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Abstract

Compute-demanding algorithms in today’s applications need to achieve high per-
formance, which is becoming more difficult in general-purpose processors due to
the decline of the Moore’s law. Domain-specific hardware accelerators can assist
general-purpose processors in improving the performance and efficiency while pre-
serving the flexibility. They can accelerate a domain of applications rather than
a single application making it possible to use the efficient specialized hardware
acceleration techniques in a broad range of applications.

In this thesis, we focus on the development of Domain-Specific Accelerators
(DSAs) for a broad domain of applications consisting of biomedical microwave
algorithms and Machine Learning (ML) techniques. Although the initial purpose of
this research was the development of a biomedical Microwave Imaging (MI) system,
The hardware acceleration methods introduced in this thesis are not limited to MI
only. We analyzed the recurrent algorithms that are used in these applications to
extract their compute-intensive parts that are termed kernels. Then we proposed
efficient accelerators for these domain-specific kernels to achieve high performance.

The main computational kernels that are considered in this work are Finite
Difference Time Domain (FDTD), Principal Component Analysis (PCA), Support
Vector Machine (SVM), and Artificial Neural Networks (ANNs) including Multi-
Layer Perceptron (MLP) and Convolutional Neural Networks (CNNs). For each
kernel, we proposed highly efficient hardware accelerators to obtain an optimal
performance by considering several factors such as processing time, resource usage,
and power consumption. The target hardware platform is Field Programmable Gate
Arrays (FPGAs) and the hardware design approach is High Level Synthesis (HLS)
which is used to convert a software code written in C or C++ into its corresponding
hardware description language. Although several FPGA accelerators have already
been presented for the above-mentioned kernels, they have some drawbacks and
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limitations. Our proposed design methodologies try to address and overcome these
limitations.

The proposed hardware accelerator for 3D FDTD considers the impact of po-
larization currents in dispersive materials, and models the absorbing boundary con-
ditions as Convolutional Perfectly Matched Layers (CPML) in all directions, as
opposed to the conventional FDTD accelerators. We use spatial blocking to store a
partial block of data while processing the previous block. Local storage of FDTD
coefficients and boundary elements, function inlining, and merging the parallel loops
are among the other optimization techniques.

The PCA hardware accelerator considered in this work is implemented in FPGA
and is designed entirely in HLS. A new block-streaming method is introduced to
make the internal PCA computations more efficient. The flexibility of our design
allows us to use it for different FPGA targets, with flexible input data dimensions,
and it also lets us easily switch from a more accurate floating-point implementation
to a higher speed fixed-point solution.

To implement a fast and accurate Support Vector Machine (SVM) classifiers
in embedded systems, we propose a flexible FPGA-based SVM accelerator highly
optimized through a dataflow architecture. Thanks to HLS and the dataflow method,
our design is scalable and can be used for large data dimensions when there is
limited on-chip memory. The hardware parallelism is adjustable and can be specified
according to the available FPGA resources. The performance of different SVM
kernels is evaluated in hardware. In addition, an efficient fixed-point implementation
is proposed to improve the speed.

The last computational kernel considered in this thesis is related to the Neural
Networks. Although there are some tools available to generate a hardware design
from a high level description of the network (like hls4ml), the selection of network pa-
rameters and hardware configurations at the same time is not a trivial task. Although
several works have recently addressed the problem of performance co-optimization
for hardware and network training, most of them considered either a fixed network
or a given hardware architecture. In this work, we propose a new framework for joint
optimization of network architecture and hardware configurations, which is based
on Bayesian Optimization (BO) on top of HLS. We evaluate our methodology on
a network optimized for an FPGA target and show the efficiency of the Pareto set
obtained by the proposed joint-optimization approach.



Contents

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . 3

1.2 Compute-Intensive Kernels . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 3D FDTD . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 PCA using SVD/EVD . . . . . . . . . . . . . . . . . . . . 5

1.2.3 SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Challenges in Designing Domain-Specific Accelerators . . . . . . . 7

1.4 Scope and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 12

2.1 Performance Analysis of Domain-Specific Accelerators . . . . . . . 12

2.2 High Level Synthesis for the Design of Hardware Accelerators . . . 14

2.2.1 Design Optimizations in HLS . . . . . . . . . . . . . . . . 15

2.2.2 HLS Design Trends in Selected Domains . . . . . . . . . . 17

2.3 Applications of Domain-Specific Accelerators . . . . . . . . . . . . 17

2.3.1 Biomedical Microwave Techniques . . . . . . . . . . . . . 18



viii Contents

2.3.2 Machine Learning (ML) . . . . . . . . . . . . . . . . . . . 21

2.4 Microwave Imaging Algorithms . . . . . . . . . . . . . . . . . . . 24

2.4.1 Inverse Scattering Problem . . . . . . . . . . . . . . . . . . 24

2.4.2 Qualitative Imaging . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Quantitative Imaging . . . . . . . . . . . . . . . . . . . . . 27

2.5 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 FPGA Acceleration of 3D FDTD for Microwave Imaging using HLS 31

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 FDTD in Microwave Imaging . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Boundary Conditions: CPML . . . . . . . . . . . . . . . . 37

3.2.3 FDTD Pseudo-Code . . . . . . . . . . . . . . . . . . . . . 38

3.3 FPGA Design of an FDTD Compute Unit . . . . . . . . . . . . . . 40

3.3.1 Two Architectures: Large and Small . . . . . . . . . . . . . 42

3.3.2 Blocking Method and Merging of JP Update Equations . . . 44

3.3.3 Loop Merge and Local Storage for Boundaries . . . . . . . 46

3.3.4 Loop Pipeline, Function Inline, and Storage for Coefficients 48

3.4 Multi-FPGA Implementation . . . . . . . . . . . . . . . . . . . . . 49

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Impact of HLS Optimizations on Performance . . . . . . . 52

3.5.2 FDTD Performance on a Single FPGA . . . . . . . . . . . 54

3.5.3 FDTD Performance on Multiple FPGAs . . . . . . . . . . . 60

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Contents ix

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 High Level Design of a Flexible PCA Hardware Accelerator 69

4.1 PCA Algorithm Description . . . . . . . . . . . . . . . . . . . . . 72

4.2 Hyperspectral Imaging . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 PCA Hardware Accelerator Design . . . . . . . . . . . . . . . . . . 74

4.3.1 Block-Streaming for Covariance Computation . . . . . . . . 76

4.3.2 High Level Synthesis Optimizations . . . . . . . . . . . . . 79

4.3.3 Fixed-Point Design of the Accelerator . . . . . . . . . . . . 84

4.3.4 Hardware Prototype for PCA Accelerator Assessment with
the HI Data Set . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Number of Blocks, Bands, and Pixels . . . . . . . . . . . . 88

4.4.2 Fixed-Point and Floating-Point Comparison . . . . . . . . . 90

4.4.3 Evaluation on Hyperspectral Images . . . . . . . . . . . . . 92

4.4.4 Evaluation on Microwave Data . . . . . . . . . . . . . . . . 98

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 HLS-based Dataflow Hardware Architecture for Support Vector Ma-
chine 100

5.1 SVM Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Proposed SVM Accelerator . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Read SVM Inputs . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Kernel Computation . . . . . . . . . . . . . . . . . . . . . 106

5.2.3 Decision Function . . . . . . . . . . . . . . . . . . . . . . 107

5.2.4 Fixed-Point Implementation . . . . . . . . . . . . . . . . . 107

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.1 Microwave Data Set . . . . . . . . . . . . . . . . . . . . . 109



x Contents

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Hardware Design and Optimization of Neural Networks and ML Accel-
erators 112

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Multi-objective Framework for Training and Hardware Co-optimization115

6.2.1 Multi-Objective BO with Constraints (MOBOC) . . . . . . 115

6.2.2 Search Space . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.3 Function Evaluations . . . . . . . . . . . . . . . . . . . . . 117

6.2.4 Objectives and Constraints Extraction . . . . . . . . . . . . 117

6.2.5 Update Bayesian model . . . . . . . . . . . . . . . . . . . 117

6.3 Evaluation on Neural Networks . . . . . . . . . . . . . . . . . . . . 117

6.3.1 Multi-Layer Perceptron (MLP) . . . . . . . . . . . . . . . . 117

6.3.2 Convolutional Neural Networks (CNN) . . . . . . . . . . . 119

6.3.3 MLP in Microwave Data Set . . . . . . . . . . . . . . . . . 122

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Conclusions and Future Work 125

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.1.1 List of Published Papers . . . . . . . . . . . . . . . . . . . 128

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

References 132

Appendix A List of Acronyms 145



List of Figures

1.1 Propagation of electromagnetic fields and the impact of variations in
electric and magnetic fields. . . . . . . . . . . . . . . . . . . . . . 4

1.2 PCA for dimensionality reduction to remove redundant information. 5

1.3 SVM for binary classification finds the decision boundary with max-
imum margin between two classes (L2). . . . . . . . . . . . . . . . 6

1.4 Network structure for a) MLP and b) CNN. . . . . . . . . . . . . . 7

2.1 Various design metrics in the implementation of a hardware accelerator 14

2.2 Hardware design flow in Vivado . . . . . . . . . . . . . . . . . . . 15

2.3 Hardware optimization directives . . . . . . . . . . . . . . . . . . . 16

2.4 General diagram of a Microwave Imaging system. . . . . . . . . . . 19

2.5 Dielectric properties of breast tissues . . . . . . . . . . . . . . . . . 20

2.6 Brain stroke detection with MI system containing V antennas and P
candidate locations for the stroke positions (r1 to rP) . . . . . . . . 21

2.7 Machine Learning training and inference steps. . . . . . . . . . . . 22

2.8 Hyper-spectral Images (HI) with C bands. Each band has R = M×N
pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Machine Learning Applications. . . . . . . . . . . . . . . . . . . . 23

2.10 Microwave Imaging setup. Inverse scattering is the problem of find-
ing ε and µ from the microwave measurements in the measurement
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



xii List of Figures

2.11 General diagram of a non-linear image reconstruction iterative algo-
rithm in MI, with the compute-intensive FDTD step. . . . . . . . . 28

2.12 Three data processing steps in Machine Learning. Note that in DNNs,
feature extraction and classification are implemented in different
layers of the network. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Boundary regions for H field in 3D FDTD. . . . . . . . . . . . . . 38

3.2 FDTD CU design in HLS for a single FPGA. . . . . . . . . . . . . 41

3.3 Detailed view of the CU design in Vivado. . . . . . . . . . . . . . . 42

3.4 Details of the interfaces of the CU for Small and Large designs. . . 43

3.5 Blocking method for FDTD and its difference with a general stencil 45

3.6 Multi-FPGA platform with F FPGAs for 3D FDTD acceleration. . . 50

3.7 Accuracy comparison: Acceleware design versus our C++ code. . . 51

3.8 Impact of different HLS optimization methods on the total latency.
(numbers on top of the bars show the improvement compared to the
original code, and numbers bellow the arrows show the improvement
compared to the previous optimization method) . . . . . . . . . . . 52

3.9 Impact of different HLS optimization methods on the latency of each
FDTD function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Impact of HLS optimization methods on resource usage per SLR. . 54

3.11 The performance of the main FDTD loops in Small and Large design
in HLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.12 Device view in a) Small and b) Large design after place-and-route
(it contains 3 SLRs in the left, middle and right side of the FPGA). . 57

3.13 FDTD execution time for different number of FPGAs, (a) 8 antennas,
(b) 24 antennas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of Figures xiii

3.14 FDTD execution time for 8 FPGAs and different number of antennas,
(a) from one antenna up to the maximum number in a single FPGA
(3 for Small design), (b) Comparison of the single GPU in this work
(GPU3, highly optimized for one antenna) and multi-FPGA design
for multiple antennas, (c) more detailed view of multi-FPGA design
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Architecture of the proposed hardware accelerator for Principal
Component Analysis (PCA) in Field-Programmable Gate Arrays
(FPGA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Example of covariance computation with 9 bands and N pixels,PQ =

ΣN
i=1Pi ×Qi, where P,Q are the symbols of bands (α to n). . . . . . . 76

4.3 Example of partitioning of input data into blocks. The total number
of bands is B = 9 and the block size is Bmax = 3. . . . . . . . . . . . 77

4.4 Illustration of an example of covariance computation using the block-
streaming method with 3 blocks (B = 9, Bmax = 3). . . . . . . . . . 77

4.5 Block-streaming method with 4 blocks (B/Bmax = 4). . . . . . . . . 78

4.6 Order of data storage in the Diagonal and Off-diagonal RAMs inside
the Cov unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 PCA accelerator design in Zedboard. . . . . . . . . . . . . . . . . . 86

4.8 Impact of block size (Bmax) on the resource usage and latency for
the Virtex7, bands = 48, pixels = 300×300, floating-point design. . 88

4.9 Impact of the number of pixels on the latency for Virtex7, bands=48,
Bmax = 8, floating-point design. . . . . . . . . . . . . . . . . . . . . 89

4.10 Latency and resource usage for Virtex7 with a fixed block size
(Bmax = 8), floating-point design. . . . . . . . . . . . . . . . . . . . 89

4.11 Resource usage for Zedboard for fixed- and floating-point design, B
= 12, pixels = 300×300. . . . . . . . . . . . . . . . . . . . . . . . 90

4.12 Comparison of the latency of the fixed- and floating-point design for
Zedboard, B = 12, pixels = 300×300. . . . . . . . . . . . . . . . . 91



xiv List of Figures

4.13 Latency for Zynq7000 with a fixed block size (Bmax = 3), pixels =
300×300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.14 Resource usage for Zynq7000 with a fixed block size (Bmax = 3),
pixels=300×300. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.15 The first 6 principal components of the HI data set. Our PCA accel-
erator in Zedboard produces the first 3 outputs (PCA1 to PCA3). . . 95

4.16 Energy distribution of the eigenvalues for the Hyperspectral Imaging
(HI) data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.17 Comparison of different hardware platforms between latency per
pixel, power consumption, input size (bands) and energy. . . . . . . 97

4.18 Processing time for PCA compute units in FPGA with Microwave
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 SVM classification with linear kernel. . . . . . . . . . . . . . . . . 102

5.2 Proposed SVM accelerator in HLS. . . . . . . . . . . . . . . . . . . 104

5.3 Impact of the number of FIFO channels (BF) with a total of 4×8 =

32 data, (a) BF = N, (b) BF = 2N, overall latency is reduced. . . . . 105

5.4 Manual unrolling for kernel computation. . . . . . . . . . . . . . . 106

6.1 Optimization of training hyper-parameters and hardware configura-
tions: (a) traditional separate DSE, (b) more efficient joint DSE. DS1

and DS2 stand for Design Space of training and hardware design,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Proposed methodology for training and hardware co-optimization in
FPGA devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Percentage of training error (float error) and hardware error (fixed-
point error) in each BO iteration, (a) proposed joint optimization, (b)
separate optimization. . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Comparison of (a) prediction time and (b) Pareto fronts. . . . . . . . 118



List of Figures xv

6.5 Pareto-points found by the joint approach, random search, and con-
ventional separate method in the space of prediction error (Hw error)
and execution latency (Time). Total number of iterations is 100 for
all methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Hardware error in our joint method in each BO iteration with (a)
linear and (b) exponential error function. . . . . . . . . . . . . . . . 121

6.7 Total points suggested by the joint, separate, and random search
methods; note the concentration of the joint method on low errors
(< 10%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.8 Accuracy of MLP during training by MI dataset . . . . . . . . . . . 123

6.9 Resource usage for MLP in Zynq FPGA . . . . . . . . . . . . . . . 124



List of Tables

1.1 Domain-specific kernels (rows) and their applications (columns). . . 4

3.1 HLS hardware optimization strategies for a FDTD CU. . . . . . . . 41

3.2 Description of AXI interfaces. . . . . . . . . . . . . . . . . . . . . 44

3.3 Resource usage for the Small design: HLS estimation and Vivado
implementation results . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Resource usage for the Large design: HLS estimation and Vivado
implementation results . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Performance comparison: CPU = Intel Xeon, GPU1 = Tesla K20C
GPU2 = Tesla P40, GPU3 = GPU1 CUDA implementation, and
FPGA (UltraScale+). TDP = Thermal Design Power, Energy =
TDP×Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Performance comparison between our single Small FPGA design
and other FPGA implementations. . . . . . . . . . . . . . . . . . . 61

3.7 Dimensions of FDTD coefficients. . . . . . . . . . . . . . . . . . . 63

4.1 Resource usage obtained from HLS for HI data set on Zedboard,
bands = 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Latency (ms) for Zedboard, HI data set, bands = 12. . . . . . . . . . 93

4.3 Vivado implementation of PCA accelerator on Zedboard for HI data,
bands=12, accuracy is compared with MATLAB. . . . . . . . . . . 94

4.4 Comparison of our PCA accelerator with other conventional methods.
The input data dimensions are set to 30×16 for all designs. . . . . . 95



List of Tables xvii

4.5 Comparison of the proposed PCA hardware design with other High
Level Synthesis (HLS)-based accelerators. The dimensions of a
spectral image data set (640× 480× 12) is selected for all of the
designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Execution time (ms) for the PCA implementation on GPU, Massively
Parallel Processing Array (MPPA), and FPGA (our work). . . . . . 97

5.1 Kernel functions in SVM. . . . . . . . . . . . . . . . . . . . . . . 103

5.2 MNIST dataset: performance and resource usage. . . . . . . . . . . 108

5.3 Comparison of different SVM kernels. . . . . . . . . . . . . . . . . 108

5.4 Comparison of the proposed accelerator with different SVs and
same number of features (N f = 27) in the same FPGA (model1 and
model2 use different pre-processing methods on training data). . . . 109

5.5 Performance comparison with two manual RTL designs. . . . . . . 109

5.6 Performance analysis of SVM accelerator for medical microwave
data set using floating-point data precision (NSV = 2009,N f eatures =

110,Nsamples = 900). . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Performance analysis of SVM accelerator for medical microwave
data set using fixed-point data precision (NSV = 2009,N f eatures =

110,Nsamples = 900). . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Ranges of parameters for the joint training/hardware optimization
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Search space featuring network architecture and hardware configura-
tions (UF:Unroll Factor) . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Pareto points obtained by three methods. . . . . . . . . . . . . . . . 121

6.4 Evaluation of MLP performance in microwave anomaly detection.
Fixed-point precision is selected in hardware with total and integer
widths of 16 and 10, respectively. . . . . . . . . . . . . . . . . . . 123



Chapter 1

Introduction

Today’s increasing demand for compute-intensive applications calls for efficient
approaches to achieve the desired performance. Most of the computations in a
variety of applications usually take place in general purpose processors, or CPUs.
To keep up with the increasing computations in new applications, one could easily
wait for the new technology which, according to the Moore’s law, could make it
possible to run the application faster. However, the end of Moore’s law prevents to
continue scaling of the performance and efficiency. Therefore, we need to look for
other alternatives to speed up the computations in current and future applications.
One of the few alternatives is “Domain-Specific hardware Accelerators (DSAs) ”.

Domain-specific accelerators are subset of hardware accelerators that can be used
for a specific domain of applications. There are different applications in which the
domain-specific accelerators have been already used with considerable improvement
in performance compared to general-purpose computers. These applications include
deep learning, bioinformatics, image processing, and many more fields. Designing an
accelerator requires considerable effort to acquire an efficient hardware performance,
which can be achieved by a combination of the following methodologies: Paral-
lelism, efficient memory systems, specialized operations, and overhead reduction
techniques. The reason of recent trend in using DSAs is their potential as one of the
few techniques to improve the efficiency and performance of the accelerators even
with the decline of Moore’s law benefits [1].

DSAs can be used in embedded systems which are computing platforms contain-
ing all the hardware and software components embedded in the system to execute an
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application-specific program. A high-performance embedded platform very often
consists of one or more general purpose processors, together with a number of
specialized hardware accelerators (DSAs). These can be either on the same elec-
tronic board, or integrated in the same System-on-Chip (SoC). One of the popular
approaches in recent years to design such accelerators is to use Field Programmable
Gate Arrays (FPGAs). Nowadays, advanced SoC FPGAs have a variety of pro-
grammable features as well as hardwired functions providing flexibility for the
hardware designers. One example is the usage of soft processors or hard processors
in these systems. The former uses the internal programmable logic and resources
of an FPGA to design a processor, while the latter is a fixed hardware outside the
programmable logic of the FPGA and communicates with it via dedicated peripherals
in the same SoC. The flexibility comes from large amount of hardware resources
available in today’s FPGAs, including massive arrays of programmable logic units
and their interconnections, large on-chip memories, custom data paths, high speed
I/O, and microprocessor cores all co-located on the same chip [2].

Designing a hardware accelerator faces the designers with several challenges.
Firstly, design goals and requirements for different applications can vary significantly.
In some application such as video encoding and streaming, a high throughput
is required while in others accuracy is more important than throughput, such as
bio-sensing data acquisition systems. Some applications tend to be inherently
computation-limited, in the sense that their performance is determined by the number
of computational resources working in parallel, while others tend to be inherently
memory-limited, because their performance is bounded by the memory bandwidth.
There are finally cases in which depending on the details of the implementation (e.g.,
on the internal parallelism), an application can transition from a computation- to a
memory-bound performance region (this is typical for Deep Learning workloads).
Depending on the application, the hardware design goals and technique have to
change. Secondly, achieving the optimal performance in hardware accelerators
requires a trade off between different design goals, which is clarified in more detail
in the next section. Thirdly, in today’s high-performance computing applications,
one of the important factors is the design and development time, which tends to be
very high if the traditional approaches to the hardware design are used. Therefore,
it is important to utilize the capabilities of recent design tools to obtain an efficient
hardware design, a subject that will be introduced and discussed in more detail in
section 2.2.
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In the remainder of this chapter, we first introduce the main motivation behind
this work and discuss the problem statement. In Section 1.2, the domain-specific
computational kernels that are considered in this thesis are briefly introduced. The
challenges of designing hardware accelerators for these compute-intensive kernels
are described in Section 1.3. Finally, in Section 1.4, an overview of this thesis, with
scope and goal, is given.

1.1 Motivation and Problem Statement

The main objective of this thesis is to design efficient hardware accelerators for
compute-intensive kernels that are used in two main application areas: Biomedical
Microwave techniques and Machine Learning algorithms. Although the initial
motivation of this work was the development of a medical microwave imaging device
in the EMERALD project1, we considered a broader range of applications that is not
restricted to Microwave Imaging only and includes Machine Learning methods as
well.

There are several algorithms that are used in these application areas which
contain computationally-expensive kernels. General purpose processors cannot offer
high performance when they are used for these kernels. An alternative is using
domain-specific accelerators which provide higher efficiency.

Therefore, the main problem that is addressed in this thesis can be divided into
two parts: (1) Analysis of the recurrent algorithms in biomedical microwave imaging
and Machine Learning to find the compute-intensive kernels, (2) Designing the
domain-specific accelerators for these kernels in an efficient way.

1.2 Compute-Intensive Kernels

In this section, we briefly introduce the compute-intensive kernels inside the algo-
rithms that are used in different application areas. This broad domain of applications
include “medical microwave techniques” (which contains “Analysis of antennas
and electromagnetic wave simulation”), and Machine Learning (which contains
“Hyperspectral imaging”, “Feature extraction”, and “Classification”).

1www.msca-emerald.eu
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Table 1.1 shows the domain-specific kernels considered in this thesis (rows of
the table) and their potential application areas (columns of the table). All the kernels
in Table 1.1 can be used in the “Biomedical Microwave Techniques” application
area. However, we consider a broader domain of applications in which the kernels in
this thesis can be used. In the next chapters, the methodologies to design efficient
hardware accelerators for these kernels will be presented in order to optimize and
enhance the performance of these kernels in FPGAs.

Table 1.1 Domain-specific kernels (rows) and their applications (columns).

Biomedical
Microwave techniques

Antennas
analysis

Hyperspectral
Imaging

Machine Learning
Feature extraction Classification

FDTD + + - - -
SVD/EVD + - - + -

PCA + - + + -
SVM + - + - +
MLP + - + + +
CNN + - + + +

1.2.1 3D FDTD

Finite Difference Time Domain (FDTD) is a numerical analysis technique to simulate
the propagation of electromagnetic fields in different materials. Based on Maxwell
equations, any variation in the electric fields will cause a magnetic field and vice
versa, as shown in Fig. 1.1.

Fig. 1.1 Propagation of electromagnetic fields and the impact of variations in electric and
magnetic fields.

As will be stated in Section 2.4.3, FDTD is the critical computational part of one
of the non-linear iterative microwave image reconstruction algorithms. Due to the
need for higher resolution in MI recent years, three dimensional FDTD has become
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more popular. Therefore, hardware acceleration of 3D FDTD can significantly
improve the performance of embedded MI systems which use FDTD in their internal
algorithms. In Chapter 3 the details of proposed methodology for 3D FDTD hardware
accelerator in FPGA is presented.

1.2.2 PCA using SVD/EVD

Principal Component Analysis (PCA) is a feature extraction technique in ML and
can be used to remove redundant information in data. An illustrative example is
shown in Fig. 1.2 in which the redundant information in the horizontal axis can be
removed by transforming original data into its corresponding principal components
and ignoring the axis with low variations. PCA is extremely useful when we have
large data dimensions and it is difficult to process the entire data, hence reducing the
dimensions of data.

As we will see later, PCA consists of several components. These components
can be considered as other compute-intensive kernels. For example, Singular Value
Decomposition (SVD) and Eigenvalue Decomposition (EVD), can be used not only
in PCA, but also in other inverse scattering solutions in MI. Therefore, by hardware
implementation of PCA, we can accelerate the execution of several compute-intensive
kernels, such as SVD and EVD. We explain the proposed methodology for the
hardware acceleration of PCA in Chapter 4.

Fig. 1.2 PCA for dimensionality reduction to remove redundant information.
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1.2.3 SVM

Support Vector Machine (SVM) is a powerful classification (and regression) algo-
rithm in ML. SVM for binary classification finds a separating line (or hyper-plane)
between data points of two classes which can best separate the classes. As shown in
Fig. 1.3, SVM obtains the separating line by maximizing the margin between the
classes. Although there are infinite number of separating lines (e.g. L1 to L3 in
Fig. 1.3), only one line is optimal (L2) which can be generalized to the new data
points that might appear in the future. In Chapter 5, more details about the theory
of SVM together with its corresponding hardware accelerator design are explained
thoroughly.

Fig. 1.3 SVM for binary classification finds the decision boundary with maximum margin
between two classes (L2).

1.2.4 Neural Networks

Neural Networks (NNs), also called Artificial NNs (ANNs) are a subset of ML and
at the heart of Deep Learning (DL) algorithms. Their structure is inspired from the
human brain and from the way that biological neurons signal to each other. ANNs
comprise of input layers, multiple hidden layers, and output layers, and each layer
consists of several compute nodes. These nodes receive and process the inputs and
weights from the previous layer to produce the outputs.

There are different types of architectures for NNs. In Multi-Layer Perceptrons
(MLPs), network layers are fully connected to each other, meaning that each node in
one layer is connected to all the nodes in the next layer, as shown in Fig. 1.4 (a). In
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Convolutional Neural Networks (CNNs) each layer consists of multiple filters that
are convolved with the input data, as shown in Fig. 1.4 (b). Other types of ANNs can
be found in [3]. In Chapter 6, more details about hardware acceleration of ANNs
will be presented. In addition, we will propose a new framework for co-optimization
of training hyper-parameters and hardware configurations to achieve the optimum
performance in embedded accelerators design for ML algorithms, including ANNs.

