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Abstract

We extend to quantum mechanical systems results previously obtained for classical mechanical
systems, concerning time reversibility in presence of a magnetic field. As in the classical case, re-
sults like the Onsager reciprocal relations and the so-called fluctuation theorems, are consequently
obtained, without recourse to the Casimir modification. The quantum systems treated here are
non-relativistic, and are described by the Schrödinger equation or the Pauli equation. In particular,
we prove that the spin-field interaction does not break the time reversal invariance (TRI) of the
dynamics, and that it does not require additional conditions for such a symmetry to hold, com-
pared to the spinless cases. These results are relevant for experiments such as diffusion in solutions,
thermoelectricity and spin charge transport. Indeed, no violation of the Onsager relations has been
found in presence of a magnetic field, contrary to general expectations.

Key words : Onsager relation, magnetic field, time reversal, spin, invariance, symmetry transfor-
mation

1 Introduction

The present paper develops one aspect of response theory in presence of magnetic fields, or rotating
reference frames, which until recently has been treated as a separate chapter of statistical mechanics
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response theory. The reason was that magnetic fields and rotating frames break the standard
time reversal invariance of both classical and quantum mechanics, which until recently had been
exclusively used to derive the Onsager Reciprocal Relations [1, 2]; or the Fluctuation-Dissipation
Theorem and the Green-Kubo relations Refs.[3, 4, 5, 6]; and, more lately, of some variation of the
Fluctuation Theorem [7]. Onsager stated that:
"the principle of dynamical reversibility does not apply when (external) magnetic fields or Coriolis
forces are present, and the reciprocal relations break down" [1].
It was then observed by Casimir [8] that reversibility can be intended in an extended sense, in
which two systems in two opposite magnetic fields are considered, rather than a single system. In
the words of the celebrated Landau and Lifshitz book [9]:
"The proof depends on the symmetry of the equations of motion with respect to time, and the
formulation of this symmetry is somewhat altered for fluctuations in a uniformly rotating body and
for bodies in an external magnetic field: in these cases the symmetry under time reversal holds
only if the sign of the angular velocity of rotation Q or of the magnetic field H is simultaneously
changed."
While formally correct, this approach which has been universally adopted till recently [10, 11, 12,
13] substantially weakens the predictive nature of the Onsager relations and, analogously, of the
Fluctuation-Dissipation Theorem and the Green-Kubo relations; and of the Fluctuation Theorem.
On the other hand, we are not aware of any experimental violation of the Onsager relations in
presence of a magnetic field.

In Ref.[14], Robnik and Berry considered generalized time reversal symmetries, as associated
to canonical time reversal, and investigated the entailing spectral fluctuations of quantum systems
whose classical motion is chaotic. Nevertheless, the standard symmetry known as microreversibil-
ity has continued to be considered necessary for the validity of Onsager relations, cf. Ref.[15] for
transport coefficients for coupled electric, spin, thermoelectric and spin caloritronic effects.
In recent times, it was noted that a form of time reversal invariance identified in the nonequilibrium
molecular dynamics of shearing fluids [16], is suitable to frame within single systems response theory
the response in presence of magnetic fields or rotating frames [17]. A series of works followed,
showing an ever larger set of symmetries that play the role of time reversal invariance in the
response theory of systems in magnetic fields, or equivalently in rotating frames [18, 19, 20, 21, 22,
23]. In this paper, we complete the set of time reversal symmetries that can be used in presence
of magnetic fields, for both classical and quantum systems, including non-relativistic spin systems.
This is interesting, because the wider this set, the greater the predictive power of the theory. In
the first part of the paper, we summarize the main aspects of linear response theory, highlighting
the role of time reversibility, and we concisely describe our results. The formal derivations leading
to such results are given in the second part of the paper.

1.1 Fluctuation-Dissipation Theorem and Linear Response

To illustrate linear response theory, we follow Ref.[13], that treats in parallel the classical and the
quantum cases. The reader can avoid this subsection if already familiar with this topic. Consider
a large Hamiltonian particle system initially in a canonical equilibrium, which is perturbed by a
time dependent term, Hext(X,P ; t) = A(X,P )F (t), where X and P are the canonically conjugate
variables. Denoting by H the unperturbed Hamiltonian, the dynamics is then governed by the
following time dependent Hamiltonian:

Ht(X,P ) = H(X,P )− A(X,P )F (t) (1.1)
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Let round brackets
(·, ·) ≡ {·, ·} C.M. ; (·, ·) ≡ i

ℏ
[·, ·] Q.M. (1.2)

respectively denote the Poisson brackets in classical mechanics, and the commutator multiplied
by i/ℏ in quantum mechanics. Notice that the information on the statistical ensemble (bosons,
fermions, anyons and so on) is automatically included in this formalism. Introduce the symbol ρ to
represent the phase space probability distribution in classical mechanics, or the density matrix in
quantum mechanics. Its evolution is given by:

∂ρ

∂t
= iLtρ , where iLt = −(Ht, ·) = iL+ iLext = −(H, ·)− (Hext, ·) (1.3)

where the contribution L due to H and Lext due to Hext are evidenced. Let

ρe = C exp{−βH} (1.4)

describe the initial unperturbed canonical equilibrium state at temperature T , with β = 1/k
B
T , k

B

being the Boltzmann constant. Assuming that the perturbation Hext is small, one may truncate to
first order in Hext the solution of Eq.(1.3), obtaining:

ρ(t) = ρe +∆ρ(t) + (higher order terms in Hext) ; ∆ρ(t) =

∫ t

0

dt′ei(t−t
′)LiLext(t′)ρe (1.5)

Neglecting the higher order terms, leads to the linear response formula for any observable B, which
gives the variation in time of its mean, Et[∆B], as:

Et[∆B] =

∫ t

0

dt′ F (t′)Tr ρe (A(0), B(t− t′)) (1.6)

where B(t) = e−iLtB in a classical framework, and B(t) = eiHt/ℏBe−iHt/ℏ in the quantum case,
and the brackets (·, ·) has been defined by Eq.(1.2). Moreover, to unify the classical and quantum
mechanical notations as in Ref.[13], by Tr we denote phase space integration in classical mechanics,
and trace operator applied to all the objects to the right of the symbol in quantum mechanics.
Introducing the response function:

ϕBA(t) ≡ Trρe(A(0), B(t)) (1.7)

we may then write:

Et[∆B] =

∫ t

0

dt′F (t′)ϕBA(t− t′) (1.8)

Most beneficially, the linear response rests on the unperturbed equilibrium state ρe. Under common
conditions, we can rewrite Eq.(1.7) as:

ϕBA(t) = Tr(ρe, A(0))B(t) , where (ρe, A(0)) = βρeȦ . (1.9)

The response formula states that the variation in time of the average of the observable B is deter-
mined by the time integral of the equilibrium correlation function of B and the perturbing Hamil-
tonian. The second equality in Eq.(1.9) is due to the fact that ρe is canonical. In the quantum case,
it is convenient to use the identity:

[A, e−βH ] = e−βH
∫ β

0

eλH [H,A]e−λHdλ (1.10)
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and the fact that the evolution of an observable B is given by B(t) = eiHt/ℏBe−iHt/ℏ which, using
(1.9) and (1.10), leads to

eλH [H,A]e−λH = eλHȦe−λH = Ȧ(−iℏλ) (1.11)
Eventually, in the quantum mechanical case, we can also write:

(ρe, A) =

∫ β

0

ρeȦ(−iℏλ)dλ (1.12)

The fundamental object of our investigation is the canonical correlator:

E(X;Y ) ≡ ⟨X;Y ⟩ = 1

β

∫ β

0

dλTrρeeλHXe−λHY (1.13)

which is a real quantity [4, 5]. It is fundamental because the linear transport coefficients are
computed integrating it in time, and its symmetries are reflected in the symmetries of the Onsager
transport matrix. With this definition, the response function (1.7) takes the form

ϕBA(t) = Trρe(A(0), B(t)) = ⟨(A(0), B(t))⟩ = β⟨Ȧ(0);B(t)⟩ (1.14)

where we used (1.12) in the integral in (1.10).
Suppose the external force be either periodic or expressed in terms of Fourier modes:

F (t) = Re(F0e
iωt) (1.15)

Then, the Linear Response at each frequency ω is given by

Et[∆B] = Re(χBAF0e
iωt) , with χ

BA(ω) =

∫ ∞

0

ϕBA(t)e
−iωtdt (1.16)

where χBA is called admittance, and using the above definitions can also be written as:

χ
BA(ω) = β

∫ ∞

0

⟨Ȧ(0);B(t)⟩e−iωtdt . (1.17)

This theory is very general and accurate, as long as the perturbation is not excessively large,
something not common on the thermodynamic scale. Given the perturbation and the observable
of interest, everything reduces to the integration of the corresponding correlator [16]. For instance,
one obtains the linear transport coefficients as so-called Green-Kubo integrals, three examples of
which are the following:

D =
1

3

∫ ∞

0

dt ⟨v(0)v(t)⟩ , for 3-dimensional self diffusion (1.18)

λ =
V

3kBT 2

∫ ∞

0

dtE ⟨Jq(0)Jq(t)⟩ , for thermal conductivity (1.19)

η =
V

3kBT

∫ ∞

0

dtE ⟨Pxy(0)Pxy(t)⟩ , for 2-dimensional shear viscosity (1.20)

where V is the volume occupied by the system, and T is its temperature, v is the velocity of a test
particle, Jq the heat flux, and Pxy the off-diagonal entry of the pressure tensor. Both in classical
and in quantum mechanics, the observables are in general expressed in function of coordinates and
momenta, apart from the case of particle with spin that we will discuss later.

