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Abstract—In this paper we advocate the use of mobile networks
as sensing platforms to monitor metropolitan areas. In particular,
we are interested in detecting urban anomalies (e.g., crowd gath-
ering) by processing the control information exchanged among
the base stations and the mobile users. For this, we design an
anomaly detection framework based on semi-supervised learning,
which enables the automatic identification of different types
of anomalous events without any a-priori information. The
proposed approach uses unsupervised learning techniques to gain
confidence in real mobile traffic demand patterns from the city of
Madrid in Spain and build an ad-hoc ground truth. A recurrent
neural network is then trained to detect contextual anomalies
and identify different types of urban events. Simulation results
confirm the better performance of the semi-supervised method
compared to pure unsupervised anomaly detection frameworks.

Index Terms—Data analytics, remote sensing, mobile network,
traffic anomaly detection, machine learning.

I. INTRODUCTION

Today, 55% of the world’s population lives in urban areas;
this proportion is expected to increase to 68% by 2050.
Projections show that urbanization, the gradual shift in res-
idence of the human population from rural to urban areas,
combined with the overall growth of the world’s population
could add another 2.5 billion people to urban areas by 2050,
with close to 90% of this increase taking place in Asia and
Africa, according to United Nations data [1]. To ensure that
the benefits of urbanization are fully shared and inclusive,
sustainable development of metropolitan areas is needed. This
depends increasingly on the successful management of cities,
including housing, transportation, energy systems, education
and health care. In this context, the automatic detection
of urban anomalies, like unexpected crowd gathering, is of
upmost importance for government and public administration.
However, urban anomalies often exhibit complicated forms,
and monitoring heterogeneous sources like traffic flows or
public transportation usage, requires complex sensing systems,
which may have elevated deployment and maintenance costs.
In this paper, instead, we advocate the use of mobile networks
as additional sensing platforms. Indeed, the extreme pervasive-
ness of the mobile telecommunication sector within the urban
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population, together with its ubiquitous coverage [2] may be
exploited to monitor large metropolitan areas. Detection of
critical anomalies can be achieved through the collection of
information that the different network elements (e.g., base sta-
tions, mobile terminals) are exchanging over time. Moreover,
processing historically collected data and learning from past
experience may discern whether an event can be considered
as anomalous or not.

In this work we tailor deep learning methods to solve our
Anomaly Detection (AD) problem. In particular, we use Long-
Short Term Memory neural networks (LSTMSs), due to their
capacity to effectively manage spatio-temporal correlations of
mobile traffic information to recognize complex patterns, and
to identify anomalous events automatically. This particular
type of Recurrent Neural Networks (RNNs) architecture has
been effectively employed in [3] and [4], where authors
perform mobile traffic forecasting outperforming conventional
methods such as ARIMA model, SVM and non-deep NNs.

The proposed AD framework is trained using the dataset
created in [5], which is a collection of Downlink Control
Information (DCI) messages from the unencrypted LTE Phys-
ical Downlink Control Channel (PDCCH) of an operative
mobile network in Spain. In our previous work [6], we used
a supervised approach to train a LSTM-based classifier to
identify crowded events known a-priori. In this paper, instead,
we use a semi-supervised approach to train a LSTM neural
network and detect the contextual traffic anomalies associated
to different urban events. As a result, AD is not addressed
as a supervised classification task, but rather, our algorithm
is taught to detect traffic anomalies learning only from non-
anomalous examples. We use unsupervised algorithms, namely
DBSCAN and K-means, to label data as normal samples. This
new dataset is then used to train a stacked LSTM architecture
and predict the traffic at the next time-instant. The AD is then
performed comparing the prediction error against a threshold.
Such procedure conceptually differs from our work in [7],
in which the training data have been selected based on a-
priori knowledge of anomalous urban events. In this sense,
the approach proposed in this paper provides a double benefit.
From one side, it allows to overcome the so called unbalanced
class problem [8], where one class is poorly represented with
respect to the other. On the other side, the labels needed



Fig. 1: Temporal behavior of the three features of interest:
from top to down, nRNTI , RBUL and RBDL, respectively.

for the LSTM training are found excluding any kind of
subjectivity and prior knowledge of the problem, and provide
an automatic AD framework able to identify urban anomalies
of different nature. Moreover, processing control data directly
at the mobile edge provides a twofold advantage: it reduces
the storing capabilities, which are much smaller than those
required to deal with user plane messages, and it permits to
detect the anomalies in a given site faster than using data from
a cloud server (e.g., Call Detail Records) so as to trigger the
required actions promptly.