Fig. 1.4 Network structure for a) MLP and b) CNN [4]

1.3 Challenges in Designing Domain-Specific Acceler-
ators

There are several challenges in designing hardware accelerators for the domain-
specific kernels introduced in previous section. In the following, we briefly explain
these challenges and then, we explain the methodologies that we proposed to over-
come these challenges:

1. In 3D FDTD kernel, one of the main challenges is the access to a large volume
of data from external memory. Although several methodologies have been
proposed to address this issue, they are not effective in Microwave Imaging
(MI) where we need to add more details in FDTD equations. Specifically,
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previous works did not consider the impact of polarization current and
dispersive materials in FDTD equations. In addition, the boundary conditions
used in the majority of the previous works oversimplify the FDTD algorithm.
Considering these details in FDTD equations makes the design of the hardware
accelerator more challenging which we address in this thesis.

2. In PCA kernel, the large data dimension and computational complexity of
PCA algorithm create several challenges. Due to the large amount of data
in PCA computations, most of the previous works could not implement all
the computational units in hardware, so they left some essential parts (like
covariance computation) to be executed off-line in software. In addition,
conventional PCA accelerators use RTL approach for the hardware design
which increases the design and development time. Flexibility and efficiency
are other challenges in PCA accelerator design. Supporting different data
dimensions and data types is not trivial in a full PCA hardware accelerator
design which is considered in this thesis.

3. In SVM kernel, the main challenge that is usually ignored in previous works
is scalability, which means that we can use the same design for larger data
dimensions. In addition, most of the previous SVM accelerators only focused
on binary classification or simple kernel functions. Multi-class classification
in SVM is more challenging because it requires more computations. We
addressed these challenges for SVM accelerator design in our thesis.

4. In ANNs, the main challenge in designing efficient hardware accelerators is
the co-optimization of training hyper-parameters and hardware configurations.
Despite the recent efforts in designing co-optimization frameworks, there
are still so much opportunities for further enhancement. Specifically, a truly
multi-objective optimization framework in the context of multiple hardware
configurations has not been fully explored in the domain of HLS-based FPGA
acceleration of ANNs. We elaborate further on this issue when introducing the
proposed framework.
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1.4 Scope and Outline

In this thesis, we focus on the design of domain-specific hardware accelerators
to enhance the performance of recurrent algorithms used in a broad domain of
applications. Machine Learning and biomedical Microwave Imaging are two main
target applications. Although all the proposed accelerators can be used in the
biomedical microwave application (as the main target), they have a broader range of
applications and are useful in a variety of Machine Learning techniques. The main
goal is to use specific hardware accelerators to improve the performance of these
recurrent algorithms under various constraints (e.g., latency, power, resource usage).
Designing such hardware accelerators requires the analysis of each algorithm and
usage of specific hardware optimization techniques to accelerate the execution of
the compute-intensive parts. For the hardware design and implementation, we use
High Level Synthesis (HLS) and the target hardware device is an FPGA, whose type
and size changes depending on the target application. In addition, obtaining the best
performance in ML algorithms requires the optimization of training hyper-parameters
and hardware configurations, which is also considered in this work.

In the following, the main contributions of this thesis and the methodologies to
overcome the above-mentioned challenges are described:

1. Evaluation of widely-used algorithms in a broad domain of applications, in-
cluding MI and ML.

2. FPGA acceleration of 3D FDTD for multi-antennas microwave imaging
(Chapter 3):

• We proposed a spatial blocking approach to overcome the problem of
memory access time.

• To deal with the challenge of the additional polarization current, we
could use HLS capabilities to efficiently process the extra computations
by merging the corresponding loops on the polarization currents with the
loops on the electric fields update.

• We presented two versions of our FDTD accelerator: Small and Large
designs with different resource usage and number of interfaces to meet
memory bandwidth requirements and increase the flexibility.
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• For the complex boundary conditions in our FDTD accelerator we merged
the parallel loops in the boundary regions and used local memories when-
ever possible to store the required data. We implemented the computa-
tions of boundary equations in HLS by considering CPML conditions in
all directions.

• Our single FPGA accelerator for FDTD could achieve 1.44× lower
execution time per antenna compared to the best GPU design of the
same algorithm. In our multi-FPGA design with 8 FPGAs and a typical
number of 24 antennas, a 11.5x reduction of execution time can be
achieved compared to the best GPU design. In addition, our design is
more energy efficient than the conventional methods.

3. High level design of a flexible FPGA accelerator for Principal Component
Analysis (PCA) (Chapter 4):

• We presented an efficient block-streaming methodology to overcome the
issue of large data dimensions and memory access time in PCA.

• In contrast to most of the previous works, the covariance computation is
included in our PCA accelerator design for large data dimensions.

• Our proposed PCA accelerator is flexible because it can be used for
different input sizes and FPGA targets.

• We presented a more accurate floating-point and a faster fixed-point
implementation to improve flexibility and efficiency.

• Compared to a similar FPGA implementation of PCA using VHDL,
our HLS design has a 2.3× improvement in the processing time, and
a significant reduction of the resource usage. Compared to other HLS-
based approaches, our design has a maximum of 2.5× speedup.

4. A new dataflow hardware architecture for Support Vector Machine (SVM)
(Chapter 5):

• We proposed a scalable hardware accelerator for SVM algorithm in
FPGAs that can support different data dimensions while guaranteeing a
high throughput.

• Multi-class classification with recurrent SVM kernels are supported in
our proposed accelerator.
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• The level of hardware parallelism in our accelerator is adjustable thanks
to the HLS-based configurations.

• In addition to the floating-point precision, we presented efficient imple-
mentation of fixed-point design for the SVM accelerator.

• A minimum of 10× latency improvement compared to similar HLS-
based and 4.4× improvement compared to RTL-based designs can be
achieved by our dataflow hardware architecture for SVM accelerator.

5. High level implementation and optimization of conventional Neural Networks
in FPGAs (Chapter 6):

• We introduced a new framework for the co-optimization of ML training
and hardware design.

• We used Multi-objective Bayesian Optimization on top of High Level
Synthesis as a new approach for the co-optimization problem.

• Instead of using a fixed hardware architecture, our framework supports
adjustable HLS-based hardware configurations.

• The Pareto set achieved with our framework outperforms those obtained
with the other methods, with 1.7× and 1.4× improvement in execution
time for the minimum error compared to random and separate methods,
respectively.

6. Boosting the performance by using HLS-based hardware optimization tech-
niques

7. Evaluation of each accelerator on a dataset obtained by microwave mea-
surements to assess the feasibility of the proposed solutions for biomedical
microwave applications.

In the next chapter, we introduce a background about the design of domain-
specific hardware accelerators and their applications. In the following chapters, we
explain hardware design methodologies for the domain-specific kernels that were
introduced in Sec. 1.2 and compare them with the state-of-the-art related works. In
addition, in Chapter 6, the co-optimization methodology for hardware and training
is explained. The last chapter is dedicated to the conclusions, future works, and
outputs of thesis and the publications.



Chapter 2

Background

2.1 Performance Analysis of Domain-Specific Accel-
erators

For the best design of an accelerator, the broadest possible range of applications must
be covered, which makes it possible to accelerate more than one single application.
Domain-specific instructions can be added to programmable processors to provide
efficiency while preserving flexibility. In addition, we can build a parallel computer
from domain-specific accelerators in order to expand the domain of applications.

To design a domain-specific accelerator, the designer must always find a trade-off
between efficiency and generality. If the accelerator is designed for only one specific
application, it results in the best possible efficiency, but with a limited range of
use. On the other hand, designing a general-purpose processor, although is flexible,
results in a weak efficiency. The best approach is to increase the range of applications
as much as possible to keep the flexibility and not to lose the efficiency of a single
specialized accelerator [1].

In another view, high-performance computing systems with DSAs must be care-
fully designed to meet stringent requirements. They require not only lots of computa-
tions as well as correct functional behaviour, but also must meet several quantifiable
and often contradictory design metrics, which must be optimized simultaneously
to achieve an efficient implementation. A design metric is a measurable feature
of the system’s implementation which can be interpreted in several ways. In the
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following, different design metrics in the implementation of hardware accelerators
are explained.

One of the most important design metrics is performance which can be further
specified to capture one peculiar aspect of speed. For example, Execution time (or
Latency), and Throughput (the rate at which a system can process data and receive
new input1) are two representations of system performance. Another design metric
is Power consumption which, if combined with execution time and considered in its
average form, determines the lifetime of a battery, or when considered in its peak
form it affects the cooling requirements of a chip. The size of computing devices
is also important because the physical space and geometry required by the system
must be as small as possible to fit on a given area, ranging from the silicon area of
single-chip implementation to the form-factor of a board for a multi-chip design.
A crucial design metric in the accelerators design is Cost which can be divided
into NRE2 cost (the cost of designing the system, after which any number of units
of the system can be manufactured without incurring additional design cost) and
Unit cost (the cost of manufacturing each copy of the system excluding the NRE
cost). Designing a high-performance system usually requires a complex and long
design procedure (hence, large NRE) and leads to using a large amount of hardware
resources (hence, a high unit cost). Flexibility, as another design metric, is defined
as the ability to change the functionality of the system without incurring heavy NRE
cost. Finally, Time to market determines the amount of time required to design and
manufacture the system to the point that the system can be sold to customers. Other
design metrics can be found in [5].

The above-mentioned metrics are usually in contrast, and improving one of them
leads to the degradation of the others. Fig. 2.1 shows an illustration of different
design metrics which can be considered as a wheel with different pins. Pushing one
pin will cause others to pop out [5]. A hardware designer must be able to optimize
these metrics under various constraints.

1A more precise definition will be presented in the next chapters.
2Non-Recurrent Engineering
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Fig. 2.1 Various design metrics in the implementation of a hardware accelerator

.

2.2 High Level Synthesis for the Design of Hardware
Accelerators

To design a hardware accelerator in an FPGA, the traditional approach uses Hardware
Description Languages (HDL) like VHDL or Verilog. Although this approach is still
the predominant design methodology, it impacts the development time and the design
effort. As hardware computing systems become more and more complex, designing
an efficient hardware in RTL requires significant effort, which makes it difficult
to find the best hardware architecture. In fact, the advances in chip integration
capabilities have increased the complexity of embedded systems to such a level that
their development time sometimes exceeds even their product lifetime. An alternative
solution that is becoming more and more popular in recent years is the High Level
Synthesis (HLS) approach. HLS raises the design abstraction level by using software
programming languages like C or C++. Through the processes of scheduling, binding,
and allocation, HLS converts a software code into its corresponding RTL description.
The main advantage of HLS over HDL is that it enables designers to explore the
design space more quickly, thus reducing the total development time with a quality
of results comparable and often better than RTL design.

To understand the main steps in designing a hardware accelerator with Xinlinx
FPGAs based on HLS, we introduce the hardware design flow in Fig. 2.2. Starting
from a software code written in C or C++ in Vivado HLS tool, we design our hardware
by applying efficient HLS directives to optimize our design. In the synthesis step,
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the optimized code is compiled and translated into a netlist. In the last step in Vivado
HLS, it is possible to run the C/RTL co-simulation to check if the generated RTL
is functionally identical to the C++ code. Finally, an RTL IP could be generated
that can be used in Vivado tool. The final steps in Vivado are Placement, route,
implementation and generattion of the bit-stream.

Fig. 2.2 Hardware design flow in Vivado

2.2.1 Design Optimizations in HLS

To introduce the principles behind the HLS-based hardware optimization techniques,
a more abstract description of the high-level directives is presented in this part. In
Figure 2.3 the most widely used optimization directives are illustrated with their
corresponding hardware implementation. These directives include Loop Pipelining,
Loop Unrolling, Array Partitioning, and Dataflow. These directives can be used to
reduce the latency, increase the throughput, and make the best use of the hardware
resources. Note that latency is the time required to produce the output of a computa-
tion starting from when the corresponding input is received. Throughput is the rate at
which the outputs are produced (or the inputs are consumed) and is measured as the
reciprocal of the time difference between the arrival of two consecutive outputs (or
inputs). In the following, these HLS optimization directives are briefly introduced:

• Loop Pipelining allows multiple operations of a loop to be executed con-
currently on different hardware resources, while those resources are used
repeatedly over the various iterations of the loop.

• Loop Unrolling, instead, creates multiple instances of the hardware for the
loop body, which allows some or all of the loop iterations to occur in parallel.
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• By using Array Partitioning we can split an array, which is implemented
in RTL by default as a single block RAM resource, into multiple smaller
arrays that are mapped to multiple block RAMs. This increases the number of
memory ports providing more bandwidth to access data.

• The Dataflow directive allows multiple functions or loops to operate concur-
rently. This is achieved by creating channels (FIFOs or Ping-Pong buffers) in
the design, which enables the operations in a function or loop to start before
the previous function or loop completes all of its operations. The Dataflow
directive is mainly used to improve the overall latency and throughput of a
design.

• Arbitrary Precision (AP) data types make it possible to use efficient number
of bits for the data types. As opposed to the software C++ codes in gen-
eral purpose processors which support fixed number of bits, using AP data
types in HLS-based designs can reduce the resource usage and increase the
performance.

• Loop merging provides the opportunity to execute the multiple loops in parallel
which results in reducing the design latency.

• By using Resource Allocation directive, it is possible to allocate specific
hardware resources for individual computational operations.

Fig. 2.3 Hardware optimization directives
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2.2.2 HLS Design Trends in Selected Domains

Although there are several tools to design HLS-based hardware accelerators that
are developed either commercially or by academia [6], we focus on Vivado HLS, a
commercial tool that is used for Xilinx FPGAs.

There have been a growing interest in recent years in using HLS tools to design
domain-specific accelerators. In this subsection, we introduce some of the relevant
works as examples that used HLS for their hardware accelerator design. We will
highlight the advantages of our accelerators compared to these works in the related
chapters. For broader analysis of the literature, including both HLS-based and
RTL-based designs, please refer to the corresponding chapter.

In the design of FDTD accelerators, the authors in [7] use an HLS tool called
MaxCompiler to optimize their design. However, they used simplified boundary
conditions. In [8], memory and power performance of FPGA accelerators for general
stencil algorithms including FDTD have been investigated by using MaxCompiler
tool. For the PCA hardware design, an HLS-based design was introduced in [9].
Schellhorn et al., presented another PCA implementation on FPGA in [10] by
using HLS. However, the EVD part could not be implemented in hardware due to
the limited available resources. In [11], an HLS design for SVM acceleration is
proposed and is extended in [12, 13]. Due to the local storage of SVM coefficients,
these works could be tested on small-scale problems. Finally, there are numerous
works for the design of ANNs in hardware using HLS, one of which is hls4ml ([14]).
However, the efficient co-design of ANNs training and hardware configurations has
not been fully explored.

2.3 Applications of Domain-Specific Accelerators

In this section we introduce some of the applications that are relevant for this thesis
in which domain-specific accelerators can be used. It is important to understand the
main objectives of each application to obtain the specifications and requirements of
the accelerators used in these applications. We focus on two research areas as exam-
ples of domain-specific applications, which are biomedical microwave techniques
and Machine Learning (ML). Note that ML is a general research field and has a wide
range of applications one of which could be biomedical microwave applications.
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2.3.1 Biomedical Microwave Techniques

Microwave Imaging (MI) is a technique to observe the internal structure of an
object by using electromagnetic fields at microwave frequencies. It has received
considerable attention in medical applications due to the fast diagnosis and high
safety for the patient [15]. Unlike other medical imaging modalities, such as CT-scan
or X-ray, MI has the advantage of using non-ionizing radiations. This is because
microwave radiations are electromagnetic waves at frequencies between 300MHz and
300GHz, which is between radio and infrared frequency ranges. Although ultraviolet,
X-ray, and gamma-ray are commonly used in medical imaging, they have much
higher frequencies compared to microwaves, which makes them ionizing radiations
causing several health risks in the medical imaging devices (as opposed to non-
ionizing microwave radiations). Having lower frequencies, microwave radiations
have low penetration depth, and it is more challenging to use them for medical
diagnosis. Although Magnetic Resonance Imaging (MRI) does not use any radiation
either, the MRI instruments are bulky and very expensive and can be used only inside
the hospitals. The low-cost, small-scale, portable, and non-invasive characteristics of
an MI device make it one of the most promising medical imaging techniques [16].

A Microwave Imaging system uses microwave radiations emitted from a set of
antennas arranged in a proper geometry around a given body part. The reflections
of these radiations, which are created at the interface between tissues exhibiting
different dielectric properties—i.e., a so called dielectric contrast—are captured
and converted to an output image according to a specific algorithm to highlight, for
example, an anomaly within a body part.

The development of an MI device requires collaboration between researchers
working on different parts of the device. This is the main goal of the EMERALD
project (www.msca-emerald.eu), an MSCA training network funded by the European
Commission under the H2020 program. The research work at the basis of this
thesis has been done in the framework of this project, in which the various MI
techniques used by researchers very often require hardware acceleration, as it will
be explained later. Before delving deeper into the various accelerators required by
the MI techniques, let us introduce the main components of an MI device.

An MI system consists of several components that are depicted in Fig. 2.4 for the
particular case of brain stroke monitoring. A similar figure can be depicted for other
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MI applications such as breast cancer detection. The first component of the system
is a set of antennas that are arranged around the body part under consideration (i.e.
head or breast). These antennas are connected to a switching matrix, which controls
which pairs of antennas are active during the measurements. A Vector Network
Analyzer (VNA) is connected to the switching matrix and measures the microwave
radiations in the form of a scattering matrix. Each element (i, j) of the scattering
matrix describes the relation between the wave emitted by the ith antenna and the
wave received by the jth antenna. Therefore, if the number of antennas is N, the
scattering matrix is a symmetric matrix with N ×N elements showing the relative
transferred energy between each pair of antennas. The last component of the device
is a processing system that is used to convert the microwave measurements into the
image pixels (image reconstruction), or to analyze the microwave measurements to
detect anomalies for medical diagnosis (anomaly detection). Precisely the algorithms
used in such processing system may require acceleration.

Fig. 2.4 General diagram of a Microwave Imaging system.

When the microwave electromagnetic fields are radiated to the body, the reflected
waves are scattered due to the difference between the dielectric properties of the body
tissues. This phenomena is termed scattering. Related to the scattering phenomena
are two heavy computing problems that are implemented in the processing system,
especially in iterative algorithms. One is termed forward scattering and consists
in computing the scattered field via electromagnetic simulations starting from an
electromagnetic model of the objects (i.e. the body tissues), which have to be
completely known with their dielectric properties. The second one is termed inverse
scattering, in which the goal is instead to retrieve the properties of an unknown
object from the known scattered field. Often forward and inverse scattering are
combined in iterative optimization problems in a way that inverse scattering invokes
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repeatedly the forward step until convergence, but it is also possible that inverse
scattering uses a different technique than forward scattering to obtain the unknown
parameters. Medical MI suggests therefore different algorithms to solve the problem
of inverse scattering, which will be briefly discussed in Section 2.4.

Microwave Imaging in Breast Cancer Detection

Breast cancer is the most common type of cancer and the leading cause of death
in women worldwide [17]. MI is a trending technology in biomedical research
community for breast cancer detection. Although mammography is the standard
imaging modality in the diagnosis of breast cancer, its ionizing radiations calls
for safer imaging techniques. The higher dielectric contrast of the tumor tissues
compared to normal breast tissues allows for the breast tumor detection in an MI
system, as shown in Fig. 2.5.

Fig. 2.5 Dielectric properties of breast tissues. Difference in relative permittivity allows for
tumor detection in MI ([18]).

There have been several works in recent years concentrating on the development
of an MI system in the application of breast cancer diagnosis [19–22, 18, 23].

Microwave Imaging in Brain Stroke Monitoring

Brain stroke is a cerebrovascular disease affecting a large percentage of people
worldwide, which can lead to permanent disabilities or even death. Early diagnosis
of brain stroke, either ischemic or hemorrhagic, helps in finding the right treatment.
Recently, there has been a growing interest in using MI technology for brain stroke
monitoring [24–29]. In Fig. 2.6, the setup of a recent MI device is shown, which
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consists of a set of antennas that are placed around the head and P positions are
considered for the locations of the stroke. The exact location of the stroke can be
detected by using an MI inverse scattering solution.

Fig. 2.6 Brain stroke detection with MI system containing V antennas and P candidate
locations for the stroke positions (r1 to rP) ( [29]).

2.3.2 Machine Learning (ML)

Machine Learning algorithms are applicable to a variety of applications including MI.
Due to the extensive range of applications of ML, we consider a general framework
for ML algorithms which is not limited only to microwave imaging. There are two
steps in any ML model that are shown in Fig. 2.7 which shows how the training and
inference of an ML model is performed. Any ML model contains a set of training
parameters that are obtained during the training step. The training parameters depend
on the type of ML approach, including weights and biases for a Neural Network,
coefficients for linear regression models, or support vectors for Support Vector
Machines (SVMs). Once these training parameters are obtained, they can be used
in the inference step to predict the outputs of the model for the new input data.
Estimation of the mapping between inputs and outputs are termed classification (for
discrete outputs) or regression (for continuous outputs). In Sec. 2.5, different ML
models are explained in more detail. Note that using data pre-processing and feature
extraction techniques before the training step leads to higher accuracy and, most of
the times, these steps are also required and can be considered part of an ML pipeline.
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Fig. 2.7 Machine Learning training and inference steps.

Here is an example of an application domain in which feature extraction is
required before the actual classification.

Mahine Learning in Hyper-spectral Imaging (HI)

Hyperspectral Imaging (HI) has a broad range of applications, from medical imaging
to satellite remote sensing. HI sensors acquire digital images in several narrow
electromagnetic spectral bands. This enables the construction of a continuous
radiance spectrum for every pixel in the scene. Thus, HI data exploitation helps for
example to remotely classify the ground materials-of-interest based on their spectral
properties acquired from a satellite, or to classify tumor lesions (i.e., benign vs
malign) also based on their electromagnetic radiation in specific spectral bands [30].
HI data are organized in a matrix of size R×C in which R is the number of pixels in
the image and C is the number of spectral bands. A 3D view of the HI data is shown
in Fig. 2.8 for better illustration.
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Fig. 2.8 Hyper-spectral Images (HI) with C bands. Each band has R = M×N pixels.

Due to the large data dimensions in HI, the direct processing of these data
via ML is not directly feasible, hence feature extraction techniques are used to
remove redundant information in different bands. Note that in our notations, we use
interchangeably the terms R (Rows) and pixels, as well as C (Columns) and bands.

Machine Learning in Other Applications

The ML algorithms considered in this thesis can be used in a variety of applications.
Due to the wide range of applications of ML, we briefly mention a few of them
to highlight the flexibility of our developed methodologies for ML algorithms. In
addition to the medical diagnosis, ML can be used in several areas including image,
speech, or pattern recognition, object detection, face detection, and Natural Language
Processing (NLP), as shown in Fig. 2.9. In [31] and [32] recent trends and research
directions of Machine Learning and Deep Learning (DL) are thoroughly described.

Fig. 2.9 Machine Learning Applications.
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ML algorithms in MI have different goals. Some algorithms aim at a qualita-
tive classification, for example by identifying the type of a lesion, its size and its
approximate position within a body part. Other algorithms aim instead at a more
quantitative information, like the one obtained by solving the inverse scattering prob-
lem, which consists in finding the unknown relationship between the system inputs
(e.g. microwave measurements) and the desired outputs (e.g. scatterer location and
shape, or its exact dielectric values). For this purpose, a training data set is required
containing a known set of inputs/outputs which can be obtained for MI applications
by making several measurements from different scatterers with different locations
and shapes. Once the ML model is trained, it can be used for the new input data to
predict the system output.

2.4 Microwave Imaging Algorithms

To understand how an MI system produces the image of the internal structure of the
objects, it is required to be familiar with the details of the inverse scattering problem
and the algorithms to solve this problem.

2.4.1 Inverse Scattering Problem

The purpose of medical microwave imaging is to determine the electromagnetic
properties of an object under test (scatterer) positioned inside an investigation do-
main by means of measurements made with a number of antennas positioned on a
Measurement domain. Fig. 2.10 illustrates a schematic of an MI imaging setup.

The constitutive parameters of the scatterer are the complex permittivity, ε , and
the magnetic permeability, µ . It is worth mentioning that εb, µb, the parameters of
the background (everywhere outside the scatterer), are assumed to be known. In this
setting, the electric field at any given position can be expressed as:

Etotal = E inc +Escat (2.1)
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Fig. 2.10 Microwave Imaging setup. Inverse scattering is the problem of finding ε and µ

from the microwave measurements in the measurement domain.

in which Etotal is the total field at the Measurement domain, E inc is the incident
field (i.e. the field when there is no scattering object present), and Escat is the
scattered field (i.e. the additional field caused by the scatterer). If the contrast
between the scatterer in the observation points r and the known background is
defined as χ(r) =−iω(ε(r)− εb), there is a non-linear relationship between Etotal ,
Escat , and χ through the Green’s function G:

Escat(r) = iωµ0

Z
V

G(r,r′).Etotal(r′).χ(r′)dv′ (2.2)

Inverse scattering problem in MI can be defined as obtaining the unknown
contrast function χ from the total measurements made by the antennas in the Mea-
surement domain. Due to the non-linear relationship between the scattered field
and the contrast function χ , the inverse scattering problem is inherently non-linear.
However, with some considerations, it is possible to convert it to a linear problem.
The typical approach for this linearization is based on Born approximation. We can
write equations 2.1 and 2.2 as the following expression:

Etotal(r) = E inc(r)+ iωµ0

Z
V

G(r,r′).Etotal(r′).χ(r′)dv′ (2.3)
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As we can see, eq. 2.3 can be written as a recurrent series, that is termed Born series.
The first-order approximation of the Born series states that we can approximate the
total field (Etotal) in the right-hand side of eq. 2.3 with the incident field (E inc). This
will convert the problem to a linear one reducing the complexity of the solution. This
leads to a system of linear equations which can be written as the following term after
discretization over a finite spatial basis:

Escat = SBorn χ (2.4)

in which SBorn is the linear Born approximation of the scattering operator. All
the terms in eq. 2.4 are discrete matrices. Therefore, the general formulation of a
linear minimization problem can be used to compute the vector of unknown contrast
function (χ):

minχ ||Escat −SBorn χ|| (2.5)

One of the typical approaches to solve the above linear problem is to use Singular
Value Decomposition (SVD) of the scattering matrix (SBorn) and approximate the
unknown contrast by discarding the least significant singular values and associated
vectors, which is often called Truncated SVD (TSVD):

χ = Σ
N
i=1

(u∗i Escat)

λi
vi (2.6)

in which λi, ui, and vi are the ith singular value, left singular vector, and right singular
vector of SBorn, respectively, and are obtained according to the SVD of the scattering
matrix:

SBorn =UλV ∗ (2.7)

Although approximation of the inverse scattering problem with a linear one reduces
the accuracy of the solution, it is well suited for the weak scattering objects and
low-contrast scenarios. However, for high-contrast objects, more precise methods
are required which consider the non-linearity of the inverse problem. Non-linear
algorithms for inverse scattering are more accurate, but they are computationally
more expensive. These algorithms for solving the inverse scattering problem in MI
will be discussed in more detail in the next subsections, which are usually divided
into two categories that are Qualitative and Quantitative algorithms. In Qualitative
algorithms, either the shape and location of the scatterer are identified, or a linear
approximation of the problem is solved. In Quantitative algorithms, however, the
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exact dielectric values of the scatterer are estimated without any approximation. In
the following, these two categories are explained in more detail.

