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A B S T R A C T

This work addresses an innovative processing strategy to improve the classification of
Steady-State Visually Evoked Potentials (SSVEPs). This strategy resorts to the com-
bined use of fast Fourier transform and Canonical Correlation Analysis in time domain,
and manages to outperform by over 5% previous results obtained for highly wearable,
single-channel Brain-Computer Interfaces. In fact, a classification accuracy of 90% is
reached with only 2-s time response. Then, the proposed algorithm is employed for
an experimental characterization of three different Augmented Reality (AR) devices
(namely, Microsoft Hololens I, Epson Moverio BT-350, and Oculus Rift S). These de-
vices are used to generate the flickering stimuli necessary to the SSVEP induction.
Also, in the three pieces of instrumentation under test, the number of simultaneous vi-
sual stimuli was increased with respect to the state-of-art solutions. The aim of the
experimental characterization was to evaluate the influence of different AR technolo-
gies on the elicitation of user’s SSVEPs. Classification accuracy, time response, and
information transfer rate were used as figures of merit on nine volunteers for each piece
of instrumentation. Experimental results show that choosing an adequate AR headset
is crucial for obtaining satisfying performance: in fact, it can be observed that the clas-
sification accuracy obtained with Microsoft Hololens is about 20% greater than Epson
Moverio one.

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

A Brain-Computer Interface (BCI) is an integration of hard-
ware and software systems with the aim of converting the activ-
ity of the central nervous system into an artificial output. This
enables communication between the brain and external devices
in the form of commands, without using peripheral nerves and
muscles [1]. Over the years, the adoption of BCIs has pervaded

∗Corresponding author: Tel.: +39-081-7683163;
e-mail: egidio.debenedetto@unina.it (Egidio De Benedetto)

the medical field [2–5]. Recently, BCIs are also being employed
in new and emerging fields, for example, for fatigue detec-
tion [6], working memory load estimation [7, 8], engagement
sensing [9], gaming [10], neurofeedback [11] and neuromar-
keting [12]. Currently, Steady-State Visually Evoked Potential
(SSVEP) represents one the most promising BCI paradigms,
along with P300 [13] and Motor Imagery [14]. Steady-State
Visually Evoked Potentials (SSVEPs) belong to the evoked sig-
nal category [15]. In SSVEPs, the subject perceives visual pe-
riodic stimuli that induct a sustained cortical response [16]. In
particular, the SSVEP paradigm is characterized by a specific
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physiological brain response to continuously flickering visual
stimuli, measured at a latency lower than 100 ms. Stimulation
frequency bands usually range from 6 Hz to 30 Hz. Each visual
stimulus, typically a flashing light, is associated to a specific
command (e.g. numbers, letters or generic control buttons):
the system will allow the user to select the desired target by
simply staring at the related flickering stimulus. Generally, the
SSVEP shows a sinusoidal-like waveform, with a fundamental
frequency equal to that of the targeted stimulus frequency and
often higher harmonics [17]. Hence, through the analysis of the
SSVEP features, it is possible to identify the desired target by
achieving high levels of accuracy and reproducibility [18, 19].

Traditionally, SSVEP are elicited by light-emitting diodes
(LEDs) [20] or by computer screens (CS) [21]. However, these
rendering devices are bulky and limit the portability of the sys-
tem, while also making interaction with real-world objects un-
intuitive. Additionally, a key requirement for the success of
an SSVEP-BCI system is that the user remains focused on the
stimulus: this is often difficult on a 2D rendering display, which
allows for external visual noises. These constraints have so far
hindered the widespread adoption of SSVEP-BCI systems.
Recently, augmented-reality head-mounted display (AR-HMD)
have been used to replace traditional displays in SSVEP-BCI
applications. This has led to more user friendly and portable
BCIs, enhancing flexibility and mobility [22–24]. In this setup,
stimuli and objects coexist in the same field of view (FOV) and
this allows a more intuitive control of external devices, pro-
viding an immersive experience with a better user engagement
[25–28]. However, many of the implementation and process-
ing strategies available in the literature for traditional SSVEP-
based BCI cannot be readily extended to the AR-based ren-
dering of visual stimuli [29]; on the contrary, this requires a
thorough analysis, and a comparative study between the vari-
ous approaches need to be conducted. The overall performance
of the combined AR-BCI system, in fact, strongly depends on
the characteristics of the chosen AR-HMD. The first constraint
is represented by the field of view of the AR-HMD’s, which
is generally limited to some tens of degrees: this affects the
maximum number of flickering visual stimuli that can be ac-
commodated in the operator’s FOV. In fact, at the state of the
art, only two visual stimuli have been displayed simultaneously
[26]. Secondly, the non-predictability of the frame rate vari-
ations of the AR-HMD inevitably leads to a shift in the fre-
quency values of the rendered visual stimuli: as a consequence,
the SSVEP elicited on the user’s EEG becomes more difficult
to be detected [30]. Nevertheless, at the state of art [22, 26, 31],
all the processing strategies for SSVEPs consider the rendered
frequencies free of uncertainty contributions.
Starting from these considerations, in this work, an innovative
classification algorithm to enhance the SSVEP classification is
proposed. This algorithm is based on an adaptive strategy which
resorts on the combined processing in the frequency and time
domains. The aim is to mitigate the effects caused by the fps
(frame per seconds) variations of the AR devices during the use
and, thus, to increase the overall classification performance.
After an offline validation, using the same data set described
in [22, 26], which showed significant improvement in SSVEPs

