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A group-theoretic approach to the disentanglement of

generalized squeezing operators
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Corso Duca degli Abruzzi 24, 10129 Torino, Italy
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Abstract

The disentangled form of unitary operators is an indispensable tool for phys-
ical applications such as the study of squeezing properties or the time evolu-
tion of quantum systems. Here we derive a closed form disentanglement for
the most general element of group ISp(2,R), whose generating Lie algebra
is obtained by joining the Heisenberg-Weyl algebra to su(1,1). We attain
the disentanglement formula resorting to an extension of the Truax method
and check our findings through an independent factorization approach, based
on the use of displacement operators. As a result we obtain a new form of
factorized squeezing operators, whose action on the light vacuum state is
calculated.

Keywords: disentanglement, Baker-Campbell-Hausdorff formula, squeezing
operators, squeezed states

1. Introduction

Unitary operators occurring in physics are defined in an algebraic frame-
work in terms of the generators ĝi, i = 1, ..., n, of a Lie algebra a, where n is
the dimension of the algebra. If Ŝ =

∑n
i=1 αiĝi is an anti-hermitian element

of a, with αi complex coefficients such that Ŝ† = −Ŝ, the corresponding,
generally entangled, unitary operator is eŜ. In most physical applications a
disentangled or factorized expression of eŜ is required and various forms of
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factorization can be defined, see, e.g., [1], [2]. In this work we propose the

disentanglement in the form of the factorization of eŜ into the product of
the exponentials of the single generators ĝi. Therefore, the disentanglement
problem consists in finding the complex unknown coefficients βi such that
the equation holds,

eŜ =
n∏
i=1

eβi ĝi . (1)

The rhs of (1) depends on the order of the labelling i of the ĝi. Though the
order of the factorization can be chosen without restrictions, we adopt the
standard choice of normal-order currently used in quantum optics, according
to which the exponentials of the lowering and raising operators of a are in
the right and left positions, respectively.

A well-known disentanglement problem is encountered in the definition
of the conventional squeezing operator [3],

S(τ) = eτK+−τ̄K− = eτ
tanh |τ |
|τ | K+e−2 ln(cosh |τ |)K0e−τ̄

tanh |τ |
|τ | K− , (2)

where τ ∈ C and the bar denotes complex conjugation. In Eq. (2) the ladder
operators K± and the Cartan operator K0 are characterized by the com-
mutation relations [K+, K−] = −2K0, [K0, K±] = ±K±. The experimental
realization of S(τ) is related to the process of degenerate parametric-down
conversion [4],[5], thus in (2) the Schwinger one-mode two-boson realization
of su(1,1) is adopted, whose generators are

K− =
1

2
a2, K+ =

1

2
a†2, K0 =

1

2

(
n̂+

1

2
I
)
, (3)

a and a† being the harmonic oscillator annihilation and creation operators,
while n̂ = a†a is the occupation number operator and I denotes the identity
operator.

In this work a is the algebra isp(2,R) obtained by joining the Heisenberg-
Weyl algebra w1(R) to the realization of su(1,1) given in Eq. (3). Note that
we have adopted a ≡ isp(2,R) according to the notation given in [7], since
su(1,1) ≈ sp(2,R).

Many significant physical systems are characterized by the dynamical
algebra isp(2,R), namely, their Hamiltonians are linear combinations of the
algebra generators. In units ~ = 1, which are used throughout this paper,
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an important example in quantum optics is the Hamiltonian

H = αK0 + i(τ̄K− − τK+) + i(λ̄a− λa†) + µI , (4)

investigated in [7]-[10]. Specifically, H is a one-mode Hamiltonian describing
two-photon processes, the linear terms being related to the squeezing of light
coherent states. Another example is the well-known generalized Caldirola-
Kanai model of the damped harmonic oscillator (see, e.g., [6]),

H =
1

2

[
Ap2 +Bq2 + C(qp+ pq)

]
+Dq + Ep+ F I , (5)

where the coefficients from A to F are real functions of time and q, p are the
canonically conjugate operators such that [q, p] = i. With a = q + ip, H is
readily reduced to an element of isp(2,R).