2.4.2 Qualitative Imaging

Inverse scattering is inherently a non-linear problem. However, in qualitative imaging,
it is approximated as a linear problem. The simplest approach for this linearization
is Born approximation. In this category, the presence and shape of the anomaly (i.e.
brain stroke) is detected.

Linear Sampling method (LSM) [33]–[34], Factorization method [35], Truncated
Singular Value Decomposition (TSVD) [36], Time Reversal (TR) techniques such
as multiple signal classification (MUSIC) algorithm [20] and Eigenvalue Decompo-
sition (EVD) of the TR operation [37], Beamforming approaches [38] and several
Radar-based methods [39] are among these linearized qualitative algorithms. Matrix
multiplication is one of the critical parts of these algorithms due to the large data
dimensions. Although qualitative methods are not highly accurate, they are well
suited for weak scattering objects and low-contrast scenarios. Furthermore, in some
algorithms it is possible to obtain quantitative results when such approximation
holds.

2.4.3 Quantitative Imaging

In quantitative imaging, the exact values of image pixels are reconstructed by solving
the non-linear inverse scattering problem. These methods are more accurate because
they consider the non-linearities of the problem. However, they are computationally
more intensive.

Some of the non-linear quantitative algorithms are Contrast Source Inversion
[40], inexact Newton methods [41], and DBIM-TwIST [42] which belong to the
Microwave Tomography deterministic approaches. In addition, stochastic tech-
niques including Simulated annealing and Genetic Algorithm are among the other
quantitative MI methodologies [43].
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Iterative non-linear image reconstruction

One of the non-linear quantitative approaches in solving MI inverse scattering
problem is iterative image reconstruction shown in Fig. 2.11. Starting from an initial
guess of the dielectric profile, the forward solver, often implemented using the Finite
Difference Time Domain (FDTD) approach [44], computes the electromagnetic
fields. The output of the forward solver is compared with the actual microwave
measurements and, based on the error, the dielectric profile is updated with a specific
inverse scattering algorithm. The inversion part is based on DBIM-TwIST algorithm
[42] and the forward solver is FDTD algorithm.

Fig. 2.11 General diagram of a non-linear image reconstruction iterative algorithm in MI,
with the compute-intensive FDTD step.

2.5 Machine Learning Algorithms

In this section, the processing steps in Machine Learning approaches are explained
in more detail. As shown in Fig. 2.12, there are three main processing steps which
are Pre-processing, Feature extraction, and Classification steps. Note that Deep
Neural Networks (DNNs) execute the feature extraction and classification steps in
the different layers of the network. Section 1.2.4 will cover more explanation about
the Neural Networks (NNs). In the following, each processing step in Machine
Learning is thoroughly described.
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Fig. 2.12 Three data processing steps in Machine Learning. Note that in DNNs, feature
extraction and classification are implemented in different layers of the network.

2.5.1 Preprocessing

Data preprocessing is an essential step in Machine Learning which is used to enhance
the quality of raw input data which are usually inconsistent, noisy, and inaccurate.
Preprocessing helps ML models to better learn and extract information from data.
Different data transformation methods can be used in preprocessing step to deal with
the imperfect and noisy data. Data normalization, standardization, and scaling can
be used for noise treatment. Another method that is used to deal with missing values
in data is to replace them with the mean (or median, mode, ...) of the data.

2.5.2 Feature Extraction

The second step in ML is to extract useful information from data. This step can
also be used in data dimensionality reduction methods in which the most important
information from data is preserved by extracting the most significant features from
data. One of the widely used algorithms for feature extraction and dimensionality
reduction is Principal Component Analysis (PCA) which is thoroughly explained in
Section 1.2.2. Other examples of feature extraction techniques are Neural Networks,
such as Auto-encoders, or convolutional layers in DNNs.

2.5.3 Classification

The last step in ML is the classification of input features (if the output is continuous,
it is termed “regression”). Classification algorithms use input features in training
data to predict the probability that the data will fall into one of the predefined
categories. Different algorithms can be used for classification in ML. Support Vector
Machine (SVM) is one of the popular classification techniques that will be covered in
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section 5.1. Other examples of classification algorithms are Decision Trees, Random
Forests, and K-Nearest Neighbours (KNN). In addition, DNNs are widely used for
both feature extraction and classification.



Chapter 3

FPGA Acceleration of 3D FDTD for
Microwave Imaging using HLS

Microwave Imaging (MI) uses microwaves emitted and captured by several antennas
to create an image of the inner dielectric profile of an object. It has attracted
attention among biomedical researchers due to its low-cost, non-ionizing and non-
invasive characteristics. Medical diagnosis in MI is based on the contrast between
the dielectric properties of normal and anomalous tissues [45].

MI solves the electromagnetic inverse-scattering problem, which is inherently
non-linear and makes the reconstruction a challenging task. Although approximate
linear methods have been used [39][20][46], they have limited accuracy especially
when the object is highly heterogeneous. More accurate, non-linear approaches solve
the inverse problem by updating the dielectric estimation iteratively, which results
in a high execution time. The high execution time comes from FDTD, for which
several hardware accelerators have been proposed, as covered in Sec. 3.1. Although
a GPU implementation is a natural choice, depending on the complexity of the
problem—primarily number of elements in the volume and number of antennas—a
3D image reconstruction can still take hours to finish. This motivated us to design
an alternative hardware accelerator for the MI algorithm developed by Kosmas et
al. [42].

The MI algorithm was originally coded in MATLAB with the forward part
accelerated by a Tesla GPU using an efficient commercial FDTD software library,
Acceleware [47]. This code keeps the GPU fully busy by efficiently parallelizing
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the execution on the number of elements in the 3D volume. Since there is no room
left to further parallelize on the number of antennas, the GPU code of the FDTD is
executed sequentially for each of them. In MI systems with tens of antennas [46],
leveraging instead the antenna parallelism could be the key to reducing the overall
execution time from hours to minutes.

Although one obvious solution is to parallelize the execution on many GPUs,
this is impractical for various reasons, including cost, form factor, and overall power
consumption. Instead, an implementation on a Multi-FPGA platform can offer an
equivalent performance at a fraction of cost and power, not to mention the much more
manageable size and weight. A GPU implementation, however, can still outperform
FPGA platforms with limited capacity.

For these reasons, we developed a 3D FDTD accelerator using a high-level
approach, so that the code can be both implemented in FPGA using a High-Level
Synthesis (HLS) flow, or easily changed to be executed in a GPU. This is possible
because current FPGA design flows accept portable C/C++ high-level descriptions,
which are enriched with specific directives, termed pragmas, for generating the
desired Register-Transfer Level (RTL) code for FPGA hardware implementation.
This high-level approach allows to explore the design space by changing the pragmas
in a more efficient way compared to RTL design. In [48], a comprehensive analysis
and the implications of using several HLS optimization transformations (including
the HLS pragmas) have been presented for High-Performance Computing applica-
tions. In [49] and [50], the efficiency and performance of HLS-based design space
exploration are explored. In [51], a fast HLS simulator is introduced to accelerate the
hardware simulation process, and in [52] and [53], new methodologies are proposed
for the optimum selection of HLS directives.

One of the design challenges for FDTD is the optimization of the memory access
to a large amount of data, which is complicated by the relatively low amount of
on-chip memory. While many previous publications considered a less challenging
2D FDTD, we focus instead on a full 3D implementation. To cope with the memory
access issues in 3D FDTD, the few previous works on the subject use specific
blocking methods to read blocks of data from the external memory, which is an
approach that we also use in this work.

However, previous 3D FDTD works use simplified Periodic Boundary Conditions
(PBC), which is not an accurate approach for some MI problems, but simplifies
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the hardware design. Improving the accuracy calls for more appropriate, but more
difficult to implement in hardware, boundary conditions like Convolutional Perfectly
Matched Layer (CPML), which is used in few works and in a limited way. Finally,
previous works on 3D FDTD do not consider dispersive materials, which leads
to more complex equations with dependencies that result in less straightforward
parallelization. To the best of our knowledge, we are the first to propose a full-
fledged 3D FDTD in FPGA that implements both CPML boundary conditions in
all directions and uses an exact model for dispersive materials. We propose two
possible FPGA implementations that use a different amount of on-chip memory,
which creates a trade off between performance and resource usage.

In summary, the following is the list of our contributions:

• We propose the first FPGA accelerator for 3D FDTD integrated in an MI
algorithm for medical applications.

• This is the first 3D FDTD accelerator to fully model dispersive materials,
which makes the FPGA design more challenging.

• The CPML boundary conditions for 3D FDTD are used for all directions in
contrast to previous accelerators designed with a high level approach that either
do not consider CPML or consider periodic structures with CPML conditions
only for one direction.

• Two hardware architectures with different characteristics are proposed and
their pros and cons are analyzed.

• The entire hardware is designed using a High Level Synthesis (HLS) tool and
several specific hardware optimization methods are used to design an efficient
hardware.

• Both single- and multi-FPGA platforms are analyzed that can be used to
accelerate FDTD with multiple antennas.

• The GPU implementation derived from our 3D FDTD code has a comparable
performance with a commercial GPU implementation.

In the remainder of this chapter, we discuss the related work in Sec. 3.1 and the
principles of FDTD for MI in Sec. 3.2, present the FPGA hardware accelerator in
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Sec. 3.3 and related results in Sec. 4.4. In Sec. 3.6 we discuss the challenges of the
design and an overview of the solutions, and finally, we conclude in Sec. 4.5.

3.1 Related Work

Several FDTD accelerators proposed in the literature are based on GPUs. For
instance, in [54] an implementation based on CUDA associates each thread to a cell
in the FDTD grid and obtains the same accuracy of the CPU design with a speed-up
ratio proportional to the grid size. Other GPU-accelerated versions of FDTD are
proposed in [55][56][57].

High power consumption of GPUs draws attention to FPGA implementations. In
[58] an FPGA accelerator for 2D FDTD is designed using OpenCL for two hardware
platforms. The authors apply several OpenCL pragmas to create deeply pipelined
loops. However, they do not consider the impact of boundary conditions. The
FDTD hardware accelerator in [7] uses a HLS tool called MaxCompiler developed
by Maxeler technologies. In their work, the authors investigate different boundary
conditions, including PBC and CPML. However, their design can be used only for
periodic structures where one can model the entire simulation space by a single
periodic cell. In this cell, CPML conditions are applied only to the top and bottom
boundaries, and PBC conditions are used for the other four boundaries. In contrast,
we consider CPML in all directions as required by the MI application, at the cost of
a much more complex design.

Takei et al. present an OpenCL-based design for 2D FDTD on FPGA [59]. To
reduce the global memory access, they used an overlapped tiling method that can
locally store small blocks of data. Despite lower power consumption compared to
GPU, the processing time could not be reduced for large grid sizes. Waidyasooriya
et al. in [60] extend the work in [59] to 3D FDTD by pipelining multiple FDTD
iterations. Although they achieve better performance than CPU- or GPU-based
designs, they only consider periodic structures for the boundary conditions. In
addition, they simplify the FDTD update equations by ignoring the polarization
current, hence reducing the required memory bandwidth. Recently, in [61] an
FPGA design for 3D FDTD that considers CPML boundary conditions has been
proposed, although the authors do not consider the impact of dispersive materials
and polarization currents. In addition, they use Verilog to design their hardware at
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RTL, which increases the design and development time compared to the HLS-based
design and makes less efficient the design space exploration.

FDTD can be seen as a Stencil computation. In stencils, the elements of a multi-
dimensional grid are updated iteratively based on the neighbouring cells using a fixed
pattern. The main bottleneck in both GPU and FPGA designs for stencil computation
is the data transfer time between global and local memories. The common approach
to alleviate this problem is to use spatial or temporal blocking. In the former, a
spatial block of data is stored in on-chip memory to reduce the access time, and in the
latter, different time steps are pipelined for further parallelization. Regarding stencil
acceleration in FPGAs, there have been extensive research works in recent years. In
[62], Waidyasooriya et al. extended their previous FPGA accelerator to a general
stencil computation by increasing the degree of parallelism. In addition to pipelining
multiple iterations, they could compute multiple grid cells in parallel. However, they
did not report results for 3D FDTD with complex boundary conditions like CPML.
In [63], another FPGA design for 3D stencils using OpenCL uses a combination of
spatial and temporal blocking methods. In [64], [8], memory and power performance
of FPGA accelerators for general stencils have been investigated. Other successful
designs for stencil acceleration have been presented in [65] and [66]. Although some
of the above works have considered FDTD as a benchmark for stencil computation,
they analyzed simplistic scenarios that cannot be adapted to the special requirements
of FDTD as used in MI. For example, simple boundary conditions like Dirichlet
[64][8][66] or PBC [63] cannot be used in MI. Polybench, a benchmark suite used
in some stencil accelerators, like [65], does not include a full 3D FDTD as only
the Transverse Electric (TE) mode is considered (other directions of the fields are
ignored). In addition, not modeling dispersive materials as done in [62] can improve
the hardware acceleration (e.g., with deeper pipelining on time iterations), but cannot
be done in MI applications.
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3.2 FDTD in Microwave Imaging

3.2.1 Background

The main equations in FDTD for MI are the time-domain Maxwell equations for
dispersive and lossy materials:

∇×H =
∂D
∂ t

+σeE + JS (3.1)

D(ω) = ε(ω)E(ω) (3.2)

−∇×E =
∂B
∂ t

+σmH +MS (3.3)

B(ω) = µ(ω)H(ω) (3.4)

H and E are magnetic and electric fields; B and D are magnetic and electric flux
densities; MS and JS are magnetic and electric current densities (zero in the follow-
ing); σm and σe are magnetic and electric conductivity; µ is magnetic permeability
and ε is electric permittivity.

Most biological materials in MI have permeability close to that of free space,
µ = µ0, the permeability of free space. Thus, B = µ0H and (3.3)-(3.4) can be merged
into one equation (−∇×E = µ0

∂H
∂ t +σmH +MS). On the contrary, the frequency

dependency of ε in dispersive materials must be modeled, typically with the Debye
model that we also use here. Taking this into account, Eqn. (3.2) can be written
as: D = ε0E +P, in which ε0 is the free-space permittivity and P is the polarization
vector that is proportional to E. Polarization current, JP, is the time derivative of P:
JP = ∂P

∂ t .

FDTD solves the equations above based on finite difference approximations. The
3D volume is divided into cuboids called Yee cells [67] in such a way that each
magnetic field is surrounded by four electric fields and vice versa. This results in two
main update equations for electric and magnetic fields, respectively. Compared to the
simpler case of non-dispersive materials, however, an additional variable accounting
for the polarization current (JP) appears in the update equation for the electric field
only. The FDTD algorithm for a Debye model repeats the following two steps at
each time step [44]:
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1. update magnetic fields;

2. for each electric field component:

(a) update electric fields and store them in a new variable E ′;

(b) update polarization currents based on the new and old values of electric
fields;

(c) update the old fields with the new ones (E = E ′).

3.2.2 Boundary Conditions: CPML

FDTD is used to obtain the propagation of the electromagnetic waves in the simula-
tion space. Due to the finite size of this space, the propagation must be terminated in
the “Boundary Regions”. Therefore, the update equations in these regions must be
modified by adding proper boundary conditions. Dirichlet conditions consider that
the fields in the boundaries are zero, while PBC considers the fields to be repeated
after a fixed number of cells. These conditions will create unwanted reflections from
the boundary regions towards the inner simulation space. CPML is a more complex
boundary condition that eliminates these reflections by letting the propagation be
absorbed in the boundary region.

To better understand the following description of the FDTD code and the role
played by the boundary conditions the exemplifications in Fig. 3.1 are helpful. The
figure shows all the cells and identifies two boundary planes for each direction (x,y,z)
using a different coloring. The figure refers to the magnetic field and shows that,
for instance, the components Hx and Hz must be updated in the two planes of the y
direction (called front and back faces in the following), while the components Hy

and Hz must be updated in the two planes of the x direction (left and right faces), and
so on. A similar figure can be used for the electric field.
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Fig. 3.1 Boundary regions for H field in 3D FDTD.

3.2.3 FDTD Pseudo-Code

Each FDTD update equation can be written in a general form like the following
equation for Hx:

Hx = ahxHx + bhy(E+x
y − Ec

y) + bhz(E+x
z − Ec

z ) + dhx(ΨHxy + ΨHxz). (3.5)

Ec and E+x are the electric field of the central cell being calculated and of the
next cell, respectively; ΨHxy, ΨHxz are used in the boundaries only and can be
considered to be zero in the main cells. All the other terms are constant with a spatial
dependency. When computing the cells in the boundary layers in y direction, ΨHxz

is zero and when updating the cells in the boundaries of z direction, ΨHxy is zero. In
the overlay of boundary cells in y and z directions, both terms are present. Therefore,
the update equation for Hx can be divided into different regions including the main
cells, boundary cells of y direction (front and back) and boundary cells of z direction
(top and bottom). Separate loops must be considered for each region to obtain the
final output.

These separate loops are described by the FDTD pseudo-code in Alg. 1. Notice
the difference between Update H and Update E equations due to the polarization
currents JP{x,y,z}. Ec, Hc are the electric and magnetic fields of the central cell being
calculated; (E+x,E+y,E+z) and (H−x,H−y,H−z) are the electric and magnetic fields
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Algorithm 1: 3D FDTD Pseudo-code
for s ∈ Antennas do // Loop over antennas

for c ∈ Domain Cells ∪ Boundary Cells do // Initialize at t=0
E{x,y,z}(s,c, t = 0) = 0, H{x,y,z}(s,c, t = 0) = 0

// From now on (s,c,t) omitted for readability
for t = 1 to Tmax do // Loop over time steps

// Update H: loop over all cells
for c ∈ Domain Cells ∪ Boundary Cells do

Hx = ahxHx +bhy(E+x
y −Ec

y )+bhz(E+x
z −Ec

z )

Hy = ahyHy +bhx(E
+y
x −Ec

x )+bhz(E
+y
z −Ec

z )
Hz = ahzHz +bhx(E+z

x −Ec
x )+bhy(E+z

y −Ec
y )

// Update H boundary: loop over boundary cells
for c ∈ Boundary Cells of y direction, front face do

ΨHxy = chy1ΨHxy + chy2(E
+y
z −Ec

z ), Hx += dhxΨHxy

ΨHzy = chy1ΨHzy + chy2(E
+y
x −Ec

x), Hz += dhzΨHzy

for c ∈ Boundary Cells of y direction, back face do
// see footnotea

for c ∈ Boundary Cells of x direction, left face do
ΨHyx = chx1ΨHyx + chx2(E+x

z −Ec
z ), Hy += dhyΨHyx

ΨHzx = chx1ΨHzx + chx2(E+x
y −Ec

y), Hz += dhzΨHzx

for c ∈ Boundary Cells of x direction, right face do
// see footnotea

for c ∈ Boundary Cells of z direction, top face do
ΨHxz = chz1ΨHxz + chz2(E+z

y −Ec
y), Hx += dhxΨHxz

ΨHyz = chz1ΨHyz + chz2(E+z
x −Ec

x), Hy += dhyΨHyz

for c ∈ Boundary Cells of z direction, bottom face do
// see footnotea

// Update E: loop over all cells
for c ∈ Domain Cells ∪ Boundary Cells do

E ′
x = aexEx +bey(Hc

y −H−x
y )+bez(Hc

z −H−x
z )

E ′
y = aeyEy +bex(Hc

x −H−y
x )+bez(Hc

z −H−y
z )

E ′
z = aezEz +bex(Hc

x −H−z
x )+bey(Hc

y −H−z
y )

E ′
x += cPJPx, E ′

y += cPJPy, E ′
z += cPJPz

// Update E boundary: loop over boundary cells
for c ∈ Boundary Cells of y direction, front face do

ΨExy = cey1ΨExy + cey2(Hc
z −H−y

z ), E ′
x += dexΨExy

ΨEzy = cey1ΨEzy + cey2(Hc
x −H−y

x ), E ′
z += dezΨEzy

for c ∈ Boundary Cells of y direction, back face do
// see footnoteb

for c ∈ Boundary Cells of x direction, left face do
ΨEyx = cex1ΨEyx + cex2(Hc

z −H−x
z ), E ′

y += deyΨEyx
ΨEzx = cex1ΨEzx + cex2(Hc

y −H−x
y ), E ′

z += dezΨEzx

for c ∈ Boundary Cells of x direction, right face do
// see footnoteb

for c ∈ Boundary Cells of z direction, top face do
ΨExz = cez1ΨExz + cez2(Hc

y −H−z
y ), E ′

x += dexΨExz
ΨEyz = cez1ΨEyz + cez2(Hc

x −H−z
x ), E ′

y += deyΨEyz

for c ∈ Boundary Cells of z direction, bottom face do
// see footnoteb

// Update JP: loop over all cells
for c ∈ Domain Cells ∪ Boundary Cells do

JP{x,y,z} = spJP{x,y,z}+Qp(E ′
{x,y,z}−E{x,y,z})

E{x,y,z} = E ′
{x,y,z}

for c ∈ Antenna Cells do // Add antenna source signals:
Ez(s,c, t) =Source(s,c, t)

aSame equations of previous loop with new Ψ̂H and ĉh variables
bSame equations of previous loop with new Ψ̂E and ĉe variables
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of the next and the previous cell, respectively, in (x,y,z) directions. Except variables
H,E,JP,ΨH ,ΨE , all the other terms are constant with a spatial dependency, which
requires a significant amount of memory. For more details on FDTD please refer
to [44]. Note that the dependency on time step (t) and antenna index (s) in Alg. 1
is omitted whenever needed to improve readability. In addition, even though the
antenna source signals can be added in any direction, in our design the antennas emit
an electric field in the z direction.

As Alg. 1 clearly shows, the outer loop can be easily unrolled and assigned to
different parallel Compute Units (CUs), each in charge of one antenna. In the next
two sections, we focus first on the design and optimization of a single CU and its
implementation on one FPGA, then we focus on the multi-FPGA implementation of
a multi-CU system.

3.3 FPGA Design of an FDTD Compute Unit

We validated our initial C++ design in terms of accuracy against the Acceleware
commercial code. Both codes use 32-bit Floating-Point (FP) data for all the variables
in Alg. 1. Note that computing precision is critical in MI iterative algorithms, as the
errors tend to accumulate and lead to inexact solutions. This is why fixed-point data
type, which would certainly lead to higher computation speed, cannot be used in this
case.

Although we easily converted our initial code to RTL for FPGA implementation
using HLS tools1, the estimated performance (latency in number of clock cycles
times the estimated clock period) was worse than the GPU one in Acceleware. To
enhance the performance, we adopted various hardware optimization strategies,
which consisted in the use of specific HLS pragmas and some modifications to the
original C++ code. Although the code can be easily adapted to different FPGAs
from different vendors, we focused our optimizations and experiments on a Xilinx
target. Therefore, from now on, we often refer to Vivado HLS and Vivado as the
tools for HLS development and implementation, respectively. It is important to note
that the design goal in our hardware accelerator is to minimize the total latency
of the FDTD computation, because this reduces the overall execution time of the

1Both the development tools and the advanced target FPGAs nowadays support the synthesis of
FP arithmetic to hardware.
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MI iterative algorithm. This can be achieved by applying the HLS optimization
strategies described in the following.

Fig. 3.2 FDTD CU design in HLS for a single FPGA.

Fig. 3.2 presents a schematic representation of the HLS code for a single CU,
in which each block is a function that corresponds to an update equation in Alg. 1.
The JP equations, which are separate in Alg. 1, are merged with the Update E and E
boundary blocks in Fig. 3.2 to avoid rereading the E fields from the external memory.
Table 3.1 summarizes the HLS optimization techniques used in the hardware design
and the functions in which they are used, as explained thoroughly in the next
subsections. The top-level function denotes the function that contains the loop over
the time steps in Alg. 1.

Table 3.1 HLS hardware optimization strategies for a FDTD CU.

Method functions
Blocking Update E and Update H
Merge JP Update E and E boundary
Loop merge Update E boundary and H boundary
Storage for Boundaries Update H boundary and/or Update E boundary
Storage for constant coefficients top-level function
Loop pipeline all
function inline all
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Fig. 3.3 Detailed view of the CU design in Vivado.

Vivado HLS synthesizes the C++ code and generates the RTL code of an IP
block that is integrated in the Vivado implementation flow with the additional blocks
in Fig. 3.3. These include a memory controller, two reset blocks, and an AXI
interconnect block that connects to the memory controller the IP interfaces, all
compliant with the AXI standard

3.3.1 Two Architectures: Large and Small

For a more flexible design, we propose two hardware architectures, termed Large and
Small, which use a different number of AXI I/O interfaces and a different amount of
local on-chip memory for storing magnetic or electric fields in the boundary regions.
In the large design more computing resources and more AXI interfaces are used,
which results both in a lower number of CUs that can be implemented in a single
FPGA but also in a lower latency per CU compared to the Small design in which
less resources and interfaces are used. Hence, depending on the number of CUs over
which a designer wishes to parallelize the computation and the number of available
FPGAs, either the Large or the Small design is the preferred choice in terms of
execution time, as shown later.
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Fig. 3.4 Details of the interfaces of the CU for Small and Large designs.

To avoid performance bottlenecks in the Large design, 18 AXI interfaces are
needed, as shown in Fig. 3.4, to guarantee a concurrent access to all the data arrays
needed during the computation. Note that the aggregate bandwidth is still compatible
with the external DRAM specifications, as we show later. Since in our target FPGA
each memory controller can handle only up to 16 ports, one CU needs two memory
controllers, which is possible in large FPGAs with multiple external DRAM memory
banks.

In the Small design, on the other hand, we reduced the number of AXI ports to 15
by removing three AXI ports (Din2, Din3, Din4) (orange box in Fig.3.4) and using
a shared port (Din1) instead. This reduction of AXI interfaces makes it possible to
reduce the resource usage as shown in Sec. 3.3.3 and Sec. 3.5.2. As a result, the data
in the Small design is routed to some of the blocks in Fig. 3.4 via shared interfaces,
at the cost of a lower performance. However, by using lower resources, we can fit
more CUs into a single large FPGA with multiple memory controllers, each handling
one single CU, hence increasing the overall throughput per single FPGA.

Table 3.2 shows how the variables in Alg. 1 are mapped to the AXI ports
according to the design version. Note that Din2-4 only exist in the Large design. In
Tab 3.2, bh_xy is the combination of bhx and bhy in one single array, and similarly
be_xy for bex and bey. ΨE∗ and ΨH∗ associated to port Din1 refer to all the variables
of that type in Alg. 1.

In the following, we explain the optimization methods listed in Table 3.1.
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Table 3.2 Description of AXI interfaces.