The achieved results show the capabilities of the proposed
AD framework to accurate detect the anomalies in the traffic
data that are associated to different urban event typologies.

The paper is organized as follows: in Section II, we intro-
duce the dataset and the features used for training purposes.
Section III describes the proposed AD framework with details
on each specific block. In section IV, we provide an analysis of
the results and a comparison with AD benchmark algorithms,
to finally conclude the paper in Section V.

II. DATASET

The dataset used for our work has been collected from
a measurement campaign in Madrid, Rastro district, in the
period between the end of June and the beginning of August
2016 (06/29 - 08/09). The district is a typical residential area
with many commercial activities like restaurants and shops.
Data are gathered from the LTE Physical Downlink Control
Channel (PDCCH) using an LTE sniffer [9] that decodes the
Downlink Control Information (DCI) messages sent from the
eNodeB to the connected UEs [10].

DCI messages are sent every Transmission Time Interval
(TTI) of 1ms and contain scheduling information for UEs in
the Uplink (UL) and Downlink (DL) transmitting at the next
TTI. Among the several information available in DCI, we use
the following three features for our AD purposes:

• nRNTI: number of transmitting UEs,
• RBUL: number of allocated resource blocks in Uplink,
• RBDL: number of allocated resource blocks in Downlink.

Fig. 2: Pearson correlation plot.

We choose these three features since they are strictly related
to the network usage during the day, as shown in Fig.1.
However, the observed variables experience different behaviors
during the 24 hours. nRNTI presents higher values during the
day, when the population is active, and lower during nights,
when people usually sleep. Moreover, it is possible to identify
a different behavior between weekend and the week days.
This is directly related to individuals’ tendency to move their
routine forward of few hours during the weekend. We notice,
instead, different patterns for RBUL and RBDL: very low val-
ues are distinguished during nights, but during the day no type
of correlation with nRNTI is visible. Such a characteristic
is confirmed in Fig.2, in which Pearson correlation matrix is
reported.

Based on the considerations in the above, our work analyzes
the ability of different AD approaches in identifying anoma-
lous events in an urban environment by processing the three
features (nRNTI , RBUL, RBDL) separately.

III. ANOMALY DETECTION FRAMEWORK

A representation of our AD proposal is shown in Fig.3.
The framework takes as input the data collected from the LTE
PDCCH-DCI and it consists of two phases: the Data Pre-
processing through Unsupervised Learning and the Algorithm
Learning. The details of each part are discussed in the next
sub-sections.

A. Data Pre-processing through Unsupervised Learning

Because of the unsupervised learning ability to find com-
monalities in pieces of data without label information, we
perform an initial unsupervised analysis of the data with the
twofold objective to:

• detect the anomalous samples to exclude from the LSTM
training phase;

• create the ground truth used in the following Algorithm
Learning phase (Section III-B).

In particular, we tailor two clustering algorithms, namely K-
means [11] and DBSCAN [12] to identify classes amongst
a group of objects through a measure of distance. The main
difference between the two clustering techniques lays on the
fact that K-means is a partition-based, whereas DBSCAN is
a density-based algorithm. While K-means assigns the objects
to the nearest cluster center, DBSCAN identifies as clusters
the areas of a higher density compared to the rest of the data.
The main advantage of the last technique is the possibility to
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Fig. 3: Semi-supervised LSTM-AD Framework.

find clusters of arbitrary shapes and not only spherical shaped
clusters.

1) K-means: K-means partitions objects of a dataset into
a fixed number of K disjoint subsets. For AD purposes, all
the points belonging to the least numerous cluster in the final
partitioning are defined as outliers. We used the Elbow method
[13] to identify the best value of K for each of the three
variables of interest, evaluating the distortion produced for K
in the range [1,30]. The different values of K identified for
the three variables (nNRTI , RBUL, RBDL) are (19, 15, 9),
respectively. Even though this approach could be ambiguous,
not defining an unique value for K [13], it does identify a
range of possible values. We calculate the number of outliers
identified by each value in this range, and finally we fix K
equal to the value after which the number of identified outliers
remains almost constant.