The physical motivation of our work lies in the prospective construction
of the squeezing operator and the squeezed states naturally associated with
isp(2,R). Following Perelomov’s definition of generalized coherent states [11]-

[13] we use U
.
= eŜ ∈ ISp(2,R), where

Ŝ = iαK0 + τK+ − τ̄K− + λa† − λ̄a+ iµI , (6)

with α, µ ∈ R and τ, λ ∈ C, is the most general element of isp(2,R) written
for future convenience in anti-hermitian form. We let then U act on the
highest weight vector |ω〉 of isp(2,R), which is defined as the most general
state annihilated by the lowering operators a and K−. In the Fock space F,
state |ω〉 is identified with the vacuum state, |ω〉 ≡ |0〉.

The key point in our work is the disentanglement of the group element
U . To our knowledge, for Ŝ as in (6), the normal-order expression of U ,
disentangled as in Eq. (1), is not reported in literature. Here we derive the
relevant expression analytically through an extension of the method originally
devised by Truax [14] for the Lie algebras su(2) and su(1,1), which holds
regardless of their specific realizations. Accordingly, the coefficients βi in (1)
are the solutions of the set of first-order differential equations associated with
isp(2,R). The resulting six-dimensional space of parameters is spanned by
the coefficients α, τ, λ, µ. Note that for λ = µ = 0 in Eq. (6), disentangling is
not an issue, the relevant results being available for example in [14], [15]. For
completeness we reproduce the disentanglement formula in the Truax scheme
by an independent separation method based on the use of the displacement
operator ,

D(z) = eza
†−z̄a , z ∈ C . (7)
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The outline of the present paper is as follows. In section 2 we revisit the
main features of the Baker-Campbell-Hausdorff (BCH) formula in order to
highlight the differences between the latter and our approach. In section 3
the closed form expressions of the coefficients βi in (1) are calculated. In
section 4 we detail the D(z)-based method, while section 5 is devoted to
the construction of both generalized squeezing operator and squeezed states.
Concluding remarks are given in section 6.

2. Disentanglement and BCH formula

In the physicists’ community the expression “Baker-Campbell-Hausdorff

(BCH) formula” refers to the general result for the quantity L̂
.
= ln

(
eX̂ eŶ

)
,

where X̂ and Ŷ are two noncommuting operators. A thorough exposition
of the historical path leading to this result is reported in [16]. As for the
mathematical features of the BCH formula, L̂ contains nested commutators
of X̂ and Ŷ and can be written in the integral form used, e.g., in [17],

L̂ = X̂ + Ŷ −
∞∑
`=1

(−)`

`(`+ 1)

∫ 1

0

dt
(
eadX̂ et adŶ − I

)`
Ŷ , (8)

or in the equivalent form reported, e.g., in [18],

L̂ = X̂ + Ŷ +
∞∑
`=1

(−)`

`+ 1

∫ 1

0

dt
(
et adX̂ eadŶ − I

)`
X̂ . (9)

In Eqs. (8), (9) one uses the standard notation adX̂ Ŷ
.
= [X̂, Ŷ ] and

et adX̂ Ŷ = etX̂ Ŷ e−tX̂ = Ŷ +
∞∑
k=1

tk

k!
Ĉk , Ĉk = (adX̂)k Ŷ ,

where (adX̂)k = adX̂(adX̂)k−1, k ≥ 1, with Ĉ1 = [X̂, Ŷ ], Ĉ2 = [X̂, Ĉ1],...,

Ĉk+1 = [X̂, Ĉk], cf., e.g., [2]. Note that if X̂ and Ŷ are elements of a finite
algebra, all the nested commutators Ĉk belong to the same algebra, i.e., they
are cyclic linear combinations of the algebra generators.

