittency of the air flow in the mix-
ing layer is highly correlated with the drop collision rate of both the
monodisperse and polydisperse drop size distributions, and (ii) a more
intense widening of the drop population size spectrum is observed in
the interfacial region with respect to what happens inside the homoge-
neous cloud region. These results have prompted our interest in
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exploring the correlation between supersaturation fluctuations and the
small-scale intermittency of air flow turbulence. A relationship has here
been hypothesized to be responsible for the so-called bottleneck prob-
lem associated with the interaction of the evaporation–condensation–
coalescence processes present in the formation of cumulus rain.

Boussinesq Navier–Stokes equations provide the Eulerian
description of the incompressible, stratified, velocity fluctuation, ui,
along with active scalar transport equations for temperature, T, and
water vapor density qv

4,17–19,29–31

@uj
@xj
¼ 0; (2a)

@ui
@t
þ uj

@ui
@xj
¼ � 1

q0

@p
@xi
þ � @

2ui
@x2j
þbd3i; (2b)

@T
@t
þ uj

@T
@xj
¼ j

@2T
@x2j
þlCd

q0cp
; (2c)

@qv

@t
þ uj

@qv

@xj
¼ jv

@2qv

@x2j
� Cd; (2d)

where q0 is the Boussinesq density (that is, the mean density of dry air
1000m above the sea level), � is the kinematic viscosity of the air, j is
the heat diffusivity of the air, and jv is the mass diffusivity of the water
vapor. l is the latent heat of evaporation of the water, and cp is the
specific heat of the air at the mean domain temperature T0. All
the physical constants in Eqs. (2a)–(2d) are summarized in Table I.
The Boussinesq approximation allows us to take into account small
perturbations of a parcel density of moist air due to local temperature
and vapor density variations.32 The buoyancy term,b, in Eq. (2b) can
be expressed as a function of the local values of T and qv

b ¼ g
DT
T0
� Dqv

q0
1�ma

mw

� �� �
; (3)

where ma and mw are the molar masses of the air and water, respec-
tively. We adopt periodic boundary conditions for the velocity and
water vapor density fields in the three directions. The temperature field
is non-periodic in the vertical direction and results from the superposi-
tion of a triply periodic scalar field and a constant, negative, vertical tem-
perature gradient. The temperature of the cloud region being higher
than the clear-air one, the interfacial mixing layer is subject to an unsta-
ble stratification with a squared Froud number, Fr2int , approximately
equal to�7. This leads to a local increase in the momentum and kinetic
energy, as a result of the Boussinesq body-force term in Eq. (2b).

The condensation term Cd ¼ Cdðxi; tÞ in the energy and vapor
density equation expresses the water vapor mass absorption (depletion)
rate at the surface of all the spherical droplets contained in the cubic
computational cell of volume ðDÞ3, Vaillancourt et al.29 Since cloud
droplets are advected by the turbulent flow, Cd must be determined in
the Lagrangian reference frame used for the liquid water mixing ratio,
which is described below in Sec. II B. However, in order to use Cd, in
Eqs. (2c) and (2d), it should be represented in the Eulerian frame of ref-
erence. The condensation rate field is determined as

Cd ¼
1

Dx3
dmw

dt
¼ 4pqw

Dx3
XND

j¼1
R2
j ðXjðtÞÞ

dRjðXjðtÞÞ
dt

; (4)

where RjðtÞ and XjðtÞ are the radius and the coordinate of the jth
drop contained within the grid cell, respectively, and ND represents
the number of drops inside each grid cell. The interpolation of
Eulerian field values at grid points to the positions occupied by the
water droplets inside the cell is obtained via second-order Lagrange

FIG. 1. Panel (a): initial distributions of kinetic energy E (solid dark red line), water vapor density qv (solid green line), and temperature T (orange and yellow dash-dotted lines)
in the vertical direction across the interfacial mixing layer. The mixing layer is located at xc ¼ L12 (see Table II). The temperature fluctuation component T 0ðx3Þ of Eq. (11) is
plotted with yellow the dash-dotted line, while the non-periodic physical temperature T is plotted with the orange dash-dotted line. Subscripts 1 and 2 refer to cloud and clear–
air conditions (see Table I). Panel (b): the computational domain is a parallelepiped composed of two adjacent cubes. The total height L3 is twice L1;2. Subscripts 1 and 2 refer
to the horizontal directions parallel to the mixing layer, whereas subscript 3 indicates the vertical direction.
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polynomials. An inverse procedure is used to calculate the condensa-
tion rate, which is determined at the first step at each droplet position
and then relocated to the closest of the eight grid vertices. The time
derivative, dRj=dt, expresses the droplet condensational shrinkage
(growth) rate, as defined in Eq. (8).

B. Lagrangian droplet dynamics and droplet
populations

The Lagrangian motion of each kth droplet in the physical
system is modeled by a tracker of the type29,33

dXki

dt
¼ Vki; (5a)

dVki

dt
¼ 1

sk
ui Xki; tð Þ � Vki½ � þ gdi3 1� q0

qw

� �
; (5b)

which features two vector equations for position, Xki, and velocity, Vki,
of a droplet within the reference frame, where i indicates the direction.
The momentum equation is derived for low-Reynolds spherical drop-
lets29,31 and only accounts for the contribution of Stokes’ drag and
gravity, while the effects of Faxen and Basset’s history force are negligi-
ble.23,31,34 The inertia of a spherical droplet is proportional to its sur-
face and is often expressed through a characteristic timescale, that is,
the droplet response time (sd) of the kth droplet with radius Rk

10

sdk ¼
2
9
qw

q0

R2
k

�
; (6)

which is also the time constant of the solution to Eq. (5b) for a steady,
homogeneous flow.

It should be noted that, in a similar way to what is done for the
condensation rate field, Eulerian flow field quantities have to be deter-
mined at the droplet position to numerically proceed with Lagrangian
equations. In this context, we adopted a simplified feedback on the
droplet flow. The direct effect of the liquid droplet drag on the velocity
field is neglected in the buoyancy term in the momentum equation.
The feedback is, therefore, indirect and is confined to the coupling of
the temperature field with the velocity field and the vapor mixing ratio
through the condensation rate. The rationale behind this position
depends on the smallness Stokes’ numbers of the drops and liquid
mass and volume fractions�10�3 and�10�6, respectively. In fact, for
radii in the range ½1–30� lm, the initial transient values of Stokes’
numbers are in ½0:02–0:7�, while the end of transient values are in
½0:002–0:066�, which means Reynolds numbers of the drops much
lower than 1.

