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Abstract

Cyclotomic polynomials play an important role in several areas of mathematics
and their study has a very long history, which goes back at least to Gauss (1801).
In particular, the properties of their coefficients have been intensively studied by
several authors, and in the last 10 years there has been a burst of activity in
this field of research. This concise survey attempts to collect the main results
regarding the coefficients of the cyclotomic polynomials and to provide all the
relevant references to their proofs.
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1 Introduction

Cyclotomic polynomials play an important role in several areas of mathematics and their
study has a very long history, which goes back at least to Gauss (1801) [64].

For instance, cyclotomic polynomials appear in: the solution of the problem of which
regular n-gons are constructible with straightedge and compass (Gauss–Wantzel the-
orem [99, p. 46]); elementary proofs of the existence of infinitely many prime num-
bers equal to 1, respectively −1, modulo n, which is a special case of Dirichlet’s the-
orem on primes in arithmetic progressions [112, Sections 48–50]; Witt’s proof [128]
of Wedderburn’s little theorem that every finite domain is a field [86, Section 13];
the “cyclotomic criterion” in the study of primitive divisors of Lucas and Lehmer se-
quences [24]; and lattice-based cryptography [110, 113].

In particular, the coefficients of cyclotomic polynomials have been intensively stud-
ied by several authors, and in the last 10 years there has been a burst of activity in
this field of research. This concise survey attempts to collect the main results regard-
ing the coefficients of the cyclotomic polynomials and to provide all the relevant refer-
ences to their proofs. Previous surveys on this topic were given by Lenstra (1979) [91],
Vaughan (1989) [125], and Thangadurai (2000) [122].

Acknowledgments The author is grateful to Tsit-Yuen Lam, Pieter Moree, and
Carl Pomerance, for providing useful suggestions that improved the quality of this sur-
vey. The author is a member of GNSAGA of INdAM and of CrypTO, the group of
Cryptography and Number Theory of Politecnico di Torino.

1.1 Definitions and basic facts

Let n be a positive integer. The nth cyclotomic polynomial Φn(X) is defined as the
monic polynomial whose roots are the nth primitive roots of unity, that is,

Φn(X) :=
∏

1≤ k≤n
gcd(n, k)= 1

(
X − e2πik/n

)
. (1)

The word “cyclotomic” comes from the ancient Greek words “cyclo” (circle) and “tomos”
(cutting), and refers to how the nth roots of unit divide the circle into equal parts. Note
that, incidentally, the Greek letter Φ looks a bit like a cut circle. The degree of Φn(X)
is equal to ϕ(n), where ϕ is the Euler totient function. Despite its definition in terms
of complex numbers, it can be proved that Φn(X) has integer coefficients. Furthermore,
Φn(X) is irreducible over Q and, consequently, it is the minimal polynomial of any
primitive nth root of unity. The irreducibility of Φn(X) for n prime was first proved
by Gauss (1801) [64], and the irreducibility of Φn(X) in general was first proved by
Kronecker (1854) [85]. Weintraub (2013) [127] presented proofs of the irreducibility
of Φn(X) due to Gauss, Kronecker, Schönemann, and Eisenstein, for n prime, and
Dedekind, Landau, and Schur,1 for every n.

From (1) it follows easily that

Xn − 1 =
∏
d |n

Φd(X), (2)

1Perhaps curiously, Schur’s proof of the irreducibility of Φn(X) was set to rhymes [42, pp. 38–41].
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which in turn, by the Möbius inversion formula, yields that

Φn(X) =
∏
d |n

(
Xn/d − 1

)µ(d)
=
∏
d |n

(
Xd − 1

)µ(n/d)
, (3)

where µ is the Möbius function. In particular, we have that

Φp(X) =
Xp − 1

X − 1
= Xp−1 + · · ·+X + 1, (4)

for every prime number p.
The next lemma collects some important elementary identities, which can be proved

either using (3) or checking that both sides have the same zeros [91, 122].

Lemma 1.1. For every positive integer n and every prime number p, we have that:

(i) Φpn(X) = Φn(Xp) if p | n;

(ii) Φpn(X) = Φn(Xp)/Φn(X) if p - n;

(iii) Φ2n(X) = (−1)ϕ(n)Φn(−X) if 2 - n;

(iv) Φn(X) = Φrad(n)(X
n/rad(n)), where rad(n) is the product of the primes dividing n;

(v) Φn(1/X) = X−ϕ(n)Φn(X) if n > 1.