2) DBSCAN: DBSCAN, and generally all density-based
algorithms, considers clusters as dense areas of objects that
are separated by less dense areas. This method is based on
the concepts of density-reachability and density-connectivity,
which are represented by the parameters epsilon (eps) and
the minimum number of points (minPts), respectively. The
parameter eps represents the minimum distance between two
objects to be considered as similar; MinPts is the minimum
number of points that a cluster must contain to be defined as
such. Any object that is not part of a cluster is categorized
as an outlier. According to [14] the value of MinPts has been
fixed equal to 4. The eps value, instead, has been defined
looking at the maximum slope of the ordered vector composed
by the Euclidean distances of each point to the nearest MinPts-
th point.

B. Learning Algorithm

This phase of the AD framework is divided into three steps.
Step 1: Prediction. The LSTM neural network is used to

perform a uni-variate, single-step forecasting of the variables
of interest. We use the data tagged as normal by the unsu-
pervised techniques to train the LSTM predictor; excluding
from the work the remaining part of the Train set that is
defined as consisting of outliers. Thanks to the structure of
the basic LSTM cells (or units), which includes special gates
to regulate the learning process, LSTM networks keep the
contextual information of inputs by integrating a loop to flow
the information from one step to the following one. Due to

their ability to learn long-term dependencies, the LSTM neural
networks result to be really suitable for time-series analysis
like ours. In our design, we consider a stacked architecture
combining nHL = 4 LSTM layers with respectively nC=
[300,300,100,50] LSTM units and a final Fully Connected
(FC) layer composed by a single neuron to perform the
prediction (Fig. 3). The length of the observation window
W is equal to 5 and it is equivalent to the number of lags
of the stacked LSTM architecture. The LSTM layers use the
ReLu activation function, while the linear activation function
is used to process the output. The algorithm is trained using
the Mean Square Error loss function and optimized using the
Adam optimizer [15].

Step 2: Outlier detection. This step is based on the as-
sumption that the prediction error over the anomalous samples
produces greater values compared to those over the normal
(training) data. For each sample x(n) of the test set (containing
anomalous traffic samples), we compare the predicted values
( ˆy(n)) with the expected ones (y(n)) to define a measure of
Absolute Error (AE):

AE(n) = |y(n)− ˆy(n)|. (1)

The Probability Density Function (PDF) of the AE of the
prediction is used to identify the outliers: when the prediction
error is beyond a given threshold p, it is considered too high
and the outlier is identified.

We fix p looking at the validation set used in the training
phase of the LSTMs. This is because the validation set
is not directly learned by the LSTMs, but it is processed
during the unsupervised data pre-processing and it provides
us information about which of its samples are considered
as outliers by the unsupervised algorithms. More in details,
we use the F-score metric, defined as the harmonic mean of
precision (P) and recall (R),

F = 2
RP

R+ P
, (2)

obtained by comparing the samples defined as anomalous by
the semi-supervised procedure using different values of p, and
the points identified as outliers by the unsupervised algorithms.

Intuitively, P represents the ability of the system not to
label as anomalous a sample that is normal, and R represents
the ability of the system to find all the anomalous points.
The parameter p can be seen as the percentage of values



Fig. 4: Comparison of the anomalous periods identified by the K-means and DBSCAN based semi-supervised approach and
those defined by the pure K-means model using the nRNTI variable. The events related to the Fiesta of San Cayetano are
represented by the green zones, the one related to the Rasto Market in blue, while the red region represent the pride of the
Orgullo Gay Manifestation.

that the absolute prediction error can assume, so that the
corresponding point is labelled as non-anomalous. We finally
set p so that F is maximized, i.e., as a trade-off between the
willingness to identify all the anomalous points defined by
the unsupervised techniques and the tendency in labeling as
anomalous objects that are not.

Step 3: Anomalous period definition. Once each point of
the dataset is labeled as normal or anomalous, the distribution
and the density of the abnormal points is evaluated to define
the length of the anomalous periods. The procedure employed
for this purpose consists of two fundamental rules:

• Each anomalous sample is defined as the starting point
of a contextual anomalous period if in the following 10
time instants at least the 80% of the samples are defined
as such.

• The anomalous period is interrupted only when 10 sub-
sequent points are defined as normal.

This approach has two benefits. First, it has the capability to
identify and to exclude those points labeled as anomalous that
do not belong to any anomalous period. Moreover, it permits
to compose an anomalous period considering also those points
that are not identified as outliers, but that are surrounded by
anomalous samples.