Spherical cloud droplets are assumed to collide and coalesce with
full collision and coalescence efficiency whenever their relative dis-
tance falls below the sum of the respective radii

X3
i¼1

Xli � Xkið Þ2
" #1=2

� Rl þ Rk:

The single droplet resulting from coalescence conserves the total mass
and momentum of the colliding drops. In present work, we have
focused on the effects associated with anisotropy and intermittency of
the interfacial layer separating the cloud region from the clear-air
ambient. According to a hypothesis that is commonly adopted in the
literature,35,36 dynamic and kinematical collision kernels are very simi-
lar and the collision efficiency is close to unity (see, for instance, Wang
et al.,36 Tables 2–4). Therefore, we did not consider the parametriza-
tion on the efficiency as a first order effect in the present study.

Both monodisperse and polydisperse droplet size distributions
are considered in the present simulation campaign (Fig. 2). At the
beginning of the simulation, the droplets are randomly distributed in
the cloud region of the computational domain, where the clear air
region is initially void. The number of droplets, Ntot�mono ¼ 8� 106,
for the monodisperse population, is determined from the typical liquid
water content LWC0 � 0:8 g=m3 encountered in warm cumulus
clouds and the chosen initial monodisperse radius, R0;mono ¼ 15 lm,

TABLE I. The key physical parameters used in the numerical experiments.

Quantity Symbol Value Unit

Latent heat of evaporation l 2:48� 106 J kg�1

Heat capacity of the air at a
constant pressure

cp 1005 J kg�1 K1

Gravitational acceleration g 9.81 m/s2

Molar mass of the water mw 18 kg l mol�1

Gas constant of the water
vapor

Rv 461.5 J kg�1 K1

Molar mass of the dry air ma 29 kg l mol�1

Gas constant of the air Ra 286.7 J kg�1 K1

Diffusivity of the water vapor
mass

jv 2:52� 10�5 m2/s

Thermal conductivity of the
dry air

K 2:5� 10�2 W m�1 K�1

Liquid water density qw 1000 kg/m3

Dry air density at an altitude of
1000m

q0 1.11 kg3

Dry air kinematic viscosity � 1:5� 10�5 m2/s
Average temperature of the
whole domain

T0 281.16 K

Average temperature of the
cloud region

T1 282.16 K

Average temperature of the
clear air region

T2 280.16 K

Background temperature gradi-
ent (unstable)

G �2/1.024 K m�1

Brunt–V€ais€ala amplification
factor

n
2 �0.69 s�2

Droplet growth coefficient Ks 8:6� 10�11 m2/s
Accumulation mode (radius) rd 0.01 lm
Kelvin coefficient A 1:15� 10�9 m
Raoult solubility parameter for
inorganic, hygroscopic sub-
stances such as ammonium
sulfate, lithium chloride, etc.

B 0.7 � � �

Initial relative humidity in the
cloud region

RH1 1.02 � � �

Initial relative humidity in the
clear air region

RH2 0.7 � � �

Initial liquid water content LWC0 7:9� 10�4 kg/m3
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Ntot�mono ¼ LWC0
4
3
pqwR

3
0;mono: (7)

The faster dynamics of the droplet spectrum inside the highly inter-
mittent mixing layer, with respect to that shown in the nearly
Gaussian cloud turbulence, should be noted. Panels (a) and (b) in Fig.
2 highlight the intense acceleration of the broadening of the droplet
spectrum in the interfacial layer [standard deviation time variation:
0:015ðt=s0Þ þ 0:05 in the cloud and 0:23ðt=s0Þ þ 0:003 in the mix-
ing, see Figs. 7 and 11 and Table 3 in Golshan et al.23 Panels (c)

and (d) in Fig. 2] show, for an initially flat polydisperse size distribu-
tion, a faster rate of modification toward the typical peaky shape in the
interface than in the cloudy region. In fact, the temporal narrowing of
the standard deviation goes like �0:19ðt=s0Þ þ 19:7 in the cloud and
as �0:74ðt=s0Þ þ 17:94 in the mixing, see Figs. 8 and 12 and Table 3
in Golshan et al.23

G€otzfried et al.31 conducted a similar numerical experiment in
which they studied the response of an ensemble of cloud water
droplets to the turbulent entrainment of clear air in a cloud filament.

FIG. 2. Droplet size distributions as a function of the radius classes. Panels (a) and (b): size distribution for a monodisperse population (R¼ 15 lm) in the cloud and interface
regions, respectively. Comparison of normalized PDF (probability density function) values of droplet radii at different time instances. In panels (c) and (d), the present results
(color lines) are compared with the results by G€otzfried et al.31 (solid/dashed black lines), which were computed over the entire domain, including the homogeneous cloud, the
interface layer and the clear–air homogeneous region. It should be noted that the simulation made by G€otzfried et al. does not include any collisions, which caused the second
peak on the right in the distributions. PDF values of both datasets are normalized with the peak value. Results are plotted for non-dimensional large eddy turnover time. Panels
(e) and (f): size distribution for a polydisperse (equal mass in the droplet volume classes, R 2 [0.6–30] lm) population in the cloud and interface regions, respectively. (a)
Monodisperse, cloud; (b) monodisperse, interface; (c) comparison, cloud; (d) comparison, interface; (e) polydisperse, cloud; and (f) polydisperse, interface.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 067103 (2022); doi: 10.1063/5.0090664 34, 067103-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


They presented three simulations of a monodisperse droplet population,
where the droplet size distributions evolved mainly due to condensation–
evaporation processes. However, they did not include any collision–
coalescence processes in their simulations, and they only considered
monodisperse size distributions. Figures 2(c) and 2(d) show a good
agreement with simulation made by G€otzfried et al. apart from the sec-
ond peak due to collision–coalescence. In both cases, the size distribu-
tions broaden to the left as a result of the evaporation process, starting
from the initial radius. There is still a negligible enhancement of the
size distribution during transient on the right side in both studies.

Broad droplet size distributions have been observed in both in situ
measurements of forming shallow cumulus clouds15 and in laboratory
experiments.14 These distributions usually show a peak for relatively
small radii (1–10 lm), which is accompanied by a monotonical decrease
in concentration as the radius increases. However, the existence of a
general and ubiquitous functional shape of the droplet size distribution
in shallow cumulus clouds is still a matter of debate.37 Without any
claim of generality, we introduce an initial polydisperse distribution in
which the same mass is allocated to each class of radii. Each volume
class gathers droplets that have roughly the same volume.23

