
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Threat Model for Extensible Smart Home Gateways / Corno, Fulvio; Mannella, Luca. - ELETTRONICO. - (2022), pp. 1-
6. (Intervento presentato al convegno 7th International Conference on Smart and Sustainable Technologies – SpliTech
2022 tenutosi a Split / Bol, Croatia nel July 5-8, 2022) [10.23919/SpliTech55088.2022.9854235].

Original

A Threat Model for Extensible Smart Home Gateways

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.23919/SpliTech55088.2022.9854235

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2963822 since: 2023-02-22T11:16:48Z

Institute of Electrical and Electronics Engineers (IEEE)

A Threat Model for Extensible
Smart Home Gateways

Fulvio Corno
Dipartimento di Automatica e Informatica

Politecnico di Torino
Turin, Italy

fulvio.corno@polito.it

Luca Mannella
Dipartimento di Automatica e Informatica

Politecnico di Torino
Turin, Italy

luca.mannella@polito.it

Abstract—This paper proposes a threat model for a specific
class of components of IoT infrastructures: smart home gateways
extensible through plug-ins. The purpose of the proposed model
is twofold. From one side, it helps to understand some possible
issues that could be generated from a malicious or defective
implementation of a plug-in and affect the gateway itself or
other smart home devices. Consequently, the model could help
programmers of gateway applications, plug-ins, and devices
think about possible countermeasures and develop more resilient
solutions. On the other side, the model could be regarded as a
set of guidelines. Indeed, plug-in developers should not create
plug-ins acting like the threats reported in the paper. To provide
a first validation of the model, the paper presents a use case
based on Home Assistant, an open-source smart home gateway
application.

Index Terms—Cybersecurity, Gateways, Home Assistant, In-
ternet of Things, Threat Modeling, Smart Home

I. INTRODUCTION

There are several definitions for a smart home [1]. One
of the simplest ones, proposed by the Oxford Dictionary,
is: “a home equipped with lighting, heating, and electronic
devices that can be controlled remotely by smartphone or
computer”. According to recent literature, smart home systems
are nowadays considerably widespread and exhibit various
security issues. Indeed, a study published in 2019 [2] states
that around 40% of private dwellings worldwide have at least
an Internet of Things (IoT) device. Moreover, this number
grows to approximately 70% considering only North Amer-
ica’s houses. Analyzing data coming from these devices, the
researchers discovered that in 62% of the involved homes,
there was at least one device affected by one known vulnera-
bility. Furthermore, as demonstrated in another study [3], it is
important to consider that the insecurity of a device connected
to a network could have severe consequences for all the others.

To manage all the connected devices, smart home gateways
are often involved. These specific machines work as the central
control unit of a smart home system. They communicate
with (and coordinate) the smart devices connected to the
local network, establish communications to the internet and,
sometimes, implement additional security mechanisms [3], [4].

In line with the broad possibilities offered by smart homes
and the related IoT devices, there are many open-source smart
home gateways designed to be extensible (e.g., EventGhost,

Home Assistant, OpenHAB, Pimatic, etc.). Indeed, extending
software released by a third party is not a new concept
in software development. Indeed, many other products and
platforms offer developers the possibility of integrating new
functionalities [5]. To provide other examples, browsers and
Integrated Development Environments (IDE) are often exten-
sible. These software expansions assumed various names like
add-ons, extensions, integrations, or plug-ins. This paper uses
“plug-in” to reference a generic extension of the gateway’s
core functionalities.

Considering that smart home gateways have to interact with
almost all the devices available in the house, they are particu-
larly critical. Moreover, plug-in development is another critical
and less controlled process because it is often conducted by
independent developers not belonging to the “core team”.
Therefore, this paper focuses on proposing a threat model that
could be applied during the development (or the analysis) of
plug-ins for extensible smart home gateways.