Due to the importance of multiplying exponentials of non-commuting op-
erators in quantum physics, many efforts have been devoted to the evaluation
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of the series expansions in Eqs. (8), (9), [17]-[20]. In [17], for example, Eq.
(8) is applied to operators X̂ and Ŷ , which obey the commutation relation

[X̂, Ŷ ] = uX̂ + vŶ + cI , (10)

with u, v, c ∈ C and [Ŷ , X̂] = −[X̂, Ŷ ]. The ensuing closed form of L̂ is L̂
= X̂ + Ŷ + f(u, v)(uX̂ + vŶ + cI), where f(u, v) is the scalar function

f(u, v) =
(u− v)eu+v − (ueu − vev)

uv(eu − ev)
.

A recent example of physical application of this method is related to the
scattering function describing long-range coherent quantum tunneling [21].

Task (1) we pursue in this work is related to but different from the above
BCH approach, because the disentangled form (1) depends strongly on the

properties of the algebra to which Ŝ belongs. Specifically, disentangling eŜ

for Ŝ given by Eq. (6), i.e., writing eŜ as the product of six exponentials
of the generators of isp(2,R), proves cumbersome if approached through
the straightforward application of Eqs. (8) or (9). Choosing for instance
X̂ ∈ w1(R) and Ŷ in the one-mode two-boson realization of su(1,1) and
calculating the series expansions in Eqs. (8) or (9) entails the iteration of
the BCH scheme in order to solve problem (1). In particular, further dis-

entanglements and rearrangements of eX̂ and eŶ are required, depending on
the order adopted for the factorized exponentials. In the following section
we show that the Truax method can be efficiently extended to the unitary
operator defined as the exponential of the element (6) of isp(2,R).

3. Disentanglement through the Truax method

With Ŝ from Eq. (6), let G1(x) denote the unitary operator exŜ, the real
parameter x being instrumental in the following analysis,

G1(x) = exŜ = ex(iαK0+τK+−τ̄K−+λa†−λ̄a+iµI) , G1(0) = I . (11)

The disentangled normal-order expression G2(x) of operator (11) can be writ-
ten in terms of the set of the unknown complex coefficients r0(x), p0(x),
p±(x), q±(x),

G2(x) = ep0(x)Iep+(x)K+eq+(x)a†er0(x)n̂eq−(x)aep−(x)K− , (12)
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with G2(0) = I so that the boundary conditions r0(0) = p0(0) = p±(0) =
q±(0) = 0 must be imposed. It is worth noting that the disentanglement
problem for operators living in the Lie group ISp(2,C) has been investigated
by Wünsche [7] resorting to a technique based on the three-dimensional fun-
damental representation of ISp(2,C).

In the framework of the Truax method [14], the coefficients r0(x), p0(x),
p±(x), q±(x) are evaluated requiring that dG2(x)/dx = dG1(x)/dx and G2(x)
= G1(x), ∀ x ∈ R. Dispensing with the explicit dependence on x of the
coefficients, the resulting system of first-order differential equations is, with
the above boundary conditions,

p′+ − 2p+ r
′
0 + p2

+ p
′
−e
−2r0 = τ , (13)

q′+ − q+ r
′
0 − p+ q

′
−e
−r0 + p+ q+ p

′
−e
−2r0 = λ , (14)

r′0 − p+ p
′
−e
−2r0 = i

α

2
, (15)

q′−e
−r0 − q+ p

′
−e
−2r0 = −λ̄ , (16)

p′−e
−2r0 = −τ̄ , (17)

p′0 − q+q
′
−e
−r0 +

1

2

(
q2

+ − p+

)
p′−e

−2r0 = i
(α

4
+ µ
)
, (18)

where primes indicate differentiation with respect to x. The actual disen-
tanglement coefficients are obtained setting x = 1 in the solutions of Eqs.
(13)-(18). Since Eqs. (13)-(17) do not contain p0, we solved them in the first
place. For α and τ in the range |τ |2 > α2/4 or β2 .