Linear response theory, and the Fluctuation-Dissipation theorem in particular, represent a cor-
nerstone of Statistical Mechanics, expressing macroscopic nonequilibrium properties in terms of
equilibrium microscopic dynamics and time correlation functions. This provides an atomistic justi-
fication, and a molecular dynamics computational tool for the very widely applicable linear relations
such as Ohm, Fick and Fourier laws, the Navier-Stokes equations, etc.
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1.2 Onsager Reciprocal Relations

In Refs.[1, 2], Onsager derived his celebrated Reciprocal Relations, for particles systems whose
dynamics are time reversal invariant (TRI). These are symmetry relations for the linear trans-
port coefficients that, in accord with the theory outlined above, are implied by symmetries of the
corresponding correlation functions (1.14), such as:

ϕφψ(t) = ηφηψϕψφ(t) (1.21)

where ηφ, ηψ = ±1 are the parities of the functions φ and ψ under time reversal. Classically, the
canonical TRI corresponds to the invariance of the equations of motion under the action of the
following map:

Mc(X,P ) = (X,−P ) (1.22)

where Γ = (X,P ) represents the coordinates and the conjugate momenta of a particle system, i.e
one point in the corresponding phase space. Quantum mechanically, this property is expressed by
the invariance of the Schrödinger equation under Wigner’s time reversal operator T = UK, where
K is the complex conjugation and U is a unitary operator such that [11]:

T −1(X,P )T = (X,−P ) (1.23)

with X and P the position and the momentum operators. Letting St be the evolution operator,
which classically is the Hamiltonian flow in the phase space, and quantum mechanically is given
by the unitary operator St = e−iHt/ℏ (for time independent Hamiltonians H), TRI amounts to the
validity of:

McS
t = S−tMc classical mechanics; T St = S−tT quantum mechanics (1.24)

In Onsager’s words, TRI means that when "the velocities of all the particles present are reversed
simultaneously the particles will retrace their former paths, reversing the entire succession of con-
figurations". As mentioned above, this property was considered essential in the derivation of the
Onsager Reciprocal [1], but absent in presence of magnetic fields or rotating frames. Hence, the
Reciprocal Relations were thought to be inapplicable. Casimir then realized that a modification
of the Onsager relations holds also in these cases if the magnetic field B is inverted by the time
reversal map [8].1 The result is that the symmetry property (1.21) is replaced by the following:

ϕφψ(t,B) = ⟨φ(0);ψ(t)⟩B = ηφηψ⟨φ(0);ψ(−t)⟩−B = ηφηψ⟨φ(t);ψ(0)⟩−B = ϕψφ(t,−B) (1.25)

where the angular brackets represent averaging with respect to the equilibrium with magnetic field
B or −B, as indicated in the formula. This is substantially different from the original case, that
concerned a single system, instead of two systems in two different magnetic fields. [4, 5, 6]. The
importance of the Onsager Reciprocal Relations is discussed in many classic texts, e.g. in Refs.[24,
25]. Also, Refs.[26, 27] pointed out that an engine working at the Carnot efficiency while delivering
finite power could be obtained if the Onsager could be violated [28].

1Because the case of rotating frames can be treated in the same way, from now on we only write about the
magnetic field.
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1.3 Beyond canonical time reversal

In Ref.[17], Bonella, Ciccotti and Rondoni noticed that a transformation used in the theory of
shearing fluids, called Kawasaki map [16], preserves the equations of motion of systems of classical
charged particles subject to a constant magnetic field B, with Hamiltonian:

H =
N∑
i=1

[
(pi − qiA(xi))

2

2mi

]
+
∑
i>j

v(|xi − xj|) (1.26)

where A is the vector potential of B, and v is a central interaction potential. The map, with B
replacing the shear rate, writes:

MSL(xi, yi, zi, p
x
i , p

y
i , p

z
i , t;B) = (xi,−yi, zi,−pxi , p

y
i ,−pzi ,−t;B) ∀i ∈ [1, N ] (1.27)

and implies the validity of the Onsager relations. Indeed, it is readily seen that MSL preserves the
equations of motion when time is reversed. Then, denoting by St the time evolution operator, one
obtains MSLS

t = S−tMSL, or S−t = MSLS
tMSL. That means that for every phase point Γ, there

is another point Γ̂ = MSLS
tMSLΓ whose forward time trajectory, in some sense does the opposite

of the forward time trajectory of Γ. The two trajectories do not coincide in configuration space,
if the standard time reversal symmetry does not hold, but that turns irrelevant when considering
correlations of currents, and averaging over all trajectories.

This idea has been successively extended in various papers on classical mechanics TRI, which
showed that the set of time reversal operations that hold in a magnetic field is quite large [19].
This allows sharp predictions about transport coefficients [19, 18]. Analogous conclusions have
been reached in the case of non-relativistic quantum mechanics, where, however, the effect of spin
had not been considered [20]. In fact, the canonical definition of time reversal on spin [11, 13]
unavoidably leads to T-symmetry breaking already for Pauli Hamiltonian (spin 1/2). The existence
of non-standard time reversal symmetries can then be used in other statistical studies. For instance,
it has led to the extension of the validity of Fluctuation Theorems [29] to particle systems in magnetic
and electric fields [21, 22].

2 Results outline

In this section we provide a summary of the results proven in Section 3, in particular:

1. the characterization of time reversal operations for Classical and non-relativistic Quantum
Mechanics systems, including spin 1/2 particles, in presence of an external magnetic field;

2. the extension of compatibility conditions between time reversal operations and magnetic field;

3. the extension to quantum mechanics and to non-constant magnetic fields of analytical results
about correlators [19], directly derived from the application of more than one time reversal
symmetry.

The experimental relevance of the Onsager reciprocal relations in absence of magnetic effects, is
reviewed in a wide fraction of literature, see e.g. Refs.[25, 30, 31, 32, 33, 34, 35, 36, 37, 38], which
span from diffusion of various kinds, to quantum thermoelectric transport, and even spin and charge
simultaneous transport. In particular, Ref.[15] investigates theory and possible experiments about
the reciprocal relations in spin-Hall and inverse spin-Hall effects, in spin-injection, in magnetoelectric
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spin currents, Seebeck, Peltier, spin Seebeck, and spin Peltier effects, in systems with and without
coupling to superconductors. Or, on the other hand, Ref.[39] specifically analyzes linear response
in the context of Pauli equation and plasma dynamics.

Our results predict that the onset of an external magnetic field breaks neither the Onsager
symmetry nor the validity of the Fluctuation Theorem a priori. Moreover, they predict that certain
cross transport coefficients of e.g. superionic conductors are not merely small, hence hard to measure,
they actually vanish. In fact, Refs.[19, 21, 28] have already verified numerically some of these
predictions, using the previously found time reversal symmetries.

2.1 Characterization of generalized time reversal operations

First we identify the general structure of a time reversal operation that preserves the equations of
motion. We begin with the classical mechanics a system of N independent charged particles, each
with 3 degrees of freedom, confined within a box of side 2L, and coupled to an external magnetic
field, with Hamiltonian

H =
N∑
i=1

[
(pi − qiA(xi))

2

2mi

]
(2.1)

Our Theorem 3.1 shows that a class of extended time reversal operations M for such systems is
represented by 6N × 6N matrices of the form:

M =

(
A 0
0 −A

)
(2.2)

with A ∈ O(3N), the orthogonal group, and A2 = I, the identity matrix, so that M(X,P ) =
(AX,−AP ). These constitute an infinite set of transformations, that includes the standard time
reversal operation (X,P ) 7→ (X,−P ), where A = I, and includes a number

∆̃even(M) =

⌊M/2⌋∑
r2=0

M ! 2M−2r2

(M − 2r2)! r2!
, with M = 3N, (2.3)

of permutations of coordinates, cf. Corollary 3.2 below.
For the non-relativistic spinless quantum systems, time reversal concerns the Schrödinger equa-

tion, and is represented by the Wigner operator T defined above, keeping in mind that a transfor-
mation of the coordinate operator X implies a modification of the momentum operator P = −i∂X .
We state that T must preserve the canonical commutation relations, as in Classical Mechanics the
Poisson brackets must be preserved. Then, the matrix representation of the action of T on X
and P must be symplectic [40]. Considering that K acts as the antisymplectic 6N × 6N matrix
diag(I,−I), where I is the 3N × 3N identity matrix, we conclude that U must be antisymplectic.
Our Theorem 3.3 characterizes U similarly to the classical mechanical reasoning, apart from the
fact that quantum mechanics also allows T 2 = −I, not only T 2 = I. Moreover, a simple example
shows that U has to be real valued, for the Hamiltonian (2.1).

Finally, we consider time reversal invariance for particles of spin 1/2. In textbooks, such as
Sachs [11], the action of the Wigner operator T = (Uc⊗Uspin)K, where Uspin acts on Pauli matrices
σi = (σix, σ

i
y, σ

i
z), is defined considering spin analogous to angular momentum, which means:

T σT = −σ (2.4)

This implies Uspin =
⊗N

i=1 σ
i
y. In Proposition 3.2, we show that thanks to the generalized time

reversal operations also condition (2.4) can be relaxed. In particular, it suffices that T preserves
the canonical commutation relation for the Pauli matrices algebra su(2).
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2.2 Extension of compatibility conditions

In this part of the paper we extend the compatibility conditions of Carbone and Rondoni [23]
between the time reversal operations known at the time and both vector potential and magnetic
field. These are the necessary and sufficient conditions for the Hamiltonian H to be invariant under
time reversal. The compatibility condition for the vector potential, that is defined up to a gauge
transformation, was given by

MmA(Mmx) = −[A(x)]R (2.5)

where Mm is the representation of the time reversal map on the space of the coordinates of one
particle, and [A(x)]R is the vector potential in the equivalence class of those with same magnetic
field B = ∇×A. The compatibility condition with the magnetic field was given by

det(Mm)MmB(Mmx) = −B(x) (2.6)

We extend these conditions obtained for classical systems to the generalized time reversal operations
derived here, and to the quantum case, including the spin 1/2 particles. In particular, given the
Pauli Hamiltonian

H =
N∑
i=1

1

2mi

[
(pi − qiA(xi))

2 − qiσi ·B(xi)
]

(2.7)

we prove that, contrary to expectations that the additional term of spin field coupling σi · B
reduces the number of available time reversal operators, no additional compatibility condition other
than (2.6) is needed. In other words, if a time reversal operator preserves the spinless minimal
coupling term, there is an appropriate Uspin that preserves also the spin field coupling. This result
is fundamental because it means that from the point of view of statistical relations, such as the
Onsager relations and the Fluctuation Theorem there is no effective difference between spinless and
spin 1/2 particles described via Pauli Hamiltonian.

Finally, we extend a result proven in [19] showing that the off diagonal entries of the diffusion
tensor for classical particles subjected to a particular constant magnetic field obey:

Dxy = −Dyx (2.8)

We show that the same holds in quantum systems, and also in presence of a non-constant magnetic
field along z axis.