A droplet is subject to ambient supersaturation, which is obtained
through a polynomial interpolation with the neighboring cell values.
The condensation–evaporation rate of the spherical kth droplet can be
estimated according to6,12,38

dRk

dt
¼ Ks

Rk
S� A

Rk
þ Br3d

R3
k

 !
; (8)

where S is the supersaturation or saturation deficit (see Sec. IID), A is
the Kelvin coefficient, B is the hygroscopicity parameter, Rk is the kth
droplet radius, and rd is the accumulation radius. The second and the
third terms on the right-hand side are known as the Kelvin and Raoult
terms, respectively. The Kelvin term describes the effect of droplet cur-
vature and surface tension, while the Raoult term indicates aerosol
hygroscopicity. The diffusion coefficient Ks is slightly sensitive to local
equilibrium thermodynamics.7,38,39 It includes the self-limiting effects
of latent heat release. This diffusion coefficient is considered to be con-
stant in the literature, for typical warm cloud conditions, where the
characteristic heat flux due to latent heat from a small variation in the
droplet temperature is of the same order as the heat flux due to ther-
mal conduction for the same temperature difference. The temperature
dependence of this constant is weak [the Ks value in m2 s�1 ranges
from 5:07� 10�11 at T¼ 270K, to 1:17� 10�10 at T¼ 293K (Refs.
17 and 40)]. In agreement with our volume averaged initial tempera-
ture of 281K, we used the value 8:6� 10�11 m2 s�1. The interpolation
of Eulerian field values at grid points to the position occupied by the
water droplets inside the cell is obtained via second-order Lagrange
polynomials. An inverse procedure is then used for the calculate of the
condensation rate, which is determined at the first step at each droplet
position and then relocated to the closest of the eight grid vertices. A
collision is hypothesized to occur when the distance between the cen-
ters is equal to or less than the sum of their radii. Such collisions are
assumed to be completely inelastic.

Supersaturation

Sðx; tÞ ¼ qvðx; tÞ
qvsðTÞ

� 1 ¼ RH � 1

is defined as the ratio between the water vapor and the saturated vapor
densities (i.e., the relative humidity) �1. The relative humidity RH
¼ qv=qsv and supersaturation (or saturation deficit) are functions of
the saturated vapor density, qvs, whose dependence on temperature is
described by the Clausius–Clapeyron equation7

dqvs

qvs
¼ l

RvT
� 1

� �
dT
T
; (9)

wherel is the latent heat of evaporation (condensation) and Rv is the
gas constant of the water vapor. It is hypothesized that the droplet–gas
interphase coupling is negligible,41 and the droplet motion, therefore,
does not exert any relevant dynamical effect on the carrier field.
Conversely, the turbulent field affects the motion of the water drops to
a great extent. Phase transition at the droplet surface results in the
exchange of water vapor and latent heat between the two phases, thus
perturbing the buoyancy term in momentum Eq. (2b).

Since the coefficients A, B, and rd are hypothesized to be constant,
the droplet growth rate mainly depends on the local value of S and on
the droplet radius R. The droplet growth (shrinkage) rate (8) is plotted
in Fig. 3 for three constant values of supersaturation S, where the com-
peting effects of the Kelvin and Raoult terms can be appreciated by
observing the orange curve, which describes a saturated environment.
In the present conditions, the Kelvin effect becomes important for
R< 1lm, and it is soon outweighed by the Raoult effect as the droplet
(aerosol) radius falls below ffi 23 nm. The Raoult term is the term that
is prevalent below this threshold.

C. Numerical experiment setup and DNS algorithm

The parallelepiped-shaped domain (see Fig. 1) is made up of two
adjacent cubes of 5123 cells each. Two initial zero-mean,

FIG. 3. The plot shows the condensational growth rate [Eq. (8)] for a drop of given
radius R for supersaturated (S¼ 0.02, as in the cloud region of the present work),
saturated (S¼ 0), and subsaturated (S ¼ �0:3) conditions. The contributions due to
the effect of both surface tension (Kelvin) and curvature (Raoult) are negligible for
droplets of radius above 1lm, such as the ones considered in the present work. The
dashed lines only represent the effect of supersaturation, when the Kelvin and Raoult
terms are set equal to zero. The vertical green bar highlights the range of radii below-
above which the Raoult and Kelvin terms dominate, respectively.
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homogeneous, isotropic air fluctuation fields are generated inside the
two cubes. The turbulent spectra show the same functional shape and,
hence, the same integral scale. The cube in the lower half of the paral-
lelepiped—which from now on is referred to as the cloud region—
initially hosts a higher turbulent kinetic energy, E, and dissipation
(decay) rate, e, than the upper cube, which models a clear air region,
see Figs. 1(b) and 4, panels (a) and (b). The initial integral scale is set
equal in the two regions so as not to introduce a further control
parameter—the integral length gradient across the layer—on the inter-
face evolution and the related transport dynamics.25,27 The summary
of simulation parameters is given in Table II.

The root mean square velocity in the more energetic region is
urms ffi 0:11ms�1, which represents the large-scale energy in the
cumulus spectral subrange of wavelengths 0.002 to 0.25m. Since our
system is time decaying, the initial dissipation rate was purposely set
high in order to reach the commonly values observed in cumulus
clouds in the central part of the transient. However, the initial dissipa-
tion rate e � 500 cm2=s3 is of the same order as those measured by

MacPherson and Isaac42 in cumulus clouds in the proximity of the top
(cloud # 1 measurement, 100m below the cloud top, height of the top
4800m) although in the presence of a much higher kinetic energy of
the air fluctuation (rms � 2 m/s). Lower values (10 � 20 cm2=s3)
have been reported,43–46 and they are obtained during the transient
decay, see Fig. 4, panels (c) and (d). The estimated Kolmogorov scale
is g0 ffi 0:5mm, and the highest resolved wavenumber is kmax

¼ p=Dx ¼ p� 103 m�1.47 Since we have kmaxg1 ffi 1:6, the resolution
is acceptable for the problem at hand.33,48

The DNS algorithm is based on the dealiazed pseudospectral
Navier–Stokes solver described in Ref. 49. Code versions and releases
are available on the official website of Philofluid Research Group. This
software has been used in several works conducted by the
group23,24,26–28,50 to investigate turbulence self-diffusion in shearless
mixings, with passive or active scalars, and water drop populations.
Spectral discretization is achieved by means of the Fourier–Galerkin
method with pseudo-spectral treatment of the advection terms in the
momentum (2b) equation, and scalar transport ones (2d) and (2c).

FIG. 4. Trends of the kinetic energy and turbulent dissipation rate. (a) Evolution of the turbulent kinetic energy E across the domain for an initial unstable background tempera-
ture gradient. The interface is located at the center of the figure (that is, for x3 ffi xc). Mildly unstable stratification (Fr

2
int ffi �7). (b) Normalized values of E(t) with respect to

the mean kinetic energy in the cloud E1ðtÞ and clear air E2ðtÞ regions. The initial energy ratio across the interface is E1=E2 ¼ 6:7. The plotted values of E are the planar aver-
ages of each horizontal plane. (c) Transient evolution of the kinetic energy E, the dissipation rate e, the Kolmogorov timescale sg, and the Kolmogorov length scale g in the
cloud and mixing regions (subscripts 1 and 2, respectively). The thin horizontal line indicates the grid width, Dx, in meters. (d) Evolution of the dissipation rate e across the
domain.
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Time integration is performed, according to Ireland,33 with a second-
order explicit Runge–Kutta method.51 The diffusive terms for the
momentum, internal energy (2c), and vapor density fields (2d) are
computed by means of exponential integration. Droplet velocities (5a)
and accelerations (5b) are integrated with a second-order explicit
method and a second-order implicit trapezoidal method, respectively.
The implicit structure of the integration scheme used for Eq. 5(b)
ensures numerical stability for arbitrary values of Dt.