= |τ |2 − α2/4 > 0, we
calculated

p+ =
τ sinh β

β cosh β − iα
2

sinh β
, p− = − τ̄

τ
p+ , (19)

r0 = − ln
β cosh β − iα

2
sinh β

β
, (20)

q+ =

1

β

(
λ̄τ + i

α

2
λ
)

(1− cosh β) + λ sinh β

β cosh β − iα
2

sinh β
, (21)

q− =
1

τ

[
βλ+

1

2

α

β

(
1

2
αλ− iλ̄τ

)]
(1− cosh β)− λ̄τ sinh β

β cosh β − iα
2

sinh β
. (22)

6



Solving Eq. (18) we obtained the coefficient p0,

p0 = P1 + P2 ln
β cosh β − iα

2
sinh β

β
+
P3(1− cosh β) + P4 sinh β

β cosh β − iα
2

sinh β
, (23)

where

P1 = iµ+
1

β2
Ξ , P2 = −1

2
, P3 =

1

β3
(−iαΞ + β2|λ|2) , P4 = − 1

β2
Ξ ,

with Ξ = 1
2
(τ λ̄2− τ̄λ2 + iα|λ|2) ∈ iR. The results for |τ |2 < α2/4 are readily

obtained by replacing β with ±iβ throughout in Eqs. (19)-(23) regardless of
the sign.

3.1. The disentanglement coefficients for |τ |2 = α2/4 or β2 = 0

In this limit, from Eqs. (19)-(23) we found

lim
β→0

p+ =
2τ

2− iα
, lim

β→0
p− = − τ̄

τ
lim
β→0

p+ , lim
β→0

r0 = − ln
(

1− iα
2

)
,

lim
β→0

q+ =
2λ−

(
λ̄τ + i

α

2
λ
)

2− iα
, lim

β→0
q− =

1

τ

λ̄τ
(
i
α

2
− 2
)
− α2

4
λ

2− iα
,

lim
β→0

p0 = iµ− 1

2
ln
(

1− iα
2

)
+

12|λ|2 − (8− iα)Ξ

24
.

3.2. The special case of the algebra (3)

For λ = µ = 0 the algebra isp(2,R) reduces to the Schwinger realization
of su(1,1) given in Eq. (3). From Eq. (6) Ŝ = iαK0 + τK+ − τ̄K−, thus

in this case the entangled unitary operator eŜ is the element eiαK0+τK+−τ̄K−

of the group SU(1,1) v Sp(2,R). Eqs. (19)-(22) show that p+, p−, r0 are
unchanged and q+ = q− = 0, whereas Eq. (23) gives

p0 = −1

2
ln
β cosh β − iα

2
sinh β

β
=

1

2
r0 . (24)

As a check, we note that, in the disentangled expression ep0Iep+K+er0n̂ep−K−

of eŜ, Eqs. (20) and (24) give r0n̂+ p0I = r0

(
n̂+ 1

2
I
)
. This relation is useful

for the comparison with the disentangled expression of eŜ derived in [14],

eŜ = et+K+et0K0et−K− , (25)
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where
t+ = p+, t0 = 2r0, t− = p− . (26)

Since t0K0 = 2r0K0 = r0

(
n̂+ 1

2
I
)
, the disentanglement formula for the al-

gebra isp(2,R) proves to contain the su(1,1) realization (3) as a special case,
as it should.