In line with a systematic literature review recently con-
ducted on the topic [6], there are several definitions of threat
modeling. These definitions are used in many different and
sometimes also incompatible ways. However, to provide a
simple definition of this concept, the paper considers the
description provided by the Threat Modeling Manifesto [7]:
“threat modeling is analyzing representations of a system to
highlight concerns about security and privacy characteristics”.

The aim of the threat model presented in this paper is
twofold. From one side, it helps developers understand some
possible attacks that could affect the main components of a
smart home. Indeed, having these menaces in mind could help
them think about possible countermeasures and develop more
resilient solutions. On the other side, this threat model could
be considered as a set of guidelines for plug-in developers.
Indeed, programmers should not develop plug-ins that act like
the described threats.

The rest of the paper is organized as follows: Section II
analyzes the related work, and Section III presents a smart
home reference architecture. Then, the article defines the
proposed threat model in Section IV. Section V describes an
application of the threat model to a possible use case. Section
VI summarizes the outcomes of this work, and Section VII
concludes the paper and proposes insights on future activities.

II. RELATED WORK

Numerous documented attacks in the literature show that
starting from a device is possible to compromise many others.
For instance, researchers demonstrated a lateral privilege es-
calation attack in a smart home equipped with Google’s Nest
and Philips Hue [3]. However, adopting a smart home gateway
could increase the security of the smart home. For example,
this kind of gateway could be equipped with an Intrusion
Detection System (IDS) to discover possible attacks from
the beginning [4]. Moreover, Yang et Al. proposed another
interesting solution to improve gateway security [8]. In their
work, they developed a smart home gateway able to use onion
routing to transmit IoT data streams efficiently.

Nevertheless, considering that the gateway interacts with
almost all smart home devices, it could create severe issues
if compromised. Hence, it is essential to design the gateway
and its plug-ins in a secure way to reduce the possibility
of exposing the house to attacks. Indeed, programmers must
develop plug-ins having two concepts in mind. From one side,
developed plug-ins could expose the gateway and the elements
inside the house to new threats. On the other side, their plug-
ins could be targeted by attacks and unexpected events.

Following a security-by-design approach, one of the best
tools to secure systems from the very beginning is threat
modeling. The more significant resources used to design
the proposed model were the previously cited Threat Model
Manifesto [7] and the documentation provided by the Open
Web Application Security Project (OWASP) [9], with a par-
ticular focus on the OWASP IoT Project [10]. Indeed, these
documents offer constructive insights to design an adequate
threat model.

Among the more significant related works, the paper con-
siders the STRIDE model [11] proposed by Microsoft. The
model’s name is an acronym that helps remember the class
of threats described by the model itself. They are Spoofing,
Tampering, Repudiation, Information disclosure, Denial of
service (DoS), and Elevation of privilege. This model was one
of the first to be highly adopted by practitioners, and it was
also involved in many IoT research activities. For instance,
it was used to secure Smart Cities [12], Smart Grids [13],
and Cyber-Physical Systems [14]. However, for the aim of
this paper, this model is too generic, which leads us to more
specific resources.

Considering not only the smart homes but the entire IoT
domain, one of the more complete threat models designed
for IoT systems that we were able to identify was proposed
by Pal et Al. [15]. This model divides IoT threats into five
macro-categories (i.e., communications, device/services, users,
mobility, and integration of resources) and discusses possible
attacks from different perspectives. Another relevant resource
for smart home security is the contribution of Heartfield
et Al., [16] which helps understand security threats related
to this domain and their possible impacts. However, these
contributions have a broad view of the IoT domain, while our
focus is specifically on extensible smart home gateways.

III. REFERENCE ARCHITECTURE

This section describes a generic smart home architecture
with an extensible gateway as its central focus. A smart home
gateway usually has a software application designed to manage
the smart home and possibly other applications. All these
programs are managed by an operating system. As already
specified, this paper considers smart home gateways that could
be expanded through plug-ins. Indeed, this kind of gateway
application could be viewed as a container for several plug-ins
that run in parallel. In addition, the reader should not forget
that the gateway interacts with other IoT devices inside the
house. Furthermore, the gateway is also typically connected to
the internet and, in certain situations, could be the only device
able to communicate outside the smart home local network.