The code stores the velocity, temperature, and vapor fields in
three-dimensional arrays and distributes them along one direction in
both physical and Fourier spaces. The three-dimensional discrete
Fourier transform is performed with the FFTW library. A slab-like
parallelization is implemented with Message Passage Interface (MPI)
standard libraries.

D. Initial and boundary conditions for the flow velocity,
temperature, and vapor fields

Two homogeneous isotropic solenoidal turbulent fields, with
zero-mean velocity and different kinetic energies, that mix at a com-
mon interface, are studied in this numerical experiment. A smoothing
function, pðx3Þ, is applied to modulate the velocity and scalar vapor
fields along x3

27,28

uiðxjÞ ¼ ui1ðxjÞpðx3Þ þ ui2ðxjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2ðx3Þ

p
;

qv ¼ qv1pðx3Þ þ qv2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2ðx3Þ

p
;

pðx3Þ ¼ 1þ tanh a
x3
L3

� �
tanh a

x3
L3
� 1
2

� �� �
tanh a

x3
L3
� 1

� �� �
;

where qv1 ¼ qvsðT1ÞRH1 and qv2 ¼ qvsðT2ÞRH2 were chosen
to obtain the desired level of supersaturation in both regions (see
Table I). Direction x3 is the inhomogeneous direction and L3 is the
width of the computational domain in the x3 direction. Constant a
determines the initial mixing layer thickness D, which is convention-
ally defined as the distance between the points with normalized energy
values of 0.25 and 0.75, whenever the low energy side is mapped to
zero and the high energy side to one. When a ¼ 12p, the initial D=L3
ratio is about 0.026, a value that was chosen so that the initial thickness
would be large enough to be resolved but small enough to have large
regions of homogeneous turbulence during the simulations.

The initial distributions of the velocity, temperature, and water
vapor density fields in the vertical direction are plotted in Fig. 1(a).

The same initial values of T and qv are defined for all the cells of a
horizontal plane and are, thus, functions of their vertical position with
respect to the interface. As in Refs. 23 and 50, the vapor field is periodic
and continuous in the three directions, whereas the temperature field

T x3; 0ð Þ ¼ T 0 x3; 0ð Þ þ T0 þ G
x3
L3

(10)

is composed of the sum of a vertical, triple-periodic fluctuating tem-
perature T 0ðx3; tÞ, a static component Gx3, and a global average tem-
perature T0. The periodic term T 0 in Eq. (10) is defined with a
hyperbolic tangent

T 0 x3; 0ð Þ ¼ T2 � T1

2
� tanh a

x3
L3
� 1
2

� �� �
� 2x3

L3
þ 1

� �
: (11)

However, the code is required to solve the periodic field T 0. Equation
(2c) then becomes

TABLE II. The key simulation parameters and initial conditions, which are the same for all the runs.

Quantity Symbol Value Unit

Domain size L21;2 � L3 0:5122 � 1:024 m3

Domain discretization n21;2 � n3 5122 � 1024 � � �
Grid step Dx 10�3 m
Initial rms velocity (cloud) urms;1 0.11 m s�1

Initial integral scale ‘0 2:65� 10�2 m
Initial dissipation rate (cloud) e1 0.05 m2/s3

Initial energy ratio (cloud–clear air) E1=E2 ¼ u2rms;1=u
2
rms;2 6.7 � � �

Initial Kolmogorov time (cloud) sg0 ¼ ð�=e1Þ1=2 1:74� 10�2 s
Initial Kolmogorov length scale (cloud) g0 ¼ ð�3=e1Þ1=4 5:1� 10�4 m
Initial eddy turnover time s0 ¼ 2‘=ðurms;1 þ urms;2Þ 0.35 s
Initial Reynolds number (cloud) Re‘ ¼ urms‘=� 196 � � �
Droplet response time (1 lm, 30 lm) sd ¼ 2qvR=ð9q0�Þ 4:4� 10�4; 1:3� 10�2 s
Initial droplet Stokes numbers (R 2 1� 30 lm) St ¼ sd=sg0 0.025–0.7
Final droplet Stokes number (R 2 1� 30lm) St ¼ sd=sgf 0.002–0.066
Initial Taylor microscale Reynolds number Rek ¼ urmsk=� 52 � � �
Integration time step Dt ¼ 1=20 � Dx=urms 4:64� 10�4 s
Initial number of droplets (monodisperse distribution) Ntot�mono 8� 106 � � �
Initial number of droplets (polydisperse distribution) Ntot�poly 107 � � �
Initial droplet radius (monodisperse distribution) r0;mono 15 lm
Initial droplet radius (polydisperse distribution) r0;poly 0:6–30 lm
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@T 0

@t
þ u1

@T 0

@x1
þ u2

@T 0

@x2
þ u3

@ T 0 þ Gx3ð Þ
@x3

¼ jr2T 0 þlCd

q0cp
:

The cloud–clear air interface is located in the center ðx3 � xcÞ=L3 ffi 0,
with xc ¼ L12. We define the distance between the points whose nor-
malized temperature ðT � TminÞ=ðTmax � TminÞ is 0.75 and 0.25,
respectively, as the width of mixing layer region D.24,27,52 The squared
Brunt–V€ais€al€a frequency,n2 ¼ g dT

T0

1
D ffi �0:69 Hz2, is negative and,

thus, describes an unstable environment. The internal Froude number
associated with this stratification is initially

Fr2int ¼
u2rms;av

n
2D2 ffi �7:

The saturated vapor density, the relative humidity, and the super-
saturation are computed with the values of T expressed by
Eq. (10).