IV. RESULT ANALYSIS

To ensure the temporal continuity of information needed
in the evaluation phase, we exclude from the training phase
two weeks of the original dataset: the first and the sixth
weeks of the observation period (W1: 06/29 - 07/03 and W6:
08/01 - 08/08), and we use them for testing purposes. Indeed,
we know that the Fiesta de San Cayetano, the Rasto block
party, took place during W6 and that each Sunday the Rastro
Market takes place from 9 to 15. We use such knowledge to
evaluate the performance of our AD procedure, by verifying
the capacity of the algorithms to identify the events related to
these occurrences.

Figure 4 shows the relevant time intervals related to the
events: in green those related to the Fiesta de San Cayetano
and in blue the one related to the Rastro Market. The metrics

chosen for the evaluation of the performances are F, P and R
(introduced in Section III-B).

We implemented the anomaly detection algorithm in
Python, using Keras library and Tensorflow as backend. How-
ever, the LSTM-based AD procedure has been evaluated
using Google Colaboratory, which provides free hardware
acceleration with Tensor Processing Unit (TPU). The input
dataset is divided into training and validation sets with a ratio
of 80% - 20%.

A. Data pre-processing Setup

For clustering purposes, the dataset has been standardized
and arranged from 6 a.m. to 5 a.m. of the following day, to
consider the time pattern of the nRNTI metric (visible in
Fig.1). The anomalous points identified by the two method-
ologies turn out to be extremely different for K-means and
DBSCAN. In Fig.5a the outliers identified by K-means are
represented by blue markers, while the points surrounded by
red circles represent the outliers identified by DBSCAN. It can
be noted that the K-means approach applied on the nRNTI
metric identifies a sort of boundary value, above which all the
points are considered as anomalous, i.e., the majority of the
outliers are in the time interval between 11 a.m. and 3 p.m..
Instead, since DBSCAN evaluates the density of the points
and their position, it identifies as outliers only those points
isolated from the others.

Similarly, when applied to the RBUL metric (Fig. 5b), K-
means defines as anomalous the samples with higher values.
Instead, DBSCAN evaluates the density of the samples, la-
beling as normal similar points despite their higher values
with respect to the others classified as anomalous. Similar
considerations can be done for the RBDL metric, not reported
for the sake of brevity.

B. AD Results Analysis

Table I shows the performance of the proposed semi-
supervised AD framework using the two unsupervised al-
gorithms as data pre-processing tools. From one side, the
obtained values show how the identification of the anomalous



(a) nRNTI metric. (b) RBDL metric.

Fig. 5: Clustering outliers. Blue markers underline the K-means outliers, while red circles are used for the DBSCAN ones.

TABLE I: Results with the different AD approaches.

Method, Feature F P R

LSTM + K-means, nRNTI variable 0.639 0.661 0.619
LSTM + K-means, RBDL variable 0.0174 0.355 0.009
LSTM + K-means, RBUL variable 0.008 0.667 0.004

LSTM + DBSCAN, nRNTI variable 0.421 0.535 0.347
LSTM + DBSCAN, RBDL variable 0.007 1.0 0.0033
LSTM +DBSCAN, RBUL variable 0.006 1.0 0.0028

(a) K-means based
approach.

(b) DBSCAN based
approach.

Fig. 6: Confusion matrices showing the percentage of Tp
(correctly labelled outliers) and Fn (incorrectly labelled as
normal samples) normalized over the totality of abnormal
samples and the percentage of Tn (correctly labelled normal
samples) and Fp (incorrectly labelled as outliers) normalized
over the totality of normal samples, for different approaches.

events using RBDL and RBUL variables produces bad results.
The F scores are very low, using both the unsupervised
techniques as the basis to the training set construction. The
R values tell us how these metrics are unable to detect the
events of our interest. This behavior can be explained by the
low correlation between the active number of users (nRNTI)
and the variables related to the resource blocks (RBDL and
RBUL), shown in Figure 2. In other words, periods of high
congestion in the network (i.e., high number of radio resource
occupied for the transmission), not always occur when an high
number of users are camping in the cell. On the contrary, the
proposed semi-supervised approach applied to the nRNTI
metric identifies periods of contextual anomalies during all
the periods of interest related to the Fiesta de San Cayetano,
and good results are obtained also in the intervals related to
the Rastro Market, during Sunday.

Our framework finds another (not known) anomalous pe-
riod also during the Thursday of W1. Performing a targeted

research on this day (30/06), we discover that it is related to the
Orgullo Gay manifestation. Although a detailed program of the
manifestation is not available, we suppose that the contextual
anomaly, underlined in red in Fig. 4, could be related to the
parade of the manifestation. This consideration is confirmed by
the sudden change in the nRNTI values during the identified
anomalous period.