Figure 1 graphically represents the reference architecture
explained so far. We designed and considered this architecture
to have a specific reference during the creation of the proposed
threat model.

Fig. 1. Smart Home architecture.

IV. PROPOSED THREAT MODEL

To create the proposed threat model, we started from the
leading security properties defined in the Federal Information
Security Management Act (amended in 2014 [17]) and deeply
described in Federal Information Processing Standards (FIPS)
Publication 199 [18]: Confidentiality, Integrity, and Availabil-
ity. Moreover, we considered two other essential features of
complex applications: Authentication and Authorization [19].
To conclude, we also took into account Non-Repudiation.

This section highlights a set of threats associated with
the mentioned properties. In particular, the proposed threat
model focuses its attention on menaces that target the smart
home. For this reason, attacks addressing what is outside

the house’s network are not considered. Therefore, if not
differently specified, each of the threats described below could
affect one of the following attack targets:

• other plug-ins;
• the smart home gateway application;
• other application(s) running on the physical gateway

device;
• the gateway’s operating system;
• devices belonging to the smart home.
It is also important to clarify that the model only considers

menaces originating from a plug-in. To quickly reference the
following threats, the paper assigns each of them a label
composed of the letter “T” and a digit.

Some threats mention the plug-in scope. The latter is
considered as the set of variables, files, or resources that
the plug-in can legitimately access. To legitimately access a
resource, the plug-in documentation has to include its possible
use. Furthermore, access to the resource has to be carried out
through the modalities envisaged by the platform (e.g., using
the platform APIs). For instance, considering two plug-ins,
“A” and “B”, the scope of “A” includes its configuration file
and does not include the configuration file of “B”. Moreover,
if a plug-in declares control only over a specific device (e.g.,
a lamp), every other device is outside its scope.

A. Confidentiality

The threats belonging to this class are related to illicit access
to private information stored outside the plug-in’s scope.
Examples of private data could be a password, an access token,
or users’ sensitive information like their homes’ locations.

• T1: a plug-in could access and use private data of other
attack targets (i.e., data outside its scope).

• T2: a plug-in could access and spread private data of
other attack targets (i.e., data outside its scope).

B. Integrity

The threats belonging to this class generally compromise the
integrity of an attack target without impacting its availability.
Therefore, even if some relevant information could be altered,
the target may seem to work regularly. This behavior is
particularly tricky because it could be much more difficult to
detect that the target is compromised.

• T3: a plug-in could alter the state of other smart home
devices outside its scope (e.g., turning on a lamp out of
its scope).

• T4: a plug-in could alter private data of other attack
targets outside its scope (e.g., changing a variable out of
its scope, for instance, a measured temperature).

C. Availability

The following threats alter the availability of an attack
target. The lack of availability could be temporary, or it could
be so intrusive to deny the usage of the target completely. T5
and T6 usually make the target partially unavailable, while the
other threats could generate complete unavailability.

• T5: a plug-in could delay the regular functionality of an
attack target (e.g., a lamp took several seconds before
turning on).

• T6: a plug-in could alter one of the regular functionalities
of an attack target (e.g., users can turn on or off a
lamp through its compromised integration, but power
consumption data are not available anymore).

• T7: a plug-in could alter the regular functionality of an
attack target, preventing the smart home users from using
it. This threat implies two different scenarios: no one has
control over the attack target (e.g., gateway’s resource
saturation up to a frozen state), or there is a third party
able to replace the user in controlling the attack target
(e.g., attackers could turn on and off the lights whenever
they want).

• T8: a plug-in could physically damage an attack target
(i.e., the gateway or another device). E.g., continuously
repeated activation of a specific light until it burns out;
gateway overheating.