III. RESULTS: VELOCITY AND SUPERSATURATION
FLUCTUATIONS, AND TURBULENCE BROADENING
OF THE DROPLET SIZE DISTRIBUTION

Droplet and flow statistics are taken from horizontal x1 � x2
planes at a constant x3 and plotted with respect to the normalized
height ðx3 � xcÞ=L3, with xc being the position of the cloud–clear
air interface, and L3 ¼ 2L1;2 being twice the length of the edge of
the cube. To observe the interface cloud–clear air dynamics, it is
necessary to focus on the evolution of the statistics along the non-
homogeneous (vertical) direction of the domain. The mean, stan-
dard deviation, and higher order-moments are computed over the
cells in the same horizontal plane and associated with the corre-
sponding vertical coordinate x3. The covariance for each horizon-
tal plane

covX;Yðx3; tÞ ¼
1

n1n2

Xn1;n2
i;j¼1

Xðx1; x2; x3; tÞ � �X
� �

Yðx1; x2; x3; tÞ � �Y
� �

;

(12)

where the over-line indicates the average of a given physical quantity
in the x1, x2 planes and

�Xðx3; tÞ ¼
1

n1n2

Xn1;n2
i¼1;j¼1

Xðx1; x2; x3; tÞ: (13)

The Pearson product–moment correlation coefficient of two planar
averaged quantities, �XðtÞ and �Y ðtÞ, only depends on the time and
when used to correlate variations across the interface layer DðtÞ, it can
be written as

qX;YDðtÞ ¼
XnD

k¼1

ð�Xðx3; tÞ � �XDðtÞÞ
r�X

ð�Y ðx3; tÞ � �YDðtÞÞ
r�Y

; (14)

where subscript D stands for the quantity averaged inside the interface
and nD is the number of planes inside the interface.

The kinetic energy inside the homogeneous cloudy and clear air
regions, decays over time with a power-law exponent (see Fig. 4) of
the E=E0 � ðt=s0Þ�n type, where n ranges from 1.6 to 2.15.27,53

The initial values of the root mean square velocity of the flow, of the
longitudinal integral length scale, and of the eddy turnover time

are reported in Table II. The eddy turnover time s0 ¼ 2‘0=
ðurms;c0 þ urms;a0Þ is computed from the initial integral length scale
and root mean square velocity of the flow, averaged over the domain,
and has an initial value of 0.35 s.

The decay of both kinetic energy E and dissipation rate e can be
observed in Fig. 4. During the decay, the integral scale grows homoge-
neously over the entire domain.

The system relaxes to a quasi-steady-state condition as values of e
of the order of 10 cm2=s3 are reached inside the mixing layer. Values
of this order of magnitude have already been measured in shallow
cumulus clouds.10,43

The average value of E quickly decreases during the transient.
However, the effects of the unstable stratification are highlighted
by the normalized kinetic energy, ðE � E2Þ=ðE1 � E2Þ, which in
fact shows a hump that amplifies in time [see Fig. 4(b), and Figs.
11 and 12 in Gallana et al.28]. The warmer air close to the interface
is convected upward and gains vertical velocity, thus increasing the
kinetic energy locally. This injection of kinetic energy at the small
scales of the turbulence affects the mixing process by enhancing
the vertical advection of the dispersed water droplets, water vapor,
and internal energy up to the subsaturated region. High values
of higher moments of the spatial longitudinal derivatives of the veloc-
ity indicate the high anisotropy and intermittency of the small-scale of
the carrier flow in the mixing region. Small-scale intermittency in the
mixing region is associated with accelerated droplet population
dynamics and an increased collision–coalescence rate, see Fig. 2 in
Sec. II and also Table III and Figs. 11 and 12 in Golshan et al.23

The time required by the two populations to reach the same width for
the evaporation and condensation processes is estimated by equating
the time variations of the standard deviations of the monodisperse
and polydisperse size distributions. The estimate is about 100s0 in the
cloudy region, which is homogeneous and isotropic. The estimate is
about 18; 5s0 in the interface region, i.e., more than five times faster.
A remarkable acceleration of the broadening of the droplet size distri-
bution, due to turbulent fluctuations, is, therefore, observed in the
shear-free mixing layer that separates the cloud from the sub-
saturated environmental air.

Planar averages and higher order statistical moments of
supersaturation across the cloudy–undersaturated ambient air
interface layer are shown in Fig. 5. The high intermittency of the
distributions should be noted. Very high values of both skewness
and kurtosis are reached on the two sides of the mixing layer.
Moreover, comparatively higher absolute values can be observed at
the border with the cloudy region (S down to �8, K up to 60),
where the vapor flux is spatially increasing, with respect to that
observed at the border with sub-saturated air (S up to 4, K up to
20), where the vapor flux is spatially decreasing.28

The droplet statistics have been computed over the horizontal
planes to complement the data in Fig. 2. From now on, we denote the
droplet numerical concentration with the symbol N. The results of the
monodisperse and polydisperse distributions across the mixing layer are
shown in Fig. 6, where both the droplet radius and the concentration
are plotted along x3. At the beginning of the transient, the droplets pop-
ulate the lower part of the domain and are randomly distributed within
the cloud. The core environment of the cloud is supersaturated [see
Fig. 5(a)], and this permits a uniform condensation growth of the drop-
lets to take place within the cloud. As the central mixing proceeds, a few
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drops are advected in the upper subsaturated clear-air region. Here,
smaller drops will rapidly evaporate and eventually be eliminated by the
algorithm. Dissipation rate e decreases during the transient, and heavier
droplets are likely to settle, as the small-scale Froude number scales sub-
linearly with the dissipation rate Frg � e3=4.10

The mean radius plot for the monodisperse case [see Fig. 6(a)] is
almost flat in the cloud core region. The extension of this constant-
radius plateau becomes more and more reduced as the decaying shear-
less mixing proceeds. The blue-shaded area represents an approximate
extension of the mixing region at the end of the simulated transients.
The concentration plots [Fig. 6(b)] display analogous trends. In the
polydisperse case, Figs. 6(c) and 6(d), the flat region of nearly constant
radii is narrower and presents a peak close to the very top of the mix-
ing layer. This is because collisions are much more frequent in this
case. Moreover, given the concomitant presence of very different drop-
lets, the volume ratio between the largest to the smallest droplet is of
the order of 1:25� 105; thus, the number of collisions is large. Out of
a total of 107 droplets, we in fact observe about 5� 104 collisions over
about 8 physical timescales. Information on the collision kernel inside
the cloudy and mixing layer regions can be found in Figs. 13 and 14 of
Golshan et al.23

A. Supersaturation evolution equation
and the microphysical timescales

The supersaturation evolution equation has often been used to
model a water vapor budget on a developing cloud.10 This equation is
based on a production–condensation model, where the time derivative
of supersaturation is determined by balancing a production term, p,
and a condensation term,c6,8

dS
dt
¼ pþ c: (15)

The condensation term accounts for the depletion of water vapor and
the release of latent heat during condensation at the surface of a spher-
ical droplet, and it is a function of the local level of supersaturation

c ¼ � S
sphase

¼ 4pjvN�RS: (16)

The source term,p, has often been modeled as a linear function
of the vertical mean velocity of the updraft,12,15 or identified as the net
flux of supersaturated water vapor through the parcel boundaries.16 In
the present analysis, updraft is absent; thus, p ¼ 0. Equation (15)
does not account for the advection and diffusion of water vapor and

FIG. 5. Monodisperse droplet population. Planar averages and statistical moments of supersaturation across the cloudy–under-saturated ambient air interface layer. (a)
Supersaturation (or saturation deficit) across the layer. (b) Standard deviation. (c) Skewness. (d) Kurtosis. The initial distributions are plotted with black dash-dotted lines. The
approximate extension of the interface mixing layer is indicated as the blue-shaded area between the cloudy and clear air regions.
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internal energy in the environment surrounding the droplet
(Redrop 	 1) and considers supersaturation S as a rather global, bulk
property of an adiabatic cloud parcel.7 In their study on cloud cores,13

generalized the supersaturation evolution equation (15) to a transport
model by assuming a linear dependency between the diffusive term of
the supersaturation and the Laplacian of the temperature and vapor
density fields. They showed that, under steady-state conditions and
within the limit of a real-cloud Reynolds’ number, the diffusive term
of the supersaturation variance becomes negligible.