AXI ports Design Variables (refer to Alg. 1)
Data Small/Large ch1, ch2, ce1, ce2, Qp, source
Din Small/Large bh_xy, be_xy

Din1 Small ΨE∗, ΨH∗, bhz,bez
Large ΨE∗, bhz,bez, ΨHxy, ΨHyx, ΨHxz

Din2 Large ΨHzy, ΨHzx, ΨHyz

Din3 Large Ψ̂Hxy, Ψ̂Hyx, Ψ̂Hxz

Din4 Large Ψ̂Hzy, Ψ̂Hzx, Ψ̂Hyz
Ex, Ey, Ez Small/Large Ex,Ey,Ez

Ex′, Ey′, Ez′ Small/Large E ′
x,E

′
y,E

′
z

Hx, Hy, Hz Small/Large Hx,Hy,Hz
JPx, JPy, JPz Small/Large JPx,JPy,JPz

3.3.2 Blocking Method and Merging of JP Update Equations

To optimize the memory access, we use a method similar to the spatial blocking
used in stencils. Fig. 3.5(a) shows the general approach using shift registers as local
memory in a 2D stencil with dimensions X and Y . The stencil moves from left to
right until it reaches the end of a row and moves one row downward. To compute
the current cell C, the four surrounding cells (N,E,S,W) are needed. As the stencil
moves, a new cell is written in the head of a shift register and used immediately as
“new” S cell, while the “old” N cell is removed from the tail of the shift register. The
shift register holds the last 2X +1 cells from the grid (darker orange cells).

There are significant differences between a generic 2D stencil and a 3D FDTD.
As shown in Fig. 3.5(b), updating the magnetic field in a cell requires the electric
field in the current and next positions, while updating the electric field requires the
magnetic field in the current and previous positions. Therefore, instead of the 5-cell
stencil pattern, we need 3 cells for H update and 3 cells for E update. For a 2D
FDTD, this would require two shift registers (for H and E) each of size X +1, but
for a 3D FDTD, the size becomes XZ +1.
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Fig. 3.5 Blocking method for FDTD and its difference with a general stencil

In addition, since in 3D FDTD the three components of E and H fields need
each a separate shift register, the number of resources in FPGA is severely impacted.
Therefore, instead of using shift registers with Flip-Flops or Look-Up Tables (LUTs),
we use BRAMs to locally store the fields. Since BRAMs are dual-port SRAMs,
however, it is not possible to read more than two values per clock cycle. Moreover,
we cannot partition the arrays to overcome the two-port limitation, because the
accessed elements are not always in the same partition. Therefore, we replicate the
BRAMs multiple times to simultaneously access all the required cells. As we will
see in Sec. 4.4, to balance the resource utilization it is possible, by means of the
HLS resource allocation directive, to replace the BRAMs with LUTs arranged as
distributed memories.

This local memory for blocking is represented by the Hram variable in Alg. 2.
Note that, after a round of initialization with an initial plane in the z direction, the
memory gets filled with a new plane while the computation happens on the previous
plane. The concurrency of memory access to the new plane and computation on
the old plane is a key factor to obtain a high computing throughput and so a low
execution latency. Another local memory used only for the boundary field cells is
BF in Alg. 2, which is described in detail in Sec. 3.3.3.

Another optimization consists in merging the loop that updates JP with the other
loops for E update and E-boundary update, previously shown as three separate loops
in Alg. 1. For this purpose, we split the JP update equations in two parts for the main
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Algorithm 2: Pseudo-code for Update E with Blocking and JP merge.
Update E:
s = 0; size = (X −1)(Y −1)+1;
for k=Z-1;k>1;k-- do // Process XY planes in Z direction

for Domain Cells ∪ Boundary Cells in plane k do
if Boundary Cells and Use local storage for H then

BF = H;// Local storage in BRAM

Blocking:
// Store new XY plane in memory
Hram{x,y,z}[s++] = H{x,y,z}[k];
#ppprrraaagggmmmaaa rrreeesssooouuurrrccceee HHHrrraaammm RRRAAAMMM_222PPP_LLLUUUTTT RRRAAAMMM
if s = size then // Hram=full

s = 0;

if (k < Z −1) then // ignore first plane (Z-1)
// Process old XY plane (while reading new)
Hc
{x,y,z} = Hram{x,y,z}[s];

H−y
{x,z} = Hram{x,z}[(s+X −1)%size];

H−z
{x,y} = Hram{x,y}[(s+ size−1)%size];

H−x
{y,z} = Hram{y,z}[(s+1)%size];

Main Update E (for plane k+1):
E ′

x =U pdateE(Ex,Hc
y ,H

−x
y ,Hc

z ,H
−x
z ,JPx);

E ′
y =U pdateE(Ey,Hc

x ,H
−y
x ,Hc

z ,H
−y
z ,JPy);

E ′
z =U pdateE(Ez,Hc

x ,H
−z
x ,Hc

y ,H
−z
y ,JPz);

Merge JP update (for plane k+1):
if Domain Cells then

JP{x,y,z} = spJP{x,y,z}+Qp(E ′
{x,y,z}−E{x,y,z});

E{x,y,z} = E ′
{x,y,z};

domain and boundary cells. In Alg. 2 the part of the main cells is updated with the if
condition in the last few lines.

For space reasons, we do not show the pseudo-code for Update H, which uses
the same blocking method of Alg. 2.

3.3.3 Loop Merge and Local Storage for Boundaries

A key strategy to improve the FDTD performance is to move the accesses of the
many array variables from the external DRAM to on-chip SRAMs. Due to the large
number of cells, however, even for the largest FPGAs this strategy is applicable only
to a subset of the variables. For this reason, we use on-chip memory only for the
boundary elements, when possible. This is shown in Algs. 2-3 with local storage BF
enabled or disabled with an if conditional statement.

The loops for the update equations for the six boundary regions in Fig. 3.1, which
are separated in Alg. 1, can be merged in pairs according to the coloring scheme in
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Algorithm 3: Pseudo-code for Update H-boundary with merging boundary
loops and local storage.

Update H:
{. . .
if Boundary Cells and Use local storage for E then

BF = E;// Local storage in BRAM

. . . }
Update H-boundary:
if NOT use local storage for E then

Change BF to E

#ppprrraaagggmmmaaa lllooooooppp mmmeeerrrgggeee
for Boundary cells in y direction, front face do

ΨHxy = chy1ΨHxy + chy2(BF+y
z −BFc

z ), Hx += dhxΨHxy;
ΨHzy = chy1ΨHzy + chy2(BF+y

x −BFc
x ), Hz += dhzΨHzy;

for Boundary cells in y direction, back face do
Ψ̂Hxy = ĉhy1Ψ̂Hxy + ĉhy2(BF+y

z −BFc
z ), Hx += dhxΨ̂Hxy;

Ψ̂Hzy = ĉhy1Ψ̂Hzy + ĉhy2(BF+y
x −BFc

x ), Hz += dhzΨ̂Hzy;

// 2 (×2) other loops for x and z directions

Fig. 3.1. Alg. 3 shows how the loops in Update H-boundary are merged by using
the loop merge HLS pragma. Note that the complete CPML boundary conditions
require 6 loops in total for all the directions for each field (E or H), while in previous
works, the simplified CPML boundary conditions require only 2 loops as they are
used only for one direction.

Despite the loop merging in the H-boundary update, the problem of accessing
the ΨH∗ arrays from the external memory several times remains intact. To maximize
the execution speed of the merged loops, the arrays need to be accessed four times in
parallel, so the four AXI ports Din1-4 almost entirely dedicated to them shown in
Table 3.2 and in Fig. 3.4 (3 dedicated ports, Din2-4, and one shared port, Din1).

While the Large design leverages the simultaneous access through these ports,
the Small one eliminates ports Din2-4. As discussed later in Sec. 3.5.2, in the Small
design there is no benefit in using the local BRAMs to store the electric fields
(BF = E), since the performance is limited by the serialized access to all the ΨH∗

arrays through one shared AXI port.

The loop merging for the Update E-boundary is shown in Alg. 4. Here we merged
the part of the JP update equations related to the boundary cells, while the part related
to the main cells is merged with the E update, as shown in Alg. 2.
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Algorithm 4: Pseudo-code for Update E-boundary with merging boundary
loops and JP merge.

Update E:
{. . .
if Boundary Cells and Use local storage for H then

BF = H;// Local storage in BRAM

. . . }
Update E-boundary:
if NOT use local storage for H then

Change BF to H;

#ppprrraaagggmmmaaa lllooooooppp mmmeeerrrgggeee
for Boundary cells in y direction, front face do

ΨExy = cey1ΨExy + cey2(BFc
z −BF−y

z ), E ′
x += dexΨExy;

ΨEzy = cey1ΨEzy + cey2(BFc
x −BF−y

x ), E ′
z += dezΨEzy;

Merge JP update, front face:
JP{x,z} = spJP{x,z}+Qp(E ′

{x,z}−E{x,z});
E{x,z} = E ′

{x,z};

for Boundary cells in y direction, back face do
Ψ̂Exy = ĉey1Ψ̂Exy + ĉey2(BFc

z −BF−y
z ), E ′

x += dexΨ̂Exy;
Ψ̂Ezy = ĉey1Ψ̂Ezy + ĉey2(BFc

x −BF−y
x ), E ′

z += dezΨ̂Ezy;
Merge JP update, back face:
JP{x,z} = spJP{x,z}+Qp(E ′

{x,z}−E{x,z});
E{x,z} = E ′

{x,z};

// 2(×2) other loops for x and z directions

3.3.4 Loop Pipeline, Function Inline, and Storage for Coefficients

The last optimization strategies consist in setting directives to a) inline all the
functions and b) pipeline the innermost loop in nested loops like those over all
the cells in three dimensions. Both strategies significantly improve the Initiation
Interval (II) of the loops, which is the distance in clock cycles between the starting of
two consecutive iterations and corresponds to the inverse of the loop throughput, as
discussed thoroughly in Sec. 4.4. A perfectly pipelined loop starts a new computation
every clock cycle (II=1). In practice, dependencies between iterations prevent to
obtain this goal for every loop. As for function inlining, it allows for further resource
sharing when this does not impact performance and allows for optimization across
function hierarchies. Alg. 5 shows how the pragmas associated with these strategies
are used in the update functions.

Finally, we locally store constant coefficients ae{x,y,z} and de{x,y,z} in Alg. 1 in
URAMs, which are large memories available in high-capacity Xilinx FPGAs. Since
the coefficient values vary over the entire domain, they need a large amount of
storage, but one AXI port is enough to load them during the initialization. By using
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Algorithm 5: HLS pragmas of loop pipelining and function inlining in 3D
FDTD algorithm.

Update functions:
#ppprrraaagggmmmaaa iiinnnllliiinnneee// Function is inlined
// Loop over all cells in (x,y,z) dimensions
for k=1 to Z do

for j=1 to Y do
for i=1 to X do // Innermost loop on x is pipelined

#ppprrraaagggmmmaaa pppiiipppeeellliiinnneee
...

both BRAMs and URAMs, we achieve a high utilization of local FPGA storage as
shown in Sec. 4.4.

3.4 Multi-FPGA Implementation

The possibility of unrolling the outermost loop in Alg. 1 and let multiple CUs work
in parallel on different antennas, is hindered by the limited resources available in
one FPGA. For example, the FPGA used in our experiments supports up to 3 CUs
in the Small design and 2 CUs in the Large one. In particular, this FPGA contains
three so-called Super Logic Regions (SLRs) and our fastest design uses one CU per
SLR. Although we could place more CUs, the advantage of parallelism is countered
by a) the slower memory access caused by the AXI ports sharing, and b) the slower
clock frequencies caused by the routing congestion. The only chance to improve
performance is to use multiple FPGAs.

We emphasize that the computations in each FPGA and for each antenna are
independent and there is no need for data sharing between them. This straight-
forward parallelism simplifies the deployment over commercially available and
energy-optimized multi-FPGA platforms. This is in contrast with the use of multi-
ple GPUs, e.g. in High-Performance Computing (HPC) clusters, which are more
expensive and less energy efficient for similar performance. To show this contrast
and to demonstrate the advantages of using FPGAs over GPUs, we proposed the
deployment of our FDTD accelerator on a Multi-FPGA platform.
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Fig. 3.6 Multi-FPGA platform with F FPGAs for 3D FDTD acceleration.

Multi-FPGA platforms have become easily accessible, like for example the Ama-
zon AWS EC2 F1 instances. The AWS platform has eight Xilinx UltraScale+ FPGAs,
each connected to a multi-bank local DDR DRAM. The FPGAs are connected via
the PCIexpress (PCIe) bus to an x86 host CPU, as shown in Fig. 3.6. The figure also
shows how multiple CUs working on 3F or 2F antennas, depending on the design
version with either 15 or 18 AXI ports, can be allocated to F FPGAs.

The host code in the CPU coordinates the execution of the CUs in the FPGAs
similarly to how the host code controls execution of multiple threads in a GPU. Ini-
tially the host transfers the inputs required by FDTD to all the local DDR memories.
As we show in Sec. 4.4, the overhead for this initial PCIe transaction is negligible
compared to the computing time.

The total execution time depends on the number of FPGAs, the number of
antennas, and the design version. With A antennas and F FPGAs, depending on the
maximum supported number of antennas nA in each FPGA (2 in the Large version or
3 in the Small one) the relation between the total execution time (Ttot) and the time
for each antenna (Tant) is:

Ttot =
l A

nA ·F

m
×Tant (3.6)

By using the AWS platform with 8 FPGAs, Ttot will be equal to Tant for up to
8×3 = 24 or 8×2 = 16 antennas in the Small and Large designs, respectively. For
a larger number of antennas, the time will scale with factor ⌈ A

24⌉ in the Small design
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and ⌈ A
16⌉ in the Large one. Note, however, that Tant is different for the two cases, as

discussed in the next section.

3.5 Results

Although the code that we developed is portable, we performed our experiments on
a specific Xilinx FPGA target, the Virtex UltraScale+ used in the Amazon EC2 F1
instance (vu9p-flgb2104-2-i). This FPGA consists of 3 Super Logic Regions (SLRs)
positioned at the left, middle, and right side of FPGA. It also contains 4 DDR4
memory interfaces with each interface accessing a 16 GiB memory. The middle SLR
contains 2 memory interfaces while the left and right SLRs contain one interface
each. Before reporting the performance results obtained on this FPGA, we briefly
discuss the accuracy of the C++ code in comparison to the Acceleware code.

Fig. 3.7 Accuracy comparison: Acceleware design versus our C++ code.

To perform the accuracy check, we simulated a grid of 50 × 50 × 50 main
cells with a boundary region of 10 cells on each side. Therefore, in total, the
simulation space has 70×70×70 = 343000 cells. The total number of time steps
was 1000. Fig. 3.7 reports the magnitude of the S21 scattering parameter related to the
transmission between an antenna source and an observation point in the simulation
space as a function of frequency. This is a typical information used in the DBIM-
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TwIST MI algorithm and is obtained from the FDTD forward solver. The curves
show an almost perfect overlapping between what Acceleware and our synthesizable
C++ code obtain, with a Mean Absolute Percentage Error (MAPE) of 0.01%.

For what concerns the execution time, this is the product of the overall execution
latency, in clock cycles, and the clock period. The latency is minimized at a high
level with a proper design space exploration, which we could perform thanks to the
flexibility of HLS coding and the features of Vivado HLS (2019.1 version). During
the HLS phase, we aimed to keep the clock frequency target high enough so that the
resulting performance would be competitive with the GPU design, but not too high
in order to avoid issues at the implementation stage, specially during the routing
phase. Determining the proper clock target and the most appropriate strategies for
the implementation required a few iterations between the high-level abstract design
in Vivado HLS and the low-level physical design in Vivado.

In the following we explain the impact of HLS-based optimization methods on
the hardware performance. After that, we describe the design procedures and the
results obtained first on a single FPGA and then on the multi-FPGA platform. We
also report a comparison between the FPGA design and three GPU designs: the first
one was developed in Matlab and tested on an NVIDIA Tesla K20c, the second one
was developed using Acceleware and tested on a Tesla P40 GPU, and the third one
is our design obtained from the same C++ code that runs on the FPGA and tested
also on the Tesla K20c GPU. For the comparison we used the same simulation space
of the accuracy check discussed above.

3.5.1 Impact of HLS Optimizations on Performance

Fig. 3.8 Impact of different HLS optimization methods on the total latency. (numbers on top
of the bars show the improvement compared to the original code, and numbers bellow the
arrows show the improvement compared to the previous optimization method)
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Fig. 3.9 Impact of different HLS optimization methods on the latency of each FDTD function.

The HLS optimization techniques described in Sec. 3.3 improve the performance of
our FDTD hardware accelerator. It is important to note that different optimization
strategies are applied step-by-step and the designer must have enough knowledge
about the algorithm bottlenecks to find the best HLS optimizations. Each of these
changes the performance and also the bottlenecks, hence the designer must monitor
and analyze the performance change while exploring the accelerator design space
using HLS. Here, the impact of each HLS optimization on the hardware performance
is explored in more detail. Starting from the original code without any HLS directives,
we add each optimization method incrementally and measure the performance of
the FDTD Compute Unit (CU) in terms of latency and resource usage. The results
in Fig. 3.8 show that each directive contributes to reducing the latency until the
minimum latency of 8.6 s is obtained when all the directives are applied. (The
figure is split in two histograms with different scales for better readability.) Fig. 3.9
shows the latency of each FDTD function and their relation with HLS directives.
Each directive operates on one or multiple functions: pipeline and inline directives
operate on all functions, storage for coefficients (Coefs) is applied to Update E and
E-boundary functions, Blocking is applied to Update H and E, and loop Merge +
storage for Boundaries is applied to H-boundary function2.

2It can be applied to E-boundaries as well, but it complicates routing in the implementation step
in our target FPGA.
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Fig. 3.10 Impact of HLS optimization methods on resource usage per SLR.

The HLS estimation of the resource usage for the accelerator with respect to
different HLS directives is shown in Fig. 3.10. Note that the Small design uses all
the HLS directives except for loop merging and storage for the boundaries. The
high URAM usage is due to the storage of constant coefficients (Sec. 3.3.4). The
Blocking method (Sec. 3.3.2) increases the LUT usage and the last directive in the
Large design (Merge+Boundaries) increases the BRAM usage. Although DSPs and
FFs are not fully utilized, the advantage of using a large FPGA with high number
of resources is the higher availability of URAMs. Compared to the design without
URAMs (Inline directive in Fig. 3.10), the optimized Small design including URAMs
(after Blocking method) obtains 2.8× improvement in the total latency (Fig. 3.8).

3.5.2 FDTD Performance on a Single FPGA

To optimize the clock frequency, we used specific Vivado strategies for both logic
synthesis and implementation. For synthesis we use the Flow_PerfOptimized_High
strategy, which sets the tool options to maximize timing performance and gives less
importance to minimizing resource usage (e.g., no resource sharing, FSM extraction
forced to one-hot, no LUT combining, etc.). For the implementation of the Large
design we used the Performance_HighUtilSLRs strategy, which aims to maximize
the utilization of an SLR; for the Small one we used the ExtraTiming_Opt strategy,
which gives priority chiefly to meeting timing constraints. For both designs, we
obtain a maximum clock frequency of 167 MHz.
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Fig. 3.11 The performance of the main FDTD loops in Small and Large design in HLS.

For the latency optimization, Fig. 3.11 shows II and latencies of the loops present
in the various FDTD building blocks, for both the Small and Large designs. It is
observed that for E Update and H Update we can achieve the minimum II of 1 thanks
to the blocking method described in Sec. 3.3.2 and the loop pipelining described in
Sec. 3.3.4.

Optimizing the II of the boundary loops is a much more complicated task. First
of all, many more variables need to be accessed from memory, as clear from the
comparison between Algs. 3-4 and Alg. 2. Note that merging the loops on two
boundary faces in the same direction, while beneficial for the sharing of some logic,
does not reduce the number of accesses to variables defined over two physically
distinct areas of the domain. Note also that further increasing the number of AXI
ports is not possible because of the mentioned limitations of memory controllers
and the complications arising from accessing multiple controllers in different SLRs.
The only viable option is to store the E and H variables in local on-chip memories,
while using four separate ports for ΨE and ΨH variables (the corresponding ports
between E and H can be shared). Even with this solution, the best achievable II for
the boundary loops with the selected number of AXI ports is 2, as determined by
the simultaneous access from the same AXI port to variables defined in two distinct
boundary faces.

Unfortunately, II=2 is not achievable for both E and H boundaries at the same
time. In particular, sharing the same BRAMs for both boundary fields complicates
routing, leading to timing failures in the implementation. An alternative is to use



56 FPGA Acceleration of 3D FDTD for Microwave Imaging using HLS

separate BRAMs, but the resource usage exceeds the available BRAMs in each SLR
region (48% in total, i.e. about one and a half out of three SLRs available). As a
result, one CU gets placed across two SLRs, and the routing phase in Vivado ends
with a large negative slack because of the large routing delay of the many wires that
cross the SLRs.

Nevertheless, by using the local memory either in E or H boundary loops, we
respect the BRAM limits in one SLR without increasing the routing complexity. In
the Large design, we apply it to H-boundary. This requires to have four separate ports
for ΨH∗ (Din1-4 in Fig. 3.4 and Table 3.2 for the Large design). Therefore, as shown
in Fig. 3.11, in the Large design the II for H-boundary is 2, while for E-boundary
is 4. In the Small design, however, both E- and H- boundary loops obtain II=4 as
the local memory is not used: eliminating ports Din2-4 already degrades II from 2
to 4, hence making local memory totally ineffective. Using less BRAMS, however,
makes room for more CUs in a single FPGA, hence balancing the longer latency of
each CU with higher parallelism.

The clock frequency estimated by HLS for both design versions is 170 MHz, very
close to the final 167-MHz frequency obtained after implementation. Critical paths
are related to the data transfer from AXI ports to local memory (BRAM, LUT-based,
or URAM). This is because memory blocks are scattered in the SLRs, thus causing
significant routing delays.

The estimated execution time for the Small and Large designs is 10.14 s and
8.6 s, respectively, and is determined by the computation time and not by the DDR
memory access. This is because the maximum bandwidth of 19.2 GB/s of each
DDR4 memory bank in the AWS F1 instance is always greater than the peak required
bandwidth given by simultaneous writes and reads, each of which consumes a
bandwidth of 4B×167 MHz= 0.667 GB/s. In the Small design, each CU uses one
Memory Controller (MC) connected to a single memory bank for at most 15 reads
and 4 writes (Alg. 4), thus the peak bandwidth is (15+ 4)× 0.667 = 12.7 GB/s,
which is less than 19.2 GB/s. In the Large design, each CU has 16 ports mapped to
one MC (MC1) and 2 ports to another MC (MC2). With 16 reads and 4 writes in MC1,
and 2 reads and 1 write in MC2, the peak bandwidth is 20×0.667 = 13.36 GB/s for
MC1 and 3×0.667 = 2 GB/s for MC2, both less than 19.2 GB/s. When more CUs
are mapped to one FPGA, it is not an issue either, as shown in the following.
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Single FPGA Small Design with 3 CUs

Fig. 3.12 Device view in a) Small and b) Large design after place-and-route (it contains 3
SLRs in the left, middle and right side of the FPGA).

Since the Small design fits in one SLR and the FPGA consists of three SLRs, up
to three CUs working in parallel on three antennas can be instantiated as shown in
Fig. 3.12(a). Since each CU is connected to a separate MC and so to a separate
memory bank, the DDR4 bandwidth limit is not exceeded.

Table 3.3 shows both the resource usage estimation obtained with Vivado HLS
and the actual values after place-and-route in Vivado for the Small design. The HLS
estimation includes only the FDTD block, while Vivado results include all the blocks
in Fig. 3.3. The percentage for the HLS estimation in Table 3.3 refers to one SLR.
For the Vivado results, it refers instead to the entire FPGA with three CUs, each
using one single SLR. Table 3.3 shows a high resource utilization of URAMs. This is
because we use them to store large constant arrays (aei, bei) in the update E function
(see Sec. 3.3.3).
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Table 3.3 Resource usage for the Small design: HLS estimation and Vivado implementation
results

BRAM
(%)

DSP48
(%)

FF
(%)

LUT
(%)

URAM
(%)

HLS: 1 CU (One SLR) 4 11 10 35 82

Vivado:
3 CUs

FDTD 3.47 17.46 15.25 34.09 82
Smart Connect 0 0 2.95 4.29 0

DDR Ctrl 3.54 0.1 1.05 1.93 0
Total 7 17.6 19.29 40 82

Single FPGA Large Design with 2 CUs

One CU in Large design consumes more BRAMs than the total number of BRAMs
in one SLR. Therefore, a maximum of two CUs can be mapped onto one FPGA
with three SLRs, as shown in Fig. 3.12(b). Two CUs share three MCs (MC1,MC2

and MC3) while still not exceeding the DDR4 bandwidth. MC1 and MC2 are used
for 2× 16 ports and MC3 is used for 2× 2 ports. The peak bandwidth for both
MC1 and MC2 is 13.36 GB/s (calculated as for the single CU). Regarding MC3, the
maximum number of reads and writes in 4 ports is 8 in the worst case leading to a
peak bandwidth of 8×0.667 = 5.3 GB/s, again less 19.2 GB/s.

The resource usage is shown in Table 3.4. The high BRAM usage is due to the
local storage of the electric fields for the boundary region (BF , see Sec. 3.3.3). The
percentage in the HLS estimation is for one SLR while the percentage in Vivado
is for the entire FPGA. Note how two CUs use more than 2/3 of the total BRAM
resources, hence making it impossible to map three CUs like in the Small design.
For the blocking method described in Sec. 3.3.2 we cannot map Hram in Alg. 2 to
BRAMs, otherwise the design gets too congested (90% BRAM usage) and there is a
significant penalty in clock frequency. For this reason we use LUTs as distributed
RAM, using the LUT resource allocation pragma shown in Alg. 2.

As shown in Table 3.3 and Table 3.4, the DSP usage in both designs is low. This
shows that our implementation is not compute-bound. The limiting factors in our
design are related to the access to the internal on-chip memories and the number
of AXI ports. We do not exceed the memory bandwidth by carefully selecting the
number of AXI ports. Further increasing the number of ports (to the maximum
supported ports that is 16×4 = 64), while still compatible with bandwidth, is not
possible in practice due to the complexities in routing stage and accessing multiple
SLRs. The application is memory-bound with respect to the access to on-chip
memory. It is constrained by the internal resource limitations. To improve the
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performance, we need either more local storage, or a greater number of AXI ports.
For the former we are limited by the internal resources, and for the latter we are
restricted by the complexities arising from the routing stage.