3.3. The special case of the harmonic oscillator algebra

For τ = 0 Eq. (6) shows that Ŝ = iαK0 + λa† − λ̄a + iµI is the
most general anti-hermitian element of the harmonic oscillator algebra gen-
erated by {I, a, a†, n̂}. The corresponding entangled unitary operator is eŜ =
eiαK0+λa†−λ̄a+iµI. From Eqs. (19)-(23) we found p+ = p− = 0 as well as

r0 = i α
2
, q+ = i 2λ

α

(
1− eiα/2

)
, q− = −i2λ̄

α

(
1− eiα/2

)
,

p0 = i
[(

α
4

+ µ
)
− 2

α
|λ|2
]
−
(

2
α

)2 |λ|2
(
1− eiα/2

)
,

leading to the normal order disentangled expression of eŜ = ep0Ieq+a
†
er0n̂eq−a.

4. The D(z) approach

It is interesting to validate the result of the Truax approach by imple-
menting a conceptually different approach based on the use of the unitary
displacement D(z) given in Eq. (7). According to this method, we write the
operator (11) with x = 1 in the form

G1(1, z) = D(z) eiαK0+τK+−τ̄K− D†(z) , (27)

Replacing in (27) eiαK0+τK+−τ̄K− with its disentangled expression (25) we
obtain

G1(1, z) = D(z)
(
et+K+et0K0et−K−

)
D†(z)

= et+D(z)K+D†(z) et0D(z)K0D†(z) et−D(z)K−D†(z) .

Using D(z)aD†(z) = a − z and its extensions to all relevant operators, we
calculate

G1(1, z) = eΛI et+K+ e−t+z̄a
†H e−t−za et−K− , (28)

where Λ = 1
2
t+z̄

2 + 1
2
t0
(
|z|2 + 1

2

)
+ 1

2
t−z

2 ∈ C, while H = e
1
2
t0(n̂−za†−z̄a) is

a non-unitary operator as in general t0 ∈ C. Its disentangled normal order
expression,

H = eg1Ieg+ a
†
eg0 n̂eg− a , (29)
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is a special case of the exponential of the most general element of the har-
monic oscillator algebra derived in Appendix A. Specifically, we obtain the
coefficients g1, g±, g0 in Eq. (29) setting γ = 1

2
t0, δ = −1

2
t0z, ν = −1

2
t0z̄,

ε = 0 in Eq. (A.1). With Θ
.
= eg0 − 1,

g0 =
1

2
t0, g1 = |z|2 (Θ− g0) , g+ = −zΘ, g− = −z̄Θ . (30)

The factorized normal order expression of operator (27) then follows,

G2(1, z) = e(Λ+g1)I et+K+ e(g+−t+z̄)a† eg0n̂ e(g−−t−z)a et−K− . (31)

Clearly, there must be some compatibility relations between the group pa-
rameters α, τ , λ, µ in (11) and the additional parameter z in Eq. (27):
indeed, the latter cannot be chosen arbitrarily as, for consistency, Eqs. (11),
with x = 1, and (27) describe the same operator,

eiαK0+τK+−τ̄K−+λa†−λ̄a+iµI = eD(z)(iαK0+τK+−τ̄K−)D†(z) . (32)

Since

D(z)(iαK0 + τK+ − τ̄K−)D†(z) = iαK0 + τK+ − τ̄K−
−
(
iα

2
z + τ z̄

)
a† −

(
iα

2
z̄ − τ̄ z

)
a+ 1

2
(iα|z|2 + τ z̄2 − τ̄ z2) I ,

the coefficients of a and a† in Eq. (32) are required satisfy the relations

i
1

2
αz̄ − τ̄ z = λ̄ , i

1

2
αz + τ z̄ = −λ ,

which give z in terms of the group parameters,

z =
4τ λ̄+ i2αλ

α2 − 4|τ |2
. (33)

Note that different phase terms, iµ and

ϕ
.
=

1

2

(
iα|z|2 + τ z̄2 − τ̄ z2

)
=

1

2β2

(
τ̄λ2 − τ λ̄2 − iα|λ|2

)
,

are associated with the identity operators in Eq. (32). We can account for
both of them redefining operator (27),