In a homogeneous, nearly isotropic cloudy layer that is statisti-
cally in equilibrium, a zero-mean vertical velocity field would imply a
null net vertical transport of cooling vapor parcels. It should be noted
that whenever an updraft can be neglected, Eq. (15) can be solved by
separating the variables54

dS
dt
ffi �4pjvN�RS ¼ � S

sphase
: (17)

Therefore, an initially subsaturated (supersaturated), droplet-laden
environment experiences an increase (decrease) in the vapor concen-
tration, which results in S relaxing exponentially to 0. The time con-
stant of this solution is the phase relaxation time

sphase ¼ 4pjvN�Rð Þ�1: (18)

The definition of sphase depends on the assumption of the droplet pop-
ulation having a constant integral radius, N�R, and it is able to describe
the temporal variation of the supersaturation and the liquid water con-
tent5,45 in a homogeneous context. The phase relaxation time was cho-
sen from the microphysical timescales used in several DNS studies
that focused on entrainment-mixing processes4,14,17,19,31 and was used
to define the Damk€ohler number

Da ¼ sturb
smicrophysics

:

FIG. 6. Average mean droplet radius (a) and (c), and concentration (b) and (d). Each value represents the planar average computed for a horizontal plane (see Fig. 1).
Shearless mixing takes place in the shaded area. The dash-dotted black line shows the initial conditions.
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Depending on whether the choice of sturb falls into large or small-eddy
timescales, a vast range of Damk€ohler numbers can be defined for the
same microphysical timescale in a turbulent flow.4 Large and small
values of Da are associated with a fast and slow microphysical
response of the droplet population to entrainment and turbulent mix-
ing, respectively.55 Large Da are also associated with inhomogeneous
mixing, whereas small Da often indicates homogeneous mixing.2,3

However, it should be noted that, in a highly anisotropic, in-
homogeneous situation, such as inside the mixing layer that separates
the cloud from the subsaturated environmental air, the momentum,
internal and kinetic energy fluxes, and the water vapor are not zero.
The fluxes are positive and rising, forming a peak value that is almost
centered in the middle of the layer. Beyond this point, the fluxes
decrease and become zero inside the isotropic homogeneous subsatu-
rated ambient air.26,28,52 In such a situation, a mismatch between the
supersaturation time derivative and the condensation term can be
expected.

On the other hand, if the focus is on the evolution of the drop-
let size and the number concentration, the evaporation timescale

offers a good practical description of the process and should be
taken as the relevant microphysical timescale, smicrophysics. By
neglecting the Kelvin and Raoult terms in Eq. (8), and integrating
for a constant S0 < 0, one can obtain in each computational cell, an
estimate of the time required for a single droplet, with an initial
radius of R0; to evaporate completely in a uniform subsaturated
environment

sevap ¼ �
R2
0

2KsS0
: (19)

Both sphase and sevap rely on the assumption of constant supersat-
uration and integral radius. However, since both quantities vary con-
currently inside a mixing layer, it is better to define a reaction time
sreact

45 that considers variations of both S and N�R. The reaction time
is defined as the shortest time that has elapsed since either the droplet
has evaporated completely or the parcel has become saturated, and it
is obtained by numerically solving the coupled system of differential
equations, that is, Eqs. (8) and (17), for initial non-zero values of posi-
tive R0 and negative S0. It should be noted that sevap and sreact are only

FIG. 7. Vertical distribution of the evaporation sevap, phase relaxation sphase, and reaction sreact timescales computed inside each grid cell and then averaged on horizontal
planes. The data are displayed for the monodisperse (a) and (b), and the polydisperse cases (c) and (d) for two different time steps at the beginning and the end of the tran-
sient. The planar average of supersaturation �S [Fig. 5(a)] is also plotted for comparison purposes.
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defined for the subsaturated regions, whereas sphase is defined for
non-zero values of the integral radius and can also be used in supersat-
urated regions. In order to describe a characteristic time of the con-
densation process in supersaturated regions of the domain, we
introduce a condensation time scond, which we arbitrarily define as the
time it takes a droplet to double its radius for a constant local supersat-
uration S,

scond ¼
3
2

R2
0

KsS0
: (20)

The horizontal planar average values of all these microphysical
timescales are plotted for two different time instants and the initial
droplet size distribution type in the cloud and mixing regions. See Fig.
7, where the computation is performed in each computational grid cell
and then averaged over the horizontal planes. For comparison, see
also Fig. 8, where the computation is performed by directly using the
averaged quantities, �R and �S. It should be noted that the differently
computed quantities are very close, except for the case of the monodis-
perse population at t=s ¼ 6:78, where the location of the maximum
reaction time changes from ðx3 � xcÞ=L3 ¼ �0:06, Fig. 7, to
ðx3 � xcÞ=L3 ¼ �0:025, Fig. 8.

The condensation and evaporation times diverge toward values
of the order of 103 s at the saturation location, S¼ 0, where they are
not defined, see Fig. 5(a) to observe the displacement in time of the
spatial points where S¼ 0. The phase relaxation time, sphase, elongates
across the mixing layer as the mean radius and the droplet concentra-
tion (numerical density) decrease. In time, the sphase growth rate
smooths out as the layer widens. The fact that sphase grows indefinitely
in the diluted interfacial region is not surprising and was also observed
during the in situ measurements of shallow cumulus clouds by Siebert
and Shaw.15

It is interesting to observe that, in the monodisperse case, the
reaction time is converging to the saturation time (ratio
qv=qvs ¼ 0:995), where the skewness of S is negative, while it is con-
verging to the evaporation time when S is positively skewed.

The droplet condensation time is considerably higher every-
where than the phase relaxation time in the monodisperse case and
increases in time. The condensation time is instead shorter than the
phase relaxation time in the cloudy region in the polydisperse case,
but it becomes of the same order as sphase where the mixing process
starts. A rise of scond is observed at the end of the transient in the
bottom region of the domain where the sedimentation due to grav-
ity becomes substantial.