classification, the proposed algorithm was also used to perform
an experimental characterization of a highly wearable SSVEP-
based single-channel BCI, when used with three different AR-
HMDs for the generation of flickering stimuli. In particular,
the visual stimuli necessary for SSVEP elicitation were pro-
vided, alternatively and comparatively, through three AR de-
vices, namely Epson Moverio BT-350, Oculus Rift S, and Mi-
crosoft HoloLens. The aim of the experimental characteriza-
tion was to evaluate the influence of different AR technologies
on the elicitation of user’s SSVEPs. Currently, in fact, there is
no evidence of comparative tests between different AR HMD
for SSVEPs elicitation. Additionally, the number of simulta-
neous flickering stimuli was increased up to four, with the aim
to establish a starting point in the development of more immer-
sive systems, characterized by a deeper user interaction with
external devices, and a greater mobility; finally, the obtained
results were compared to the two-stimuli solutions already suc-
cessfully implemented over the years [22, 26].
This paper is organized as follows. Section 2 provides a back-
ground of the SSVEP paradigm, with a particular emphasis on
wearable setups. In Section 3, the proposed classification al-
gorithm is described in detail. The validation is addressed in
Section 4. In Section 5, the experimental characterization of
three AR HMDs is shown. In Section 6, conclusions are drawn
and, finally, the future work is outlined in Section 7.

2. Related Work

One of the most historically studied training-free methods in
the literature for SSVEP frequency classification is the Power
Spectrum Density Analysis (PSDA). It allows to identify spec-
tral EEG peaks in order to recognize the target stimulus [32] and
evaluate the Power Spectrum Density in a certain interval. The
main drawback of this method is the requirement of a minimum
duration for the time windows in order to estimate the spectrum
interval with an appropriate frequency resolution [22, 33]. This
strongly limits the real-time performance of the SSVEP.
Another effective method is represented by the Task Re-
lated Component Analysis (TRCA) and the ensemble TRCA
(eTRCA) [34]. The idea behind TRCA is to obtain spatial filters
to (i) strengthen the signals task-related components, (ii) limit
the noise, and (iii) measure the similarity between the filtered
signal and the reference template via the correlation coefficient.
One defect of TRCA is that it manages to handle only limited
noise components. Then, adequate time filters must be adopted.
At the state of the art, the most effective strategy is the Canon-
ical Correlation Analysis (CCA) in time domain [35–37]. It is
a multivariate statistical method [38] which is used to calcu-
late the correlation between EEG data and a set of sinusoidal
reference patterns corresponding to the stimulus frequencies
[35, 36]. Due to the effect of noise and spontaneous ongo-
ing EEG activities, it is crucial to perform a band pass filter-
ing step in the band of interest during the pre-processing phase.
Currently, the classification performance achieved with the use
of CCA is generally better than the other aforementioned ap-
proaches ([31]. However, most of SSVEP-based BCIs are fo-
cused on the traditional, monitor-based, rendering of the flick-
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Fig. 1: General architecture of the AR-BCI SSVEP instrumentation.