G1(1, z)
.
= e(iµ−ϕ)ID(z)eiαK0+τK+−τ̄K−D†(z) , (34)
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so that, with z from (33), equality (32) is verified.
Besides, Eqs. (12), with x = 1, and (31) represent the same disentangled
operator. This means that, provided that the phase factor (iµ − ϕ)I is in-
cluded in operator (31), in view of the result (34), the following condition
must hold,

ep0Iep+K+eq+a
†
er0n̂eq−aep−K−

= e(Λ+g1)Ie(iµ−ϕ)I et+K+ e(g+−t+z̄)a† eg0 n̂ e(g−−t−z)a et−K− . (35)

Since, from Eqs. (26) and (30), p± = t±, g0 = 1
2
t0 = r0, we need consid-

ering only the coefficients of operators a, a† and I in Eq. (35). The three
corresponding relations are

g− − z p− = q− , (36)

g+ − z̄ p+ = q+ , (37)

Λ + g1 + (iµ− ϕ) = p0 . (38)

For example, using Eqs. (19), (22) and (30) for p−, q− and g−, condition (36)
becomes

−z̄
[
β (1− cosh β) + i

α

2
sinh β

]
+ zτ̄ sinh β

=
1

τ

[
βλ+

1

2

α

β

(
1

2
αλ− iλ̄τ

)]
(1− cosh β)− λ̄ sinh β ,

which, with z from (33), proves to be an identity. Conditions (37) and (38)
are proved similarly.

5. Generalized squeezing operator and quadrature variances

The calculations in section 3 lead to the equality of the entangled uni-
tary operator eŜ written in terms of the group parameters, U(α, τ, λ, µ), and
its normal-order factorized expression in terms of the disentanglement coeffi-
cients p±, r0, q±, p0, which in turn depend on the group parameters according
to Eqs. (19)-(23). Therefore, for Ŝ as in Eq. (6), the following identity holds
in the group ISp(2,R),

U(α, τ, λ, µ) = eŜ = eiαK0+τK+−τ̄K−+λa†−λ̄a+iµI

= ep0Iep+K+eq+a
†
er0n̂eq−aep−K− . (39)
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We note that the normal-order disentangled expression of U(α, τ, λ, µ) given
in Eq. (39) is quite a general result: indeed, the condition |τ |2 > α2/4
on the group parameters τ , α, which we used throughout our calculations,
includes the cases of physical interest within the current quantum squeezing
formalism, as we show in the subsequent discussion.

The effectiveness of result (39) emerges naturally in physical applications.
As an example, if Ŝ = −iHt, with H† = H, U(α, τ, λ, µ) plays the role of
the evolution operator of a physical system, whose Hamiltonian H lives in
the dynamical algebra isp(2,R), as in the examples (4) and (5) discussed in
section 1. The factorized expression of e−iHt would then allow the analytical
evaluation of the system dynamics [20], [24].

On the other side, and closer to the spirit of this work, we highlight
that in quantum optics U(α, τ, λ, µ) includes in the group ISp(2,R) both the
conventional squeezing and displacement operators, (2) and (7), respectively:
indeed, we retrieve such operators as particular cases of Eq. (39), S(τ) =
U(0, τ, 0, 0) and D(z) = U(0, 0, z, 0). Acting with operator U(α, τ, λ, µ) on
the vacuum state |0〉 ∈ F we obtain the generalized squeezed state |α, τ, λ, µ〉
= U(α, τ, λ, µ)|0〉. Precisely, using the disentangled form of U(α, τ, λ, µ) in
Eq. (39), we found

|α, τ, λ, µ〉 =
∞∑

`,m=0

c`,m |`+ 2m〉 , c`,m = ep0I
pm+

2mm!

q`+
`!

√
(`+ 2m)! . (40)

Note that the coefficients c`,m are independent of r0, q−, p−. Moreover, the
state (40) is not a definite parity state, a feature which follows from the
presence of q+ in c`,m, that testifies the role of the w1(R) component of
isp(2,R).