Starting from Φ1(X) = X−1 and using Lemma 1.1’s (i) and (ii), one can inductively
compute the cyclotomic polynomials. The first ten cyclotomic polynomials are:

Φ1(X) = X − 1 Φ6(X) = X2 −X + 1

Φ2(X) = X + 1 Φ7(X) = X6 +X5 +X4 +X3 +X2 +X + 1

Φ3(X) = X2 +X + 1 Φ8(X) = X4 + 1

Φ4(X) = X2 + 1 Φ9(X) = X6 +X3 + 1

Φ5(X) = X4 +X3 +X2 +X + 1 Φ10(X) = X4 −X3 +X2 −X + 1

A natural observation is that the coefficients of the cyclotomic polynomials are very
small, and one could be even tempted to conjecture that they are always in {−1, 0,+1}.
The first counterexample to this conjecture occurs for n = 105, since we have

Φ105(X) = X48 +X47 +X46 −X43 −X42 − 2X41 −X40 −X39 +X36 +X35 +X34

+X33 +X32 +X31 −X28 −X26 −X24 −X22 −X20 +X17 +X16 +X15

+X14 +X13 +X12 −X9 −X8 − 2X7 −X6 −X5 +X2 +X + 1.

It is no coincidence that 105 = 3 · 5 · 7 is the smallest odd positive integer having three
different prime factors. Indeed, every cyclotomic polynomial Φn(X) such that n has less
than three odd prime factors has all its coefficients in {−1, 0,+1} (see Section 2).

For every positive integer n, let us write

Φn(X) =
∑
j≥ 0

an(j)Xj, an(j) ∈ Z,

2



so that an(j) is the coefficient of Xj in Φn(X). (Note that an(j) = 0 for j /∈ [0, ϕ(n)].)
The peculiarity of the smallness of the coefficients of the cyclotomic polynomials was very
well explained by D. H. Lehmer (1966) [89], who wrote: “The smallness of |an(j)| would
appear to be one of the fundamental conspiracies of the primitive nth roots of unity.
When one considers that an(j) is a sum of

(
ϕ(n)
j

)
unit vectors (for example 73629072 in

the case of n = 105, j = 7) one realizes the extent of the cancellation that takes place.”
In light of Lemma 1.1’s (iii) and (iv), for the purpose of studying the coefficients

of Φn(X) it suffices to consider only odd squarefree integers n. A squarefree positive
integer n, or a cyclotomic polynomial Φn(X), is binary, ternary, . . . if the number of
prime factors of n is 2, 3, . . . , respectively. The order of Φn(X) is the number of prime
factors of n. From Lemma 1.1’s (v) we have that for every integer n > 1 the cyclotomic
polynomial Φn(X) is palindromic, that is,

an(ϕ(n)− j) = an(j), for j = 0, . . . , ϕ(n).

We conclude this section by defining the main quantities that have been considered in
the study of the coefficients of the cyclotomic polynomials. First, we have A(n), A+(n),
and A−(n), which are defined as follows

A(n) := max
j≥ 0
|ak(j)|, A+(n) := max

j≥ 0
ak(j), A−(n) := min

j≥ 0
ak(j).

In general, the height of a polynomial P ∈ C[X] is defined as the maximum of the
absolute values of the coefficients of P , and P is flat if its height is not exceeding 1.
Thus, A(n) is the height of Φn(X). We also let A(n) := {an(j) : 0 ≤ j ≤ ϕ(n)} be
the set of coefficients of Φn(X). Moreover, we let θ(n) := #{j ≥ 0 : an(j) 6= 0} be the
number of nonzero coefficients of Φn(X). The maximum gap of a nonzero polynomial
P (X) =

∑k
i=1 ckX

ek ∈ C[X], where c1, . . . , ck ∈ C∗ and e1 < · · · < ek, is defined as
G(P ) := max{ej+1 − ej : j < k}. We let G(n) := G(Φn) denote the maximum gap
of Φn(X). Note that by (4) we have that A(p) = A+(p) = A−(p) = 1, A(p) = {1},
θ(p) = p, and G(p) = 1, for every prime number p. Thus, the first interesting case in
the study of these quantities is the one of binary cyclotomic polynomials.

2 Binary cyclotomic polynomials

The understanding of the coefficients of binary cyclotomic polynomials is quite complete.
Let p and q be distinct prime numbers. From (3) it follows that

Φpq(X) =
(Xpq − 1)(X − 1)

(Xp − 1)(Xq − 1)
.