Table 3.4 Resource usage for the Large design: HLS estimation and Vivado implementation
results

BRAM
(%)

DSP48
(%)

FF
(%)

LUT
(%)

URAM
(%)

HLS: 1 CU (One SLR) 76 13 10 35 82

Vivado:
2 CUs

FDTD 73.7% 12.7 11.4 23.2 55
Smart Connect 0 0 0.5 3.56 0

DDR Ctrl 3.54 0.1 1.05 1.92 0
Total 77.24 12.83 13.25 28.69 55

Comparison Between FPGA, GPU, and CPU

Table 6.3 reports performance and power consumption for the FDTD accelerator on a
CPU, three GPU designs (including the one derived from the code developed in this
work), and FPGA. To allow a proper performance comparison between accelerators
with different capacities in terms of parallel processed antennas, we chose the time
per antenna as performance metric (total time divided by the number of parallel
processed antennas). Since we could not measure the actual power consumed by
the FPGA, the power consumption for FPGA reported in the third column of the
table is the total consumed on-chip power obtained by the post-route report from the
Vivado Power Analysis tool. This value can be therefore considered only a crude
approximation of the actual power consumed by the device. The corresponding
power consumption for CPU and GPU could not be measured either, so for a fair
qualitative comparison, we compared the maximum Thermal Design Power (TDP)
for our UltraScale+ FPGA with CPU and GPU designs in the second to last column
of the table. In addition, we reported the maximum energy consumption in the last
column (obtained from the TDP values and the execution time). It is observed that
the maximum TDP for our FPGA target is between the CPU and GPU designs,
but thanks to the lower execution time it would result in a more energy efficient
implementation, should the actual power consumption scale more or less in the same
way in the three designs from TDP to actual power values. The results confirm that
FPGAs can be more energy efficient than GPUs and CPUs, and show that FPGAs
can be competitive with GPUs at scientific computation. Somewhat surprisingly, our
GPU design (GPU3) is also 14% faster than the Acceleware GPU code. Compared to
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MATLAB implementation in GPU1, the CUDA implementation in this work (GPU3)
is about 3 times faster. This is because CUDA is the native programming method for
NVIDIA GPUs. As for the comparison between the two FPGA designs, the higher
parallelism of the Small design results in a better performance, albeit at a higher
power cost.

Table 3.6 shows a comparison between the performance of our proposed FPGA
design for 3D FDTD with other FPGA implementations. It is observed that none
of the previous works considered the impact of polarization currents which cre-
ates additional computations in each cell in the simulation space. In addition, the
boundary conditions in our design is CPML in all directions that is not considered
in works [8] and [7]. The performance can be measured in Mcells/s by divid-
ing the total number of cells for all the time steps by the total processing time
((Max.Ant.× Tmax × Total_Cells)/Time(s)). It can be converted to GFLOP/s by
multiplying the performance in MCells/s to the number of operations in each cell.
As shown in Table 3.6, although the performance in Mcells/s is not high in this work,
the performance in GFLOP/s outperforms other implementations. This is because
of the polarization currents in FDTD equations that create additional operations in
each cell. Note that in [61], the peak performance was reported that is obtained
without full CPMLs and is not a fair comparison with our work, so we computed the
performance of [61] in MCells/s when there are CPML boundaries in all directions.
In addition, our design can operate in higher clock frequency than previous methods.

3.5.3 FDTD Performance on Multiple FPGAs

Increasing the number of FPGAs can improve the FDTD performance. To assess
such improvement we measured the execution time for a fixed number of antennas
with different number of FPGAs. Fig. 3.13 shows the FDTD execution time for
8 and 24 antennas by varying the number of FPGAs from 1 to 10. It is observed
that the reduction of the execution time depends on the number of antennas and
FPGAs as well as the design version (Small or Large). Note from the curves in
Fig. 3.13 that when the number of available FPGAs is sufficient to process all the
antennas in parallel, increasing the number of FPGAs beyond that number does not
further improve the performance. For example, in the Amazon EC2 F1 instance with
8 FPGAs, the Small and Large designs can process up to Amax = 3× 8 = 24 and
Amax = 2×8 = 16 antennas in parallel, respectively, in a fixed time equal to Tant in
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Table 3.5 Performance comparison: CPU = Intel Xeon, GPU1 = Tesla K20C GPU2 = Tesla
P40, GPU3 = GPU1 CUDA implementation, and FPGA (UltraScale+). TDP = Thermal
Design Power, Energy = TDP×Time.

Hardware
:release date

Max.
ant.

Time per
ant.
(s)

On-chip
Power

(W)

Max.
TDP
(W)

Max.
Energy

(J)
CPU

: 2017 1 24.97 - 105 2621

GPU1
(Matlab)

: 2012
1 12.06 - 225 2713

GPU2
(Acceleware)

: 2016
1 5.64 - 250 1410

GPU3
(this work,

CUDA)
: 2012

1 4.88 - 225 1098

UltraScale+
(This work,

Small design)
: 2016

3 3.38 16.24 128 432

UltraScale+
(This work,

Large design)
: 2016

2 4.3 14.5 128 550

Table 3.6 Performance comparison between our single Small FPGA design and other FPGA
implementations.

Work
[8]

Work
[7]

Work
[61]

This work
Small Design

Boundary
Conditions

Dirichlet
(zero)

CPML
(limited)

CPML
(Full)

CPML
(Full)

Polarization No No No Yes

Language MaxCompiler
(HLS)

MaxCompiler
(HLS) Verilog

Vivado HLS
(C++)

Mcells/s 325 100 336 101
GFLOP/s 11.7 5.7 29.2 34.2

Freq (MHz) 100 100 100 167



62 FPGA Acceleration of 3D FDTD for Microwave Imaging using HLS

Eqn. (3.6). Whenever the number of antennas to process exceeds Amax, the time will
increase according to Eqn. (3.6) with F = 8. Note how the best solution in Fig. 3.13,
either Small or Large, depends on the number of antennas and the number of FPGAs,
due to the interplay between the different number of CUs per FPGA and the different
value of Tant .

Fig. 3.13 FDTD execution time for different number of FPGAs, (a) 8 antennas, (b) 24
antennas.

While the computation time remains constant for up to Amax antennas, the time
required to transfer all the coefficients from the host to the DDR memories via the
PCIe bus grows proportionally to the number of FPGAs because of the inevitable
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data duplication [68]. (As the initial values of E and H fields are zero, there is no
need to take them into consideration.) To account for this overhead, we analyzed the
maximum data transfer time. Table 3.7 shows the type and size of the coefficients
used in Alg. 1 that need to be transferred. In Table 3.7, N is the size of the 3D FDTD
simulation space including the boundary regions (70×70×70 in our experiments),
and nb is the size of the boundary in each side (10 in our case). Each coefficient,
except Qp,sp,cP, is a 3-dimensional vector. For example, bh represents coefficients
(bhx,bhy,bhz).

Table 3.7 Dimensions of FDTD coefficients.

Coefficient type size Coefficient type size
ah,dh,cp,sp, scalar 1 bh,ae,be,de vector 3N
ch1,2,ce1,e2 vector nb QP vector N

The FDTD coefficients with the largest size in Table 3.7 are highlighted in
bold. These coefficients are 3-dimensional vectors, except for Qp, which is a
1-dimensional vector. Other coefficients have small size and do not affect the
transfer time significantly. Therefore, the data to be transferred via PCIe amounts to
(4×3+1)×N = 13×N floating-point constants. By considering the maximum PCIe
data transfer rate in the AWS F1 instance (12 GB/s), we can obtain the maximum
data transfer time for each antenna, which is TPCIe = 1.4 ms. By comparing TPCIe

with the total FDTD execution time for each antenna (8.6 s in the best case), we can
see the the data transfer time is negligible.
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Fig. 3.14 FDTD execution time for 8 FPGAs and different number of antennas, (a) from one
antenna up to the maximum number in a single FPGA (3 for Small design), (b) Comparison
of the single GPU in this work (GPU3, highly optimized for one antenna) and multi-FPGA
design for multiple antennas, (c) more detailed view of multi-FPGA design results.
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Fig. 3.14 shows the execution time for multiple antennas accelerated by 8 FPGAs
and compares it with the best GPU results (Tesla k20c in this work, GPU3). With the
exception of the cases in which one or two antennas are processed, the FPGA designs
show always a higher performance. For many antennas to process, the multi-FPGA
accelerator can significantly reduce the execution time. It should be noted that when
the number of antennas is a multiple of 16 or 24, there is an increase in the execution
time as predicted by Eqn. (3.6).

Finally, we report system-level performance results for the MI reconstruction
algorithm. With 24 antennas, on the Tesla P40 the execution time of the Acceleware
FDTD code was 135.4 s per iteration, while the inversion part, executed by the host,
is negligible (0.07 s). In our Small Multi-FPGA design, the FDTD takes instead
10.14 s, which corresponds to a speed-up of more than 13x. Compared to the GPU
design in this work (GPU3) the speed-up is 11.5x.

3.6 Discussion

In this section, we would like to summarize the main characteristics of our design of
an FDTD accelerator, the main challenges faced during the design, and the solutions
to these challenges by using HLS. First of all, it is important to note that although it
is possible to take any synthesizable code written in C, C++, OpenCL, or systemC,
and accelerate it in hardware by using HLS, the performance highly depends on the
algorithm and it is not always possible to obtain the desired performance using HLS.
It depends on the algorithm, degree of parallelization, hardware optimizations, target
FPGA device, available resources, and achievable clock frequency.

Secondly, regarding the characteristics of our design, it should be noted that
for our GPU design, all the resources are used to optimize the performance for
one antenna. As the GPU resources are already fully used, there is no space left
for further parallelization. On the contrary, in our FPGA design, we leveraged
the multi-antenna parallelism to reduce the overall execution time. This is highly
beneficial in Microwave Imaging systems due to the large number of required
antennas. This parallelism on the number of antennas in addition to the number
of cells in the 3D volume is one of the key characteristics of our FPGA design
for FDTD algorithm. Other characteristics of our design are related to the design
methodology that we adopted for the acceleration using HLS. Due to the iterative
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nature of FDTD algorithm, it is possible to parallelize the computations in the volume
cells by “unrolling” and “pipelining” the loops. Merging the loops, local storage
of boundaries and constant coefficients, and using a blocking strategy to reduce
the memory access time are among other characteristics that could optimize the
hardware acceleration.

Thirdly, we describe the challenges of the design and their solutions in this work.
One of the main challenges in this application (3D FDTD) is the access to a high
volume of data from external memory. This high memory bandwidth requirement
becomes more challenging when we use the more advanced FDTD computations,
related to the polarization currents (which has not been considered in previous works).
To overcome this issue in this work, we used HLS capabilities to:

• efficiently process the extra computations on polarization currents by merging
JP currents loops in Update E and E-boundary. Table 6.3 shows the higher
GFLOPs for this work that is related to these extra computations.

• define high number of AXI ports to meet bandwidth requirement (Fig. 3.4, 15
or 18 ports)

• create a spatial blocking approach to reduce the data transfer time between
external and local memories.

Another challenge is related to the computations in the boundary regions in 3D
volume. Due to the access pattern in these regions, the parallelization of boundary
computations is more challenging. By using HLS, we could:

• Merge the parallel loops in the boundary regions for parallel computations

• use local memories for boundary regions whenever possible to store the re-
quired data

There are some other challenges related to the hardware “implementation” stage
when using more storage resources and higher number of ports. These configurations
must be carefully selected in order to avoid routing failures in the implementation
step. We proposed two hardware architectures (Large and Small) with different
hardware configurations for a more flexible design, both of which are implementable
in FPGA. The combination of these strategies with the usage of other HLS-based
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optimizations described in this chapter makes it possible for our FPGA design to
have a comparable performance to the GPU design and other HLS-based approaches.

Finally, there were several other HLS works tackling these problems for FDTD
(and Stencils) acceleration in FPGA. Most of them focused on solving the issue of
memory access time by presenting different blocking methods to process blocks
of data from the 3D volume in multiple iterations. These methods include the
combination of “spatial” and “temporal” blocking. Specifically, the OpenCL-based
designs proposed in [60], [62], and [63] are among the successful works in the HLS
domain for these blocking strategies. The problem of complex boundary conditions
is still an open issue in hardware accelerators designed by HLS and the related works
simplified the boundary conditions in favor of more parallelization. Using these
methods in previous works could reduce the total processing time. However, ignoring
the impact of polarization currents makes them ineffective in medical Microwave
Imaging applications. The complex data dependencies created by the polarization
currents call for a more straightforward approach to tackle the issues of memory
transfer time, boundary conditions, and polarization currents at the same time, that is
what we focused on in this work.

3.7 Conclusions

In this chapter, we proposed a multi-FPGA hardware accelerator for 3D FDTD to be
used in MI for medical applications. It is designed entirely in HLS making it possible
to use several hardware optimization methods to obtain the best performance. The
distinctive features of FDTD in this work are the modeling of polarization currents in
dispersive materials, and the use of CPML boundary conditions in all directions. The
combination of these features add extra complexity to the hardware design, but the
HLS optimizations, including loop merge, blocking, pipelining and local memory
storage, results in an efficient accelerator that is comparable with GPU or CPU-based
design. Compared to the best GPU design of the same FDTD algorithm, a single
FPGA can achieve 1.44x lower execution time per antenna. Our FPGA design is
more energy efficient than CPU or GPU-based designs, and the maximum power for
the FPGA design is still lower than the GPUs. In addition, the multi-FPGA design
outperforms the other accelerators by processing multiple antennas in parallel.
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For a typical number of 24 antennas, 11.5x reduction of execution time can be
achieved compared to the best GPU design.



Chapter 4

High Level Design of a Flexible PCA
Hardware Accelerator

Principal Component Analysis (Principal Component Analysis (PCA)) is a widely-
used method for reducing dimensionality. It extracts from a set of observations the
Principal Components (PCs) that correspond to the maximum variations in the data.
By projecting the data on an orthogonal basis of vectors corresponding to the first
few PCs obtained with the analysis and removing the other PCs, the data dimensions
can be reduced without a significant loss of information. Therefore, PCA can be
used in various applications when there is redundant information in the data. For
example, in Microwave Imaging (MI), PCA is useful before image reconstruction to
reduce data dimensions in microwave measurements [69–71]. In a recent work [72],
PCA is used as a feature extraction step prior to tumor classification in MI-based
breast cancer detection.

PCA involves various computing steps consisting of complex arithmetic opera-
tions, which result in a high computational cost and so a high execution time when
implementing PCA in software. To tackle this problem, hardware acceleration is
often used as an effective solution that helps reduce the total execution time and
enhance the overall performance of PCA.

The main computing steps of PCA, which will be described thoroughly in the
next section, include the computation of an often large covariance matrix, which
stresses the I/O of hardware systems, and the computation of the singular values of
the matrix. Since the covariance matrix is symmetric, the singular values are also
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the eigenvalues and can be computed either with Eigenvalue Decomposition (EVD)
or with Singular Value Decomposition (SVD): the more appropriate algorithm to
implement in hardware is chosen depending on the application and the performance
requirements. Other important steps in PCA are the data normalization, which
requires to compute the data mean, and the projection of the data on the selected
PCs.

In recent years, numerous hardware accelerators have been proposed that im-
plement either PCA in its entirety or some of its building blocks. For example,
in [73] different hardware implementations of EVD were compared and analyzed on
CPU, GPU, and Field-Programmable Gate Arrays (FPGA), and it was shown that
FPGA implementations offer the best computational performance, while the GPU
ones require less design effort. A new FPGA architecture for EVD computation of
polynomial matrices was presented in [74], in which the authors show how the Xilinx
System Generator tool can be used to increase the design efficiency compared to
traditional RTL manual coding. Leveraging a higher abstraction level to improve the
design efficiency is also our goal, which we pursue using the High-Level Synthesis
(HLS) design approach, as we discuss later, as opposed to VHDL- or Verilog-based
RTL coding. Wang and Zambreno [75] introduce a floating-point FPGA design of
SVD based on the Hestenes-Jacobi algorithm. Other hardware accelerators for EVD
and SVD were proposed in [76–79].

In [80] an embedded hardware was designed in FPGA using VHDL for the com-
putation of Mean and Covariance matrices as two components of PCA. Fernandez et
al. [81] presented a manual RTL design of PCA for Hyperspectral Imaging (HI) in a
Virtex7 FPGA. The Covariance and Mean computations could not be implemented
in hardware due to the high resource utilization. Das et al. [82] designed an FPGA
implementation of PCA in a network intrusion detection system, in which the train-
ing phase (i.e., computing the PCs) was done offline and only the mapping phase
(i.e., the projection of the data on the PC base) in the online section was accelerated
in hardware. Our goal is instead to provide a complete PCA implementation, which
can be easily adapted to the available FPGA resources thanks to the design flexibility
enabled by the HLS approach.

Recently, some FPGA accelerators have been introduced that managed to im-
plement a complete PCA algorithm. In [83] such an accelerator was designed in
a Virtex7 FPGA using VHDL, but it is applicable only to relatively small matrix
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dimensions. Two block memories were used for the internal matrix multiplication
to store the rows and columns of the matrices involved in the multiplication, which
resulted in a high resource usage. Thanks to our design approach, instead, we are
able to implement a complete PCA accelerator for large matrices even with few
FPGA resources.

FPGAs are not the only possible target for PCA acceleration. In [84], all the PCA
components were implemented on two different hardware platforms, a GPU and a
Massively Parallel Processing Array (MPPA). Hyperspectral images with different
dimensions were used as test inputs to evaluate the hardware performance. It is
well known, however, that these kinds of hardware accelerators are not as energy-
efficient as FPGAs. Therefore we do not consider them, especially because our target
computing devices are embedded systems in which FPGAs can provide an efficient
way for hardware acceleration.

Recently, HLS-based accelerators have been proposed for PCA. In [9], a design
based on HLS was introduced for a gas identification system and implemented on a
Zynq SoC. Schellhorn et al., presented in [10] another PCA implementation on FPGA
using HLS for the application of spectral image analysis, in which the EVD part could
not be implemented in hardware due to the limited resources. In [85], we presented
an FPGA accelerator by using HLS to design the SVD and projection building blocks
of PCA. Although it could be used for relatively large matrix dimensions, the other
resource-demanding building blocks (especially covariance computation) were not
included in that design. In a preliminary version of this work [86], we proposed
another HLS-based PCA accelerator to be used with flexible data dimensions and
precision, but limited in terms of hardware target to a low-cost Zynq SoC and without
the support for block-streaming needed to handle large data matrices and covariance
matrices, which instead we show in this work.

The PCA hardware accelerators proposed in the literature have some drawbacks.
The manual RTL approach used to design the majority of them is one of the dis-
advantages, which leads to an increase in the total development time. Most of the
previous works, including some of the HLS-based designs, could not implement an
entire PCA algorithm including all the computational units. Other implementations
could not offer a flexible and efficient design with a high computational performance
that could be used for different data sizes.
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In this work we close the gap in the state of the art and propose an efficient FPGA
hardware accelerator that has the following characteristics:

• The PCA algorithm is implemented in FPGA in its entirety.

• It uses a new block-streaming method for the internal covariance computation.

• It is flexible because it is entirely designed in HLS and can be used for different
input sizes and FPGA targets.

• It can easily switch between floating-point and fixed-point implementation,
again thanks to the HLS approach.

• It can be easily deployed on various FPGA-based boards, which we prove
by targeting both a Zynq7000 and a Virtex7 in their respective development
boards.

The rest of this chapter is organized as follows. At first, in Section 4.1 the PCA
algorithm is described with the details of its processing units. We briefly describe in
Section 4.2 the application of PCA to Hyperspectral Imaging (HI), which we use as
a test case to report our experimental results and to compare them with previously
reported results. The proposed PCA hardware accelerator and the block-streaming
method is presented in Section 4.3 together with the HLS optimization techniques.
The implementation results and the comparisons with other works are reported in
Section 4.4. Finally, the conclusions are drawn in Section 4.5.

4.1 PCA Algorithm Description

Let X be an array of size R×C in which R (Rows) is the number of data samples and
C (Columns) is the main dimension in which there is redundant information. PCA
receives X and produces a lower-dimensionality array Y of size R×L with L <C
through the steps shown in Algorithm 6.

In the first step, the mean values of each column of the input data are computed
and stored in matrix M for data normalization. The second step is the computation of
the covariance of the normalized data, which is one of the most computationally ex-
pensive steps of PCA due to the large number of multiplications and additions. After
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computing the eigenvalues or singular values (and the corresponding eigen/singular
vectors) of the covariance matrix by using EVD or SVD in the third step, they
are sorted in descending order and the first L eigen/singular vectors are selected
as Principal Components in the fourth step. The selection of PCs is based on the
cumulative energy of eigen/singular values. After computing the total energy (E) as
in the following equation,

E =
C

∑
i=1

σi, (4.1)

where σi is the energy of the ith eigen/singular value, the first L components are
selected in such a way that their cumulative energy is no less than a predetermined
fraction of total energy, the threshold T (%), as follows:

100× ∑
L
i=1 σi

E
≥ T. (4.2)

Finally, in the last step, the normalized input is projected into the principal
components space to reduce the redundant information.

Algorithm 6: PCA algorithm
Step 1- Mean computation: /* MR×C is the matrix representation of vector
Mean1×C */
[Mean]1×C = 1

R ∑
R
i=1[Xi]1×C /* [X ]i is the ith row of the input matrix XR×C

*/
MR×C : [Mi]1×C = [Mean]1×C, i = 1,2, ...,R /* [Mi] is the ith row of matrix
M*/

Step 2- Covariance calculation:
[COV ]C×C = 1

R−1(X −M)T × (X −M)

Step 3- EVD/SVD of covariance:
COV =UΣUT

Step 4- Sort and selection:
Σs,U s = Sort(Σ,U)

[PC]C×L = Select(Σs,U s)

Step 5- Projection:
[Y ]R×L = (X −M)×PC
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4.2 Hyperspectral Imaging

Although we are interested in the application of PCA to Microwave Imaging (MI), to
the best of our knowledge there is no hardware accelerator for PCA in the literature
that is specifically aimed at such application. In order to compare our proposed
hardware with state-of-the-art PCA accelerators, we had to select another application
for which an RTL- or HLS-based hardware design was available. Therefore, we
selected the Hyperspectral Imaging (HI) application.

As described in Chapter 2, Hyperspectral Imaging (HI) data are provided in
multiple spectral bands, and each pixel of the image consists of several bands. Thus,
HI data exploitation helps to remotely identify the ground materials-of-interest
based on their spectral properties [87]. Usually, there is redundant information in
different bands that can be removed with PCA. In the following notations, we use
interchangeably the terms R(Rows) and pixels, as well as C(Columns) and bands.

In general, we assume that HI data can be represented as a matrix with R rows
(pixels) and C columns (spectral bands), and there are redundant information in the
columns (bands). For Microwave Imaging, the R×C matrix could represent data
gathered in C different frequencies in the microwave spectrum by R antennas, or
a reconstructed image of the scattered electromagnetic field of R pixels also at C
frequencies.

4.3 PCA Hardware Accelerator Design

Figure 4.1 shows the architecture of the PCA accelerator and its main components.
Since the accelerator is developed in HLS using C++, the overall architecture cor-
respond to a C++ function and its components correspond to subfunctions. At the
highest level, there are two subfunctions named Dispatcher and PCA core. The
Dispatcher reads the input data stored in an external DDR memory and sends them
to the PCA core through the connecting FIFOs. The connection with FIFOs is also
described in HLS with proper code pragmas.
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Fig. 4.1 Architecture of the proposed hardware accelerator for Principal Component Analysis
(PCA) in Field-Programmable Gate Arrays (FPGA).

The PCA core contains different processing units. The first is the Mean unit,
which computes the mean vector corresponding to the mean value of each column
of the input matrix. This vector is stored in an internal memory that is used by
the next processing units, Cov and PU, for data centering. The Cov unit uses the
new block-streaming method for computing the covariance matrix, which will be
explained thoroughly in the following subsection. It reads the required data from
two sets of FIFOs corresponding to diagonal and off-diagonal computation. Then
the SVD unit computes the singular values of the covariance matrix, and the Sort
and Select unit sorts them and retains the first components. Finally, the Projection
unit reads the input data again and computes the multiplication between the centered
data and the sorted and selected PCs to produce the final PCA output data, which are
written back to the external DDR memory.

The computational cost of PCA depends on the input dimensions. When the
main dimension from which the redundant information must be removed (columns
or bands in HI) is lower than the other dimension (rows or pixels in HI), the PCA
performance is mainly limited by the computation of the covariance matrix, due to
the large number of multiplications and additions that are proportional to the number
of pixels. Indeed, in the covariance computation all the pixels in one band must be
multiplied and accumulated with the corresponding pixels in all of the bands. This is
illustrated in Figure 4.2 where the bands are specified by the letters α to n and pixels
are indicated by the indices 1 to N. The result of the covariance computation, which
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is the output of the Cov unit, is a matrix of size (bands×bands) that becomes the
input of the SVD unit. In HI applications, in which it is true that pixels ≫ bands, the
covariance computation is the major limitation of the whole PCA design, hence its
acceleration can drastically enhance the overall performance.

Multiple parallel streaming FIFOs are needed to match the parallelism of the
accelerated Cov unit. The number of FIFOs is determined based on the input data
dimensions and the maximum bandwidth of the external memory. Streaming more
data at the same time through the FIFOs enables a degree of parallelism that is
matched to the number of columns of the input matrix. It is important to note that all
of the hardware components are described in a single HLS top-level function, which
simplifies the addition of different flexibility options to the design such as variable
data dimensions, block sizes, and number of FIFOs.

The complexity of the Cov unit compared to other parts raises the importance of
the block-streaming method in covariance computation as this method allows using
the same design for higher data dimensions or improving the efficiency in low-cost
embedded systems with fewer hardware resources.

Fig. 4.2 Example of covariance computation with 9 bands and N pixels,PQ = ΣN
i=1Pi ×Qi,

where P,Q are the symbols of bands (α to n).

4.3.1 Block-Streaming for Covariance Computation

The block-streaming method is helpful whenever there is a limitation in the maximum
size of input data that can be stored in an internal memory in the Cov unit. Therefore,
instead of streaming the whole data one time, we stream “blocks” of data several
times through the connecting FIFOs. There are two internal memories inside the



4.3 PCA Hardware Accelerator Design 77

Cov unit each of which can store a maximum number of bands (Bmax) for each pixel.
These memories are used in the diagonal and off-diagonal computations, so we call
them “Diag” and “Off-diag” RAMs, respectively. The input data is partitioned into
several blocks along the main dimension (bands) with a maximum dimension of
Bmax (block size). Each block of data is streamed through the two sets of FIFOs
located between the Dispatcher and Cov unit (Diag and Off-diag FIFOs) in a specific
order, and after the partial calculation of all the elements of the covariance matrix for
one pixel, the data blocks for the next pixels will be streamed and the partial results
accumulated together to obtain the final covariance matrix.

To better understand the block-streaming method, we provide two examples in
Figures 4.3–4.6.

Fig. 4.3 Example of partitioning of input data into blocks. The total number of bands is
B = 9 and the block size is Bmax = 3.

Fig. 4.4 Illustration of an example of covariance computation using the block-streaming
method with 3 blocks (B = 9, Bmax = 3).

The first example is illustrated in Figure 4.3 in which the total number of bands
is B = 9 and the block size is Bmax = 3. Therefore, we have 3 blocks of data that
are specified in figure as P1 to P3. The Block-streaming method consists of the
following steps that can be realized from Figure 4.4:

1. Diagonal computation:
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The 3 blocks of data (P1 to P3) for the first pixel are streamed in Diag FIFOs
one by one and after storage in the Diag RAM, the diagonal elements P11,
P22, and P33 are computed.

2. Off-diagonal computation of the last block:

(a) Keep the last block (P3) in the Diag RAM.

(b) Stream the first block (P1) into Off-Diag FIFOs, store it in Off-Diag
RAM, and compute P13 = P1×P3.

(c) Stream the second block (P2) into Off-Diag FIFOs, store it in Off-Diag
RAM, and compute P23 = P2×P3.

3. Off-diagonal computation of the preceding blocks:

(a) Update the Diag RAM by the last values of Off-Diag RAM (P2).

(b) Stream the first block (P1) into Off-Diag FIFOs, store it in Off-Diag
RAM, and compute P12 = P1×P2.