ering stimuli, which guarantees the best accuracy in the ren-
dered frequencies. Instead, when using AR-based rendering,
unpredictable variation of the frame rate and, consequently, of
the stimuli frequencies must be handled. For this reason, an
adaptive processing [30] can represent an interesting solution
to achieve performance comparable with the state of the art.
Another important aspect to take into account is the EEG data
acquisition: in traditional EEGs, the Ag/AgCl electrodes placed
on the scalp require the use of conductive gel after a preparation
of the scalp area, in order to reduce the impedance due to dead
skin cells. This procedure is usually long and causes discom-
fort for the user. Furthermore, the use of a high number of elec-
trodes [24] is required to obtain a better spatial resolution and
better performances. Dry alternatives have been proposed, es-
pecially in highly wearable, AR-based BCI [22], where the aim
is to make the procedure more comfortable, allowing to avoid
gel by adopting reusable electrodes that are easily placed to the
scalp through the hair [39]. In this context, a single-channel
BCI, with only two input electrodes (CH+ and CH-) and a ref-
erence, is a highly wearable alternative to multi-channel BCI.
It can strongly reduce complexity and user’s discomfort, in-
creasing the possibility of extending the adoption of BCI also in
common activities. Despite the aforementioned issues related to
the introduction of AR to generate the flickering stimuli, single-
channel BCI has been recently employed in several studies with
no degradation in overall performance [26, 40, 41].
The design and implementation of a single-channel AR-based

instrumentation was addressed in [22, 26]. Fig. 1 shows the
general architecture of the combined system. The AR Display
renders the visual stimuli to elicit SSVEP activity. Three dry
EEG Electrodes are used for a single-channel, differential ac-
quisition to reduce common mode interference. Two active
electrodes are placed on the user’s scalp in Oz (Occipital Mid-
line) and Fz (Frontal Midline) positions, according to the in-
ternational 10-20 System [22], and corresponding to the pos-
itive and negative input of the acquisition unit. Furthermore,
a passive electrode (Driven Right Leg, DRL) is placed on the
earlobe (A2) to act as reference. The EEG signal captured by
the electrodes is digitized by means of a portable Acquisition

Fig. 2: Block diagram of SSVEP classification.

Unit; then, it is processed in real time by a Processing Unit,
which can be the AR device itself or an external wearable de-
vice. After the EEG digitized signal is processed, the output
command is sent to a Target Device (depending on the purpose
of the application [26, 30]). Finally, the target device gives a
visual feedback to the user, related to the selection the user per-
formed (for example, displaying in AR the output of measuring
instruments). This architecture manages to overcome the main
challenges related to portability and wearability, still keeping
the performance comparable to the state of art results [24].

3. Proposal

In this work, an enhanced classification algorithm for
SSVEPs is designed and validated. This algorithm is optimized
for highly wearable BCIs and conducts a real-time processing
both in frequency and time domains, managing to outperform
the results obtained in the previous applications [22, 26] based,
respectively, on the use of a frequency domain [22] and a time
domain [26] approach. Figure 2 shows the major blocks of the
SSVEP classification. Given a time window of length T, the
EEG samples are sent in real time to the Processing Unit (see
Figure 1). Then, the corresponding signal fragment is filtered
with a band-pass finite impulse response (FIR) filter between
5 Hz and 25 Hz, having 101 coefficients and a linear phase re-
sponse. Such a filter conducts an effective removal of ocular
and muscle artifacts.
In previous works [26], the filtered signal was correlated with a
set of sine waveforms Φ0i with the same nominal frequency as
that of the generated flickering stimuli. In the current proposal,
before this step, a fast Fourier transform (FFT) of the windowed
signal is performed, with the aim to solve the issues related to
the uncertainty of the stimulus frequency generation by the AR
Display. In fact, a non-predictable frame rate variation of the
AR application inevitably leads to a shift of the rendered fre-
quency and, thus, of the SSVEP elicited on the user EEG. For
this reason, a peaks detection in frequency domain is carried
out. At this point, the time-domain filtered signal is correlated
(CCA) with a set of sine waveforms Φi at the real generated
frequencies and with variable phase ϕ. The maximum values
among the Pearson correlation coefficients ρi are obtained, as
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Fig. 3: EEG in time domain (a) Filtered EEG in time domain (b) EEG Magni-
tude in frequency domain with SSVEP peak (c).

expressed by the following equation:

ρi = max
ϕ∈[0,2π]

cov(D f ,Φi(ϕ))
σD f σΦi(ϕ)

(1)

where D f are the filtered Data; Φi represents the ith sinewave; ϕ
is the phase; σD is the standard deviation of the filtered data;
and σΦi is the standard deviation of the sinewaves. Conse-
quently, the following features are extracted:

F1 = 1stmax
i ∈[1,n]

(ρi) (2)

F2 = 2ndmax
i ∈[1,n]

(ρi) (3)

F3 =
F1 − F2

F2
(4)

where F1 represents the maximum value among the correlation
coefficients for all the n generated frequencies; F2 is the second
largest correlation coefficient corresponding to one of the re-
maining n− 1 frequencies of stimuli; and, finally, F3 represents
the relative difference between F1 and F2. Given two threshold
values T1 and T2, a signal fragment is recognized if the follow-
ing condition is satisfied:

F1 > T1 ∩ F3 > T2. (5)

If (5) is not satisfied, a new signal fragment of duration T, over-
lapping with the previous one by T/2, is processed.