D. Authentication

The threats belonging to this class occur when a plug-in
can pretend to be a different entity (e.g., another plug-in, the
gateway itself, or another house’s device). When this happens,
it could access functionalities and resources outside its scope.

• T9: a plug-in could interact with an attack target, pre-
tending to be a different entity.

E. Authorization

The threats belonging to this class happen when a plug-
in can have access to an authorization level higher than nec-
essary. This escalation could be achieved through modifying
the privileges assigned to it by the gateway or exploiting a
mechanism for bypassing an authorization process. A higher
authorization level could create unforeseen situations in the
smart home system.

• T10: a plug-in could access an authorization level higher
than expected.

F. Non-Repudiation

As specified in Section 1, many plug-ins can coexist inside a
smart home gateway. Non-Repudiation of the communications
between a plug-in and an attack target could be helpful to
increase the degree of control over the entire gateway applica-
tion. If a plug-in starts to compromise an attack target, having
Non-Repudiation could help easily detect it. Compromising
this security mechanism could be the starting point for other
malicious behavior.

• T11: a plug-in could anonymously communicate with an
attack target (i.e., there is no way to know that the plug-in
establishes a specific communication).

V. USE CASE

To validate the proposed threat model, the paper presents
a use case based on an open-source smart home gateway
software: Home Assistant [20]. In more detail, we developed

a number of plug-ins that, if analyzed by means of the model,
reveal the presence of some of the previously described threats.

A. Home Assistant
Home Assistant (HAss) is a Python-based open-source

software for home automation. Paulus Schoutsen started the
project in 2013 and presented it in 2016 at the Embedded Linux
Conference and Open IoT conference1. The purpose of Home
Assistant is to be a central control system for smart home
devices. It supports many different protocols, and it offers
a front-end interface accessible both from web browsers and
mobile applications (Android and iOS). As also declared in its
documentation, Home Assistant was designed with a specific
focus on users’ privacy and local control. It has four different
releases – HAss Core, HAss Container, HAss Supervised, and
HAss Operating System (OS) – each presenting additional
features with respect to the core version. According to Home
Assistant analytics, at present time there are more than 150,000
active installations2. However, considering that analytics is not
enabled by default, this number is indeed estimated to be four-
fold3.

Developers could expand HAss through two different types
of plug-ins: integrations and add-ons. Integrations extend
HAss Core directly and, for this reason, they are available on
all the previously cited releases. Developers could also create
custom integrations that override the behavior of default HAss
integrations. Therefore, in line with their name, they are deeply
integrated inside Home Assistant. On the contrary, add-ons are
available only on HAss Supervised and HAss OS. They extend
the capabilities of Home Assistant by installing additional
applications more isolated from the core functionalities of the
platform. Practically speaking, add-ons are Docker containers
executed and managed by Home Assistant.

HAss provides its users with many different integrations and
add-ons. Many of them are already available when the platform
is installed; others can be downloaded directly from the
platform’s front end. Currently, Home Assistant offers 1010
integrations and 63 add-ons2. However, like many other open-
source platforms, HAss was designed to be extensible by every
programmer. Indeed, users can also retrieve extensions’ source
code (e.g., from GitHub) and manually configure HAss for
running them. Among them, a popular place where users can
retrieve extensions is the Home Assistant Community Store
(HACS) [21]. This custom integration can be installed in HAss
to simplify retrieving extensions developed by third-party pro-
grammers. Currently, HACS has 1094 available repositories.

In this vast space of possible plug-ins, installing an exten-
sion with malicious purposes could be easy. To demonstrate
this hypothesis, the paper proposes in the next section some
proof of concept integrations able to exploit some of the threats
previously described in Section IV.

1https://www.linux.com/topic/embedded-iot/
home-assistant-python-approach-home-automation/, last visited on March
3rd, 2022.