4. Stream Pixels: Steps 1 to 3 are repeated for the next pixels and the results are
accumulated to obtain the final covariance matrix.

The second example is illustrated in Figure 4.5 in which the number of blocks is 4
and after the diagonal computation (in green color) there are 3 steps for off-diagonal
computations that are indicated in 3 different colors. Figure 4.6 shows the order of
data storage in the Diag and Off-diag RAMs. After the 7th and 9th steps, the Diag
RAM is updated by the last value of Off-Diag RAM (P3 and P2).

Fig. 4.5 Block-streaming method with 4 blocks (B/Bmax = 4).
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Fig. 4.6 Order of data storage in the Diagonal and Off-diagonal RAMs inside the Cov unit.

4.3.2 High Level Synthesis Optimizations

Tool Independent Optimization Directives and Their Hardware Implementation

The PCA hardware accelerator is designed in C++ using Vivado HLS, the HLS
development tool for Xilinx FPGAs. The HLS optimization directives can be applied
easily in HLS by using their corresponding code pragmas. HLS enables us to specify
the hardware interfaces as well as the level of parallelism and pipelined execution
and specific hardware resource allocation thanks to the addition of code pragmas.
By exploring different combinations of the optimization directives, it is possible to
determine relatively easily the best configuration in terms of latency and resource
usage. Therefore, several interface and hardware optimization directives have been
applied in the HLS synthesis tool, as explained below.

Input Interfaces

The main input interface associated to the Dispatcher input and the output inter-
face associated to the PU output consist of AXI master ports, whose number and
parallelism are adapted to the FPGA target. For the Zynq of the Zedboard, four
AXI ports (with a fixed width of 64 bits) are connected to the Dispatcher input in
such a way to fully utilize the available memory bandwidth. In the Virtex7 of the
VC709 board we can use instead only one AXI port with a much larger bit-level
parallelism. The output interface for both boards is one AXI master port that is
responsible for writing the output to the memory. Other interfaces are specified as
internal FIFOs between the Dispatcher and the PCA core. As shown in Figure 4.1,
four sets of FIFOs send the streaming data (containing a data block of bands) from
the Dispatcher to the corresponding processing units in the PCA core. Mean and
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Projection units receive two sets of FIFOs and Cov unit receives another two. Each
set of FIFOs is partitioned by Bmax, the size of a data block, so that there are Bmax

FIFOs in each set.

These FIFOs are automatically generated by applying the Vivado HLS Dataflow
directive for the connection between the Dispatcher and the PCA core. This directive
lets the two functions execute concurrently and their synchronization is made possible
by the FIFO channels automatically inserted between them.

Code Description and Hardware Optimizations

In this part the code description for each PCA component is presented. To opti-
mize the hardware of each PCA unit, we analyzed the impact of different HLS
optimizations on the overall performance. Specifically, we considered the impact
of loop pipelining, loop unrolling, and array partitioning on latency and resource
consumption. The best HLS optimizations are selected in such a way that the overall
latency is minimized by utilizing as many resources as required.

The Mean unit computes the mean values of all the pixels in each band. The
code snippet for the Mean unit is presented in Algorithm 7 and consists of two loops
on the rows and columns to accumulate the pixel values and another loop for the
final division by the number of rows.

Algorithm 7: Mean computation
mean_row_loop:
for r=0 to R do

#pragma HLS PIPELINE
mean_col_loop:
for c=0 to C do

a_mean[c] = Din_Mean[r][c];
tmp_mean[c]+ = a_mean[c];

Divide_loop:
for c=0;c<C;c++ do

a_mean[c] = tmp_mean[c]/R;

The best HLS optimization for the Mean unit is to pipeline the outer loop (line
#pragma HLS PIPELINE in Algorithm 7), which reduces the Initiation Interval (II),
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i.e., the index of performance that corresponds to the minimum time interval (in
clock cycles) between two consecutive executions of the loop (ideally, II = 1). In
addition, the memory arrays a_mean and tmp_mean are partitioned by Bmax (not
shown in the code snippet) to have access to multiple memory locations at the same
time, which is required for the loop pipelining to be effective, otherwise the II will
increase due to the latency needed to access a single, non-partitioned memory.

The Cov unit uses the block-streaming method to compute the covariance matrix.
Its pseudo code is presented in Algorithm 8. The HLS optimizations include loop
pipelining, unrolling, and the arrays full partitioning. In Algorithm 8 full indexing
is not displayed to make the code more readable and only the relation between the
variables and the indexes is shown by the parentheses. For example, DiagFIFO(r,b)
indicates that the indexes of variable DiagFIFO are proportional to (r,b). The stan-
dard Cov computation is adopted from [86] and is used for diagonal covariance
computations. The write function in the last line writes the diagonal and off-diagonal
elements of covariance matrix from variables CovDiag and CovOff to the correspond-
ing locations in CovOut. As shown in Algorithm 8, there are two pipeline directives
that are applied to the loops on the diagonal and off-diagonal blocks, respectively.
The memory arrays need to be fully partitioned, which is required to unroll the inner
loops. As described before, a thorough analysis of different possible optimizations
was performed to find out a trade-off between resource usage and latency.
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Algorithm 8: Cov computation, block-streaming

for r=0 to R do /* Stream Pixels */
for b=0 to NB do /* Diagonal Computations, NB = B/Bmax */

#pragma HLS PIPELINE
DiagRAM = DiagFIFO(r,b)−a_mean(b);
/* Start standard Cov computation [86] */
for c1=0 to Bmax do

for c2=c1 to Bmax do
.../* indexing */
CovDiag(b, Index) = DiagRAM[c1]∗DiagRAM[c2];

/* Finish standard Cov computation */

for ct=1 to NB do /* Off-Diagonal computations */
for b=0 to NB-ct do

#pragma HLS PIPELINE
if Step3(a) then /*refer to section 4.1, the four steps of

block-streaming method*/
DiagRAM = O f f RAM;

O f f RAM = O f f FIFO(r,b)−a_mean(b);
CovO f f (b,ct)+ = O f f RAM ∗DiagRAM;

/* Write to the final Cov matrix */
CovOut = write(CovDiag,CovO f f );

The next processing unit is the EVD of the covariance matrix. For real and
symmetric matrices (like the covariance matrix) EVD is equal to SVD and both
methods can be used. For SVD computation of floating-point matrices, there is
a built-in function in Vivado HLS that is efficient especially for large dimensions.
On the other hand, a fixed-point implementation of EVD is highly beneficial for
embedded systems due to the lower resource usage (or better latency) compared to
the floating-point version of the same design.

For these reasons, in this work we propose two versions of the PCA accelerator.
The first one is the floating-point version, which uses the built-in HLS function for
SVD computation. The second one is the fixed-point version, which uses the general
two-sided Jacobi method for EVD computation [88, 89]. The details of this method
for computing EVD is shown in Algorithm 9. As we will show in the results section,
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there is no need to add any HLS optimization directives to the fixed-point EVD
(for our application) because the overall latency of the PCA core, which includes
EVD, is lower than the data transfer time, so there is no benefit in consuming any
further resources to optimize the EVD hardware. We do not report the code of the
floating-point version as it uses the built-in Vivado HLS function for SVD 1.

Algorithm 9: EVD computation, Two-sided Jacobi method
/*Initialize the eigenvector matrix V and the maximum iterations

max = bands*/
V = I; /* I is the identity matrix */
for l=1 to max do

for all pairs i<j do
/* Compute the Jacobi rotation which diagonalizes"

Hii Hi j

H ji H j j

#
=

"
a c
c b

#
*/ τ = (b−a)/(2∗ c);

t = sign(τ)/(|τ|+
√

1+ τ2);
cs = 1/

√
1+ t2;sn = cs∗ t;

/* update the 2×2 submatrix */
Hii = a− c∗ t;
H j j = b+ c∗ t;
Hi j = H ji = 0;
/* update the rest of rows and columns i and j */
for k=1 to bands except i and j do

tmp = Hik;
Hik = cs∗ tmp− sn∗H jk;
H jk = sn∗ tmp+ cs∗H jk;
Hki = Hik;Hk j = H jk;

/* update the eigenvector matrix V /*
for k=1 to bands do

tmp =Vki;
Vki = cs∗ tmp− sn∗Vk j;
Vk j = sn∗ tmp+ cs∗Vk j;

1Vivado Design Suite User Guide: High-Level Synthesis, UG902 (v2019.1), Xilinx, San Jose,
CA, 2019 https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/
ug902-vivado-high-level-synthesis.pdf

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
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The last processing unit is the Projection Unit (PU), which computes the mul-
tiplication between the centered data and the principal components. Algorithm 10
presents the code snippet for the PU. Similar to the Mean unit, we applied some
optimizations to this code. The second loop is pipelined and, as a consequence, all
the inner loops are unrolled. In addition, the memory arrays involved in the multipli-
cation must be partitioned. For more information on the hardware optimizations for
Mean and PU and their impact on the latency and resource usage please refer to [86].

Algorithm 10: Projection computation

for r=0 to R do
for c1=0 to L do

#pragma HLS PIPELINE
tmp = 0;

for n=0 to C do
.../* Index control */
Din_Nrml[n] = Din_PU [r][n]−a_mean[n];

for c2=0 to C do
tmp+= (Din_Nrml[c2]∗PC[c2][c1];

Data_Trans f ormed[r][c1] = tmp;

4.3.3 Fixed-Point Design of the Accelerator

There are many considerations when selecting the best numerical representation
(floating- or fixed- point) in digital hardware design. Floating-point arithmetic
is more suited for applications requiring high accuracy and high dynamic range.
Fixed-point arithmetic is more suited for low power embedded systems with higher
computational speed and fewer hardware resources. In some applications, we need
not only speed, but also high accuracy. To fulfill these requirements, we can use a
fixed-point design with a larger bit-width. This increases the resource usage to obtain
a higher accuracy, but results in a higher speed thanks to the low-latency fixed-point
operations. Therefore, depending on the requirements, it is possible to select either a
high-accuracy low-speed floating-point, a low-accuracy high-speed fixed-point, or
a middle-accuracy high-speed fixed-point design. Available resources in the target
hardware determine which design or data representation is implementable on the
device. In high-accuracy high-speed applications, we can use the fixed-point design
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with a high resource usage (even more than the floating-point) to minimize the
execution time.

To design the fixed-point version of the PCA accelerator, the computations in
all of the processing units must be in fixed-point. The total Word Length (WL) and
Integer Word Length (IWL) must be determined for every variable. The range of
input data and the data dimensions affect the word lengths in fixed-point variables,
so the fixed-point design may change depending on the data set.

For our HI data set with 12 bands, we used the MATLAB fixed-point converter
to optimize the word lengths. In HLS we selected the closest word lengths to
the MATLAB ones because some HLS functions do not accept all the fixed-point
representations (for example in the fixed-point square root function, IWL must be
lower than WL).

The performance of EVD/SVD depends only on the number of bands. As we
will see in the next section, the latency of our EVD design in HLS is significantly
higher than the HLS built-in SVD function for floating-point inputs. One possible
countermeasure is to use the SVD as the only floating-point component in a fixed-
point design to obtain better latency, by adding proper interfaces for data-type
conversion. However, when the data transfer time (i.e., the Dispatcher latency) is
higher than the PCA core latency, the fixed-point EVD is more efficient because of
the lower resource usage, which is the case for a small number of bands.

4.3.4 Hardware Prototype for PCA Accelerator Assessment with
the HI Data Set

The proposed hardware design is adaptable to different FPGA targets and its per-
formance will be evaluated in the results section in particular for two test hardware
devices. In this subsection, as an example of system-level implementation using
our flexible accelerator we introduce its implementation on a low-cost Zynq SoC
mounted on the Zedboard development board. We used this implementation to
evaluate our PCA accelerator on the HI data set. The details are illustrated in Figure
4.7. The input data set is stored in an SD card. The Zynq Processing System (PS)
reads the input data from the SD card and writes them to the DDR3 memory. The
Zynq FPGA reads the data from the DDR3 memory by using two High Performance
(HP) ports (Zynq SoC devices internally provide four HP interface ports that connect
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the Programmable Logic (PL) to the Processing System (PS)). As the HI data consist
of images in 12 bands and each pixel has an 8-bit data width, to match the processing
parallelism we need an I/O parallelism of 12 × 8 = 96 bits to read all the bands
at once. Therefore, we use two 64-bit HP ports for the input interface. After the
PCA computation in the accelerator, the output is written back to the DDR3 memory
through the first HP port by using an AXI Smart Connect IP block (AXI smart connect
IP block connects one or more AXI memory-mapped master devices to one or more
memory-mapped slave devices). Finally, the Zynq PS reads the PCA outputs from
the DDR3 and writes them to the SD card.

Fig. 4.7 PCA accelerator design in Zedboard.

For other applications or different FPGA targets, the connection of the PCA
accelerator to the I/O system or to a processor is easily adapted thanks to the
flexibility enabled by the HLS approach. It is important to note that in many designs
the hardware might be so fast that its performance becomes limited by the memory
speed. To avoid this problem, it is necessary that the consumption rate of the
hardware that fetches the data from the DDR memory is matched to the speed of
that memory. In particular, in our design, by considering the maximum bandwidth
BDDR (Gb/s) of the external DDR memory and the clock frequency F (GHz) of
the Dispatcher unit, we can obtain the maximum bit-width as bwmax = BDDR/F for
the PCA accelerator input connected to the Dispatcher input. Depending on the
input data set and the number of bands, we can obtain the maximum required I/O
parallelism. For example, if the number of bands is B and the data width of each
pixel is DW bits, we need a maximum of bw = B× DW to read one pixel for all the
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bands at once in one clock cycle. The final input bit-width of the Dispatcher (bwDisp)
is selected in such a way that we do not exceed the memory bandwidth. Therefore,
if bw ≤ bwmax, then bwDisp = bw. Otherwise, we have to fix the Dispatcher input
bit-width to bwDisp = bwmax (note that the Dispatcher input is an AXI port and its
data width must be a power of 2 and a multiple of 8. In addition, some FPGA targets,
like the Zedboard, can read data from memory using separate AXI ports (HP ports)).
It should be noted that all the above-mentioned conditions can be easily described in
HLS using a set of variables and C++ macros that are set at the design time. In order
to map the design into a new FPGA target, the only required change is to adjust the
pre-defined variables based on the hardware device.

4.4 Results

The proposed PCA accelerator is implemented using Vivado HLS 2019.1. To
demonstrate the flexibility of the proposed method, we did the experiments on two
Xilinx FPGA devices and their development boards, the relatively small Zynq7000
(XC7z020clg484-1) on a Zedboard and the large Virtex7 (XC7vx690tffg1761-2) on
a VC709 board. The results are evaluated for different numbers of bands, blocks
and pixels. In addition, for the smaller FPGA with limited resources, we report a
comparison between the fixed-point and the floating-point versions of the accelerator.
Finally, the HI data set is used to evaluate the performance of the PCA accelerator
in the Zynq device. Accuracy, execution time, and power consumption are also
measured for both floating- and fixed-point design. Note that we define the execution
time or latency as the period of time between reading the first input data from the
external memory by the Dispatcher and writing the last PCA output to the memory
by the Projection unit.

In the following subsections the impact of input dimensions (bands and pixels),
size of the blocks (Bmax in the block-streaming method), and data format (floating-
or fixed-point) on the resource usage and latency is evaluated for the two hardware
devices.
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4.4.1 Number of Blocks, Bands, and Pixels

To show the efficiency of the trade-off between latency and resources enabled by the
block-streaming method, different numbers of bands and blocks are considered. In
the first experiment with the floating-point version on the Virtex7, we consider the
total number of bands set at 48 and the size of the block (Bmax) as a parameter that
changes from 4 to 16. Figure 4.8 shows that, as expected, by using a larger block the
total latency decreases in exchange for an increase in the resource usage. The latency
for different parts of the accelerator is shown with different colors. The most time-
consuming parts are Cov and Dispatcher (Dispatcher latency is the time for data
transfer through the FIFOs). By increasing the block size (when Bmax = 16) we
can reduce the latency of Cov computation, so that the only limitation becomes the
Dispatcher latency. It should be noted that the PCA core and the Dispatcher work
concurrently, which reduces the overall latency of the entire design.

Fig. 4.8 Impact of block size (Bmax) on the resource usage and latency for the Virtex7, bands
= 48, pixels = 300×300, floating-point design.

Increasing the number of pixels changes the latency of the design as the time
to stream the whole data increases. Figure 4.9 shows the latency of different parts
of the design when changing the total number of pixels. The resource consumption
remains constant and does not change with the number of pixels. As expected, the
latency of SVD is also constant because it depends on the number of bands, not on
the number of pixels. For the other parts, the latency increases almost proportionally.
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Fig. 4.9 Impact of the number of pixels on the latency for Virtex7, bands=48, Bmax = 8,
floating-point design.

In the next experiment the block size is fixed to Bmax = 8 and the total number of
bands is variable. The resource usage in the Virtex7 for the floating-point version
of the PCA core without the SVD part (PCA-SVD), and the latency for different
bands with a fixed Bmax are shown in Figure 4.10. The number of pixels in this
case is 300×300. The number of bands has a direct impact on the generated SVD
hardware, so the resource usage of SVD unit is excluded from the total resources to
obtain a better estimate of the performance of the block-streaming method.

Fig. 4.10 Latency and resource usage for Virtex7 with a fixed block size (Bmax = 8), floating-
point design.

As shown in Figure 4.10, the latency increases with the number of bands because
the computational time depends on the main dimension. From the resource usage,
it is evident that the FFs, DSPs, and LUTs are almost constant (except for a slight
increase due to other components of PCA core like Mean and PU). The number of
BRAMs, however, increases because in the HLS design there are other two memory
arrays in addition to Diagonal and Off-diagonal RAMs to store the temporary values
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of the computations (CovDiag and CovOff in Algorithm 8) and the dimensions of
these arrays depend on the ratio between the total bands and Bmax. Still, up to a very
large number of bands, the total resource usage of the most critical component is
well below 30%.

4.4.2 Fixed-Point and Floating-Point Comparison

The fixed-point design of the PCA accelerator is evaluated on the Zynq7000 for
different numbers of bands and blocks and is compared with the floating-point design.
We first obtained the word lengths using the MATLAB fixed-point converter and
then used the nearest possible word lengths in the HLS design.

The total resource usage for the fixed- and floating-point design is shown in
Figure 4.11 for a fixed number of bands (B = 12). In the floating-point design
(histogram on the left side of Figure 4.11), the maximum block size is Bmax = 3
because the LUTs required for larger block values exceed the LUTs available. For
the fixed-point design (histogram on the right side of Figure 4.11), however, the block
size can be up to 4. The comparison of the floating- and fixed-point designs for the
same block size (Bmax = 3) shows that there is a reduction in the resource usage for
the fixed-point design except for the DSP usage. This is because to obtain a similar
accuracy the fixed-point representation requires a larger bit-width. As a consequence,
the HLS design requires more DSPs to implement the same operations in fixed-point.

Fig. 4.11 Resource usage for Zedboard for fixed- and floating-point design, B = 12, pixels =
300×300.

The larger amount of resources needed by fixed-point design is counterbalanced
by the lower latency, as shown in Figure 4.12 for B = 12 and Bmax = 3,4. The
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fixed-point design has a lower latency at the same block size and even less latency
when using a larger block (Bmax = 4). This is because the latency of fixed-point
operations is lower than the floating-point ones. For example, the fixed-point adder
has a latency of 1 clock cycle, while the floating-point adder has a latency of 5 clock
cycles.

Fig. 4.12 Comparison of the latency of the fixed- and floating-point design for Zedboard, B
= 12, pixels = 300×300.

Figures 4.13 and 4.14 illustrate the total latency of the PCA accelerator and its
resource usage for different numbers of bands for a fixed block size (Bmax = 3). As
shown in Figure 4.13, the latency of the floating-point design is limited by the PCA
core function, whereas in the fixed-point design the Dispatcher latency is the main
limitation. This is because the PCA core and the Dispatcher operate concurrently,
as noted before, and therefore the total latency is basically the maximum between
the two latencies, which may change depending on the implementation details (in
this case floating- versus fixed-point data representation). The comparison of the
resource usage in Figure 4.14 shows that except for an increase in the DSP usage,
other resources are reduced in the fixed-point design. As explained before, the
increase in DSP usage is due to the larger bit-width needed for the fixed-point data
representation.
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Fig. 4.13 Latency for Zynq7000 with a fixed block size (Bmax = 3), pixels = 300×300.

Fig. 4.14 Resource usage for Zynq7000 with a fixed block size (Bmax = 3), pixels=300×300.

4.4.3 Evaluation on Hyperspectral Images

The hyperspectral image data set is obtained from Purdue Research Foundation and
is available online 2. It shows a portion of southern Tippecanoe county, Indiana, and
comprises 12 bands each of which corresponds to an image of 949×220 pixels. We
will show that by using PCA, most of the information in the 12 bands is redundant
and could be obtained from the first 3 principal components.

The PCA accelerator for this data set is evaluated on the Zynq7000 of the
Zedboard for different possible block sizes (Bmax = 3,4). The HLS estimation of the
resource usage for the floating- and fixed-point design is indicated in Table 4.1. For
the floating-point design, the maximum block size is Bmax = 3. In fixed-point design,

2https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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however, we can use a larger block size (Bmax = 4), which leads to the increase in
the resource usage.

Table 4.1 Resource usage obtained from HLS for HI data set on Zedboard, bands = 12.

BRAM (%) DSP (%) FF (%) LUT (%)

floating-point (Bmax = 3) 27 57 33 92
fixed-point (Bmax = 3) 23 82 20 75
fixed-point (Bmax = 4) 33 99 20 81

Table 4.2 shows the latency of different components of the design. According
to Table 4.2, the fixed-point minimum latency is about half of the floating-point
latency. in addition, the fixed-point EVD latency is about 15 times larger than the
floating-point SVD latency. However, this does not affect the total latency because
the Dispatcher latency in the fixed-point design is higher than the PCA core latency.
Therefore, due to the concurrency between Dispatcher and PCA core, the total
latency is limited by the Dispatcher. The resource usage for EVD is lower than SVD,
so by using the fixed-point EVD we can improve the overall performance because
the resources saved by EVD can be used in the rest of the design for more parallelism
leading to a lower total latency.

Table 4.2 Latency (ms) for Zedboard, HI data set, bands = 12.

Total Dispatcher PCA_core SVD/EVD Cov Mean PU

floating-point (Bmax = 3) 296.6981 202.0993 282.9185 0.399916 241.1409 13.77959 27.55981
fixed-point (Bmax = 3) 202.0993 202.0993 141.7858 6.267679 98.75294 9.18632 27.55913
fixed-point (Bmax = 4) 158.4643 158.4643 91.26137 6.267679 57.4145 6.88974 20.6694

The PCA accelerator resource usage and power consumption in the target hard-
ware are measured by the Vivado software and are shown in Table 4.3. In addition,
the accuracy of the PCA output from FPGA is compared with the MATLAB output
by using the Mean Square Error (MSE) metric. MATLAB uses double precision,
whereas our FPGA design uses single-precision floating-point as well as fixed-point
computations. Although the accuracy of our fixed-point design is reduced, its MSE
is still negligible. In contrast, the latency for the fixed-point improves by a factor of
1.8, which shows the efficiency of the fixed-point design.
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Table 4.3 Vivado implementation of PCA accelerator on Zedboard for HI data, bands=12,
accuracy is compared with MATLAB.

BRAM DSP FF LUT Power (W) Accuracy (MSE)

floating-point (Bmax = 3) 75 (27%) 124 (57%) 29971 (28%) 27090 (51%) 2.266 2.08×10−7

fixed-point (Bmax = 4) 92 (33%) 218 (99%) 18288 (17%) 20801 (40%) 2.376 1.1×10−3

The PCA output images generated by the FPGA are visually the same as the
MATLAB output. Figure 4.15 represents the first six outputs of PCA applied to the
hyperspectral images data set. The FPGA produces the first 3 principal components
that are indicated in the figure as PCA1 to PCA3. As shown in the energy distribution
in Figure 4.16, the first 3 principal components contain almost the entire energy of
the input data. The first 3 PCs in Figure 4.15 correspond to these 3 components. It
is evident from Figure 4.15 that the PCs after the third component do not contain
enough information in contrast with the first 3 PCs.

The flexibility of our PCA accelerator allows us to compare it with other state-of-
the-art references presenting PCA acceleration with different dimensions and target
devices. Table 4.4 represents the resource usage, frequency and execution time for
our FPGA design compared with two other references [83, 9]. The input data for all
of the references contain 30 rows (pixels) and 16 columns (bands in our design). The
first reference uses an HLS approach to design its PCA accelerator on a Zynq FPGA,
and the second one uses a manual RTL design in VHDL on a Virtex7 FPGA target.
Our HLS design on the same Virtex7 FPGA uses fewer resources as indicated in
Table 4.4. Although the clock frequency of our design is not as high as the previous
methods, the total execution time for our design is reduced by a factor 2.3x compared
to the same FPGA target.
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Fig. 4.15 The first 6 principal components of the HI data set. Our PCA accelerator in
Zedboard produces the first 3 outputs (PCA1 to PCA3).

Fig. 4.16 Energy distribution of the eigenvalues for the Hyperspectral Imaging (HI) data set.

Table 4.4 Comparison of our PCA accelerator with other conventional methods. The input
data dimensions are set to 30×16 for all designs.

Work Device BRAM DSP48 FF LUT
freq Latency Execution

(MHz) (Clock Cycles) Time (ms)

[9]
Zynq 6 95 13,425 18,884

116 31,707,056 273
ZC702 (2%) (43%) (12%) (35%)

[83]
Virtex7 350 2612 304,596 301,235

183 289,352 1.6
XC7VX485T-2 (16%) (78%) (37%) (76%)

This work Virtex7 132 385 66,790 145,220
95 64,253 0.675

(Bmax = 8) XC7VX485T-2 (6%) (13%) (10%) (47%)
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Table 4.5 shows the performance of our design compared to other PCA accelera-
tors for spectral images that were also designed in HLS on a Zynq target. In [10] all
the PCA functions were designed in HLS except for the EVD unit that was designed
in software. A complete hardware design of the PCA algorithm using the standard
method for covariance computation (all the bands are streamed at once without
blocking) is presented in [86]. Our work uses instead the block-streaming method
for covariance computation. The total number of bands is B = 12 and the block size
in our method is Bmax = 3. The data representation is floating-point in all of the
methods compared in Table 4.5. As shown in the Table, in our design the DSP and
BRAM usage is higher and the FF and LUT usage is lower. Despite the reduction
in clock frequency, the total execution time of our design is the minimum (0.44 s)
among the three accelerators.

Table 4.5 Comparison of the proposed PCA hardware design with other High Level Synthesis
(HLS)-based accelerators. The dimensions of a spectral image data set (640×480×12) is
selected for all of the designs.