3 Theory

As recalled in Sect.1, sufficient conditions for the validity of Onsager reciprocal relations are known,
and they include a set of generalized time reversal symmetries. On the contrary, very little is
known about necessary conditions. First, in Sec.3.1, we recall the main facts about time reversal
transformation in classical mechanics, introducing a whole new class of operations. Then, we
illustrate quantum mechanical time reversal operators, in the case of spinless particles, extending
the treatment of Sec.3.1 to the quantum realm, cf. Sec.3.2. In Sec.3.3 we investigate the issue
of time reversal in the context of quantum systems composed by particle of spin 1/2. In Sec.3.4
we summarize the concept of Kubo canonical quantum correlators, as well as the derivation of
Onsager relations from a generalized time reversal symmetry obtained in Ref.[20]. Subsequently, we
illustrate the compatibility conditions between the different time reversal operations and a generic
magnetic field. We recall the sufficient conditions of Ref.[23] that lead to Onsager relations in
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classical mechanics, and we extend them to the operations found in Sec.3.1 and to the case of
particles with spin. The striking result of this Section is that a time reversal operator that works
in the spinless case, works also for particles of spin 1/2. Finally, in Sec.3.5 we study the constraints
imposed by TRI on the diffusion tensor in a particular physical setup, in the wake of the reasoning
of Ref.[18].

3.1 Classical mechanics

The microscopic state of a system made of N classical particles is represented by the collection of
coordinates and momenta of all its particles, that constitutes a point Γ in the phase space Ω. In case
of dynamics determined by a Hamiltonian H, the time evolution of the coordinates and momenta
is prescribed by the following equations of motion:

∂H

∂pi
= ẋi

∂H

∂xi
= −ṗi

i = 1, ..., 3N (3.1)

Denote by St : Ω → Ω the operator that expresses the solutions of the equations of motion up
to time t, i.e. StΓ is the state at time t, if it was Γ a time 0. Following Abraham Ref.[41], the
dynamics are called time reversal invariant (TRI) if there exists a linear antisymplectic involution
M : Ω → Ω (an operator such that M2 = I, the identity) such that:

MStΓ = S−tMΓ , ∀Γ ∈ Ω , ∀t ∈ R (3.2)

The reason for this terminology is that right multiplication by M before application to Γ yields:

S−t = MStM (3.3)

which means that the backward time evolution is conjugated to the forward time evolution via the
involution M, in such a way that one backward trajectory can be obtained by properly applying
M to the forward trajectory.

Microreversibility corresponds to TRI under the involution M defined by M(x,p) = (x,−p),
but we call time reversal invariant all the dynamics for which one involution obeying Eq.(3.2) exists.

From the point of view of the equations of motion, we can define an extended operation T ≡
M ◦ T, where T maps the time parameter t to −t in Eqs.(3.1). The system verifies TRI under M
if the application of T to the equations of motion leaves them unchanged. Note that the concept
of time reversal defined by Eq.(3.2) concerns trajectories in phase space.

Definition 3.1. A matrix operator P is symplectic or, respectively, antisymplectic on a 2n-dimensional
phase space Ω if

P TωP = ω or P TωP = −ω (3.4)

where ω is the antisymmetric matrix

ω =

(
0 −In
In 0

)
(3.5)

and In is the n× n identity matrix.

This can now be used to define the time reversal transformations of Hamiltonian systems.
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Definition 3.2. A time reversal transformation M, for a Hamiltonian system, is a linear operator
acting on the space Ω in such a way that:

• It is an involution, that is M2 = I.

• It is an antisymplectic linear operator.

As in Ref.[23], we begin considering transformations that separately act on the 6-dimensional
subspaces of Ω that concern single particles. In this case, a time reversal transformation on Ω can
be written as:

M(x, y, z, px, py, pz) = P (s1x, s2y, s3z,−s1px,−s2py,−s3pz) (3.6)

where si = ±1, and P is a permutation obeying P 2 = I, which acts in the same way on coordinates
and on the corresponding momenta. Our first result is the following theorem.

Theorem 3.1. Consider a system of N particles subject to an external magnetic field, described by
the Hamiltonian

H =
N∑
i=1

[
(pi − qiA(xi))

2

2mi

]
(3.7)

The matrix representation of the antisymplectic operator M representing a time reversal operation
for such a system is block diagonal on the phase space Ω and takes the form:

M =

(
A 0
0 −A

)
(3.8)

with M = 3N , A ∈ O(M) and A2 = I.

Proof. We start from a generic matrix M ∈ GL(2M,R), i.e.

M =

(
A B
C D

)
(3.9)

where A, B, C and D are M ×M blocks. As stressed in Refs.[17, 23], a time reversal operation
defined as in Definition 3.2 yields TRI if and only if

H(MΓ) = H(Γ) , ∀Γ ∈ Ω (3.10)

Thus, the Hamiltonian (3.7) requires M to not mix coordinates and momenta. In the case it does,
the minimal coupling term (pi − qiA(xi))

2 is not preserved by the operation. In formulae, the
matrix must be block diagonal:

M =

(
A 0
0 D

)
(3.11)

As M must preserve the norm in the 2N -dimensional phase space, because of the presence of the
square in the minimal coupling term, M must be orthogonal and, consequently one has A ∈ O(M)
and D ∈ O(M), with M = 3N . Moreover, the transformation must be antisymplectic by Definition
3.2. Then, we impose the constraint:

MTωM = −ω ; i.e.
(
AT 0
0 DT

)(
0 −In
In 0

)(
A 0
0 D

)
=

(
0 In

−In 0

)
(3.12)
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which leads to the constraint ATD = −I. Then,

M =

(
A 0
0 −(AT )−1

)
(3.13)

Finally, because M is block diagonal, and M2 = I, Eq.(3.11) implies A2 = I and D2 = I.
Ultimately, since A is orthogonal, that is AAT = I, and A2 = I, we obtain that A is a symmetric
matrix, i.e. A = AT . The proof is then complete, observing that

(AT )−1 = A−1 = A (3.14)

This means that the number of time reversal operations is the number of matrices A that are
orthogonal and involutory. In particular, let us consider 3N × 3N matrices whose entries are 0 or
1, called binary matrices (more general matrices will be considered later, in Section 3.4). Among
binary matrices we have the following:

Definition 3.3. A permutation matrix is a matrix obtained permuting the row of an identity matrix
of the same dimension.

We are now going to find the time reversal matrices using some results of Group Theory [42]. First,
note the following proposition.

Proposition 3.1. The involutory binary matrices A are in one-to-one correspondence with the
linear representations of the cyclic group Z2 over a 3N-dimensional vector space.

Proof. By definition, the group Z2 is the set {e, a} with e the group identity and a2 = e. A linear
representation R(a) on a 3N -dimensional vector space is a 3N × 3N matrix such that R(a)2 =
R(e) = I3N . Moreover, S2, the symmetric group on 2 elements, coincides with Z2 and, in general, a
representation of an element of Sk must be a permutation, hence an orthogonal, matrix. Then,
a matrix R(a) has the required property, and the possible A and the R(a) are in one-to-one
correspondence.

Considering that one such matrix A is a permutation, it is a representation of an element of
S3N , like R(a). Now, let us introduce the cycle decomposition of a permutation of S3N , denoted by:

(·)...(·)︸ ︷︷ ︸
r1

(··)...(··)︸ ︷︷ ︸
r2

... (·...·)︸ ︷︷ ︸
r3N

(3.15)

which is invariant under group conjugation, and allows us to uniquely label each conjugation class
with a set of integers {r1, ..., r3N} satisfying the following constraint:

3N∑
l=1

lrl = 3N (3.16)

There is a useful way to represent the conjugation classes:

11



Definition 3.4 (Young tableaux). There is a one-to-one correspondence between a conjugation
class {rl} of the group Sk and the following graphical representations known as Young tableau,

1 2 3 . . . a1−1 a1

1 2 . . . . . . a2

...
...

...

1 ak−1

ak

(3.17)

where the number of squares al in each of the k rows obeys the following rules:

1. al+1 ≤ al ∀l = 1, ..., k.

2. The total number of squares in the tableau equals k:
∑k

l=1 al = k

Then, the one-to-one correspondence between the class {rl} and the corresponding Young tableau is
given by: {

rl = al − al+1 , ∀ l = 1, ..., k − 1

rk = ak
(3.18)

For instance, S3 can be associated with any of the three following Young tableaux:

(3.19)

that respectively correspond to three sets {rl}: {3, 0, 0}, {1, 1, 0} and {0, 0, 1}. Incidentally, this
also constitutes one method for identifying the partitions of a fixed integer n (see Cap. 5.2 in
Ref.[42]). Now, the constraint (3.16) takes an interesting form, thanks to the following Corollary.

Corollary 3.1. The conjugation classes {ri} of S3N containing elements represented by involutory
binary matrices obey

rl = 0 ∀l ≥ 3 (3.20)

Proof. This is a consequence of Proposition 3.1: the conjugation class represented by A contains
elements a such that a2 = e, that is its cycle decomposition can be made only of cycles of order 1
or 2.

To compute the number |{ri}| of elements in a conjugation class {ri}, we use the following known
fact [42]:

Theorem 3.2. The number of elements in the conjugation class {rl} is

|{rl}| =
k!∏k

i=1 i
riri!

(3.21)

which leads us the fundamental result of this Section:
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Corollary 3.2 (Number of generalized time reversal operations). Setting M = 3N , the maximum
number of generalized time reversal operations involving binary matrices, for a system of N particles
described by the Hamiltonian (3.7), is given by:

∆̃even(M) =

M/2∑
r2=0

M ! 2M−2r2

(M − 2r2)! r2!
(3.22)

if M is even and by

∆̃odd(M) =

(M−1)/2∑
r2=0

M ! 2M−2r2

(M − 2r2)! r2!
(3.23)

if M is odd.

Proof. The total number of time reversal operations that satisfy Corollary 3.1 is the sum of the
number of elements in the conjugation classes, i.e.

∆̃ ≡
∑
{rl}

|{rl}| (3.24)

under the condition (3.20) which, together with (3.16), yields:

r1 + 2r2 =M (3.25)

Then, using (3.21) and (3.25) in (3.24) we obtain

∆even(M) =

M/2∑
r2=0

M !

(M − 2r2)!r2! 2r2
(3.26)

for M even, while

∆odd(M) =

(M−1)/2∑
r2=0

M !