Fig. 3 shows a typical SSVEP when the user was observing
a 12.0 Hz stimulus. In particular, Fig. 3 (a) shows the SSVEP
acquired in time domain; Fig. 3 (b) shows the signal after a
band-pass filtering between 5 and 25 Hz. Finally, Fig. 3 (c)
shows the Fast Fourier Transform (FFT) of the original signal.
As visible, the SSVEP peak is at 11.8 Hz instead of the pre-
sumed 12.0. Hence, the peaks detection in frequency domain

(a)

(b)

Fig. 4: Two-stimuli performances: accuracy vs time response (a) and ITR vs
time response (b) for the different classification algorithms used.

represents a promising strategy to fine-tune the reference sig-
nals and optimize the Canonical Correlation analysis, improv-
ing the classification performance.

4. Numerical Validation

The proposed SSVEP classification algorithm was validated
by comparing the results obtained with the data set used in
[22, 26]. These works, in the knowledge of the authors, are the
only ones that at the state of the art address a single-channel,
AR-based setup. This data set includes the brain signals of
20 untrained and healthy volunteers. The signal acquisition is
single-channel and differential: two active electrodes are placed
on the users scalp in Oz and Fz positions, and connected to
the Olimex EEG-SMT, a 10-bit, 256 Sa/s, Analogue-to-Digital
Converter (ADC). A passive, reference electrode is placed in
A2. The AR display used to generate the visual stimuli was the
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Epson Moverio BT-200, with a 60 Hz refresh rate and a diago-
nal field of view of 23°. The chosen flickering frequencies were
10 Hz and 12 Hz, according to the results of the studies reported
in [32]. Each subject was asked to focus on one stimulus at a
time, for 10 s. A total of 24 signals per subject were acquired.
Classification accuracy, time response and Information Trans-
fer Rate (ITR) were chosen as figures of merit [31] to evaluate
how the proposed algorithm performed on this data set.
The accuracy is defined as the percentage of signals correctly
classified, as expressed in (6):

A =
N − E

N
· 100 (%) (6)

where N is the total number of signals and E is the number
of misclassified signals. The time response is the average time
needed to the algorithm to classify a signal. Finally, the Infor-
mation Transfer Rate is defined as the amount of information
conveyed by the system’s output, and it is expressed by (7):

ITR =
(
log2(S ) + P log2(P) + (1 − P) log2

(
1−P
S−1

))
60
T (bit/min) (7)

where S is the number of visual stimuli, P the classification ac-
curacy, and T the time response.
A grid search of the SSVEP classification parameters T and
T1 was used, while T2 was fixed to 0.50. The values chosen
for the time window T were 0.50 s, 0.60 s, 0.80 s, and 1.00
s, while those for the threshold T1 ranged from 0.40 to 0.60
with step 0.02. Increasing values of the selected time window T
and threshold T1 leads to an increase of the overall accuracy and
ITR. On the other hand, according to (5), also the time response
necessary increases. Figure 4 shows the comparison of the per-
formance of the algorithm proposed in this work with those ob-
tained by different classification algorithms implemented over
the years on the same data set. Moreover, Table 1 highlights
the results achieved in function of the time response, in terms
of accuracy and information transfer rate (ITR) [26]. The un-
certainty is evaluated at 3-σ.
For the sake of completeness, it should be mentioned that the
first version of the SSVEP classification algorithm was imple-
mented in 2019 and was based on a power spectral density anal-
ysis in Fourier domain [22]. The second version of the algo-
rithm was implemented in 2020, and performed a traditional
CCA in time domain [26]. None of these two works considered
the uncertainty contribution caused by unpredictable fps varia-
tion of the AR HMD used. Therefore, as can be noticed from
Fig. 4 and Table 1, resorting to a combined processing strategy,
which overcomes the limits imposed by the frame rate varia-
tions, has led to significant improvements in the results.
A focus on the results obtained at 2-s time response is provided
in Table 2. As visible, the proposed algorithm reaches a classi-
fication accuracy of more than 90 %, while the traditional CCA
is limited to about 85 %. A graphical interpretation of this en-
hancement is given in Fig. 5, where the features extracted by
the two methods are compared. In particular, in Fig. 5(a) the
number of misclassified signals (red dots) by the proposed al-
gorithm is clearly less than in Fig. 5(b), where the classification
was conducted by means of the traditional CCA.