2https://analytics.home-assistant.io/, last visited on May 6th, 2022.
3https://www.home-assistant.io/blog/2021/11/12/100k-analytics/, last vis-

ited on May 6th, 2022.

B. Proof of Concept

This section aims to apply the proposed threat model to
Home Assistant. According to the nature of the two kinds of
plug-ins offered by the platform (i.e., integrations and add-
ons), integrations are closer to the traditional plug-in concept.
For this reason, they are more suitable for a first validation of
the model. In this section, the paper describes some custom
integrations used to demonstrate how the previously described
threats could impact the platform’s security properties.

Among the attack targets specified in Section IV, the
developed integrations target only other Home Assistant in-
tegrations. For reasons of simplicity and brevity, this analysis
addresses some of the previously described threats. We plan
to demonstrate in future work all the presented threats on
different attack targets. Table I summarizes which threats are
exploited in the developed integrations.

1) Smart Home Configuration and Implementation De-
tails: To validate the model, we developed three dif-
ferent integrations: switch target, light altering state, and
light simple access. These three integrations were developed
and tested on a HAss Core “devcontainer” (a Docker container
version of HAss designed for development)4 and further tested
on a HAss OS. The HAss OS was installed on a VirtualBox
virtual machine running on a desktop PC with Windows 10.
On both configurations, only the minimum default integrations
and add-ons were enabled. No additional devices were con-
nected to the virtual network.

For these testing components, we developed only the code
necessary for the integrations to interact with Home Assistant.
I.e., the developed plug-ins do not integrate any physical de-
vice. However, the lack of physical devices does not invalidate
the outcomes of the analysis. The integrations could be easily
expanded to interact with physical devices by developing an
appropriate Python package or including an existing one.

As the name suggests, the first integration (switch target)
is targeted by the other two integrations. It represents a fake
switch with two possible states: on and off. In addition, this
integration contains a secret value that should remain private
(i.e., it should be used only by the integration itself). Instead,
the second and the third integrations are designed to manage
two lights. The first light is used to demonstrate T3, T7, T9,
and T11, while the second is used for T1, T2, T4, and T6.
They have a brightness value and two possible states: on and
off. Section V-B2 discusses how to generate the cited threats.

All the developed proofs of concept are available on GitHub
under the MIT license5.

2) Exploited Threats: The light simple access and the
light altering state integrations behave like lights with addi-
tional malicious characteristics. Indeed, both these integrations
are able to modify the status and the private data of the
switch target, an integration outside their scope.

4https://developers.home-assistant.io/docs/development environment/, last
visited on March 9th, 2022.

5https://github.com/Sarcares/HAss-TM-Integrations, last visited on March
23th, 2022.

https://www.linux.com/topic/embedded-iot/home-assistant-python-approach-home-automation/
https://www.linux.com/topic/embedded-iot/home-assistant-python-approach-home-automation/
https://analytics.home-assistant.io/
https://www.home-assistant.io/blog/2021/11/12/100k-analytics/
https://developers.home-assistant.io/docs/development_environment/
https://github.com/Sarcares/HAss-TM-Integrations

To demonstrate how to interact with this integration using
an illicit approach, we programmed a simple method able
to get from Python’s Garbage Collector (gc) a reference to
the instance of the switch target (Listing 1). To retrieve this
reference, it is enough to know the name of the class (or the
name of a parent class) and the name of the integration (in this
specific example, we used the SwitchEntity class and “Switch
Target”, i.e., the name of the integration). Both integrations use
this method to demonstrate some of the previously described
threats.
def g e t t a r g e t (s e l f) :

f o r o b j in gc . g e t o b j e c t s () :
i f i s i n s t a n c e (obj , S w i t c h E n t i t y) :

i f o b j . name == ” Swi tch T a r g e t ” :
re turn o b j

Listing 1. Getting reference to an integration through the Garbage Collector.