(M − 2r2)!r2! 2r2
(3.27)

for M odd, where the sum stops at (M − 1)/2, because of the constraint in Eq.(3.25).
Now, consider for instance one conjugation class {rl}, hence a single addend of the summation

in these formulae. Each cycle in a decomposition like (3.15) is defined up to a minus sign. For
example, take the matrix representation  0 sp 0

sP 0 0
0 0 s3

 (3.28)

associated to the time reversal operation that acts as a block diagonal on each particle subspace as

M(x, y, z, px, py, pz) = (sPy, sPx, s3z,−sPpy,−sPpx,−s3pz) (3.29)

That corresponds to a permutation belonging to the conjugation class {rl} = {1, 1, 0} of S3: it is
evident as the 2× 2 block that corresponds to the cycle of order 2 carries a sign sP , and similarly
the cycle of order 1 for s3. In general, we can multiply by ±1 each cycle block in the representative
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matrix. This proves that we have to multiply each addend of the summations in (3.26) and (3.27)
by a factor 2r1+r2 , obtaining:

∆̃even(M) =

M/2∑
r2=0

M ! 2r1+r2

(M − 2r2)!r2! 2r2
(3.30)

∆̃odd(M) =

(M−1)/2∑
r2=0

M ! 2r1+r2

(M − 2r2)!r2! 2r2
(3.31)

Finally, recalling relation (3.25) we get the two formulae (3.22) and (3.23).

To illustrate this result, let us apply it to the 6-dimensional subspace of a system with N = 1. Here,
M = 3 so we use (3.23) and we obtain:

∆̃odd(3) =
1∑

r2=0

M ! 2M−2r2

(M − 2r2)! r2!
=

3! 23

3! 0!
+

3! 21

1! 1!
= 8 + 12 = 20 (3.32)

Correctly, this result coincides with the one obtained in Ref.[23] for single particle subspaces of
N particle systems. This kind of operations swap different coordinates and momenta of a given
particle. For example, they include the time reversal transformation

(x1, ..., xj, xj+1, ..., xM , p1, ...., pj, pj+1, ..., pM)
Mnd−−−→ (x1, ..., xj+1, xj, ..., xM ,−p1, ....,−pj+1,−pj, ...,−pM)

(3.33)
that permutes coordinates xj and xj+1 of a given particle. In fact, this operation corresponds to a
matrix A of form Ij−1 0 0

0 B 0
0 0 IM−j−1

 (3.34)

where Ik is the k × k identity matrix and B is a 2× 2 block such as

B =

(
0 1
1 0

)
(3.35)

This matrix is the representation of a permutation that belongs to the conjugation class {M−2, 1},
that is the permutations composed by M − 2 cycles of order 1 and one cycle of order 2.

As last remark, the generalization of the concept of time reversal leads to a notable outcome on
the rule of transformation of other classical observables, as for example angular momentum. Let us
recall its definition:

Definition 3.5. For a classical Hamiltonian system, the total angular momentum is defined by

L =
N∑
i=1

xi × pi (3.36)

The canonical time reversal operation (X,P ) 7→ (X,−P ) trivially transforms L into −L. The
same holds for the 20 time reversal operations that do not permute coordinates of different particles.
Restricting to the single particle subspaces (xi,pi), and denoting the transformation rule by:

(xi,pi) → (Rxi,−Rpi) (3.37)

14



where Theorem 3.1 implies R ∈ O(3), we obtain:

L 7→ L′ = −
N∑
i=1

Rxi ×Rpi = −L (3.38)

where we used the fact that the cross product is unchanged by coherent rotation of both factors. On
the other hand, transformations with matrix representation like (3.8), where A does not separately
act on each particle subspace, do not reverse L. Consider, for example, the following generalized
time reversal operation:

(x1, ..., xj, xj+1, ..., x3N , p1, ..., pj, pj+1, ..., p3N)
Mnd−−−→ (x3N , ..., xj, xj+1, ..., x1,−p3N , ...,−pj,−pj+1, ...,−p1)

(3.39)
which swaps x1 and x3N and coherently acts on momenta as prescribed by Theorem 3.1. Then,
consider the z component of L. By definition of cross product we have:

Lz = x1p2 − x2p1 + ...+ x3N−2p3N−1 − x3N−1p3N−2 (3.40)

which becomes

Lz = −x3Np2 + x2p3N + ...− x3N−2p3N−1 + x3N−1p3N−2 ̸= −Lz (3.41)

under the application of Mnd. The same holds for Lx and Ly. The conclusion is the following:

Proposition 3.2. There exist generalized time reversal operations that do not reverse the sign of
the classical mechanics angular momentum.

Note that the time reversal operation Mnd works, in particular for a system of free equal mass
particles, whose Hamiltonian is expressed by H =

∑3N
i=1 p

2
i /2m.

We now extend to Quantum Mechanics, the present reasoning. Indeed, in Ref.[20], only 8 time
reversal operations had been identified, that classically take the form

T (x, y, z, px, py, pz, t) = (s1x, s2y, s3z,−s1px,−s2py,−s3pz,−t) (3.42)

3.2 The time reversal operator

Let us begin with spinless non-relativistic particles. The fundamental axiom is that the state of the
system is represented by a wave function, that obeys the Schrödinger equation:

i
∂ψ(x, y, z, t)

∂t
= Hψ(x, y, z, t) (3.43)

where our units imply ℏ = 1. As in Classical Mechanics, we have an evolution equation that is
invariant under time reversal. The corresponding Hilbert space is the quantum counterpart of the
classical phase space. Then, we follow Wigner’s approach to define time reversal transformations,
cf. Refs.[43, 11]. In the following we will consider operators and their matrix representations; for
the sake of simplicity, the same symbol will be used.

Definition 3.6 (Spinless particles). An operator on the Hilbert space of the wave functions of an
N particle system is called a time reversal operator T if it obeys:

• T = UK, with U a unitary operator and K the complex conjugation operator, i.e. it is
antilinear
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• It is an involution in the quantum sense, that is T 2 = ±I, where I is the identity operator

• It is kinematically admissible, that is it preserve the canonical commutation relations [xn, pm] =
iδnm

To proceed analogously to the classical case, we exploit the following result [40]:

Proposition 3.3. The matrix representation of a time reversal operator T for a system of N
particles belongs to Sp(6N,C).

For instance, in the case of a system with only two coordinates, the operators x1 and x2, and of a
time reversal operator such that:

T x1T −1 = x2

T x2T −1 = x1
(3.44)

the matrix representation of T in terms of coordinates is given by:(
0 1
1 0

)
(3.45)

The Stone-Von Neumann Theorem [44] now states that in coordinates representation, i.e. for a
wave function defined as coordinate dependent, the operators xi and pi uniquely act as:x

iψ(x0) = xi0ψ(x0)

piψ(x0) = −i ∂ψ
∂xi

(x0)
(3.46)

One can equivalently define the action of coordinate and momentum operators in momentum space,
via Fourier transform.

Proposition 3.4. The complex conjugation preserves the canonical commutation relation.

Proof. Using Eq. (3.46), we can obtain the rule of transformation of the coordinate and momentum
operators:

KpiK
−1 = −KiK−1 ∂

∂xi
= i

∂

∂xi
= −pi (3.47)

and
KxiK = xi (3.48)

The proof of the canonical nature of K is then trivial, since applying K to both side of the canonical
commutation relations [

xi, pj
]
= iδij (3.49)

one obtains [
KxiK,KpjK

]
= KiKδij (3.50)

that is equivalent to (3.49) by definition of K. Then, the 6N × 6N matrix representing K on the
6N -dimensional space of symbolic vectors (X,P ), is given by:

K =

(
I 0
0 −I

)
(3.51)

which is trivially antisymplectic, and acts separately on coordinate and momentum operators
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Classical Mechanics Quantum Mechanics

Time Reversal M T = UK

Commutation Relations {xi, pj} = δij [xi, pj] = iδij

Table 1: Comparative scheme

Counting the generalized time reversal operations is now reduced to finding alternatives to the
matrix representation of K. Table 1 illustrates the parallel with Classical Mechanics.
Recall that a fundamental aspect of Classical mechanics is that T acts on the Hamiltonian structure
as an antisymplectic operator, and then M is also antisymplectic in order to obtain a symplectic
transformation. Now, Proposition 3.3 says that in Quantum Mechanics T is represented by a
symplectic matrix. Furthermore, K is represented by an antisymplectic matrix, that is it plays the
role of T. So, the situation is very similar to the classical one, and U is antisymplectic.

Theorem 3.3. Take the 3N-dimensional vectors X and P of respectively the coordinate and
momentum operators of a quantum system made of N particles. Given a time reversal operator
T = UK, the matrix representation of U on the 6N-vectors (X,P ) takes the form

U =

(
A 0
0 −A

)
(3.52)

where A is a symmetric or an antisymmetric matrix.

Proof. As in Theorem 3.1, T cannot swap coordinates and momenta of different particles, because
of the minimal coupling term in the Hamiltonian. Then, the matrix representation of U takes the
form

U =

(
A 0
0 B

)
(3.53)

As in the proof of Theorem 3.1, we obtain A†B = −I. Then, we can write:

U =

(
A 0
0 −(A†)−1

)
(3.54)

where we used the fact that the antisymplectic condition for Sp(6N,C) is expressed by:

U †ωU = −ω (3.55)

and involves the dagger operation instead of the transpose. Now, U is unitary by Definition 3.6,
and so we have A = (A†)−1, which leads to Eq. (3.52).

To prove that A is symmetric or antisymmetric, use the involutory property T 2 = UKUK =
UU∗ = ±I, which implies AA∗ = ±I. Moreover, U is unitary, hence AA† = I. Then, for AA∗ =
I we obtain AT = A, i.e. A symmetric, whilst for AA∗ = −I we have AT = −A, and is A
antisymmetric.

Note that K is of the form (3.52), and corresponds to the the canonical time reversal operation,
that preserves coordinates and reverses momenta. If we restrict to the part of U acting on the
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coordinate (and then separately on momentum) operators, we find that a complex transformation
of X and P cannot be used. Suppose that

T PT −1 = P ′ = Re(P ′) + Im(P ′)i (3.56)

and consider a system of free particles with Hamiltonian H = P 2/2m. Applying the time reversal
operator, we have:

H ′ = T HT −1 =
(P ′)2

2m
=

Re(P ′)2 + 2Im(P ′)Re(P ′)i− Im(P ′)2

2m
(3.57)

where the Hamiltonian is preserved only if 2Im(P ′)Re(P ′) = 0, since the H is real in X and P .
But if Im(P ′) ̸= 0, as assumed, that requires Re(P ′) = 0. But then H ′ < 0 should equal H > 0,
which is absurd. This reasoning can be extended to the case of an external magnetic field. Because
H ∝

∑N
i=0(pi − qA(xi))

2, there is again an addend proportional to P 2 and the proof applies.
Therefore, we may adopt the following:

Assumption 3.1. The unitary operation U associated to a time reversal operator T = UK acting
on the coordinate (and momentum) operators is real.