Table 1: Two-stimuli Performance for the Different classification Algorithms
Used on the Same Data Set

Algorithm Time Response (s) Accuracy (%) ITR (bit/min)
[26] 1.04 ± 0.10 75.4 ± 11.5 11.2 ± 10.8
This work 1.01 ± 0.07 79.4 ± 9.4 15.7 ± 10.5
[22] 2.00 ± 0.00 81.1 ± 11.4 9.0 ± 7.2
[26] 1.94 ± 0.19 84.9 ± 8.1 12.0 ± 6.4
This work 1.95 ± 0.17 90.2 ± 6.0 16.5 ± 6.1
[22] 3.00 ± 0.00 87.7 ± 7.8 9.24 ± 4.4
[26] 2.99 ± 0.28 91.0 ± 6.3 11.3 ± 4.3
This work 3.01 ± 0.30 94.9 ± 4.6 14.1 ± 4.1

Table 2: Performance comparison at 2-s between the proposal and the tradi-
tional CCA developed in [26]

Proposal Traditional CCA [26]
T = 1.0s, T1 = 0.50, T2 = 0.5 T = 0.8s, T1 = 0.44, T2 = 0.5

Volunteer Accuracy (%) Time (s) Accuracy (%) Time (s)
#1 75.0 1.83 ± 0.55 66.7 1.75 ± 0.96
#2 95.8 1.64 ± 0.59 95.8 1.76 ± 0.76
#3 70.8 2.71 ± 1.23 70.8 2.22 ± 1.05
#4 95.8 1.35 ± 0.26 100.0 1.43 ± 0.44
#5 100.0 1.67 ± 0.58 95.8 1.60 ± 0.51
#6 87.5 2.52 ± 0.76 83.3 2.62 ± 0.89
#7 100.0 1.23 ± 0.31 91.7 1.27 ± 0.44
#8 79.2 3.12 ± 1.48 78.3 3.03 ± 1.43
#9 100.0 1.23 ± 0.31 95.8 1.05 ± 0.41
#10 95.8 1.75 ± 0.72 91.7 1.38 ± 0.60
#11 100.0 1.21 ± 0.36 95.8 0.93 ± 0.16
#12 91.7 1.35 ± 0.31 91.7 1.40 ± 0.43
#13 87.5 3.37 ± 1.33 79.2 3.75 ± 1.33
#14 95.6 1.98 ± 1.15 95.6 2.17 ± 1.23
#15 100.0 1.21 ± 0.22 95.8 1.10 ± 0.26
#16 91.7 2.06 ± 0.81 91.3 2.65 ± 1.27
#17 79.2 2.15 ± 0.65 62.5 1.92 ± 0.62
#18 87.5 2.42 ± 0.81 66.7 2.55 ± 1.12
#19 87.5 2.08 ± 0.91 70.8 1.93 ± 1.06
#20 93.3 2.19 ± 0.54 79.2 2.37 ± 0.69
Results 90.2 ± 6.0 1.95 ± 0.17 84.9 ± 8.1 1.94 ± 0.19

Furthermore, in Table 3, a comparison between the results
achieved in this work and other single-channel systems at the
state of art is provided. As visible, many of the recent single-
channel BCIs [41–44], even with the use of Computer Screen
(CS), are outperformed by the proposed processing strategy.
To summarize, AR has the potential to provide users with a
more wearable, user-friendly, and effective way to control exter-
nal devices using SSVEP-BCIs. However, many recent works
adopting AR are using multi-channel configurations [24, 45],
and this is still a limit for the overall user experience.

5. Experimental Characterization of AR Devices

The proposed algorithm was employed for an experimental
characterization of three AR devices (namely, Epson Moverio
BT-350, Oculus Rift S, and Microsoft Hololens I) used to gen-
erate the flickering stimuli necessary to SSVEPs elicitation.
Currently, both Oculus Rift S and Hololens I are removed from
sale. However, the goal of the experiments was to prelimi-
narily evaluate how different technologies influence the elici-
tation of the user’s SSVEPs and, thus, the overall performance
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(a)

(b)

Fig. 5: Features scatter plot and classification for the proposed algorithm (a)
and the traditional CCA [26] (b) at 2-s time response

of a single-channel AR-based BCI. Then, the resulted consid-
erations can be applied in the choosing of the adequate HMD
for future developments. In the proposed characterization, the
number of simultaneous flickering stimuli was increased up to
four, aiming to establish a starting point in the development of
highly immersive BCIs, characterized by a deeper user interac-
tion with external devices, and a greater mobility; finally, the
obtained results were compared to the two-stimuli solutions al-
ready successfully implemented over the years [22, 26]. As
mentioned in Section 4, also in this case, classification accu-
racy, time response and ITR were chosen as figure of merit.