Starting from confidentiality threats, when the
light simple access is turned on in the front-end dashboard,
the integration uses the previously obtained reference to
access the secret stored inside the switch target (a piece of
information outside its scope). This behavior could lead to T1
or T2 according to what the malicious developer desires to do
with the stolen data. Indeed, it could directly use the secret
to access a private resource (e.g., if the secret is an access
token) by materializing T1 or sending this information on
a remote server (T2). Furthermore, to exploit integrity (T4)
and availability (T6) threats, when this light is turned off,
light simple access modifies the switch target’s secret (T4).
If the target integration uses this variable to perform its tasks
(e.g., it is an access token used to send power consumption
data to a different dashboard), this change could also create a
partial lack of availability (T6). I.e., the switch seems to work
regularly, but a part of its functionalities is compromised.
Part of the code implemented for these threats is shown in
Listing 2.
def r e a d s e c r e t (s e l f) :

t a r g e t i n t e g r a t i o n = s e l f . g e t t a r g e t ()
re turn t a r g e t i n t e g r a t i o n . m y s e c r e t

def a l t e r s e c r e t (s e l f , new value) :
t a r g e t i n t e g r a t i o n = s e l f . g e t t a r g e t ()
t a r g e t i n t e g r a t i o n . m y s e c r e t = new value

Listing 2. Reading and altering the secret of switch target.

As we already said, to demonstrate more threats,
we developed another proof of concept integration: the
light altering state. To materialize T3, every time a user turns
on or off this light, the integration alters the switch target’s
state—which is a state out of the integration’s scope. If the
switch is on, its state becomes off and vice versa (i.e., the
switch is toggled). Even in this case, the integration uses the
method shown in Listing 1 to retrieve the reference to the
switch target. Through this reference, it is possible to call
a method for altering the state of the switch (Listing 3).
Furthermore, the light altering state also demonstrates T7.
Indeed, even if the user is always able to change the state
of the switch, the presented integration is partially in control
of it, revealing an availability threat in the use case.

def a l t e r s t a t e (s e l f) :
t a r g e t i n t e g r a t i o n = s e l f . g e t t a r g e t ()
t a r g e t i n t e g r a t i o n . t o g g l e ()

Listing 3. Altering the state of switch target.

In addition, the developed integrations were also designed to
demonstrate T9 and T11. Indeed, invoking the toggle method
directly from the reference to the switch target integration, the
platform could not detect who changed the device’s state (that
seems to be changed by the original integration itself).

To conclude, Table I summarizes the threats described in
this analysis grouped by category. The exploited threats have
a checkmark (✓) while the menaces left out of this use case
for reasons of brevity have a cross mark (✗).

TABLE I
THREATS EXPLOITED IN THE USE CASE INTEGRATIONS.

Threat Category Threat Exploited
Confidentiality T1 ✓

T2 ✓
Integrity T3 ✓

T4 ✓
Availability T5 ✗

T6 ✓
T7 ✓
T8 ✗

Authentication T9 ✓
Authorization T10 ✗
Non-Repudiation T11 ✓

VI. DISCUSSION

As described in Section III, smart homes could be complex
systems formed by many distinct components, and extending
such a system is never an easy task. Section IV highlights a set
of possible threats to keep in mind while developing a plug-in
for a smart home gateway, the central piece of the previously
described architecture. Having a reference threat model during
the development of their components could help programmers
create more robust software solutions and avoid potentially
critical behaviors. Furthermore, plug-in programmers could
accidentally introduce security issues in their plug-ins, which
could be particularly true if they do not have much experience
on the platform they are expanding.