Moreover, the comparison between K-means and DBSCAN
as a method to build the training samples, returns that K-
means gives the best performance in terms of detection of the
relevant anomalous periods. Although Fig. 6 shows that both
approaches allow 96% of normal samples to be correctly la-
belled, it also shows how DBSCAN leads to not identify many
of the outliers (62%). As a confirmation, Fig. 4 highlights that
more fragmented anomalous periods are identified, when using
DBSCAN with respect to K-means. It also makes evident the
inability of DBSCAN in identifying the Wednesday evening
event of the Fiesta de San Cayetano. The result is a low R
value, and consequently a low F-score (Table I). On the other
hand, Kmeans is able to reach better results, almost doubling
R score (65%) and providing a classification accuracy of 92%
(against 89% of DBSCAN).

We highlights that since the program of the Fiesta of
San Cayetano only records the beginning of the events, it
is impossible to know when the events finish. Moreover,
no information can be found regard the turnout for event
preparing, the attendance, and the possibility that the crowd
may has held in the area after the end. For this reason, it
is possible to notice that many of the identified anomalous
periods are shifted with respect the periods of interest used for
the evaluation, and produce a high number of samples erro-
neously labelled as normal (False Negative Fn). As evidence,
we emphasize that our algorithm identifies the beginning of
the Rastro Market a couple of hours after the actual opening.
Considering that on Sundays people tends to postpone the
normal activity for a few hours, it is completely reasonable that
the maximum attendance is reached around lunchtime. The
same consideration can be done for the other events of Fiesta
of San Cayetano, whose maximum attendance will be surely
shifted with respect the beginning of the events. Moreover,
on Wednesday of W31 another anomalous period, before the
actual evening event, is identified by both algorithms. Despite
we are not aware of any other happenings in the eNodeB
coverage area, this detected anomaly could be related to the



Fig. 7: Comparison between our semi-supervised and tradi-
tional AD algorithms in terms of F,P,R.

event preparation.

C. Comparison with traditional AD approaches

To better evaluate the strengths and weaknesses of our
semi-supervised approach, we compare the results related to
the nRNTI metric with three standard AD benchmarks:
K-means, One-Class SVM [16] and Isolation Forest [17].
A general introduction to the K-means algorithm and his
functioning has already been provided in III-A. Instead, the
One Class-Support Vector Machine (OC-SVM) is an extension
of the SVMs, commonly used to perform AD [16]. OC-
SVM requires a parameter ν, defined as the upper bound of
the fraction of outliers. In this work we evaluate different
ν through a grid search analysis, to fix it equal to 0,3. On
the other hand, the Isolation Forest [17] is an unsupervised
learning algorithm based on the Decision Tree algorithm.

In Fig.7 we compare our semi-supervised approach using
K-means plus Stacked LSTM (i.e. the best performing) with
the above-mentioned benchmarks in terms of F, P and R. We
notice that the pure K-means approach presents the lowest
performance: the system results to be enable to find many
of the outliers, affecting R and producing lower F. Instead,
Isolation Forest and OC-SVM identify most of the anomalous
periods (R around 92%), but they presents very low P. To
explain the performances in Fig. 7 we also calculate the Miss
Rate, defined as the proportion of the outliers that are labelled
as normal. OC-SVM and Isolation Forest return ratios around
26%, against 4% of our semi-supervised approach. It means
that OC-SVM and Isolation Forest tend to classify all the peaks
of traffic as outliers, without being able to generalize a rule to
correctly distinguish anomalous events. On the contrary, the
proposed framework is able to find a good trade-off between
the precision in anomalous classified samples and the amount
of anomalies identified, reaching F scores 20% higher with
respect the investigated AD benchmarks.

V. CONCLUSIONS

In this paper, we used the control information exchanged
among eNodeBs and user devices to perform AD in urban
areas. In detail, we employed a real-world dataset collected
in the city of Madrid (Spain), providing a semi-supervised
approach that enables the automatic identification of different

types of anomalous events without any a-priori information.
Instead, the proposed framework consists in a pre-processing
stage through unsupervised learning algorithm, which identi-
fies anomalous periods.

In particular, we have demonstrated that K-means is a
valid method to label anomalous points to be used to train
a LSTM network for AD purposes. The combination of this
two algorithms is proven to be more robust to detect urban
anomalies than other state-of-the-art benchmarks.
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