5.1. Setup

Brain signals were recorded on nine healthy adult volunteers.
Twenty signals per subject were acquired in a single-channel
configuration (as shown in Fig. 1). The AR environment con-
sisted of four flickering squares placed originally at the edges
of the screen. For each trial, each user was asked to focus at

Table 3: Comparison Between the Obtained Accuracy and The State of Art with
Single-channel Setups

Metric This Work [41] [42] [43] [44]
Volunteers 20 8 12 20 11
Rendering AR CS CS CS CS
Stimuli 2 5 1 4 4
Time Response (s) 3 3 4 4 3
Accuracy (%) 94.9 ≈ 95 69.5 85.8 81.7

Table 4: Technical Specifications for the Considered AR Devices

Device FOV RR (Hz) See-Through Cost (€)
Moverio BT-350 23° 30 Optical ≈ 900
Oculus Rift S 110° 80 Video ≈ 350*
Hololens 1 34° 60 Optical ≈ 5000*

*removed from sale

one stimulus out of four for 10 s. At the end of each session,
the users were asked to provide a feedback, aiming to express,
for each HMD, their visual fatigue and comfort while observing
the flickering stimuli

5.1.1. Hardware
The employed devices are listed below:

• AR Display: The AR Devices used in the experimental
campaigns were Epson Moverio BT-350, Oculus Rift S,
and Microsoft Hololens 1. Each of these devices differs
from the others both in terms of technology and market
cost. The technical specifications in terms of (i) diagonal
field of view (FOV), (ii) display refresh-rate (RR), (iii) see-
through technology. along with the devices cost, are pro-
vided in Table 4. As visible, both Moverio and Hololens
are optical-see-through devices (OST). Instead, the Oculus
Rift S is a HMD mainly designed for Virtual Reality: for
this reason, a Stereoscopic HD Camera (Zed Mini) was in-
tegrated to realize an AR video-see-through (VST) device.

• Acquisition Unit: The users’ EEG were digitized by the
Olimex EEG-SMT, as done in [22, 26, 30]. As mentioned
in Sec. 4, it is a 10-bit, 256 Sa/s ADC. Only three dry
electrodes are used: two active electrodes are placed in Oz
and Fz positions, while a passive electrode is placed in A2
and acts as a reference.

• Processing Unit: A single-board computer Raspberry Pi
4 was used (i) to acquire via USB the EEG digitized by
Olimex and (ii) process it. A UART protocol was estab-
lished with Baud Rate set to 57600 bit/s, packet size equal
to 17 bytes, and no parity bit.

5.1.2. Software
Table 5 provides the details about (i) the rendered flickering

frequencies for each AR device [46], and (ii) the modality of
rendering.
In most cases, the chosen frequencies were sub-multiple of the
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HMD Refresh Rate. This means that each square reverses be-
tween black and white after a number of frames given by the
ratio between the Refresh Rate and the chosen frequency [46].
For the sake of example, Moverio BT-350 is characterized by
a 30-Hz Refresh Rate: therefore, a 10-Hz frequency is realized
by alternating black and white every 3 frames (i.e. two frames
white and one frame black). The non-submultiples frequency
values were obtained as a rounded average of a variable fre-
quency stimulus [47].
It can be also noticed that the Moverio rendering is fixed to the
display. On the contrary, Oculus Rift and Hololens rendering is
location-based: this means that the four icons are not anchored
to the edge of the screen, but are associated to a particular po-
sition in the real world. For this reason, when the users focus
their attention moving their head towards one of the flickering
stimuli, the remaining three squares can result less visible, thus
reducing interference during the SSVEP elicitation.
Fig. 6 shows the user’s view while wearing the AR equipment.
For the three examples, the user’s gaze is on the top-left square,
and it is marked in red. As visible, the location-based rendering
helps to reduce the interference coming from other concurrent
light sources. In the case of Oculus Rift S (Fig. 6(d)), the sur-
rounding environment is captured by means of the Zed Mini, on
which the four flickering squares are rendered; for this reason,
there is no need to use dark panels. On the other hand, these
were used for Moverio (Fig. 6(b)) and HoloLens (Fig. 6(f)) to
maximize the contrast between the environment and the flicker-
ing squares.
More details about the Software used for realizing the AR ap-
plication are provided below:

• Moverio BT-350: The AR application running on the
Moverio smart glasses was implemented with Android
Studio. The flickering frequencies (8 Hz, 10 Hz, 12 Hz and
15 Hz) were generated with the Android library OpenGL.