FIG. 8. For comparison with Fig. 7, the reaction time and relaxation phase time statistics, computed using planar averaged quantities, are here shown for both polydisperse (c)
and (d) and monodisperse (a) and (b) populations and for two different time instances. The red dashed line represents the condition that is first reached at each vertical loca-
tion when numerically solving the coupled system of Eqs. (8) and (17). Supersaturation S and the planar averaged R are included for reading convenience purposes. (a)
Monodisperse, t=s0¼ 0.75; (b) monodisperse, t=s0¼ 6.61; (c) polydisperse, t=s0¼ 0.75; and (d) polydisperse, t=s0¼ 6.61.
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However, the most interesting observation is that there is a loca-
tion inside the mixing layer where the phase relaxation, the reaction
time, and the evaporation time cluster together. This location precedes
the location where the turbulent fluxes maximize. By comparing the
distributions in Fig. 7 with the distribution of the turbulent supersatu-
ration flux, see Fig. 9, it is possible to see that the clustering of the
microphysical times takes place at almost the same location, where the
flux rate is close to a maximum. The microphysical times separate
before and after this location. In particular, the reaction time is much
shorter than the evaporation and phase relaxation times before this
location. The reaction time then collapses to the evaporation time,
which is much shorter that the phase relaxation time. In the polydis-
perse case, the clustering of the microphysical times also includes the
condensation time, as expected, since condensation often occurs rap-
idly in the spectral range of the drops with a small radius for these
populations. The evaporation time on the right hand side of the panels
in Fig. 7 oscillates to great extent, particularly for the two panels show-
ing the last part of the transient, due to the higher collision rate there.
This result should be contrasted with Fig. 2.

B. Turbulent transport effects on the supersaturation
balance

The observed acceleration of the population dynamics in the
same cloud–clear air interface region as those studied here, as well as

the rapid differentiation in the size of the droplets, due to the different
weights that evaporation, condensation, and collision have in these
highly intermittent mixing region,23 can, at least in part, explain the
rapid increase in the size of the droplets that is observed in some
cumulus cloud formations, in particular in maritime ones, and which
is considered capable of locally inducing rain-fall, Mason and Chien,56

Li et al.57 These finding have been observed despite the fact that
beyond the temporal decay of the turbulence present in the whole sys-
tem, the interface also hosts the spatial decay of the kinetic energy. It
should be considered that the large scales of turbulence vary very little
in this flow system, because the computational domain is fixed and
because the ratio of the large scales and the ratio of the kinetic energies
between the cloudy and ambient air regions vary slowly in time.24,27

All things considered, these observations lead to the conclusion that
the observed accelerated dynamics is associated with the particular
small-scale anisotropy and intermittency of the interfacial layer.

In conditions of zero updraft, under almost statistical equilibrium
conditions (steady state, homogeneity, and isotropy), the planar aver-
ages of the difference between the time derivative of the supersatura-
tion and the condensation terms must be null

dS=dt � �c ¼ dS=dt þ S=sp ffi 0:

However, in more general turbulence situations, as in the present sys-
tem, which is unsteady (a temporal decay follows an initial transient

FIG. 9. Supersaturation flux statistics for the monodisperse drop population. (a) Normalized covariance (flux) of the supersaturation with vertical velocity component. (b) Normalized
covariance of the supersaturation and square of the vertical velocity component. (c) Normalized derivative of the covariance (flux) of the supersaturation with vertical velocity compo-
nent. The difference of values between the monodisperse and polydisperse population distributions is negligible. The same comparative situation shown in Figs. 5 and 11 holds true.
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kinetic energy growth due to an unstable stratification), highly in-
homogenous, and thus anisotropic, dS=dt may not necessarily balance
S=sp . This imbalance can be referred to as a turbulence supersatura-

tion fluctuation production, pt . As can be seen in Fig. 10, dS=dt
þ S=sp and the covariances between the supersaturation and the lon-
gitudinal velocity derivatives along the vertical direction, covS;@u3=@x3 ,
as well as along the horizontal direction covS;@u1=@x1 , are plotted across
the entire ðx3 � xcÞ=L3 2 ½�0:5; 05� domain. All the quantities
become larger and almost antisymmetric in the mixing region, and
they appear qualitatively skew-symmetric with respect to the central
plane x3 ffi xc. It is, thus, evident that, under spatially averaged (planar
averages) conditions, the condensation term alone in the supersatura-
tion evolution equation (15) is not able to account for the value of the
time derivative of the supersaturation that takes place inside the mix-
ing region.

Provided that the Kolmogorov time, sg, scales with dissipation
rate e, the former is found to be much smaller (10�2–10�1 s) than the
evaporation and phase relaxation timescales reported in Fig. 7. Large
values of sphase at the interface result in low small-scale Damk€ohler
numbers and should, therefore, enhance turbulent supersaturation
fluctuations.15 It is, therefore, reasonable to assume that supersatura-
tion fluctuations, due to turbulence, are prevalent with respect to those
generated by phase transition at the droplet surface. There are two rea-
sons for this hypothesis. First, the statistical moments of the vapor
density in an analogous unstable mixing layer with identical initial and
boundary conditions and an identical set of control parameters for the
carrier flow, but with a subsaturated cloud region where droplets are
absent, are close in shape and value to those of mixings that contain
droplets coming from a supersaturated cloudy region (see Fig. 8 in
Ref. 28).

Second, as can be seen in Figs. 5 and 11, the effects of the super-
saturation statistics associated with the different size distributions of

the drop populations are negligible, and the differences are in fact well
below 1%. It should be noted that the opposite is not true, that is, that
the dynamics of the populations is very sensitive to the shape of the
droplet size distribution.

We, therefore, hypothesize that the amplitude of the local
supersaturation is modulated by small-scale turbulent fluctuations
and that such turbulent fluctuations may contribute to the overall
local supersaturation balance. In order to assess this hypothesis, we
looked for the proportionality relation between: (i) the difference
in the planar averages of the supersaturation time derivative and
the condensation term, and (ii) the covariance, Eq. (12), of the
supersaturation and the intermittency of the small-scale, as repre-
sented by the fluctuations of the longitudinal derivatives of the
velocities. In other words, we put

dS
dt
þ S

sphase
¼ pt � covS;@ui=@xi : (21)

This is conceptually equivalent to modeling supersaturation pro-
duction as the product of the supersaturation fluctuations and the
characteristic frequency of small-scale turbulent structures, �s�1g ,
where the characteristic frequency of small-scale turbulent
motions can be represented by the longitudinal velocity spatial
derivatives.