This assumption immediately leads to:

Corollary 3.3. If A is real and symmetric, it belongs to O(3N), as in Classical Mechanics.

Proof. In the real case, the constraints AA† = I and A = AT imply AAT = I, which means that
A ∈ O(3N).

We can then straightforwardly repeat the arguments developed for the classical case, starting from
Proposition 3.1. In particular, we consider permutation matrices also in this quantum framework.
Therefore, the generalized time reversal operators can be counted using Corollary 3.2. Moreover,
let A be real but antisymmetric. In this case, Theorem 3.3 requires A2 = −I. Then, consider the
following definition.

Definition 3.7. Let Z4 be a finite cyclic group with generator a (a4 is the group identity e), and
with the real 2× 2 matrix representation given by:

R4(e) = I R4(a) =

(
0 −1
1 0

)
R4(a

2) = −I R4(a
3) =

(
0 1
−1 0

)
(3.58)

Then, the following holds.

Proposition 3.5. If the number of particles N is odd, A is not real and antisymmetric. If N is
even, the number of time reversal operators ∆̃ (that is the number of possible A’s) equals

∆̃ =
M !

(M/2)!
with M = 3N (3.59)

Proof. The condition A2 = −I means that A ∈ GL(3N, (R)) is a linear representation of the
element a or a3 of the group Z4 over a 3N -dimensional vector space. Moreover, AT = −A implies
that it is antisymmetric. Then, A must contain only 2 × 2 blocks, like R4(a) and R4(a

3), with
vanishing diagonal elements. So, for odd N , the 3N×3N matrix cannot be built using 2×2 blocks.
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In the case of N even, it suffices to use Eq.(3.21) with k = M and ri = 0, for i ̸= 2. Indeed,
Corollary 3.1 holds, and antisymmetry implies that the diagonal elements vanish, excluding cycles
of order 1. Moreover, it is trivial to make a one-to-one correspondence between R4(a) and the
representative of the non trivial element of Z2:

R(a) =

(
0 1
1 0

)
(3.60)

Then, one must count the elements of a conjugation class built only with cycles of order 2, which
can be done using Eq.(3.21) and considering that the number of cycles of order 2 over M elements
is M/2. The result is:

∆ =
M !

2M/2(M/2)!
(3.61)

Finally, unlike the case of Classical mechanics, in which M2 = I, here we also admit the opposite sign
for the 2×2 block, that corresponds to R4(a

3). Multiplying ∆ by 2M/2, we finally get Eq.(3.59).

The difference between Classical and Quantum cases is easily revealed by the following example.
The Hamiltonian of a system made of 2 free quantum particles moving in 1-dimension is given by
H = p21/2m+ p22/2m. Consider a time reversal operator T whose unitary part is represented on the
vectors of momentum operators P = (p1, p2) by the matrix

Q =

(
0 −1
1 0

)
(3.62)

While admitted in quantum mechanics, it is not acceptable in classical mechanics, because Q2 = −I.
Having exhausted our treatment of spinless particles coupled with an external magnetic field,

we now turn to the case of particles with spin 1/2.

3.3 Time reversal with spin

For non-relativistic spin systems, the equation of motion is the Pauli equation:{
N∑
j=1

1

2mj

[σj · (pj − qjA(xj, yj, zj))
2

}
|ψ⟩ = i

∂

∂t
|ψ⟩ (3.63)

where |ψ⟩ represents the total state of the system of N particles and the spin operator σj of the
j-th particle is expressed by

σj = I ⊗ ...⊗ σ︸︷︷︸
j

⊗...⊗ I (3.64)

where σ = (σx, σy, σz) contains the Pauli matrices as Cartesian components and I is the identity
operator. The Pauli vector identity:

(σ · a)(σ · b) = a · b+ iσ · (a× b) (3.65)

yields
N∑
j=1

1

2mj

[
(pj − qjA(xj, yj, zj))

2 − qjσj ·B
]
|ψ⟩ = i

∂

∂t
|ψ⟩ (3.66)
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where B = ∇×A. For the time reversal operator, we may adopt the following form:

T = (Uc ⊗ Us)K (3.67)

where Uc denotes the part acting on the coordinate and momentum operators, as in Sec.3.2; while
Us is the part acting on the spin operators. Both Uc and Us must be unitary, in order to represent
time reversal operators. Since σj separately acts on single particles spin operators, in the following
we omit the subscript j, considering, without loss of generality, the effect of T on σ.

In this framework, time reversal has been traditionally defined as an operator T that preserves
the commutation relations and, analogously to classical mechanics, yields [11]:

T σT −1 = −σ (3.68)

which directly implies:
Us = σy (3.69)

Unfortunately, this condition does not allow us to treat particles with spin [20]. On the other hand,
Proposition 3.2 suggests we may relax some restriction. Therefore, we adopt the following, minimal,
definition that does not include condition (3.68) and that actualizes Definition 3.6 to particles with
spin 1/2.

Definition 3.8 (Particles with spin 1/2). An antilinear operator T verifying Definition 3.6 is called
a time reversal operator for particles with spin, if it preserves the commutation relations of Pauli
matrices:

[σj, σk] = iε l
jk σl (3.70)

where j, k, l = x, y, z and ε l
jk is the Levi-Civita symbol.

Note that only σy is complex and so the complex conjugation operator K preserves (3.70). To
proceed, let us recall two results of Lie Group Theory [45], taking R3 as a Lie algebra generated by
three vectors (e1, e2, e3):

Theorem 3.4. There exists a linear invertible map Φ : su(2) −→ R3 such that

Φ

([
i

2
σj,

i

2
σk

])
= Φ

(
i

2
σj

)
× Φ

(
i

2
σk

)
; with Φ

(
i

2
σj

)
= ej (3.71)

where × (the usual cross product) is the Lie product.

Theorem 3.5. An element of the unitary group U ∈ U(2) can be expressed as

U = e
i
2
λ0
(
I cos

λ

2
+ i

λjσj
λ

sin
λ

2

)
= e

i
2
λ0V (3.72)

where λj ∈ R for j = 0, 1, 2, 3, λ = |λ|, for λ = (λ1, λ2, λ3), and V ∈ SU(2).

Theorem 3.4 allows us to find a Us that preserves the commutation relations (3.70), by finding a
transformation that preserves a right handed triad in R3.

Lemma 3.1. Linear transformations mapping a right handed basis in R3 into another belong to
SO(3).
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Another useful fact is that given V ∈ SU(2) as in (3.72), one has:

σyUσy = U∗ (3.73)

where U∗ is the complex conjugate of U . Then, thanks to the properties of the Pauli matrices, we
obtain:

σy

(
I cos

λ

2
+ i

λjσj
λ

sin
λ

2

)
σy = I cos

λ

2
+ i

λ1σyσxσy + λ2σyσyσy + λ3σyσzσy
λ

sin
λ

2
=

=

(
I cos

λ

2
− i

λjσj
λ

sin
λ

2

) (3.74)

Another useful classical result of group theory is the following:

Theorem 3.6. The quotient group SU(2)/Z2 is isomorphic to the group SO(3). The isomorphism
is defined by:

U †σjU = [Λ(U)]kjσk (3.75)

where Λ(U) is a 3× 3 special orthogonal matrix associated to U ∈ SU(2)/Z2 and we used Einstein
summation rule.

For example, the operator Ud acting on the spin operators of a single particle as

UdσxU
−1
d =sxσx

UdσyU
−1
d =syσy

UdσzU
−1
d =szσz

(3.76)

can be associated with the matrix

Λ(Ud) =

sx 0 0
0 sy 0
0 0 sz

 (3.77)

and the whole equivalence class {Ud,−Ud} is is represented by Λ(Ud).
Let us now analyze the case in which Λ(U) is a permutation and an involution, hence it is not

a cyclic or counter-cyclic permutation of the basis vectors. Proceeding analogously to the case of
time reversal operations acting on coordinates, we obtain the following theorem concerning the spin
space.

Theorem 3.7. Given an operator T = UK, where K is complex conjugation, a time reversal
operator acting on the spin space is obtained if U is unitary and obeys:

U (1)
xy = θ(σz ∓ iI)

U (1)
yz = θ(σx ∓ iI)

U (2)
xz = θ(σx ± σz)

Ud = σj

(3.78)

where θ ∈ C, |θ| = 1/
√
2, and j = x, y, z.
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Proof. First, we consider the diagonal transformations Ud that do not permute the Pauli matrices:

UdσxU
−1
d =sxσx

UdσyU
−1
d =syσy

UdσzU
−1
d =szσz

(3.79)

where si = ±1, i = x, y, z, to ensure the involution nature of the operation. Moreover, since
the triad must remain right handed we need that sxsysz = 1. Then, apart from the trivial case
sx = sy = sz = 1, there are three possibilities. First, the case sy = 1 and sx = sz = −1 that
corresponds to the canonical situation, since Eqs.(3.79) become

UdσxU
−1
d =− σx

UdσyU
−1
d =σy

UdσzU
−1
d =− σz

(3.80)

whose solution is Ud = σy. The second case is sx = 1 and sy = sz = −1, which leads to Ud = σx.
The third case, Ud = σz, holds for the sz = 1 and sx = sy = −1. This leads to T 2 = UdKUdK = ±I
as requested. Regarding Ud = σx and Ud = σz the action of K is irrelevant since these matrices are
real, hence:

T 2 = σ2
x = σ2

z = I (3.81)

Lastly, the case Ud = σy, gives T 2 = −σ2
y = −I.