• Oculus Rift S: The AR environment was made with Unity
3D. Unlike Moverio Glasses, Oculus Rift S can synchro-
nize the display refresh rate and the application frame rate
by means of the V-Sync technology. However, this op-
tion was disabled to avoid stuttering phenomena, which
are critical for obtaining an accurate flickering. The cho-
sen frequency values were 8.00, 10.00, 11.43, and 13.33
Hz.

• Hololens I: Similarly to Oculus Rift, the AR environment
was realized in Unity 3D, with V-Sync kept disabled. The
four frequency chosen were 8.57 Hz, 10.00 Hz, 12.00 Hz,
and 15.00 Hz.

Finally, a Software running on the Raspberry and written in C
was developed to (i) acquire the EEG data from the Olimex
EEG via UART, (ii) process them, and (iii) send the desired
command to the BCI application (i.e. [26, 30]) via TCP/IP. With
regards to the UART communication, the Baud Rate was set to
57600 bit/s, the packet size was chosen equal to 17 bytes, and
no parity bit was foreseen.

Table 5: Stimuli Frequencies for Each AR Device

Device Frequency (Hz) Rendering
Moverio BT-350 [8.00, 10.00, 12.00, 15.00] fixed
Oculus Rift S [8.00, 10.00, 11.43, 13.33] location-based
Hololens 1 [8.57, 10.00, 12.00, 15.00] location-based

(a) (b)

(c) (d)

(e) (f)

Fig. 6: AR HMD: Epson Moverio BT-350 (a), Oculus Rift S with Zed mini (c),
Microsoft Hololens (e), with respective user’s views (b, d, f).

5.2. Results

The purpose of the experimental characterization was
twofold: (i) to compare the performance obtained through the
three AR HMD in the innovative four-stimuli setup; and (ii) to
assess the overall performance of four-stimuli system with the
two-stimuli one presented in [26].
With regard to the stability of the refresh rate of the AR de-
vices, Fig. 7 shows the Epson Moverio BT-350 frame rate vari-
ation during the trials. As visible, although the declared refresh
rate of the display was 30 Hz, the average fps (frames per sec-
ond) obtained were about 32. This systematic error inevitably
translates into a shift of the generated flickering frequencies.
For instance, a white/black pixel alternation generates a 16 Hz
stimulus, instead of the expected 15 Hz. This demonstrate the
importance of a FFT-based approach described in Section 4 in
identifying the stimulus peak and, at the same time, performing
an effective Canonical Correlation Analysis with sine waves at
the correct frequencies, thus mitigating both systematic errors,
such as fps offset with respect to the declared values, and the
unpredictability of fps variation over time. In fact, considering
the set of parameters T = 1.0 s, T1 = 0.50, and T2 = 0.50, the
results obtained by the proposed algorithm with Epson Moverio
BT-350 reach an accuracy of about 54 % with a time response
of about 3.9 s. Instead, a traditional CCA without a peaks de-
tection obtained only the 32 % at 5.1 s time response.
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(a)

(b)

Fig. 7: Epson Moverio BT-350: Measured and expected fps (a); Measured and
expected FFT peak of the relative user brain signal (b).

5.2.1. Four-stimuli performance comparison between the AR
HMDs

Figure 8 shows the obtained results for the three considered
HMDs. Overall, Microsoft HoloLens is the device that achieves
the best performances (about 70% accuracy and 12 bit/s ITR at
3 s time response). However, Oculus Rift S reaches compara-
ble accuracy and ITR in the range 2.0-2.5 s. These similar re-
sults are motivated by the possibility to use an object location-
based rendering for these two HMDs. Instead, in the case of
Epson Moverio, the presence of squares always fixed to the
edges of the screen inevitably leads to undesired interferences
while the user tries to look at the chosen stimulus, decreasing
both the classification accuracy and the ITR. In the range 2.8-
4.0 s, Oculus Rift performance slightly decreases with respect
to HoloLens; in fact, during the trials, some users were affected
by motion sickness effects due both to the latency introduced
by the VST technology and to the device ergonomics. Table 6
summarizes the classification accuracy obtained when each vol-
unteer used the three AR devices: results refer to a chosen set
of parameters T, T1, and T2. The uncertainty is evaluated at 3-
σ. For subject #3, #5, #7, and #9, the improvements brought by
the Oculus and HoloLens location-based rendering are evident.