Work Execution Time (s) BRAM (%) DSP48 (%) FF (%) LUT (%) freq (MHz)

[10] (PCA-SVD) 1.1 12 19 38 73 -
[86] 0.83 9 32 51 94 100

Ours (Bmax = 3) 0.44 27 53 32 90 90

Finally, our FPGA design is compared with a GPU and MPPA implementation of
the PCA algorithm [84] for different data dimensions as shown in Table 4.6. In our
design, the target device is the Virtex7 FPGA and the block size is set to Bmax = 10
as the numbers of bands are multiples of 10. For the smaller number of pixels
(100×100), our FPGA design outperforms the other two implementations in GPU
and MPPA in terms of execution time. For the larger number of pixels, the execution
time for our design increases linearly and becomes more than the other designs. It
has to be noted, however, that the typical power consumption in MPPAs and GPUs is
significantly more than in FPGAs. In the radar chart in Figure 4.17, four important
factors when selecting a hardware platform are considered and their mutual impact is
analyzed. These factors are power consumption, latency per pixel, number of bands
(input size) and energy. The axes are normalized to the range 0 to 1 and the scale is
logarithmic for better visualization.
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Fig. 4.17 Comparison of different hardware platforms between latency per pixel, power
consumption, input size (bands) and energy.

Table 4.6 Execution time (ms) for the PCA implementation on GPU, Massively Parallel
Processing Array (MPPA), and FPGA (our work). The first two designs on GPU and MPPA
are from [84]

Dimensions MPPA GPU Ours (FPGA), Bmax = 10

100×100×50 140.4 69.28 40.47
300×300×20 47.2 70.87 62.37
300×300×30 80.1 70.22 121.9
300×300×50 170.7 75.74 268.11

As shown in Figure 4.17, for a small number of bands, a Zynq FPGA has a power
consumption of only 2.37 W with a small latency. For larger bands, although GPUs
and MPPAs have smaller latency than FPGAs, they consume much more power
(especially GPUs). By taking into account the energy consumption that is smaller
for FPGAs, one has to select the best hardware based on their needs and use case.
Using an FPGA for the PCA accelerator results in a power efficient hardware that
can be used for large input sizes without a significant increase in the total latency.



98 High Level Design of a Flexible PCA Hardware Accelerator

Fig. 4.18 Processing time for PCA compute units in FPGA with Microwave dataset

4.4.4 Evaluation on Microwave Data

PCA algorithm can be used in data dimensionality reduction for biomedical mi-
crowave applications. We compared the processing time and resource usage for each
compute unit of PCA on a large Virtex FPGA (VC709U evaluation board) that is
shown in Fig. 4.18. We found that the main dimension of PCA input (the number
of independent elements of scattering matrix) can have a maximum value of 300
(Nd = 300) in our target FPGA, that corresponds to an MI system with 24 antennas.
To have an evaluation of the latency, we set the number of samples to 100×100.

By using the block-streaming strategy described in section 4.3.1, the Covariance
computation obtains a low latency, and the most critical part of the design is SVD as
can be seen from Fig. 4.18, for which the optimized HLS built-in function is used.

4.5 Conclusions

In this chapter, we proposed a new hardware accelerator for the PCA algorithm on
FPGA by introducing a new block-streaming method for computing the internal
covariance matrix. By dividing the input data into several blocks of fixed size and
reading each block in a specific order, there is no need to stream the entire data at
once, which is one of the main problems of resource overuse in the design of PCA
accelerators in FPGAs. The proposed PCA accelerator is developed in Vivado HLS
tool and several hardware optimization techniques are applied to the same design
in HLS to improve the design efficiency. A fixed-point version of our PCA design
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is also presented, which reduces the PCA latency compared to the floating-point
version. Different data dimensions and FPGA targets are considered for hardware
evaluation, and a hyperspectral image data set is used to assess the proposed PCA
accelerator implemented on Zedboard.

Compared to a similar RTL-based FPGA implementation of PCA using VHDL,
our HLS design has a 2.3× speedup in execution time, as well as a significant
reduction of the resource consumption. Considering other HLS-based approaches,
our design has a maximum of 2.5× speedup. The performance of the proposed
FPGA design is compared with similar GPU and MPPA implementations and,
according to the results, the execution time changes with data dimensions. For a
small number of pixels our FPGA design outperforms GPU and MPPA designs.
For a large number of pixels the FPGA implementation remains the most power-
efficient one.



Chapter 5

HLS-based Dataflow Hardware
Architecture for Support Vector
Machine

Support Vector Machine (SVM) is a supervised Machine Learning (ML) model
widely used in different classification problems, such as image classification, medical
diagnosis, object detection, and bioinformatics [90]. For example, in microwave
imaging, SVM can detect a brain stroke from the electromagnetic scattering data
[91, 92]. Since it is challenging to implement SVM in real-time embedded systems,
several specialized hardware architectures have been recently proposed. Among
them, those based on Field Programmable Gate Arrays (FPGAs) are preferable in
embedded systems due to their flexibility and lower power. In [93], a review of
recent FPGA accelerators for SVM is presented.

A parallel hardware architecture for SVM using a systolic array of vector process-
ing units to process multiple support vectors (SVs) in parallel is proposed in [94] and
extended to a cascade SVM classifier for real-time object detection in [95]. The main
limitation of these works is that all the coefficients and SVs are stored in on-chip
memory, which means that the number of SVs is limited by the memory resources
in FPGA. In [96], another SVM architecture based on a Verilog RTL description
is proposed. It uses on-chip FIFOs to store all the SVs and can process no more
than 20 SVs in parallel, with no parallelism on the SVs dimension or the number of
features N f : as we will see, our design can support more features and a higher clock
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frequency. The works in [97–100] also used RTL, either created manually or with
Xilinx System Generator.

High Level Synthesis (HLS) enables a more efficient design space exploration
than RTL manual design. In [11], an HLS design for SVM acceleration in the appli-
cation of melanoma detection is proposed, which is extended for better performance
in [12, 13]. Due to the assumption of local storage of SVM coefficients, this design
is tested on small-scale problems with 27 features and a maximum of 346 SVs. In
[101] a linear multi-class SVM is used for brain cancer detection in Hyper-Spectral
Images (HSI). Due to the large dimensions of HSI datasets, the input vector could not
be stored in local memory. However, due to the linear kernel used in this work, the
main part of kernel computation is processed off-line and the weighted summation
of all SVs is stored as a single vector, in a way that only one vector is used in on-line
computations. In [102], a methodology to extract parallelism from software code
is introduced for optimized annotation of C code with HLS directives, and is tested
on SVM. Although different levels of hardware parallelism are explored in this
work, the authors considered local storage for the inputs and did not report the time
required to read and store all the inputs.

Previous SVM works usually ignored scalability, which allows the same design
to be used for larger data dimensions. Usually, coefficients and SVs are stored in on-
chip memory, which is a method useful for small scale problems but cannot be used
for large data dimensions and/or low-cost FPGAs due to the lack of local memory.
Indeed, it is possible to do the SVM computations while reading the required data
from an external memory, hence increasing the overall throughput. This is the main
idea on which our dataflow design is based.

Most of the previous designs only considered binary classification or simple
kernel functions. Multi-class classification is a more challenging problem requiring
more computations, specially if complex kernels are used. In this work, we propose
a scalable hardware accelerator for multi-class SVM classification in FPGA by
using an efficient dataflow architecture designed entirely in HLS. These are our
contributions:

• A specialized dataflow hardware accelerator for SVM algorithm in FPGAs
that can scale to support different data dimensions while guaranteeing a high
throughput.
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Fig. 5.1 SVM classification with linear kernel.

• Support for multi-class classification and various kernels.

• Adjustable parallelism by HLS-based configurations and efficient implementa-
tion of fixed-point design.

5.1 SVM Background

SVM algorithm for binary classification obtains a decision boundary as a hyper-plane
that maximizes the margin between two classes as shown in Fig. 5.1. For linear
classification, the hyper-plane can be expressed as wT x+b = 0, where w and b are
obtained during training, and x is a 1-D input vector with N f elements. The inputs
that lie on the margin are termed Support Vectors (SVs). A total number of NSV

vectors can be stored as a 2-D array of size NSV × N f . To obtain w and b, a dual
problem is constructed by using Lagrange multipliers (indicated as αi parameter for
each input). After training, αi are obtained and all the inputs for which αi ̸= 0 are
regarded as support vectors (SVi). Finally, w and b can be obtained from αi and SVi

and the decision boundary can be written as

Decision =
NSV

∑
i=1

αiK(x,SVi)+b, (5.1)
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in which SVi is the ith support vector and K(·) is one of the Kernel functions in
Tab. 5.1. For linear problems, the Kernel is a dot product; for non-linear problems,
the Kernel will transform the input space into one where the classes are linearly
separable. Note that in (5.1) αi must be multiplied by the labels of the support
vectors (yi), which for clarity, we considered is done internally (αi = αiyi).

Table 5.1 Kernel functions in SVM.

Kernels: K(x,SVi)
Linear x ·SVi

Radial Basis Funtion (RBF) exp(−∥x−SVi∥2)
2σ2

Polynomial (Poly) (c1(x ·SVi)+ c2)
P

Sigmoid tanh(c1(x ·SVi)+ c2)

For binary classification, the sign of Decision is simply used for the prediction.
For multi-class, we used one-vs-one (ovo) method, in which all pairs of classes are
compared using (5.1) and based on the majority vote, the final prediction is computed.
With Nc classes, the total number of comparisons (i.e., the decision vector size) for
ovo is Nd = Nc(Nc −1)/2.

5.2 Proposed SVM Accelerator

To increase the overall throughput and reduce the on-chip storage, we propose the
Dataflow hardware architecture illustrated in Fig. 5.2. Instead of storing all the SVM
input data in on-chip memory, we read chunks of data from the external memory,
transfer them through the FIFO channels, and do the subsequent computations while
the next chunk is being read. We can design such a hardware architecture in HLS by
defining a dataflow region between three functions in the main module related to the
processing and reading the SVM data.

As shown in Fig. 5.2, three functions for SVM computations are Read, Kernel,
and Decision. Read distributes the chunks of input read data through the FIFO
channels. Since the major part of SVM computations is dedicated to the dot product
between the input features, we match the size of a block of input features to a data
chunk. Kernel reads the chunks from the FIFOs, calculates the kernel function and
sends the result to the next FIFO channel. Decision receives the kernel output from
the FIFO as well as three other input coefficients, and computes the final prediction,



104 HLS-based Dataflow Hardware Architecture for Support Vector Machine

Fig. 5.2 Proposed SVM accelerator in HLS.

denoted as Vote in Fig. 5.2. We use Vivado HLS since we target Xilinx FPGAs and
with this tool we can use a dataflow directive and hls::stream variables for the FIFO
channels to obtain the implementation of Fig. 5.2.

5.2.1 Read SVM Inputs

The data are stored as 32-bit floating-point values in an external DDR memory.
Depending on the maximum DDR data width (DWddr, in bits), DDR frequency ( fddr),
and working clock frequency ( fw), the maximum number of 32-bit data that can be
read from the memory in one clock cycle is N = (DWddr/32)× ((2× fddr)/ fw). For
large-scale problems, storing SV in FPGA memory is the main limitation. In this
work, we consider SV s and the test vector (x) stored in off-chip and on-chip memory,
respectively. However, with enough memory bandwidth, both of them can be stored
in external memory.

The Read function will transfer the input data to the Kernel function through
BF FIFO channels, as indicated in the left part of Fig. 5.2, in such a way that the
Kernel function can process BF data in parallel. Ideally, we want N = BF because
it is not possible to write more than N values to the FIFO channels in each clock
cycle. However, by increasing BF we speed up the Kernel function, although we
slow down the Read one. This is shown in Fig. 5.3, where by increasing BF we
increase the Initiation Interval (II)1 of the Read function, but this is in part masked
by the overlapping of Read and Kernel functions due to the pipelining effect of the
Dataflow implementation, and is compensated by the higher throughput of the Kernel
function due to the greater parallelism. To keep the pipeline balanced, BF and N,
which are defined as configurable variables in the HLS code, should be properly

1Minimum number of clock cycles before the next input data can be received.
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Fig. 5.3 Impact of the number of FIFO channels (BF) with a total of 4× 8 = 32 data, (a)
BF = N, (b) BF = 2N, overall latency is reduced.

related. For this, we use the SVM latency equation (T ) from the maximum latency
of Read, Kernel, and Decision

T ≈ NSV ·N f ·max{ IIR

BF
,

IIK

BF
}, (5.2)

where the approximation comes from considering only the II of the various functions
and from not considering the latency of the iterations. Indeed, IIR and IIK , are the II
of Read and Kernel , respectively. Note that in general, the Decision latency must be
incorporated in Eq. 5.2, as shown later for Microwave data set. However, in large-
scale problems, usually the Decision latency is small and can be ignored in Eq. 5.2, so
the total latency is determined by the maximum value between IIR/BF and IIK/BF .
Therefore, a balanced pipeline would require IIR = IIK and since IIR = BF/N, we
should have IIK = BF/N. If we have IIK < BF/N we end up with a memory-bound
performance, otherwise the performance would be computation-bound. In the ideal
case, if II for all the functions is 1, we must select N = BF to match the throughput.
Note that there is an iteration latency (L) to add to the latency of each function and
that Kernel has a higher L than Read. Therefore, in a balanced dataflow, the latency
between Read and Kernel is determined by the Kernel latency. As we will see, for
this reason it is sometimes preferable not to have a perfectly balanced pipeline and
select, for example, BF = 2N: Read will be the dominant part, but the overall latency
will decrease.
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Fig. 5.4 Manual unrolling for kernel computation.

5.2.2 Kernel Computation

The hardware architecture for Kernel computation is shown in the middle part of
Fig. 5.2. Note that to compute the RBF kernel, we need to subtract the inputs and
compute its squared norm to be used in the exponential function. For other kernels,
only the dot product between the inputs are computed. This is shown in Fig. 5.2 by a
control signal (RBF or others) for clarity.

The parallelism of the computation is matched to the number of FIFO channels,
as we instantiate BF parallel elements for the dot product, with BF multipliers (and
subtractors for the RBF kernel). This can be obtained by partial unrolling directive
in HLS with a factor of BF . Due to the accumulation in the dot product, if we use one
scalar variable to store the accumulation (after += operation in Fig. 5.2), HLS tool
cannot schedule the design with partial unrolling as we expect because of the data
dependency on the scalar variable. Therefore, we use manual unrolling as shown in
Fig. 5.4 (for clarity, only linear kernel is shown) and define an array of size BF to
hold the result of each multiplication. By fully partitioning this array and computing
the addition of all its elements (shown as adders), the dot product will be computed.
After the dot product, a non-linear function selected based on the SVM kernel can
be applied, if needed, otherwise for the linear case the dot product is passed directly
to the output.
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5.2.3 Decision Function

The Decision function, depicted in the right part of Fig. 5.2, stores the kernel FIFO
stream from the previous function in a BRAM, computes the Decision based on (5.1),
and stores the decision vector in another BRAM (Dec). For multi-class classification,
the decision must be calculated for each pair of classes. The range and number of
support vectors in each class are received from another input (range_SV). Based on
the decision vector, the number of votes for each class is calculated and the majority
vote determines the final prediction (Vote).

Decision computation consists of two main loops for one pair of classes. For
the same reason described in Sec. 5.2.2 for the accumulation, we manually unrolled
these loops with factor DF to increase the efficiency. DF is the third HLS parameter
to control the level of hardware parallelism.

5.2.4 Fixed-Point Implementation

To design a fixed-point SVM accelerator, we converted the floating-point data re-
ceived from the Read function to a fixed-point value in the Kernel function. We
explored the accuracy loss in hardware by varying the bit widths of each variable.
Once the optimum fixed-point precision for all variables are obtained, HLS synthesis
tool estimates the performance. To obtain the optimum precision, we divided the
variables into three main parts that are used in Inputs, Kernel, and Decision computa-
tions. For the inputs, we selected < 10,1 > (< total, integer >) for x, SV , bias and
< 21,5 > for α . For Kernel and Decision computations, we selected < 21,11 > and
< 28,10 >, respectively. For MNIST dataset, these values result in the minimum
accuracy loss in hardware.

5.3 Results

Using Sklearn and an SVM model with RBF kernel, we first trained a classifier for the
MNIST dataset. After training, we obtained 16036 SVs with size 784 (NSV = 16036,
N f = 784). The test vector, support vectors, and other coefficients are sent to the
SVM accelerator for the classification. We used Vivado HLS 2018.2 and the low-cost
Zynq SoC of the ZedBoard for the evaluation of the performance. In addition to the
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MNIST case, we measured the hardware performance for other data dimensions to
compare with previous works.

To show the impact of HLS-controlled parameters we report processing time and
resource usage in Tab. 5.2. Our accelerator can be used in various FPGA platforms by
tuning N to adapt to the maximum memory bandwidth and by tuning BF to optimize
the processing time. For the MNIST dataset, DF has no effect as the latency of
Decision is negligible.

The first four experiments in Tab. 5.2 are with floating-point computation. In this
case we have IIK = 5 and a computation-bound performance. Starting from the first
experiment (N=BF=4), we can see that by increasing BF first to 8 and then to 16,
the latency is reduced. Notice the increase in the resource usage due to BF and the
negligible accuracy loss in fixed-point design compared to the floating-point one.

Table 5.2 MNIST dataset: performance and resource usage.

Experiment 1 2 3 fix1 fix2
N 4 4 4 8 8

BF 4 8 16 8 16
BRAM (%) 15 16 19 12 15
DSP48 (%) 20 23 28 7 11

FF (%) 8 10 13 11 16
LUT (%) 24 28 35 40 62

Latency (ms) 166.93 91.57 58.69 18.12 15.72
Accuracy (%) 98.56 (float) 98.55 (fixed)

The last two experiments are with fixed-point computation. In this case IIK=1
and it is possible to have a memory-bound performance. Therefore, increasing N
from 4 to 8, the maximum allowed by the Zedboard platform, can be helpful. When
N = BF (experiment fix1), although the pipeline is balanced, the Kernel iteration
latency has an impact on the overall performance. Therefore, by increasing BF
(experiment fix2), we obtain a further latency decrease.

Table 5.3 Comparison of different SVM kernels.

kernels RBF Linear Poly Sigmoid
Time (ms) 58.69 53.88 58.53 64.94

BRAM (%) 0 0 5 3
DSP48 (%) 23 9 24 31

FF (%) 6 3 6 9
LUT (%) 16 8 13 23
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Tab. 5.3 compares the performance of different SVM kernels. Sigmoid kernel has
the highest resource usage and time, which is related to its computational complexity.
Tab. 5.4 shows a comparison of different HLS-based SVM accelerators in Zynq
FPGA. Our dataflow design improves by about 10× the processing time with less
BRAM usage and more LUTs. In Tab. 5.5 we compared the number of features,
SVs, and processing time for our design with two other FPGA accelerators designed
manually in RTL. Due to the high scalability, our design can support higher number
of SVs and features, with higher frequency and 4.4× speed-up by using more
resources.

Table 5.4 Comparison of the proposed accelerator with different SVs and same number of
features (N f = 27) in the same FPGA (model1 and model2 use different pre-processing
methods on training data).

[11] [12]
(model1)

[12]
(model2)

[13]
(model1)

[13]
(model2)

Proposed
(dataflow)

NSV 248 61 248 248 346 346
freq (MHz) 100 250 250 250 100 100
Time (µs) 83.66 11.46 39.3 33.5 136 13.15

Interval (µs) 83.67 11.46 39.3 33.5 136 8.15
BRAM (%) 11 34 34 12 11 2
DSP48 (%) 61 2 2 61 61 88

FF (%) 13 10 28 13 13 30
LUT (%) 94 14 33 24 24 90

Table 5.5 Performance comparison with two manual RTL designs.

[96] [100] This work
NSV 100 60 100
Nf 500 1024 1024

FPGA Virtex 5 Cyclone II Zynq 7000
freq (MHz) 50 30 100
Time (ms) 0.25 2 0.45
#BRAM - - 39
#DSP48 52 20 83

#FF 9646 - 19687
#LUT 38179 14064 25758

5.3.1 Microwave Data Set

We evaluated our proposed SVM accelerator by using a medical microwave data set
provided by the biomedical microwave research team in Politecnico di Torino [103].
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The data set contains 462 features (the dimension of the scattering matrix) which are
reduced to 110 feature after using PCA algorithm. There are 9 classes in this data
set representing the type and locations of the brain stroke: stroke types (ischemic,
hemorrhagic, no stroke) and locations (top-right, top-left, bottom-right, bottom-left).
After the training phase, the total number of Support Vectors is 2009.

Table 5.6 shows the SVM accelerator performance and the impact of HLS
parameters (N, BF , DF) on the latency and resource usage by using the floating-
point data precision. Due to the latency of the Kernel function being the dominant
part between the three main functions, the optimum HLS parameters are (N = 2,
BF = 8, DF = 2), resulting in the total latency (equal to the kernel latency) of 3
ms. Note that increasing N and DF (from 2 to 8) will reduce the latency of Read
and Decision functions, but there will be no improvement in the total latency. Also
note that increasing BF (from 8 to 16) leads to a larger array to store the partial
accumulations in kernel computation (refer to section 5.2.2); hence, a larger loop
will be required to compute the final accumulation (addition of all elements of the
array after partial accumulation). Therefore, using BF = 16 > 8 for the MI data set
cannot reduce the total latency due to the increase in the iteration latency of the final
accumulation loop.

Table 5.7 shows the similar results when we use fixed-point data precision. With
fixed-point data type, the Decision latency is limited only by the number of memory
ports used to store αi parameter. Partitioning the αi memory will not help due to
the random access pattern. Therefore, increasing DF does not change the Decision
latency. In contrast, with floating-point data type, due to a higher IID (= 5), partial
unrolling with DF can reduce the latency as well. The HLS estimation of the latency
of the Decision function can be written as:

TDecision = 2× (Nclass −1)2 ×nSVmax × IID/DF (5.3)

where nSVmax is the maximum number of Support Vectors in all the classes, and the
minimum value for IID/DF is 1.

From Table 5.7, it can be observed that increasing N and BF will reduce the
Read and Kernel latency, respectively. When BF = 16, the Kernel latency is lower
than Decision function, and due to the fixed-point precision, the minimum latency of
Decision function is obtained from Eq. 5.3 with (IID/DF) = 1, which results in the
final latency of 0.55ms.
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Table 5.6 Performance analysis of SVM accelerator for medical microwave data set using
floating-point data precision (NSV = 2009,N f eatures = 110,Nsamples = 900).

Experiment float1 float2 float3 float4
N 2 2 8 8

BF 2 8 8 16
DF 2 2 8 8

BRAM (%) 4 3 3 3
DSP48 (%) 19 22 22 28

FF (%) 8 10 20 23
LUT (%) 22 28 48 55

Read Latency (ms) 1.1 1.1 0.3 0.3
Kernel Latency (ms) 6.5 3 3 3.1

Decision Latency (ms) 1.3 1.3 0.6 0.6
Total Latency (ms) 6.5 3 3 3.1

Table 5.7 Performance analysis of SVM accelerator for medical microwave data set using
fixed-point data precision (NSV = 2009,N f eatures = 110,Nsamples = 900).

Experiment fix1 fix2 fix3 fix4
N 2 4 8 8

BF 2 4 8 16
BRAM (%) 3 3 3 3
DSP48 (%) 5 5 7 10

FF (%) 7 9 11 17
LUT (%) 23 29 40 62

Read Latency (ms) 1.1 0.56 0.28 0.28
Kernel Latency (ms) 1.36 0.84 0.58 0.44

Decision Latency (ms) 0.55 0.55 0.55 0.55
Total Latency (ms) 1.36 0.84 0.58 0.55

5.4 Conclusions

We presented a scalable dataflow hardware architecture in FPGA by using HLS to
accelerate SVM inference. The hardware parallelism can be controlled by three
HLS-based configurations to adapt to small and large scale problems. In addition,
a fixed-point design is introduced to speed up the computation. Experiments on
different data dimensions and support vectors show a minimum of 10× latency
improvement compared to similar HLS-based and 4.4× improvement compared
to RTL-based designs.



Chapter 6

Hardware Design and Optimization of
Neural Networks and ML
Accelerators

Classic Machine Learning (ML) models, like Multi-Layer Perceptrons or Support
Vector Machines, feature various hyper-parameters that must be tuned during training.
In Deep Neural Networks (DNNs), the architectural parameters, like number of
layers, neurons, kernel size, number of filters, etc., can be also considered as hyper-
parameters to tune in order to maximize the accuracy achievable during training.
When it comes to implementing a DNN in FPGA using a dedicated accelerator,
however, the accuracy requirements and the corresponding network architecture that
meets those requirements might be in contrast with hardware-related requirements
and constraints, such as latency and FPGA resources utilization. Therefore, a trade-
off must be found, and this can be done by solving a multi-objective optimization
problem.

The usual design method consists of a Design Space Exploration (DSE) to fine-
tune the hyper-parameters of an ML model, followed by another DSE that aims to
optimize the hardware design for a given target.

This approach of separate DSE is shown in Fig. 6.1(a) and is useful for those
applications where the ML accuracy has to be maximized and powerful hardware
accelerators can be selected to meet the desired performance. However, being
bounded to one specific small-size hardware architecture makes the design more
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Fig. 6.1 Optimization of training hyper-parameters and hardware configurations: (a) tradi-
tional separate DSE, (b) more efficient joint DSE. DS1 and DS2 stand for Design Space of
training and hardware design, respectively.

challenging, calling for the joint optimization strategy shown in Fig. 6.1(b). The
joint method avoids lengthy iterations that occur when the selected ML model is
incompatible with the hardware constraints (e.g., it exceeds the available resources
or cannot meet the timing requirements) and can obtain a better trade-off between
ML performance and hardware performance.

In this work, we propose a new framework based on Multi-Objective Bayesian
Optimization with Constraints (MOBOC) on top of High Level Synthesis (HLS) to
jointly optimize the network architecture and the HLS-based hardware configurations
for FPGA devices. The search space supports multi-hardware configurations. In
this multi-objective framework, we can assign multiple objectives and constraints
related to the hardware and network performance, and use the truly multi-objective
BO approach to find the optimal Pareto sets.

6.1 Related Work

To find the optimum hyper-parameters of an ML model during training, more power-
ful approaches than simple Grid Search and Random Search are in use nowadays,
such as Auto-Sklearn, HyperOpt, Auto-Keras, and Keras-Tuner. In [104], a review
of commonly-used methods in automated ML has been presented.

Regarding the DSE aimed at optimizing the hardware configurations, several
works have focused on High Level Synthesis (HLS) as the hardware design tool
and proposed different methodologies for the optimum selection of HLS pragmas
([105], [53]). In [106] Multi-Objective Bayesian Optimization is used to tune the
HLS configurations. Although the generated Pareto Fronts are close to the actual



114 Hardware Design and Optimization of Neural Networks and ML Accelerators

optimal points, it could not consider constraints in addition to multiple objectives in
the optimization process which increases the exploration time.

Recently, there has been a growing interest in the joint optimization of hardware
and training parameters, specially in the context of Deep Neural Networks (DNNs)
for which Hardware-aware Neural Architecture Search (HW-NAS) has been intro-
duced. In recent years, several approaches based on Hw-NAS have addressed the
problem of co-optimizing the network and its hardware accelerator [107–113]. To
solve the multi-objective optimization problem, different methods have been adopted.
Some works use a two-stage optimization, which we call separate method [114],
[115]. In the first stage the network parameters are tuned to maximize the accuracy,
and in the second stage the hardware configurations are tuned to meet the hardware
constraints; for example, data precision can be reduced. Other works try to reshape
the problem into a single-objective one subject to some constraints on hardware
performance [116], [117]. Another method combines multiple objectives in a sin-
gle function and uses single-objective optimization approaches [118]. Although
these co-optimization methods have been used in several recent works, merging
multiple objectives can limit the performance of the optimization and degrade the
final Pareto-optimal sets. The last methodology is to employ a truly multi-objective
optimization approach to obtain the non-dominated Pareto solutions. This approach
has attracted considerable attention in the evolutionary computation community
[119], [120]. However, the computational complexity in evolutionary algorithms is
the main limitation of these approaches.