Concerning transformations that permute the order of the basis elements, and so of the Pauli
matrices, we have the following possibilities: if we want to permute σx and σy we take either:

U (1)
xy σx(U

(1)
xy )

−1 =∓ σy

U (1)
xy σy(U

(1)
xy )

−1 =± σx

U (1)
xy σz(U

(1)
xy )

−1 =σz

(3.82)

or

U (2)
xy σx(U

(2)
xy )

−1 =± σy

U (2)
xy σy(U

(2)
xy )

−1 =± σx

U (2)
xy σz(U

(2)
xy )

−1 =− σz

(3.83)

To permute σy and σz we take either:

U (1)
yz σx(U

(1)
yz )

−1 =σx

U (1)
yz σy(U

(1)
yz )

−1 =∓ σz

U (1)
yz σz(U

(1)
yz )

−1 =± σy

(3.84)

or

U (2)
yz σx(U

(2)
yz )

−1 =− σx

U (2)
yz σy(U

(2)
yz )

−1 =± σz

U (2)
yz σz(U

(2)
yz )

−1 =± σy

(3.85)
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To permute σx and σz we take either:

U (1)
xz σx(U

(1)
xz )

−1 =∓ σz

U (1)
xz σy(U

(1)
xz )

−1 =σy

U (1)
xz σz(U

(1)
xz )

−1 =± σx

(3.86)

or

U (2)
xz σx(U

(1)
xz )

−1 =± σz

U (2)
xz σy(U

(1)
xz )

−1 =− σy

U (2)
xz σz(U

(1)
xz )

−1 =± σx

(3.87)

Here, we required that the triad remains right handed, so the representation on the associated
vectors ei (see Theorem 3.4) is a matrix of SO(3). For instance, Eqs.(3.82) are associated with a
matrix

O =

 0 ∓1 0
±1 0 0
0 0 1

 (3.88)

that is special orthogonal. In fact, it is the linear application of SO(3) that maps (ex, ey, ez) to
(∓ey,±ex, ez). Now, use Theorem 3.5. Because Uxy must be unitary, we express it as the following
linear combination:

Uxy = ασx + βσy + γσz + δI α, β, γ, δ ∈ C (3.89)

whose coefficients obey Eq. (3.72). Substituting (3.89) in the third equation of Eqs.(3.82), we
obtain the condition:

ασxσz + βσyσz + γI + δσz = ασzσx + βσzσy + γI + δσz (3.90)

and, recalling that the Pauli matrices satisfy the fundamental relation

σjσk = δjkI + iε l
jk σl (3.91)

Eq(3.90) writes
− iασy + iβσx + γI + δσz = iασy − iβσx + γI + δσz (3.92)

Since the set {σj, I} is a basis for the algebra u(2), the coefficient of the linear combinations on
both sides of Eq.(3.92) must coincide, which means α = β = 0, and Uxy = γσz + δI. Substituting
in the first of Eqs.(3.82) one gets:

γσzσx + δσx = ∓γσyσz ∓ δσy (3.93)

that is
iγσy + δσx = ∓iγσx ∓ δσy (3.94)

which implies δ = ∓iγ. To ensure that the corresponding matrix

U (1)
xy = γσz ∓ iγI = γ(σz ∓ iI) (3.95)

is unitary, we need UU † = I, that is:

γ2(σz ∓ iI)(σz ± iI) = 2γ2I = I (3.96)
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which means: |γ| = 1/
√
2. The last thing to check, for a time reversal operator, is that it is an

involution, i.e. that T 2 = UKUK = ±I holds. This is indeed the case:

U (1)
xy KU

(1)
xy K = γ2(σz ∓ iI)(σz ± iI) = I (3.97)

The same reasoning can be repeated for the remaining permutations, which leads to:

U (2)
xy = θ(σx ± σy)

U (1)
yz = θ(σx ∓ iI)

U (2)
yz = θ(σy ± σz)

U (1)
xz = θ(σy ± iI)

U (2)
xz = θ(σx ± σz)

(3.98)

where θ is a complex number with modulus |θ| = 1/
√
2. One may easily check that T 2 = ±I in all

cases:

U (2)
xy KU

(2)
xy K = θ2(σx ± σy)(σx ∓ σy) = ∓iσz ̸= ±I
U (1)
yz KU

(1)
yz K = θ2(σx ∓ iI)(σx ± iI) = I

U (2)
yz KU

(2)
yz K = θ2(σy ± σz)(−σy ± σz) = ±iσx ̸= ±I

U (1)
xz KU

(1)
xz K = θ2(σy ± iI)(−σy ∓ iI) = ∓2iσy ̸= ±I

U (2)
xz KU

(2)
xz K = θ2(σx ± σz)(σx ± σz) = I

(3.99)

The Theorem is proven, taking U (1)
xy , U (1)

yz and U
(2)
xz as the non diagonal time reversal operators on

spin space.

Now, swapping a pair of coordinates requires at most 2 matrices. The total, considering also
Ud, makes 9 possible matrices Us. Because, each of them is defined up to a complex number of
modulus 1, it seems that infinitely many are allowed. But whenever Us is applied to an operator
on the spin space, giving Usf(σj)U−1

s , that number is eliminated. Therefore, there are 9 operators
acting differently on Pauli matrices.

This exhausts our present investigation of generalized time reversal invariance, for quantum
non-relativistic systems, with and without half integer spin. In the following, we apply our results
to the theory of the Onsager relations, looking for generalizations of the compatibility conditions
found in Ref.[23], between time reversal transformations and a generic magnetic field.

3.4 Compatibility condition between time reversal operations and mag-
netic field

The reasoning developed by Kubo about correlation functions and the entailing transport coefficients
[4], requires the existence of a time reversal operation, that commutes with the Hamiltonian of the
system of interest. Because the quantum observables are defined as hermitian operators, one cannot
follow the classical procedure to derive correlator relations. Given two observables ϕ and ψ, the
mean value ⟨ϕ(0)ψ(t)⟩ is ill-defined, as the combined operator ϕ(0)ψ(t) is not guaranteed to be
hermitian. Therefore, Kubo introduced the canonical correlator in Response Theory as:

⟨ϕ(0);ψ(t)⟩ = 1

β

∫ β

0

dλ Tr[ρeλHϕ(0)e−λHψ(t)] (3.100)
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where ρ is the density operator, H the hamiltonian, and Tr the trace over the Hilbert. Kubo then
proved that this is indeed a real quantity. Note that non-relativistic systems with spin are allowed: it
suffices to include the spin degrees of freedom within the Hilbert space. Another possible definition
is to symmetrize the correlator as ⟨ϕ(0), ψ(t)⟩ = ⟨ϕ(0)ψ(t)⟩ + ⟨ψ(t)ϕ(0)⟩, but Kubo showed that
3.100 is sufficiently general. The sufficient condition for the validity of the Onsager relations can
then be formulated as e.g. Ref.[20]:

Proposition 3.6. Consider a quantum mechanical particle system in a magnetic field B, with
Hamiltonian H and density matrix ρ = ρ(H). Let T = UK be a time reversal operator that
commutes with H, and let ϕ and ψ be two observables with signatures ηϕ and ηψ with respect to T ,
i.e

T ϕT −1 = ηϕϕ T ψT −1 = ηψψ (3.101)

Then, the equality:
⟨ϕ(0);ψ(t)⟩B = ηϕηψ⟨ϕ(t);ψ(0)⟩B (3.102)

holds.

Remark 3.1. Assuming that the density matrix depends on H is quite general; for example, the
canonical ensemble satisfies this constraint. Moreover, this assumption is sufficient for deduce the
results of Proposition (3.2); it is not necessary to clarify what kind of statistical ensemble (bosons,
fermions, anyons etc.) we are considering.

This is the core of the Onsager reciprocal relations in Quantum mechanics in the presence of
a magnetic field. Therefore, we now investigate how particular magnetic fields affect the number
of time reversal operations consistent with Eq.(3.102). Consider the following Hamiltonian for a
system of spinless particles coupled with a potential vector A:

H =
N∑
i=1

[
(pi − qiA(xi, yi, zi))

2

2mi

]
(3.103)

where N is the number of particles, qi and mi are the charge and the mass of the i-th particle, and

(p− qA)2 = −∇2 + iq∇ ·A+ iqA · ∇+ q2A2 (3.104)

The commonly used Coulomb gauge ∇ · A = 0 that importantly effects on this expression
eliminating the second addend. As well-known, the vector potential associated to a magnetic field
is defined up to the gradient of a scalar function since B = ∇ × A. Thus, we can define an
equivalence class containing the vector potentials that originate the same magnetic field. In the
following, we refer to [A(x)]R to denote a representative of the class containing A(x).

After this clarifications, let us step back to the classical case: we now show the core theorem
that regards the compatibility between a particular time reversal operation and a generic magnetic
field (and so vector potential). We point out as in the following we are going to refer to V (Rn) as
the space of vector fields on Rn.

Theorem 3.8 (Compatibility conditions for A in Classical Mechanics). Consider a system of
N particles of equal mass m and charge q. Let M be a generalized time reversal operator act-
ing on the coordinates as (MA)(X) = A(MMX), where MM ∈ O(3N). Denote by A(X) =
(A(x1), ...,A(xN)) the 3N dimensional vectors of coordinates, and by [A(X)]R = ([A(x1)]R, ..., [A(xN)]R)
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the corresponding equivalence class. Introduce the reversal operator M′ : V (R3N) −→ V (R3N) defined
by:

(M′A)(X) ≡ MMA(MMX) (3.105)
The operator M yields TRI in the presence of a magnetic vector potential A, if and only if

(M′A)(X) = [−A(X)]R (3.106)

Proof. Recall that TRI holds if there is a time reversal transformation that preserves the equations
of motion, as well as the Hamiltonian up to a gauge transformation. In our case, the equations of
motion are invariant under a gauge transformation, as can be easily seen. Then, in the presence of
the minimal coupling with a magnetic field, the condition H(MΓ) = H(Γ) is verified for a gauge
transformation, for any Γ. Therefore, the Hamiltonian can be written as

H(X,P ) =
1

2m

∑
i

[pi−qA(xi)]
2 =

1

2m
[P−qA(X)]2 =

1

2m
[P+qMMA(MMX)]·[P+qMMA(MMX)]

(3.107)
where P and A are 3N -dimensional vectors. By Theorem 3.1, a time reversal operation for sys-
tems subject to a magnetic field must act separately on coordinates and momenta, namely the
transformation must be expressed by:

(X,P )
M−→ (MMX,−MMP ) (3.108)

with MM ∈ O(3N). This yields

H(MMX,−MMP ) =
1

2m
[−MMP − qA(MMX)]2

=
1

2m
[P + qMMA(MMX)]2

(3.109)

where we used the fact that the scalar product is invariant under rotations such as MM . Now, let
G be the scalar function involved in the gauge choice, define ∇3NG(X) = (∇G(x1), ...,∇G(xN)),
and let us introduce the equivalence class of vector potentials defined by:

[A] = {A | ∇ ×A = B} (3.110)

This is the set of vector potentials corresponding to a given magnetic field B. One representative
element of this class, denoted by a subscript R, is expressed by:

[A(X)]R = ([A(x1)]R, ..., [A(xN)]R) (3.111)

Now, taking MMA(MMX) = −(A(X)+∇3NG(X)), substitution shows that (3.107) and (3.109)
are equal, up to a gauge transformation. The transformation leaves the equations of motion un-
changed. If, on the other hand, (3.107) and (3.109) are equivalent for any value of P and X, that
is:
P 2 + 2qP · (A(X) +∇3NG(X)) + q2(A(X) +∇3NG(X))2

= P 2 − 2qP · MMA(MMX) + q2(MMA(MMX))2 , ∀P
(3.112)

we can choose P = 0 obtaining

q2(A(X) +∇3NG(X))2 = q2(MMA(MMX))2 (3.113)

Then, Eq.(3.112) reduces to

2qP · (A(X) +∇3NG(X)) = −2qP · MMA(MMX) (3.114)

Therefore, MMA(MMX) = −(A(X) +∇3NG(X)) holds.
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This result generalizes the compatibility conditions of Ref.[23], which focused on the 20 transfor-
mations that separately act on each particle subspace. The result of Ref.[23] can be interpreted as
a corollary of Theorem 3.8.