The generation of small-scale anisotropy in turbulent shearless
mixing has recently been investigated numerically. Data from direct
numerical simulations for Taylor microscale Reynolds numbers
between 45 and 15023–25,28,50 show that there is a significant departure
of the longitudinal velocity derivative moments from the values found
in homogeneous and isotropic turbulence and that the variation of
skewness has the opposite sign for the components across the mixing
layer and parallel to it. The anisotropy induced by the presence of a
kinetic energy gradient has a very different pattern from the one gen-
erated by homogeneous shear. The transversal derivative moments in
the mixing are in fact found to be very small, which highlights that
smallness of the transversal moments is not a sufficient condition for
isotropy. This intermittency is characterized by a large departure of
the longitudinal derivative moments (as shown in Fig. 12 together
with the supersaturation for two time instances), which are different in
direction across and parallel to the layer from the typical values of the
isotropic condition, even in such a flow, where there is no energy pro-
duction (due to the lack of mean flow gradients). The structure of the
anisotropy is such that the skewness departure from isotropy reduces
the compression on the fluid filaments parallel to the mixing layer and
enhances that of the filaments orthogonal to it.

The Pearson correlation coefficient, q
pt ;covS;@ui=@xi

, inside the layer
of thickness DðtÞ, see Eq. (14), was computed along the transient for
i¼ 1, 2, 3. The results are shown in Fig. 13, where the data points have
been collected for a time increment, that is approximately one half of
the initial eddy turnover time.

When the correlation coefficient, that is, the linear correlation
between two sets of data, is above 0.7, the correlation is defined as
strong. However, we do not expect the numerical simulation to
describe the first initial eddy turnover time of the transient accurately.
The correlation coefficient decreases slightly along the transient,
beyond the first eddy turn over time, as the transient proceeds from
values as high as 0.9, when the longitudinal velocity derivative is

FIG. 10. Distribution of the planar horizontal averages along the vertical direction of the
difference between the time derivatives of the supersaturation and condensation terms,
dS=dt � �C ¼ dS=dt þ S=sp and of the covariances covS;@u1=@x1 ; covS;@u3=@x3 , see
Eq. (12). These quantities vary considerably inside the mixing layer, and the two kinds
of curves are both almost antisymmetric with respect to the center of mixing layer xc.
The data were retrieved from a monodisperse simulation at t=s0 ¼ 2:45.
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horizontal, and as high as 0.8, when the longitudinal velocity derivative
is vertical, to values close to 0.7. This is true for both monodisperse
and polydisperse drop populations.

The relatively large absolute values of the correlation coeffi-
cients confirm that a quasi-linear relation should hold between the
source term pt and covS@ui=@xi . An alternative way of estimating
the proportionality constant, C, relevant to the dimensional quan-
tities, along the transient is to integrate across the mixing layer of
pt and covS@ui=@xi ; i ¼ 1; 2:

ð
D

				 d�S
dt
þ

�S
sphase

				dx3 ffi C
ð

D
jcovS@ui=@xi jdx3:

The estimated values of the non-dimensional constant C are reported
in Fig. 13 (orange curve). Once again, the shape of the initial droplet
size distribution does not seem to affect either the evolution of the cor-
relation coefficient or the non-dimensional constant C during the
transient. In all these cases, the estimated value is 5, an asymptotic
value, that is rapidly reached after the first initial eddy turnover. We
can observe a different pre-asymptotic trend for the horizontal and

vertical longitudinal derivative correlation coefficients, which is due to
the intrinsic small-scale anisotropy of the mixing layer between the
cloudy region and the clear-air, see the discussion above.

IV. CONCLUSIONS

We have considered the relationship between supersaturation
fluctuations and turbulent small-scale dynamics in the context of an
inhomogeneous, anisotropic, shearless, turbulent air mixing layer,
which is often used to model the carrier flow at the interface between
warm clouds and unsaturated environmental air. Two initial droplet
population types, that is, a 15lm-monodisperse one and constant-
mass-per-volume-class polydisperse one, were tested.

The various timescales pertaining to the microphysics of a drop-
let population were compared inside the top of the cloudy region, the
layer where the turbulent transport process toward the environmental
subsaturated air takes place. The evaporation, reaction, and phase
relaxation timescales match for a value close to 20–30 s inside the layer
just before the location where the supersaturation flux reaches its max-
imum rate of variation. In the case of a polydisperse population, this

FIG. 11. Difference in the supersaturation statistics between monodisperse (Sm) and polydisperse (Sp) droplet populations across the cloudy–under-saturated ambient air inter-
face layer. (a) Difference in the mean supersaturation (or saturation deficit) across the layer. (b) Difference in the standard deviation. (c) Difference in the skewness. (d)
Difference in the kurtosis. The approximate extension of the interface mixing layer is indicated as the blue shaded area between the cloudy and clear air regions.
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match includes the condensation time. The timescales before this spa-
tial location are different, with differences of the order of one minute.
Beyond this location, the evaporation and reaction times overlap,
while the relaxation phase and condensation timescales asymptotically
diverge, since the environment becomes more and more
undersaturated.

Under the hypothesis of the supersaturation fluctuation
depending on a great extent on the small-scale intermittency of the
carrier flow that hosts the vapor and liquid water phases, we have
analyzed the supersaturation balance equation with the aim of
evincing their reciprocal correlation. In order to assess this
hypothesis, we compared the estimated planar averages of the time
derivative of the supersaturation and the condensation terms with
the planar covariance of the supersaturation and the longitudinal

velocity derivatives. The statistics of the velocity derivatives are in
fact particularly relevant for small-scale dynamics. For the specific
shearless turbulent structure considered here, the longitudinal
velocity derivatives are more significant for small-scale intermit-
tency than the transversal ones, which are null. Moreover, the lon-
gitudinal velocity derivative can be considered as a characteristic
measure of the small-scale frequency, s�1g . We have found a high
value of the Pearson correlation coefficient, q

pt ;covS@ui=@xi
� 0:7 for

the droplet populations, both inside the interfacial layer and along
the entire simulation transient, which leads to the conclusion that,
in the absence of an updraft, the mismatch of the time derivative of
the supersaturation and the condensation terms is linearly related
to the covariance of the suprasaturation and the longitudinal
velocity derivatives of the carrier flow.

FIG. 12. Visualizations of the supersatura-
tion (top row) and longitudinal velocity
derivatives in the mixing region (second,
third, and fourth rows). The plots display
only a portion of the domain, as shown by
the normalized coordinates at two time
instances t=s0 ¼ 0:49 and t=s0 ¼ 4:44.
xc denotes the initial position of the mixing
layer. The variance of the longitudinal
velocity derivatives is of the order of
10 s�1 at the beginning of the transient,
but rapidly decreases. The values of the
inverse Kolmogorov times in the mixing
region are plotted in Fig. 4(c) (indigo
dash-dotted line) and are of the same
order of magnitude as the derivatives
shown in this figure.
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