Migotti (1883) [101] and Bang (1895) [17] proved that the coefficients of every binary
cyclotomic polynomial belong to {+1,−1, 0}. Beiter (1964) [20] gave a first criterion to
enstablish if apq(j) is equal to +1, −1, or 0. This criterion is a bit difficult to apply, but
she used it to compute the midterm coefficient of Φpq(X). Using a different method,
Habermehl, Richardson, and Szwajkos (1964) [67] determined the coefficients of Φ3p(X),
for p > 3. Carlitz (1966) [38] gave a formula for the number of nonzero coefficients of
Φpq(X), and Lenstra (1979) [91] proved an expansion for Φpq(X), which was then redis-
covered by Lam and Leung (1996) [87], that leads to an explicit determination of apq(j).
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Moree (2014) [106] generalized this formula to binary inclusion-exclusion polynomials
(see Section 11.3), and he also showed a connection with numerical semigroups.

The following theorem gives a precise description of the coefficients of binary cyclo-
tomic polynomials [87, 91, 106, 122].

Theorem 2.1. Let p < q be distinct prime numbers, and let p and q be the unique
positive integers such that pq + 1 = pp+ qq. (Equivalently, p is the inverse of p modulo
q and q is the inverse of q modulo p.) We have that:

(i) It holds

Φpq(X) =

p−1∑
i=0

Xpi

q−1∑
j=0

Xqj −X−pq
q−1∑
i= p

Xpi

p−1∑
j= q

Xqj.

(ii) For every nonnegative integer j < pq, we have that either j = px + qy or j =
px+ qy− pq with x < q the unique nonnegative integer such that px ≡ j (mod q)
and y < p the unique nonnegative integer such that qy ≡ j (mod p); and it holds

apq(j) =


+1 if j = px+ qy with 0 ≤ x < p, 0 ≤ y < q;

−1 if j = px+ qy − pq with p ≤ x < q, q ≤ y < p;

0 otherwise.

(iii) The number of positive coefficients of Φpq(X) is equal to p q, the number of nega-
tive coefficients is equal to p q − 1, and (thus) the number of nonzero coefficients
of Φpq(X) is equal to 2p q − 1.

(iv) The nonzero coefficients of Φpq(X) alternates between +1 and −1.

(v) The midterm coefficient of Φpq(X) satisfies apq(ϕ(pq)/2) = (−1)p−1.

Moree [106] gave a nice way to illustrate Theorem 2.1’s (ii) by using what he called
an LLL-diagram (for Lenstra, Lam, and Leung). This is a p × q matrix constructed
as follows. Start with 0 in the bottom-left entry, add p for every move to the right,
add q for every move upward, and reduce all entries modulo pq. The numbers in the
bottom-left p× q submatrix are the exponents of the positive terms of Φpq(X), and the
numbers in the top-right (p− p)× (q − q) submatrix are the exponents of the negative
terms of Φpq(X). For example, the LLL-diagram for the binary cyclotomic polynomial

Φ5 ·7(X) = X24 −X23 +X19 −X18 +X17 −X16 +X14 −X13

+X12 −X11 +X10 −X8 +X7 −X6 +X5 −X + 1

is the following

28 33 3 8 13 18 23
21 26 31 1 6 11 16

14 19 24 29 34 4 9
7 12 17 22 27 32 2
0 5 10 15 20 25 30

4



By Theorem 2.1’s (iii), for every binary number n = pq, with p < q primes, the
number of nonzero coefficients of Φn(X) is θn = 2p q−1. From pq+1 = pp+qq it follows
in an elementary way that θn > n1/2 [59, Section 3.1]. Lenstra (1979) [91] proved that for
every ε > 0 there exist infinitely many binary n = pq such that θn < p8/13+ε. The proof is
based on a result of Hooley (1973) [71] that says that for every ε > 0 there exist infinitely
many prime number p such that P (p−1) > p5/8−ε, where P (n) denotes the largest prime
factor of n. Hooley’s result has been improved by several authors. Currently, the best
bound is P (p− 1) > p0.677, which is due to Baker and Harman (1998) [16]. This reduces
the exponent 8/13 of Lenstra’s bound to 1/(1 + 0.677) = 0.596 . . . . Using a different
method, Bzdȩga (2012) [29] proved that there are infinitely many binary numbers n
such that θn < n1/2+ε, and also gave upper and lower bounds for the number Hε(x) of
binary n ≤ x such that θn < n1/2+ε. Fouvry (2013) [59] proved the following asymptotic
formula for Hε(x).

Theorem 2.2. For ε ∈ (0, 1/2), let

C(ε) :=
2

1 + 2ε
log

(
1 + 2ε

1− 2ε

)
.