Corollary 3.4. Take a block diagonal transformation MM separately acting on each particle sub-
space, denoting by Mm one such 3× 3 block. Then

M′A = MmA(MmX) = [−A]R (3.115)

Proof. It trivially follows form the definition of A given in Theorem 3.8, and from Eq.(3.106), where
MM is a block diagonal acting on a single 3-dimensional particle subspace.

Proposition 3.7. Take the Hamiltonian (3.103) in which (mi, qi) ̸= (mj, qj) if i ̸= j are particle
indices. Then, a time reversal operator yielding TRI is given by a block diagonal matrix A, whose
blocks separately act on single particle subspaces.

Proof. By reductio ad absurdum, suppose a valid non diagonal time reversal operation Mnd exists
for the system described by the Hamiltonian (3.103). Without loss of generality, assume that the
operation acts on the M ×M coordinates (with M = 3N) swapping those of particle j with those
of particle j + 1:

(x1, ...,xj,xj+1, ...,xN ,p1, ...,pj,pj+1, ...,pN)
Mnd−−−→ (x1, ...,xj+1,xj, ...,xN ,−p1, ...,−pj+1,−pj, ...,−pN)

(3.116)
By hypothesis, H(MndΓ) = H(Γ), because Mnd yields TRI. It suffices to check the contributions
due to particles j and j + 1, because all other contributions are unchanged. Thus we can write:

N∑
i=1

[
(pi − qiA(xi))

2

2mi

]
= ...+

(pj − qjA(xj))
2

2mj

+
(pj+1 − qj+1A(xj+1))

2

2mj+1

+ ... (3.117)

...+
(pj+1 + qjA(xj+1))

2

2mj

+
(pj + qj+1A(xj))

2

2mj+1

+ ... (3.118)

But mi ̸= mj or qi ̸= qj for ∀i ̸= j by hypothesis. Then, in general, one has H(MndΓ) ̸= H(Γ),
unless special cases are considered, because the coordinates and the momenta may take any value
in R3. This is absurd. As the reasoning can be repeated varying i and j in (3.116), Mnd cannot
mix the different single particles coordinates and momenta; it must be block diagonal, with each
block acting on a single particle subspace.

This result may seem to be a drastic limitation on the range of TRI, but in reality it is not.
Systems with particles of same charge and mass are the most widely studied, both theoretically and
experimentally.

In Ref.[23], the compatibility conditions is expressed also in terms of the magnetic field, instead
of the vector potential. Here, we present an alternative derivation of that result result. We point
out as in the following we are going to refer to Vp(Rn) as the space of pseudovector fields on Rn.

Theorem 3.9 (Restricted compatibility conditions for B in Classical Mechanics). Consider a sys-
tem of N particles of equal mass m and charge q. Let M be a generalized time reversal operator
acting on the coordinates as MX = (Mmx1, ...,MmxN), where Mm ∈ O(3). Introduce the pseu-
dovector field rotation operator M′ : Vp(R3) −→ Vp(R3) defined by:

(M′B)(x) = det(Mm)MmB(Mmx) (3.119)
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The operator M yields TRI in the presence of a magnetic field B, if and only if

(M′B)(x) = −B(x) (3.120)

Proof. We have to prove that (3.115) and (3.120) are equivalent. Let us introduce the notation:

∇x ≡ (∂x, ∂y, ∂z) (3.121)

hence ∇Mmx is the gradient with respect to the coordinates rotated by Mm. Then, keeping in mind
that B = ∇×A, the application of the transformation M′ defined by the orthogonal matrix Mm

yields [46]:

M′(∇x ×A) = (Mm∇Mmx)× (MmA ◦Mm)

= det(Mm)Mm(∇Mmx ×A ◦Mm)

= det(Mm)MmB ◦Mm

(3.122)

because an orthogonal matrix such as Mm yields:

∇Mmx ×A ◦Mm = ∇×A = B , Mm∇Mmx = ∇x (3.123)

Now, assuming Eq.(3.115) holds, we have:

det(Mm)MmB ◦Mm = ∇x × [−A]R = −B (3.124)

Vice versa, assuming Eq.(3.120) holds, we start from

det(Mm)Mm∇Mmx ×A ◦Mm = −∇x ×A (3.125)

Moreover, using the first and second lines of (3.122), we get

∇x × (MmA ◦Mm) = −∇x ×A (3.126)

and so, considering the fact that the rotor of a gradient is null, we obtain the thesis (3.115), where
gauge freedom is included.

In the presence of magnetic fields, Theorem 3.8 seems to directly apply only in the case of the
block diagonal time reversal operations. Unlike Theorem 3.8, Theorem 3.9 cannot be immediately
generalised to the cases with a magnetic field, because in R3N we miss the analogue of the relation
A = ∇×B, which holds in R3. Operators similar to the curl can be defined in spaces other than
R3, see for example Ref.[47], but we cannot claim that A = ∇×B, for A,B ∈ R3N . Finally coming
to the quantum context, the following holds.

Proposition 3.8. The statements of Theorems 3.8 and 3.9 extend to Quantum Mechanics on
compact spaces, when X is identified with the position operator, cf. Theorem 3.3.

Proof. Let us start from Theorem 3.8: regarding (3.107) and (3.108) the only differences are that
P = −i∇ and that the case M2

M = −I is admitted. The proof can be repeated until (3.112), since
using Coulomb gauge and (3.104) we do not have the 2 in front of the mixed product. As a side
note, the Coulomb gauge condition involves a scalar product too and so it invariant under rotation.
At this point, since we are using operators, we cannot impose P = 0 as done in Classical Mechanics.
Nevertheless, (3.112) is an equivalence between operators and so it must holds for any wave function
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defined on a certain domain. If the domain is compact, we can consider the case of the constant
without issues of normalization; the application to it of the differential operator P yields the
constraint

q2(A(X) +∇3NG(X))2 = q2(MMA(MMX))2 (3.127)

Finally, we obtain an expression similar to (3.114):

(A(X) +∇3NG(X)) · P = −MMA(MMX) · P (3.128)

where we used the correct ordering of the momentum operators. Also in this case the only way to
verify this operator equality is to have MMA(MMX) = [−A]R.
Coming to Theorem 3.9, its extension is trivial since the proof involves only functions of the coor-
dinate operator which acts in a multiplicative way in coordinate representation; in this way, we can
proceed as if we were manipulating numbers and not operators, easily reproducing the demonstra-
tion.

This is our main result for the spinless case. Two observations and a fundamental example are
in order.

Remark 3.2. The compatibility condition on magnetic fields of Theorem 3.9 seems to be of limited
applicability, compared to the one about vector potentials, since it is limited to transformations
separately acting on single particle subspaces. Nevertheless, that is the most interesting case,
since particles usually interact with each other. For instance, in the case of the central interaction
potential:

V =
∑
i<j

v(xi − xj) (3.129)

with given pair potential v(x) = v(|x|), treated in Ref.[23], the time reversal operations must be
block diagonal. It must separately and identically act on each particle subspace, otherwise v(xi−xj)
would not be preserved, in general. If the time reversal operation is such a block diagonal operator
Q, it can be combined with the operator Pij that swaps particle i with particle j, obtaining a new
involution QPij: QPijQPij = I. The same applies to the case of half integer spin particles, and it
is not necessary to repeat the reasoning. Obviously, an interaction term, such as (3.129), prevents
the use of the time reversal operations of Proposition 3.5, that cannot be expressed by 3× 3 block
diagonal matrices. Thus, in the following we neglect the case with Q2 = −I.

Remark 3.3. The action of the operator T of Proposition 3.6 deeply differs from that of the tra-
ditional one, which includes the inversion of the magnetic field, TB, cf. Ref.[13]. Nevertheless, T
suffices for the validity of the Onsager relations, because they arise from a phase space integration
and, pairing differently the contributions to the correlator, the integral may still yield the same
result. Statistical mechanical relations are typically of this kind. Therefore, they do not require mi-
croreversibility. Weaker conditions suffice, such as those discussed here, that we may call statistical
time reversibility, cf. also Refs.[48, 49, 50]. This equally applies to the quantum case, if trajectories
are replaced by the time evolution of states in the Hilbert space. In fact, the invariance of the
Hamiltonian and of the equation of motion ensures that

|ψ′(t′)⟩ = T |ψ(t′)⟩ , with t′ = −t

is a physical state if |ψ(t)⟩ is. Roughly speaking, in the quantum case it is just a matter of
rearranging the contributions to the trace in (3.100).
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Let us reconsider, in the light of the above result, the case of a constant magnetic field.

Theorem 3.10. Take a system of particles interacting via the central potential (3.129). Let this
system be subjected to a constant external magnetic field, B = (B1, B2, B3). The dynamics is
invariant under infinitely many time reversal operations: those whose action on each single particle
subspace is represented by:

Mm =

a b 0
b −a 0
0 0 1

 (3.130)

where a, b ∈ R, a2 + b2 = 1 and det(Mm) = −1.