Recalling that the quadrature operators are isomorphic with the position
and momentum operators q and p, we calculated their variances with respect
to state (40) using the definition ∆2(•) = 〈•2〉 − 〈•〉2, where • denotes the
relevant operators and 〈•〉 .

= 〈α, τ, λ, µ| • |α, τ, λ, µ〉 = 〈0|U † • U |0〉, with
U ≡ U(α, τ, λ, µ). Since

U †(α, τ, λ, µ) a† U(α, τ, λ, µ) = e−r0
(
a† − p−a− q− I

)
,

we could readily evaluate all the relevant transformations. With

q2

p2 = 2K0 ± (K+ +K−) = n̂+
1

2
± 1

2

(
a†2 + a2

)
,
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we calculated

∆2(q)
∆2(p)

=
1

2
+ e−(r0+r̄0)|p−|2 ∓

1

2

(
e−2r0p− + e−2r̄0 p̄−

)
. (41)

From our general formulation we derive and discuss a few particular cases of
physical interest:

i) For λ = µ = 0 we remove the w1(R) component of algebra isp(2,R),
which consequently coincides with the su(1,1) realization (3), cf. sec-
tion 3.2. Therefore, the three-dimensional space of parameters is de-
fined by the coefficients α and τ . This particular case is investigated
in [15], where the generalized squeezing operator U(α, τ, 0, 0) is used to
squeeze the vacuum of the system at one of the input ports of a Mach-
Zehnder interferometer, leading to the emergence of new nonclassical
regions of the interferometer.

ii) Adding the further constraint α = 0 results in the two-dimensional
space of parameters spanned by τ , thus re-establishing the standard
experimental conditions associated with the squeezing operator S(τ) =
U(0, τ, 0, 0). Indeed, with τ = |τ |eiΦτ , from Eqs. (19)-(23) we obtained
p+ = eiΦτ tanh |τ | , p− = −e−iΦτ tanh |τ |, r0 = − ln cosh |τ |, p0 = 1

2
r0,

q+ = q− = 0, so that state |α, τ, λ, µ〉 of Eq. (40) reduces to the usual
squeezed vacuum state |τ〉 = S(τ)|0〉,

|τ〉 = (cosh |τ |)−
1
2

∞∑
m=0

(
eiΦτ tanh |τ |

2

)m√(
2m

m

)
|2m〉 , (42)

which is a definite parity state composed only of even Fock states.
Analogously, the variances of the quadratures with respect to state |τ〉,
∆2
τ (q) and ∆2

τ (p), are special cases of Eq. (41),

∆2
τ (q)

∆2
τ (p)

=
1

2
+ sinh2 |τ | ± sinh |τ | cosh |τ | cos Φτ ,

from which, for Φτ = 0, we find the customary results [3],

∆2
τ (q)

∆2
τ (p)

=
1

2
e±2|τ | .
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5.1. Some remarks on the squeezed states of light

Currently, the squeezed states of light are generated from the vacuum
state |0〉 in two different ways, cf. [4], [5]. We can first let the squeezing
operator S(τ) act on the vacuum |0〉 obtaining the state (42), then the dis-
placement operator (7) transforms |τ〉 into the ideal squeezed states originally
defined in [22]. With ξ

.
= eiΦτ tanh |τ | such states are

|z, τ〉 .= D(z)S(τ)|0〉 = D(z)|τ〉 =
e

1
2
|z|2√

cosh |τ |
×

∞∑
j,`=0

2`+j∑
m=0

(
ξ

2

)`√(
2`

`

)(
2`+ j

2`

)(
2`+ j

m

)
zj√
j!