Applying the proposed model to Home Assistant integra-
tions, we discovered that the platform has no firm isolation of
its components. Hence, it is easy for plug-ins to violate the
other integrations’ confidentiality and obtain access to sensi-
tive information. In addition, the platform does not check the
integrity of the data stored inside its integrations. Therefore,
each plug-in could modify data stored in others without being
stopped by the platform. A plug-in could also easily target
the availability of other components in the smart home. In
Section V-B, we demonstrated only T6 and T7 (for availability
property), but it is not difficult to deploy an integration able to
exploit other threats (e.g., actuating a denial-of-service attack).
Moreover, according to what we already exposed in Section
V-B, Home Assistant does not implement sharp authentication

mechanisms, and it is relatively easy for the integrations to
act without being identified (T10 and T12). To conclude, even
if the analysis considers T11 as not found, this is a lack of
the platform that, from our point of view, should be better
addressed in future HAss releases.

However, Home Assistant’s extensive set of possibilities is
not only a downside. Indeed, being highly customizable led
many developers and tinkerers to contribute to the platform’s
growth. At the time of writing, almost 3.000 people contribute
to HAss core and its default integrations on GitHub6. Hence,
considering how many people worldwide are involved in the
development of this project, it is particularly important that
plug-in programmers have a set of guidelines to follow during
the creation of their additional components.

To sum up, to reduce the presence of the previously de-
scribed threats is necessary to act on different components.
First of all, the gateway itself (and its APIs) should enforce
more controls. Then, the plug-ins should authenticate them-
selves while interacting with the platform (or among them).
To conclude, it is necessary to give developers more support,
providing them adequate documentation and a set of tools
for validating their outcomes. We are convinced that having a
reference threat model could be a first step to help developers
ask themselves questions during their implementation choices
and decrease the possibility of malicious behaviors.

VII. CONCLUSIONS

This paper focuses on smart home gateways extensible
through plug-ins. Section III describes a typical gateway-
centered smart home architecture, while Section IV proposes a
threat model that could be applied in this scenario. The model
represents a set of menaces that could have an impact on the
main security properties (Confidentiality, Integrity, Availabil-
ity, Authentication, Authorization, and Non-Repudiation) of a
smart home system. Even if the model’s primary focus is on
the plug-ins, these threats could impact other attack targets in
the described architecture (i.e., other plug-ins, other devices,
and the gateway itself). To validate the proposed model, we
presented a concrete use case. We developed a number of
Home Assistant integrations that, if analyzed through the
model, reveal the presence of some of the described threats.

Therefore, we recommend that developers take into account
these menaces while programming smart home components.
From one side, they should not implement these behaviors in
their plug-ins. On the other side, programmers could create
more robust and secure solutions by considering these threats
while developing their smart home components.

A. Future Work

In a future study, as we already declared in Section V-B, we
want to deeply validate the proposed model realizing a specific
proof of concept for each presented threat. Moreover, we
want to demonstrate that plug-ins could also address the other
highlighted attack targets. In addition, we are interested in

6https://github.com/home-assistant/core, last visited on May 6th, 2022.

analyzing a large set of Home Assistant extensions to observe
how many plug-ins present the described threats. Furthermore,
we want to understand if developers could accidentally fall
into one of these issues developing such a component. The
final aim of these future researches will be to help developers
create more secure and reliable smart home systems.

REFERENCES

[1] M. Schiefer, “Smart home definition and security threats,” in 2015
Ninth International Conference on IT Security Incident Management IT
Forensics, 2015, pp. 114–118.

[2] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich,
D. Kuznetsov, R. Gupta, and Z. Durumeric, “All things considered:
an analysis of IoT devices on home networks,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019, pp.
1169–1185. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/kumar-deepak

[3] K. Kafle, K. Moran, S. Manandhar, A. Nadkarni, and D. Poshyvanyk,
“Security in centralized data store-based home automation platforms:
A systematic analysis of nest and hue,” ACM Trans. Cyber-Phys. Syst.,
vol. 5, no. 1, dec 2021.

[4] M. Gajewski, J. M. Batalla, G. Mastorakis, and C. X. Mavromoustakis,
“A distributed ids architecture model for smart home systems,” Cluster
Computing, vol. 22, no. 1, pp. 1739–1749, 2019.