5.2.2. Comparison between four-stimuli and two-stimuli setups
Finally, comparing the obtained four-stimuli results (Fig. 8)

with those at two stimuli (Fig. 4), a performance decrease can
be observed.
In two-stimuli applications, in fact, even with a device with
a small field of view (Epson Moverio BT-200, 23° FOV), the
classification accuracy reached the 95% at short time responses
(approximately 3 s). Considering the four-stimuli setup and a
very similar device (Epson Moverio BT-350, 23° FOV), the ac-
curacy obtained at equivalent time response (3 s) was slightly
higher than 55%. Instead, with Microsoft HoloLens (34° FOV),

(a)

(b)

Fig. 8: Four-Stimuli performances: accuracy vs time response (a) and ITR vs
time response (b) for different AR HMDs used.

the accuracy at 3 s increased to about 70%.
The need of larger field of views becomes evident when the
number of concurrent stimuli is increased. In fact, for a given
maximum FOV, the flickering stimuli get inevitably too close
to one another. As a result, when the user (intentionally) stares
at one stimulus, another visual stimulus in close proximity may
elicit an additional SSVEP, thus causing undesired interfernces.
Improving the field of view for is still a technological challenge
for OST AR display: this inevitably influences the possibility
to interact with an arbitrary amount of flickering stimuli and,
thus, to increase the immersivity of the experience and the user
engagement.

6. Conclusion and Future Work

In this work, a highly wearable, SSVEP-based single-
channel BCI is proposed, in which AR HMDs are chosen to
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Table 6: Details of Four-Stimuli SSVEP classification accuracy for a chosen set of Time Window T and Threshold Values T1 and T2

Moverio (T = 1.0 s, T1, T2 = 0.50) Oculus (T = 1.0 s, T1= 0.44, T2 = 0.50) Hololens (T = 1.0 s, T1, T2 = 0.50)
Volunteer Accuracy (%) Time Response (s) Accuracy (%) Time Response (s) Accuracy (%) Time Response (s)
#1 90.0 2.65 ± 1.23 100.0 1.10 ± 0.23 84.2 2.82 ± 1.47
#2 90.0 1.87 ± 1.11 90.0 1.52 ± 0.41 80.0 2.10 ± 1.30
#3 25.0 4.90 ± 2.32 55.0 2.92 ± 1.33 95.0 2.52 ± 1.24
#4 50.0 3.05 ± 1.59 65.0 1.92 ± 0.73 42.1 3.40 ± 1.77
#5 38.9 4.42 ± 2.00 65.0 2.40 ± 0.86 65.0 2.02 ± 0.92
#6 70.0 2.65 ± 1.12 50.0 3.10 ± 1.59 75.0 2.40 ± 1.22
#7 40.0 5.47 ± 2.12 64.7 4.62 ± 2.07 76.0 4.55 ± 2.20
#8 40.0 3.05 ± 1.34 35.0 1.97 ± 0.95 40.0 2.12 ± 0.90
#9 46.2 7.00 ± 2.21 69.2 5.37 ± 2.68 76.9 6.62 ± 2.11
Results 54.5 ± 23.4 3.89 ± 0.58 65.9 ± 19.6 2.77 ± 0.47 70.5 ± 18.5 3.17 ± 0.51

generate the flickering stimuli. First, a new classification algo-
rithm was presented and validated, in order to overcome the
limits introduced by undesired variations of the AR display
frame rate during the fruition of the system. The experimental
validation with two stimuli confirmed a notable improvement
of the performance both in terms of classification accuracy and
time response.
Additionally, two main challenges, regarding (i) the perfor-
mance comparisons between distinct AR devices, and (ii) the
increase of the stimuli from two to four, were addressed. To this
purposes, three AR HMDs with different costs were used: Ep-
son Moverio BT-350, Oculus Rift S (integrated with Zed mini),
and Microsoft HoloLens.
The experimental results with four stimuli show that the choice
of effective AR devices is crucial: the overall user experience,
in fact, strongly depends on the technology used to implement
the flickering stimuli.
Overall, Microsoft HoloLens resulted to be the most perfor-
mant, both in terms of ergonomics and SSVEP classification
accuracy, thanks to a number of key features, like the location-
based rendering, the Optical See-Through technology, its larger
field of view (34°), and greater ergonomics and user comfort:
in fact, no motion sickness effects were reported by the volun-
teers.
Since it was observed that increasing the number of stimuli in
a AR display from 2 to 4 led to a decrease of the classification
accuracy of more than 20%, further works will be dedicated to
reach the state-of-art performance, in order to ensure a deeper
user interaction and high wearability for a practical use in daily
life. To this aim, the adoption of Machine Learning algorithms
to classify the extracted features may represent an interesting
solution.
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