(−z̄)m√
m!
|2`+ j −m〉 . (43)

Reversing the order of the D(z) and S(τ) operators leads to the 2-photon
coherent states introduced in [23],

|τ, z〉 .= S(τ)D(z)|0〉 = S(τ)|z〉 , (44)

where now the squeezing operator acts on the customary coherent state of
light |z〉 = D(z)|0〉, cf., e.g., [8], [9]. Naturally, states (43) and (44) are
not the same physical state though a relation can be established between the
two formalisms [4]. In fact, evaluating S(τ)D(z) gives S(τ)D(z) = D(v)S(τ),
where D(v) = S(τ)D(z)S(τ)† with v = (z+ ξ z̄) cosh |τ |, from which |τ, z〉 =
D(v)S(τ)|0〉 .= |v, τ〉.

The comparison of states (43) and (44) with our state (40) shows that the
latter exhibits a more complex structure. This is due to the 6-dimensional
structure of the space of parameters in which our formulation is framed,
which displays two extra degrees of freedom with respect to the standard
4-dimensional space of parameters. As a consequence, the generalized uni-
tary operator U(α, τ, λ, µ) in Eq. (39) embodies both the squeezing and
displacement actions assigned to operators S(τ) and D(z), respectively, then
generalizing the usual notion of squeezing.

6. Conclusions

In this work we presented a generalization of the usual formulation of
quantum squeezing, based on the use of the algebra isp(2,R), which is defined
as the merging of the single-mode two-boson Schwinger realization of su(1,1)
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and the Heisenberg-Weyl algebra w1(R). The ensuing space of parameters is
described by the six real coefficients corresponding to α, τ, λ, µ.

The main motivation for our choice is related to the possibility to define,
through the exponentiation of the most general anti-hermitian element of
isp(2,R), a single unitary operator U(α, τ, λ, µ), which combines the features
of both the usual diplacement and squeezing operators, D(z) and S(τ). In
such theoretical framework we constructed the generalized squeezed states by
letting U(α, τ, λ, µ) act on the vacuum state |0〉. To this aim the disentangled
form of U(α, τ, λ, µ) is indispensable. We obtained it analytically in the
normal-order form, resorting to a significant extension of the method first
devised in [14]. The normal-order form of U(α, τ, λ, µ) is advantageous also
in the analysis of the squeezing associated with more structured “vacuum
states” as in [15], in the factorization of the unitary evolution operator, see,
e.g., [20], and more generally for the construction of coherent states through
a group-theoretic approach, cf. [9] and [11].

Our extension of the Truax method was confirmed by means of an inde-
pendent approach, based on the use ab initio of the displacement operator
D(z).

In conclusion we observe that the normal-order disentangled expression
of U(α, τ, λ, µ) given in Eq. (39) is a general result and remark that the
condition |τ |2 > α2/4, characterizing our calculations, allows for the inclusion
of the cases of physical interest in the current investigation into quantum
squeezing by properly selecting the group parameters.

Appendix A. Disentanglement of a non-unitary operator in the
group of the harmonic oscillator algebra

Following the Truax method as described in section 3, we write the ex-
ponential of the most general element of the harmonic oscillator algebra so
as to obtain the non-unitary operator,

Ô1(x) = ex(γn̂+δa†+νa+εI) ,

where x ∈ R with Ô1(0) = I and γ, δ, ν, ε ∈ C. Then, in the disentangled
normal order form of Ô1(x),

Ô2(x) = eg1(x)Ieg+(x) a†eg0(x) n̂eg−(x) a ,

14



the coefficients g1(x), g±(x), g0(x) are the solutions of the system of first-
order differential equations,

g′1 − g+ g
′
− e
−g0 = ε ,

g′+ − g′0(x) g+ = δ ,

g′− e
−g0 = ν ,

g′0 = γ ,

which must obey the boundary conditions g1(0) = g±(0) = g0(0) = 0. For
x = 1 and with Γ

.
= eγ − 1, such solutions are

g0 = γ, g1 =
δν

γ2
Γ +

(
ε− δν

γ

)
, g+ =

δ

γ
Γ, g− =

ν

γ
Γ . (A.1)
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