Proof. The time evolution of the system does not depend on the coordinates frame, so we can choose
the axis z along the direction of B, and write B = (0, 0, 1), up to a dimensional constant. Consider
the time reversal transformations whose action on each single particle subspace is represented by
Eq.(3.130). By definition, Mm ∈ O(3) and M2

m = I, therefore Mm represents the action on coor-
dinates of a time reversal operation, as follows from Theorem 3.1. Furthermore, the compatibility
condition of Theorem 3.9 is trivially verified:

det(Mm)MmB = (0, 0,−1) = −B (3.131)

Taking a = cos θ and b = sin θ, with θ ∈ [0, 2π), infinitely many possible choices are allowed for
Mm.

This result seems to boldly contradict the traditional opinion that any magnetic field breaks TRI.
With hindsight, it is not so surprising, when the existence of generalized time reversal symmetries
has been ascertained. In particular, a constant magnetic field directed along along the z axis
preserves all the symmetries that differ by rotations of the xy plane, if it preserves one of them.

In the case of particles with spin, the Pauli Hamiltonian (3.63) contains the minimal coupling
term, for which Proposition 3.8 applies. However, magnetic field and spins are also coupled, with
the spins belonging to a different space. Then, a time reversal operation ought to take the form:

T = (Uc ⊗ U1
s ⊗ ...⊗ UN

s )K (3.132)

where Uc acts on coordinate and momentum operators, while U j
s acts on the spin operator of particle

j. The situation differs from that considered in Theorem 3.8, because we now have:

T HT −1 ∝ B(UcxjU
−1
c ) · U j

sKσjKU
j
s (3.133)

where H is the Hamiltonian and B the magnetic field. This way, the minimal coupling and the spin
couplings with B are considered independently of each other: a time reversal operation compatible
with the minimal coupling leaves the spin field coupling unchanged.

Remark 3.4. The transformation Uc acts on coordinates and not on B as a vector field, that is
the components of B transform as

UcBiU
−1
c ≡ Bi(UcxiU

−1
c ) (3.134)

Note that statistical relations could be used to distinguish systems whose particles possess spin or
from those which do not, if the extra conditions implied by the presence of spin reduced the number
of suitable time reversal operators. In fact, for transformations like (3.132), and with block diagonal
Uc separately acting on single particles subspaces, this is not possible.
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Theorem 3.11. The compatibility condition of Theorem 3.9 suffices for TRI to hold also in case
of particles with spin that obey the Pauli equation (3.63).

Proof. Write the Pauli hamiltonian as:

H = Hmc +Hsc (3.135)

where Hmc refers to the minimal coupling, of the spinless case, and Hsc =
∑N

j=1 σj ·B(xj) is the
spin-field coupling, with σ = (σx, σy, σz). Given that we are analyzing transformations separately
acting on single particle spaces, we study a single addend of the summation.

By hypothesis, there exists a time reversal operator T = (Uc⊗Us)K whose action on coordinates
commutes with Hmc, i.e. Eq.(3.120) holds or, equivalently,

B(Mmx) = − 1

det(Mm)
M−1

m B(x) (3.136)

Because of Theorem 3.9, Mm is the 3-dimensional orthogonal and involutory matrix representation
of the action of the time reversal operator on a single particle position operator. Under the action
of Uc, one has:

Uc(σ ·B(x))U−1
c = σ · (−PB(x)) = −Pσ ·B(x) (3.137)

where Pσ = P k
j σk, and

P =
1

det(Mm)
M−1

m (3.138)

which is a special orthogonal matrix. By Theorem 3.6, there exists a special unitary matrix U such
that

UσjU
−1 = P k

j σk (3.139)

Then, because P 2 = I by definition of time reversal operation, we have U2 = ±I, since the
isomorphism maps ±I ∈ SU(2) to I ∈ SO(3). Moreover, letting K be the complex conjugation
operator, we have

σyKσjKσy = −σj (3.140)

where j, k = 1, 2, 3 = x, y, z. Now, take Us = Uσy. By definition, the time reversal operator acts on
spin operators as

T σjT −1 = UσyKσjKσyU
−1 = −P k

j σk (3.141)

where we used the decomposition of the Hilbert space of the system as the direct product of the
spin space and of the coordinate space. This allows us to separately change the coordinate system
in each space, and to write:

N∑
k=1

σk ·B(xk) =
N∑
k=1

[
σx ⊗B1(xk) + σy ⊗B2(xk) + σz ⊗B3(xk)

]
(3.142)

As the choice of the z axis in the spin space is not related to that of the z axis in coordinate space,
Us does not depend on the choice of Uc. This closes the circle: for any valid Uc, we can always find
U , and so Us, in order to keep Hsc invariant. In particular, we obtain:

T σ ·B(x)T −1 = −Pσ · −PB(x) = σ ·B(x) (3.143)
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Lemma 3.2. The Hamiltonian is not invariant under the action of Us = σy if the magnetic field
is constant. To be recover the original Hamiltonian, the magnetic field must be manually inverted.

Proof. The choice Us = σy corresponds to U = I, that is P = I and Mm = ±I. This yields to two
constraints on the magnetic field: B(x) = −B(x) choosing the plus and B(−x) = −B(x) with
the minus, both absurd if B(x) = B is constant. But inverting B obviously restores the original
Hamiltonian.

Lemma 3.3. The operator Us = Uσy is such that

UsKUsK = ±I (3.144)

Proof. By direct computation

UsKUsK = UσyKUσyK = UσyU
∗σ∗

y = −UσyU∗σy = −U2 (3.145)

where we used (3.73). This complete the proof.

In particular, taking U = I in order to lie in the case of Lemma 3.2, we find the usual relation
σyKσyK = −I.

This means that a class of time reversal operations, the ones separately acting on the single
particle subspaces, can always be absorbed by an internal change of coordinates in spin space.
Consequently, one finds that, contrary to what is commonly believed, the presence of spin does not
prevent time reversibility.

3.5 Application of generalized TRI

Let us consider the calculation of Ref.[19], concerning the diffusion tensor for a particle system in
the presence of a constant magnetic field along the z axis:

Dαβ ∝ ⟨vαi (0)v
β
j (t)⟩ ∀i, j ; α, β = x, y, z (3.146)

where α, β = x, y, z and i, j are particle labels. In particular, Ref.[18] proved that the correlator of
velocities (3.146) vanishes if there are two time reversal operations that map pβj (t) respectively in
pγk(−t) and −pγk(−t) (the case with i = j and α = β simultaneously being excluded), while they
act in the same way on pαi (t). The proof simply observes that two expressions must be satisfied at
once: {

⟨vαi (0)v
β
j (t)⟩ = (±1)(+1)⟨vαi (0)v

γ
k(−t)⟩

⟨vαi (0)v
β
j (t)⟩ = (±1)(−1)⟨vαi (0)v

γ
k(−t)⟩

(3.147)

which only happens if the correlator vanishes. The case i = j and α = β is not included, since
the autocorrelation ⟨vαi (0)vαi (t)⟩ is always mapped in another autocorrelation with plus sign. This
example shows how practical the apparently abstract notion of TRI can be. In the present case, it
allows a direct evaluation of transport coefficients.

For the classical case, we may now extend the result of [19] considering a more general form of
magnetic field.

Proposition 3.9. Let a system of coupled particles be subjected to an external magnetic field directed
along the z-axis, B = B(x, y)k̂. Assume B(x, y) = B(x,−y) and B(x, y) = B(y, x). Then, the
diffusion tensor obeys:

Dxy = −Dyx (3.148)
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Proof. Notice first that Eq.(3.120) is verified by a magnetic field like the one in this Proposition.
For example, consider the time reversal operation on the single particle subspace defined as

M(x, y, z, px, py, pz) = (y, x, z, py, px, pz) (3.149)

which implies

Mm =

0 1 0
1 0 0
0 0 1

 (3.150)

with the notation of Theorem 3.9. Equation (3.120) then holds for such a transformation and the
magnetic field. Applying the same to all the particle subspaces and computing the correlators we
obtain

⟨vxi (0)v
y
j (t)⟩ = ⟨vyi (0)vxj (−t)⟩ = −⟨vyi (0)vxj (t)⟩ (3.151)

that means Dxy = −Dyx.

Examples of magnetic fields that satisfy Proposition 3.9 are B(x, y) = const and B(x, y) = B(x2 +
y2), respectively the case of a constant magnetic field and of a magnetic field depending on the
distance from the z axis. The result cannot be obtained in term of the diagonal operations only,
because the diagonal operations cannot disentangle the pairs of subscripts and superscripts (i, x)
and (j, y).

4 Results and Discussion

In this paper we extended the list of generalized time reversal transformations, to include operators
that swap the coordinates of different particles. This is allowed by the fact that a point in a 6N -
dimensional space does not distinguish the nature of its single components. The formal definition
of TRI does not prevent the use of this kind of operations. Their importance arises in particular
when one studies systems of particles with the same mass and charge. These are important in the
present context, since investigations of the Onsager relations rarely deal with more than two species
of particles.

Moreover, we extended this treatment to the quantum mechanical framework, in the wake of the
work of Ref.[20], about the 8 diagonal time reversal operations on the single particle subspace. In
particular, we investigated the swap operation in a context of non-relativistic Quantum Mechanics.

We then defined generalized TRI for systems of particles with spin 1/2, described by the Pauli
equation. In previous works, this was considered out of reach [20], because spin was believed to
irremediably break TRI. On the contrary, we found combined sufficient conditions, concerning the
generalized time reversal transformations and the form of the magnetic field, for the validity of
TRI. That allow us to derive Onsager relations, as well as other relations requiring TRI, to hold in
quantum systems coupled with an external magnetic field.

This is interesting not only because of the experimental and theoretical relevance of such sta-
tistical mechanical relations, but also for the method used: we took full advantage of the fact
that relations such as Onsager’s are statistical relations. This allows many different paths to the
same result and, in particular, microreversibility results unnecessary for Onsager and Fluctuation
Relations.

We then developed an application to the calculation of the diffusion tensor, which uses different
time reversal symmetries to conclude that certain correlators identically vanish.
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The investigation, however, is not over. As recalled in Ref.[28], violations of Onsager relations,
which would imply the existence non-dissipative currents, have never been observed. And indeed
Ref.[28] proved that those relations hold in cases in which one would have expected they are violated.
At the same time, or theory does not exhaust all possible cases.

Our results may also also pave the way to a new understanding of symmetries in quantum
systems. The consequences of the generalized TRI have indeed rarely been fully investigated.
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