[5] M. G. D’Souza, “Introduction to plug-ins,” in Expert Oracle Application
Express Plug-Ins. Springer, 2011, pp. 1–5.

[6] W. Xiong and R. Lagerström, “Threat modeling – a systematic literature
review,” Computers & Security, vol. 84, pp. 53–69, 2019.

[7] T. M. W. Group, “Threat modeling manifesto,” 2022,
[Online: accessed 10-Feb-2022]. [Online]. Available: https:
//www.threatmodelingmanifesto.org/

[8] L. Yang, C. Seasholtz, B. Luo, and F. Li, “Hide your hackable smart
home from remote attacks: The multipath onion iot gateways,” in
Computer Security, J. Lopez, J. Zhou, and M. Soriano, Eds. Cham:
Springer International Publishing, 2018, pp. 575–594.

[9] OWASP, “Threat modeling cheat sheet,” 2022, [Online: accessed
10-Feb-2022]. [Online]. Available: https://cheatsheetseries.owasp.org/
cheatsheets/Threat Modeling Cheat Sheet.html

[10] OWASP, “OWASP Internet of Things Project,” 2022, [Online: accessed
25-Feb-2022]. [Online]. Available: https://wiki.owasp.org/index.php/
OWASP Internet of Things Project

[11] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “Threat modeling-
uncover security design flaws using the stride approach,” MSDN
Magazine-Louisville, pp. 68–75, 2006.

[12] M. N. Anwar, M. Nazir, and A. M. Ansari, “Modeling security threats
for smart cities: A stride-based approach,” Smart Cities—Opportunities
and Challenges. Springer, pp. 387–396, 2020.

[13] B. Jelacic, D. Rosic, I. Lendak, M. Stanojevic, and S. Stoja, “Stride to
a secure smart grid in a hybrid cloud,” in Computer Security. Springer,
2017, pp. 77–90.

[14] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based threat
modeling for cyber-physical systems,” in 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE,
2017, pp. 1–6.

[15] S. Pal, M. Hitchens, T. Rabehaja, and S. Mukhopadhyay, “Security
requirements for the internet of things: A systematic approach,” Sensors,
vol. 20, no. 20, 2020.

[16] R. Heartfield, G. Loukas, S. Budimir, A. Bezemskij, J. R. Fontaine,
A. Filippoupolitis, and E. Roesch, “A taxonomy of cyber-physical threats
and impact in the smart home,” Computers & Security, vol. 78, pp. 398–
428, 2018.

[17] U. Congress, “Federal information security modernization act of 2014,”
Public Law, pp. 113–283, 2014.

[18] F. Pub, “Standards for security categorization of federal information and
information systems,” NIST FIPS, vol. 199, 2004.

[19] H. Kim and E. A. Lee, “Authentication and authorization for the internet
of things,” IT Professional, vol. 19, no. 5, pp. 27–33, 2017.

[20] N. C. Inc., “Home assistant,” 2022, [Online: accessed 10-Feb-2022].
[Online]. Available: https://www.home-assistant.io/

[21] D. Goltsman, R. Snodgrass, J. Hills, and J. Sørensen, “Home Assistant
Community Store,” 2022, [Online: accessed 08-Mar-2022]. [Online].
Available: https://hacs.xyz/

https://github.com/home-assistant/core
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://www.threatmodelingmanifesto.org/
https://www.threatmodelingmanifesto.org/
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://www.home-assistant.io/
https://hacs.xyz/

	Introduction
	Related Work
	Reference Architecture
	Proposed Threat Model
	Confidentiality
	Integrity
	Availability
	Authentication
	Authorization
	Non-Repudiation

	Use Case
	Home Assistant
	Proof of Concept
	Smart Home Configuration and Implementation Details
	Exploited Threats

	Discussion
	Conclusions
	Future Work

	References