Not all the Hw-NAS approaches aim to co-optimize the network and its hardware
accelerator. Most of them actually fall in the category of fixed hardware configuration
(fixed-Hw) in which the search space only consists of the model architecture [121].
If the hardware requirements are not met, the network architecture has to be changed.
Another category of Hw-NAS is based on multiple hardware configurations (multi-
Hw) which extends the search space to a combination of hardware configurations
and network architectures, which is also what we consider in this work.

The optimization algorithms in Hw-NAS are usually divided into Reinforce-
ment Learning (RL), Evolutionary algorithms (EA), Gradient-based methods, and
Bayesian Optimization (BO) methods [121], [122]. RL and EA have been exten-
sively used recently for both fixed-Hw and multi-Hw categories [123–127]. Despite
their proven effectiveness in several works, they have some drawbacks. For instance,



6.2 Multi-objective Framework for Training and Hardware Co-optimization 115

EAs are computationally intensive due to their requirement for a large population
size in each generation. In RL approaches, one of the main challenges is to customize
the policies and reward function for each optimization problem.

Gradient-based methods fall in the fixed-Hw category. In these methods a super-
network containing all the possible realizations in the search space is trained and a
sub-network is sampled in each Hw-NAS iteration, guiding the search to the optimal
network [128]. Although hardware metrics can be included in the loss function of
the super-network, the search space includes only the network configurations, hence
the fixed-Hw categorization.

BO approaches consider a Gaussian Process for each objective, which is a natural
fit for the optimization problems in Hw-NAS, and no customization is required in
contrast to RL methods [129, 130]. In addition, a truly multi-objective optimization
can be achieved with BO methods. Despite these advantage, to the best of our
knowledge, BO methods in FPGAs have been used only for the fixed-Hw category.

6.2 Multi-objective Framework for Training and Hard-
ware Co-optimization

The proposed joint optimization methodology can be divided into four parts as
illustrated in Fig. 6.2 (B-E). These parts are connected inside the multi-objective
Bayesian Optimization framework (A). In our methodology, MOBOC will update
the samples from the search space based on the expected improvement in the Pareto
sets to find the optimum configurations for network and hardware accelerator. In
the following, the details of MOBOC as well as each part of the framework will be
discussed thoroughly.

6.2.1 Multi-Objective BO with Constraints (MOBOC)

Bayesian Optimization is a statistical method for the optimization of black-box
functions that are expensive to be evaluated. In MOBOC, a Gaussian model is built
for each objective and constraint in the optimization problem (a few initial points
from real evaluations are required in the beginning). The next step is to build an
acquisition function based on the expected improvement of the estimated Pareto sets
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Fig. 6.2 Proposed methodology for training and hardware co-optimization in FPGA devices.

obtained from the Gaussian models. The maximum value of the acquisition function
will suggest a new point in the search space. The objectives and constraints are
evaluated for the new point and guide the search towards the optimum configurations
by updating the Bayesian model at each iteration [131].

6.2.2 Search Space

The search space consists of the combination of all the possible values of the network
training hyper-parameters and of the HLS-based hardware configurations. Note that
any ML model can be used in this framework provided that we have its HLS code
ready for implementation in FPGA. In this work, however, we focus on a DNN
classifier for the MNIST dataset that is inspired from Lenet-5 [132] and consists of
two Convolutional, two max-pooling, and three dense layers. For each layer, the set
of hyper-parameters includes the number of neurons, filters, and kernel size.

The hardware accelerator design in FPGA is obtained from an HLS description
of the network. Several hardware knobs can configure the accelerator in many ways,
such as the choice between on-chip or off-chip memory for storing the weights of
a layer, specific HLS pragmas for loop pipelining and for loop unrolling with a
configurable unroll factor, enabling or disabling the Dataflow pragma for task-level
concurrency, the configuration of the fixed-point precision, and the value of the clock
frequency. The optimal choice of these HLS directives and hardware parameters is
achieved by MOBOC in conjunction with the optimal training parameters.
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6.2.3 Function Evaluations

At each MOBOC iteration, a new point is suggested from the search space for which
the objectives and constraints must be evaluated. For this evaluation, we used Keras
for training and HLS C-simulation and Synthesis for hardware verification.

6.2.4 Objectives and Constraints Extraction

In principle, we can assign any number of objectives and constraints in this frame-
work, although the larger the number, the longer the time to update the Bayesian
model in each iteration. In this work, we selected as objectives to optimize the
prediction error on the validation set, the hardware latency, and the throughput; we
selected as constraints the FPGA resource limits (BRAM, DSP48, FF, LUT), the
clock period, and the maximum admissible error (< 10%). Note that instead of using
the prediction error during training, we use the prediction error after execution in
hardware: in this way the error includes also the effect of the fixed-point precision.

6.2.5 Update Bayesian model

The new evaluation is used to update the Gaussian models. For the acquisition func-
tion, Predictive Entropy Search for Multi-objective Optimization with Constraints
(PESMOC) [133] is used to update the expected improvement of the estimated Pareto
set. After the update, the maximum value of the acquisition function corresponds
to the parameters of the new suggestion. We can set a convergence criteria or a
maximum number of iterations to stop the procedure.

6.3 Evaluation on Neural Networks

6.3.1 Multi-Layer Perceptron (MLP)

For the evaluation, we used the MNIST dataset to train a Multi-Layer Perceptron
(MLP) to be implemented in a Zynq7000 FPGA. We used hls4ml [14] to convert
the MLP model to a synthesizable C++ code. The model hyper-parameters and the
ranges of the HLS and hardware knobs are in Tab.6.1.
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Table 6.1 Ranges of parameters for the joint training/hardware optimization method.

Inputs Clk (ns) Hidden
Layers Neurons Precision

#total
Precision
#Integer

Reuse
factor

Array
Partition

Learning
rate

Regul-
arization

rate

Ranges 4 - 7 1 - 3 32 - 256
step = 32 12 - 16 4 - 6 1 - 4 2x

x = [1−8]
1×10(−x)

x = [2−7]
1×10(−x)

x = [2−7]

Fig. 6.3 Percentage of training error (float error) and hardware error (fixed-point error) in
each BO iteration, (a) proposed joint optimization, (b) separate optimization.

Fig. 6.3 compares the evolution of the training error using a joint (Fig. 6.3(a)) and
a separate (Fig. 6.3(b)) optimization approach. Fig. 6.3(a) shows that both floating-
point error during training and fixed-point error in hardware converge as the BO
iterations progress. Since the separate method returns only the best training result,
Fig. 6.3(b) shows only the fixed-point inference error and shows an immediately
low error in all BO iterations (less than 5%). This is because the separate hardware
design starts with a neural network already optimized in terms of training error,
which only needs to be tailored to the hardware target.

Fig. 6.4 Comparison of (a) prediction time and (b) Pareto fronts.

This last optimization of the separate method, however, is constrained by the
initial training. As a result, the BO cannot reach the same latency performance of the
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joint optimization. This is visible in Fig. 6.5(a), with the relatively high prediction
time for the separate optimization method (red points).

The efficiency of the proposed methodology is apparent in Fig. 6.5(b), which
compares the Pareto curves obtained by separate (red) and joint (blue) optimization
methods. In the red curve, the training optimization is done by Keras-Tuner. Note
that in this case Keras-Tuner suggests an initial MLP with three layers and a number
of neurons that could not fit in the FPGA due to excessive BRAM usage, leading to
a failure in the subsequent hardware BO. This required a second iteration to limit
the neurons range from [32−256] to [32−128] in the training DSE, which returned
a feasible three-layer MLP with 128 neurons in each layer, low error but relatively
high prediction time. The subsequent hardware DSE returned only three (red) Pareto
points. On the contrary, the joint method returns many more valid Pareto points
(blue) because of its ample maneuverability in the combined trainig and hardware
design spaces. Most importantly, the blue points dominate the red ones, as clearly
shown in Fig. 6.5(b).

6.3.2 Convolutional Neural Networks (CNN)

The FPGA target for the implementation of the CNN accelerator inspired from Lenet-
5 is a Zynq-7000 SoC (XC7Z020-CSG484). For the implementation of MOBOC, the
latest Spearmint package is used [133]. The search space is described in Tab. 6.2, in
which On Chip refers to the option of selecting on-chip BRAMs to store the weights
and bias values for each layer (as opposed to an off-chip external DRAM), hence 5
options are available for 5 layers. Total and Integer bits in Tab. 6.2 determine the
fixed-point data precision used that can be individually configured for the weights,
the activations, and the accumulations for the intermediate calculations (i.e., sum of
products). Note that the search space is quite large (with total configurations on the
order of 1016) and it would take years to do an exhaustive search to determine the
best configurations. It should be mentioned that the search space can be extended to
include other parameters such as learning rate. However, the BO convergence would
be slower: in the current setting 100 BO iterations are sufficient to obtain a Pareto
set, with more parameters more iterations would be needed.

Fig. 6.5 and Tab. 6.3 show the Pareto-optimal points in the space defined by
prediction error evaluated in hardware (hardware error, x axis) and execution latency
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(Time, y axis) achieved by three different methods: Random search, Separate, and
the proposed Joint method. The search space for all the methods is the same and
the total number of iterations for each method is set to 100. In the Random case,
we randomly choose in each iteration a point in the search space. In the Separate
method, we first optimize the network hyper-parameters to obtain the best accuracy,
and then BO optimizes the hardware configurations to maximize the hardware
performance. In the Joint method, BO jointly optimizes the choice of the hyper-
parameters and the hardware configuration to maximize both prediction accuracy
and performance. Note that in Random search, as opposed to other two methods, we
cannot set a constraint for hardware error, so there is one point with error larger than
the admissible threshold (> 10%). With the exception of one single point randomly
detected by the Random search, all the other points in both the Random and Separate
method are Pareto-dominated by the points found by the Joint method.

To help speed-up the BO convergence toward results with low prediction error,
we modified the objective function with a non-linear exponential of the error. As
shown in Fig. 6.6 where the error is reported as a function of the BO iterations, the
exponential definition of the error in the objective function helps reach a quick con-
vergence toward solutions with low hardware error, compared to a linear definition.
The final results in this work are based on the exponential error.

Finally, Fig. 6.7 shows all the points suggested by the proposed joint MOBOC
and the other two methods in 100 iterations. For better clarity, a log scale is selected
for the hardware error. We can see that due to the error threshold in MOBOC, points
are more concentrated in the error range below 10% for our joint method, which
helps in better convergence of the optimization process by searching in the area of
interest.

Table 6.2 Search space featuring network architecture and hardware configurations
(UF:Unroll Factor)

Configs Range Configs Range

#Filters Conv1 [2,20] Dataflow active/inactive
On Chip active/inactive

#Filters Conv2 [2,20] Clk (ns) [8,20]
Total bits [10,20]

Kernel size 2*([1,4]) + 1 Integer bits [1,9]
#Neurons Dense1 [50,150] Conv1 UF 2^([0,4])
#Neurons Dense2 [50,150] Conv2 UF 2^([0,4])
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Fig. 6.5 Pareto-points found by the joint approach, random search, and conventional separate
method in the space of prediction error (Hw error) and execution latency (Time). Total
number of iterations is 100 for all methods.

Table 6.3 Pareto points obtained by three methods.

Random Separate Joint
Error Time Error Time Error Time
(%) (ms) (%) (ms) (%) (ms)
1.4 24.67 1.4 20.1 1.4 14.22
1.7 9.36 1.8 19.89 1.7 8.06
2.2 7.83 6.5 19.54 1.8 5.31
2.3 4.19 - - 1.9 4.74

11.9 2.53 - - 2.6 4.68

Fig. 6.6 Hardware error in our joint method in each BO iteration with (a) linear and (b)
exponential error function.
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Fig. 6.7 Total points suggested by the joint, separate, and random search methods; note the
concentration of the joint method on low errors (< 10%).

6.3.3 MLP in Microwave Data Set

Detection and classification of anomalies from the scattering matrix can be done by
using Neural Networks (NN). Multi-Layer Perceptron (MLP) is a fully connected
network that can be used in MI diagnosis. In [134], an MLP is used for breast cancer
detection with microwave sensing. When designing a hardware accelerator for the
MLP, there are several parameters that must be tuned to maximize the performance
as shown in previous sections. We proposed the methodology described in sec-
tion 6.2 to achieve the optimum set of parameters and we evaluated the efficiency
of the Parero fronts by using the MNIST data set. In this part, we focus on the
hardware performance of the MLP accelerator by considering an optimum set of
hyper-parameters for our design. To design and evaluate the MLP accelerator, we
used hls4ml [14] that is a tool to convert recurrent ML models from Python to
a synthesizable code that can be used in Vivado HLS. We used the same dataset
of microwave measurements that we used for the evaluation of SVM accelerator
introduced in Chapter 5, which contain 4500 samples of scattering matrix with 462
elements. It consists of 9 classes representing the presence, type, and location of
the brain stroke. For feature extraction, PCA is used that results in the reduction of
features to 110. We selected an MLP with 3 hidden layers. The numbers of neurons
per layer are 220,64,64, respectively. The target device is a Zynq SoC (ZedBoard),
and we used fixed-point precision for the hardware implementation by leveraging
hls4ml. The accuracy before and after hardware implementation, resource usage, and
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processing time are depicted in Table 6.4 and Figs. 6.8 and 6.9. Note the negligible
accuracy loss in the hardware accelerator due to the reduced precision.

Table 6.4 Evaluation of MLP performance in microwave anomaly detection. Fixed-point
precision is selected in hardware with total and integer widths of 16 and 10, respectively.

training
accuracy (%)

test
accuracy (%)

hardware
accuracy (%)

Latency
(ms)

99.6 98 97.5 1.12

Fig. 6.8 Accuracy of MLP during training by MI dataset
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Fig. 6.9 Resource usage for MLP in Zynq FPGA

6.4 Conclusions

In this chapter, we proposed a new methodology for joint optimization of DNN
training and hardware configurations in FPGAs using Keras and Vivado HLS for
training and hardware evaluation, respectively, within a multi-objective Bayesian
Optimization (BO) framework. In contrast to more common BO approaches, the
search space includes multiple hardware configurations in addition to the hyper-
parameters used for DNN training. Moreover, conflicting objectives related to
training and hardware performance can be considered separately to achieve a Pareto-
optimal set of configurations without merging them into a single objective function.
We compared our joint methodology with conventional approaches, random search
and separate optimization method. The Pareto set achieved with our method
outperforms those obtained with the other two methods, with 1.7× and 1.4×
improvement in execution time for the minimum error compared to random
and separate methods, respectively. In the future, other co-optimization algorithms
based on RL or EA can be compared with this work to further analyse the efficiency
of the proposed approach.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we presented efficient hardware design methodologies to accelerate
the execution of domain-specific kernels that are recurrent in a broad domain of
applications. We focused on two main application areas that are biomedical mi-
crowave techniques and Machine Learning (ML). Specifically, we proposed different
hardware accelerators for 3D FDTD, PCA, SVM, as well as design optimization tech-
niques for ML models, including Multi-Layer Perceptrons (MLPs) and Convolutional
Neural Networks (CNNs). We used High Level Synthesis (HLS) as the trending
approach to design these hardware accelerators and optimize their performance. The
flexibility, completeness (considering substantial details in each algorithm), effi-
ciency, and high level design techniques and hardware optimization methodologies
are the distinguishing features of the proposed accelerators compared to previous
related works. Specifically, these are the main contributions and achievements in our
thesis:

• The accelerator for 3D FDTD considers the CPML boundary conditions for all
directions, models the dispersive materials, and is designed as an internal step
for a non-linear iterative image reconstruction algorithm in medical Microwave
Imaging. Two architectures were proposed based on the number of interfaces
and the amount of consumed hardware resources. The first one is the Large
design which has 18 interfaces connecting the accelerator to the external
memory (which is still compatible with the memory specifications), requires
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a higher memory bandwidth, consumes more resources, and results in the
highest speed per antenna. The second architecture is the Small design, in
which the number of interfaces is reduced to 15 and there is lower resource
usage. In this way, although the speed performance will degrade per antenna,
it is possible to fit more antennas in a single FPGA (meaning that we can
execute FDTD for more parallel antennas in one FPGA) due to the lower
resource consumption per antenna. Therefore, the execution time for multiple
antennas in the Small design will improve compared to the Large design. For
the reference data set with the dimensions of 70× 70× 70, each FPGA in
the Small and Large design can be used for 3 and 2 antennas, respectively.
The execution time per antenna for our FPGA accelerator is 3.38s for the
Small design which is slightly better than the conventional GPU design with
Acceleware library (4.88s). In addition, we presented a multi-FPGA design
in which multiple antennas can be assigned to multiple FPGAs. The system
level evaluation of our multi-FPGA design with 24 antennas and 8 UltraScale+
FPGAs shows a 13× speed-up compared to the single GPU design on Tesla
P40 (Acceleware).

• The proposed PCA accelerator in FPGA consists of several compute units,
including the computations of Mean, Covariance, SVD or EVD, and Projection
of inputs. Although separate acceleration techniques for each compute unit
have been already proposed, their integration in an efficient hardware accelera-
tor has not been considered before. We proposed a flexible FPGA accelerator
for PCA that can be used for different data dimensions, thanks to the HLS
design methodology. In addition to the floating-point design, a fixed-point
implementation was proposed to efficiently use the hardware resources in
FPGA. For the computation of Covariance matrix, an efficient block streaming
methodology was introduced to read blocks of input data from the external
memory, store them in on-chip memory and process them inside the hard-
ware accelerator, while reading the next block of data from external memory.
In addition, to accelerate the computation of singular values or eigenvalues
in hardware, we used either an optimized SVD accelerator in floating-point
precision, or an efficient EVD accelerator in fixed-point precision. The SVD
accelerator was based on a built-in floating-point hardware block in one of the
HLS tool libraries, which was optimized to be used in PCA algorithm. The
fixed-point EVD accelerator was designed entirely in HLS starting from its
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software code in C++. We evaluated the performance of our PCA accelerator
on a hyperspectral imaging data set with both fixed-point and floating-point
precision and with different block sizes in the blocking method. Different data
dimensions were also analyzed, and compared to the GPU or multi-core CPU
designs we could achieve either power efficiency or performance speed-up.
In addition, we compared our HLS design an RTL implementation of PCA
using VHDL and achieved a 2.3× speed-up as well as significant reduction of
resource usage.

• FPGA accelerator for SVM uses a novel dataflow architecture in which the
required input data are transferred to the accelerator while the SVM compu-
tations are performed. The proposed accelerator is scalable, meaning that it
is not limited by the number of dimensions of Support Vectors and can be
used for large data dimensions when there is limited on-chip memory. In
addition, a fixed-point implementation was presented for the SVM accelerator
which could improve the speed. The entire accelerator was designed using
the HLS tool and we could apply different hardware optimization techniques.
One of the main characteristics of our design is having adjustable parallelism
which enables the designer to specify the amount of parallelism in hardware
depending on the available resources. For this purpose, three parameters were
introduced to control the level of parallelism in hardware, which determine
the number of data to read from memory (N), the number of FIFO channels
in the data flow region (BF), and the loop unroll factor in the computation
of Decision function (DF). As opposed to most of the conventional SVM
accelerators in FPGA, multi-class classification is also supported in our design.
In addition, we explored the impact of different SVM kernels on the hardware
performance. For the evaluation, we compared our HLS-based hardware accel-
erator with recent works which were designed using either HLS or the manual
RTL approach. A 4.4× latency improvement could be achieved compared
to the RTL design, and a minimum of 10× improvement in the latency was
obtained compared to a similar HLS-based design.

• Finally, for the optimum design of Machine Learning models and specifically
Neural Networks in FPGAs, a new methodology was proposed that could
jointly optimize the training hyper-parameters and HLS-based hardware con-
figurations based on multi-Objective Bayesian optimization. Although the
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proposed approach can be used for any ML model, we did a primary evalua-
tion on two network architectures, which are Multi-Layer Perceptron (MLP)
and Convolutional Neural Networks (CNNs). Compared to other Hw-NAS
solutions based on Bayesian Optimization, the search space in our method
supports multi-Hw configurations and consists of a combination of network
architectures and hardware configurations. In addition, the available hardware
resources in the FPGA can be set as Constraints in the optimization problem
together with different contrasting Objectives such as hardware latency and
accuracy loss. We considered a large search space and compared our joint
optimization methodology with the separate optimization and the Random
search approach. From the comparison, we could notice the improvement in
the Pareto sets obtained by the proposed joint approach, with 1.7× and 1.4×
improvement in the execution time for the minimum error compared to the
random and separate methods, respectively, in a Lenet5-inspired CNN archi-
tecture, and 1.43× improvement in the prediction time without an increase
in the prediction error compared to the separate design, in the MLP network
architecture.

The above-mentioned hardware accelerators are highly beneficial for high-
performance embedded computing systems. As stated previously, 3D FDTD is
used in non-linear iterative medical microwave image reconstruction, and its accel-
eration helps in reducing the amount of time needed to reconstruct the final image.
FPGA acceleration of SVD/EVD (included in PCA) is useful in linear microwave
image reconstruction algorithms. Hardware acceleration of PCA, SVM, and Neu-
ral Networks are advantageous in not only microwave imaging, but also in other
Machine Learning applications which use these algorithms.

7.1.1 List of Published Papers

In the following, the list of the published papers is presented:

1. M. A. Mansoori, P. Lu and M. R. Casu, "FPGA Acceleration of 3D FDTD for
Multi- Antennas Microwave Imaging Using HLS," in IEEE Access, vol. 9, pp.
122696-122711, 2021.
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2. M. A. Mansoori.; M. R. Casu, “High Level Design of a Flexible PCA Hardware
Accelerator Using a New Block-Streaming Method”, Electronics 2020, 9, 449.

3. M. A. Mansoori and Mario R. Casu, “HLS-Based Flexible Hardware Accel-
erator for PCA Algorithm on a Low-Cost ZYNQ SoC,” 2019 IEEE Nordic
Circuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC), 2019, pp. 1-7.

4. M. A. Mansoori and Mario R. Casu, “Efficient FPGA Implementation of PCA
Algorithm for Large Data using High Level Synthesis,” 2019 15th Conference
on Ph.D Research in Microelectronics and Electronics (PRIME), 2019, pp.
65-68.

5. D. O. Rodriguez Duarte, M. A. Mansoori, J. A. Tobon Vasquez, G. Turvani,
M. R. Casu and F. Vipiana, “evelopment of an EM Device for Cerebrovascular
Diseases Imaging and Hardware Acceleration for Imaging Algorithms within
the EMERALD Network,” 2019 13th European Conference on Antennas and
Propagation (EuCAP), 2019, pp. 1-3.

6. M. A. Mansoori, Mario R. Casu, “Efficient Training and Hardware Co-Design
of Machine Learning Models”, In: Applications in Electronics Pervading In-
dustry, Environment and Society. ApplePies 2021. Lecture Notes in Electrical
Engineering, vol. 866, 2022

7. M. A. Mansoori, Mario R. Casu, “Hardware Acceleration of Biomedical
Microwave Techniques using High Level Synthesis”, In 16th European Con-
ference on Antennas and Propagation (EuCAP), 2022 (accepted).

8. M. A. Mansoori, Mario R. Casu, “HLS-based dataflow hardware architecture
for Support Vector Machine in FPGA”, In: International Symposium on
Circuits and Systems (ISCAS) 2022 (accepted).

7.2 Future Work

As the future work and in order to improve the performance of the proposed hardware
accelerators, we provide some suggestions in the following:
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• To implement PCA algorithm in FPGA, we used a built-in function for SVD
in HLS and optimized its performance. However, the HLS implementation
of SVD uses floating-point data precision. As a future work, it is highly
beneficial to have a fixed-point implementation of SVD. For this purpose,
we need to develop a high level implementation of SVD algorithm by using
fixed-point data precision with efficient data widths, which can result in the
minimum accuracy loss while increasing the throughput and reducing the
power consumption.

• We designed the EVD accelerator that can use either fixed-point or floating
point precision. However, its performance can be improved by using a block-
streaming method (similar to the PCA accelerator). It can be extended to be
used for the fixed-point SVD accelerator.

• In 3D FDTD, it is possible to reduce the memory usage by reducing the
block size in the spatial blocking method and using overlapped tiling approach
instead. One of the drawbacks of this approach is that it results in some
redundant computations in the overlapped regions which are termed “halo”
regions.

In addition to “spatial blocking” and overlapped tilling approach, it is possible
to improve the throughput by exploiting “temporal blocking”. Temporal
blocking allows for pipelining multiple iterations of FDTD without storing
the intermediate results in the external memory. However, combination of
spatial and temporal blocking for 3D FDTD with CPML boundary conditions
creates additional challenges. For example, local memory usage will increase
due to the storage of multiple spatial blocks in different iterations. In addition,
by using overlapped tilling approach in parallel with temporal blocking, the
size of the halo regions will increase in subsequent iterations making it more
difficult to design the FDTD accelerator with these optimization techniques in
HLS.

• In ML applications, a classifier is usually used after the feature extraction
step. Therefore, the combination of PCA algorithm (as the feature extractor)
and SVM algorithm (as the classifier) is useful in a variety of applications. A
hardware accelerator containing the combination of PCA and SVM can be
considered as a future work.
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• In addition to other ML classifiers such as KNN, Decision Trees, and Random
forest, the ensemble of different classifiers can be implemented in hardware to
optimize their performance.

• We can obtain the optimum values of block size in PCA or FDTD, and other
parameters in HLS computing kernels by using the proposed co-optimization
framework in Chapter 6.

• We can extend the new co-optimization framework in Chapter 6 for the larger
networks (GANs, CNNs, ...).
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Appendix A

List of Acronyms

HLS High Level Synthesis

HDL Hardware Description Language

FPGA Field Programmable Gate Array

ML Machine Learning

MI Microwave Imaging

FDTD Finite Difference Time Domain

II Initiation Interval

PCA Principal Component Analysis

EVD Eigenvalue Decomposition

SVD Singular Value Decomposition

SVM Support Vector Machine

ANN Artificial Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

MLP Multi-Layer Perceptron
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CPML Convolutional Perfectly Mached Layer

BO Bayesian Optimization

NRE Non Recurrent Engineering

MRI Magnetic Resonance Imaging

VNA Vector Network Analyzer

HI Hyperspectral Imaging

TSVD Truncated Singular Value Decomposition

SLR Super Logic Region

PC Principal Component

MPPA Massively Parallel Processing Array

Cov Covariance

PU Projection Unit

PS Processing System

PL Parallel Logic

SoC System on Chip

SV Support Vector

RBF Radial Basis Function

MOBOC Multi Objective Bayesian Optimization with Constraints

DSA Domain Specific Accelerator

DSE Design Space Exploration

HW-NAS Hardware aware Neural Architecture Search

RL Reinforcement Learning

EA Evolutionary Algorithm
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PESMOC Predictive Entropy Search for Multi-objective Optimization with
Constraints
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