Then for every ε0 > 0, uniformly for ε ∈ (12/15 + ε0, 1/2− ε0), we have that

Hε(x) ∼ C(ε)
x1/2+ε

log x
(5)

as x→ +∞.

Furthermore, Fouvry [59] provided an upper bound and a lower bound for Hε(x)
of the same order of (5), and showed that the Elliott–Halberstam Conjecture implies
that (5) holds in the range ε ∈ (ε0, 1/2− ε0).

Hong, Lee, Lee, and Park (2012) [70] determined the maximum gap of binary cy-
clotomic polynomials, and Moree (2014) [106] gave another proof of the result using
numerical semigroups. Yet another short proof was given by Kaplan (2016) [37, End of
Section 2.1]. Furthermore, Camburu, Ciolan, Luca, Moree, and Shparlinski (2016) [37]
determined the number of maximum gaps of Φpq(X), and the existence of particular
gaps in the case in which q ≡ ±1 (mod p). The following theorem collects these re-
sults [37, 70, 106].

Theorem 2.3. Let p < q be prime numbers. Then:

(i) G(pq) = p− 1.

(ii) The number of maximum gaps of Φpq(X) is equal to 2bq/pc.

(iii) Φpq(X) contains the sequence of consecutive coefficients

±1, 0, . . . , 0︸ ︷︷ ︸
m times

,±1

for all m ∈ {0, . . . , p− 2} if and only if q ≡ ±1 (mod p).

Cafure and Cesaratto (2021) [36] considered the coefficients of Φpq(X) as a word over
the ternary alphabet {+1,−1, 0}, and provided an algorithm that, given as input p < q
and the quotient and remainder of the division of q by p, computes Φpq(X) performing
O(pq) simple operations on words. Chu (2021) [40] proved that the exponents of the
positive, respectively negative, terms of Φpq(X) are in arithmetic progression if and only
if q ≡ 1 (mod p), respectively q ≡ −1 (mod p).
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3 Ternary cyclotomic polynomials

Ternary cyclotomic polynomials are the simplest ones for which the behavior of the
coefficients is not completely understood. Kaplan (2007) [77, Lemma 1] proved the
following lemma, which provides a formula for the coefficients of ternary cyclotomic
polynomials. This is known as Kaplan’s lemma and has been used to prove several results
on ternary cyclotomic polynomials [47, 60, 61, 63, 72, 108, 130, 131, 132, 136, 137].

Lemma 3.1 (Kaplan’s lemma). Let p < q < r be odd prime numbers and let j ≥ 0 be
an integer. For every integer i ∈ [0, pq), put

bi :=

{
apq(i) if ri ≤ j;

0 otherwise.

Then we have

apqr(j) =

p−1∑
m=0

(bf(m) − bf(m+q)),

where f(m) is the unique integer such that f(m) ≡ r−1(j−m) (mod pq), 0 ≤ f(m) < pq.

Lemma 3.1 reduces the computation of apqr(j) to that of apq(i), which in turn is
provided by Theorem 2.1’s (ii). Note that in order to compute apqr(j) using Lemma 3.1
and Theorem 2.1’s (ii) it is not necessary to compute f(m) and f(m+ q), but it suffices
to compute [f(m)]p, [f(m)]q, [f(m + q)]p, and [f(m + q)]q, which can be easier, where
[k]p and [k]q are the unique nonnegative integers x < q and y < p such that px ≡ k
(mod q) and qy ≡ k (mod p), for every integer k. Actually, since [f(m)]p = [f(m+ q)]p,
it suffices to compute [f(m)]p, [f(m)]q, and [f(m+ q)]q.

For the rest of this section, let p < q < r be odd prime numbers and let n = pqr be a
ternary integer. The next subsections describe the main themes of research on ternary
cyclotomic polynomials.

3.1 Bounds on the height and Beiter’s conjecture

Upper bounds for the height of ternary cyclotomic polynomials have been studied by
many authors. Bang (1895) [17] proved that A(pqr) ≤ p − 1. Beiter (1968) [21] made
the following conjecture, which is known as Beiter’s conjecture.

Conjecture 3.1 (Beiter’s conjecture). A(pqr) ≤ 1
2
(p+ 1) for all odd primes p < q < r.

Beiter (1968) [21] proved her conjecture in the case in which q ≡ ±1 (mod p) or
r ≡ ±1 (mod p). As a consequence, Beiter’s conjecture is true for p = 3. Also,
Bloom (1968) [25] showed that Beiter’s conjecture is true for p = 5. Beiter (1971) [22]
improved Bang’s bound to A(pqr) ≤ p−b(p+1)/4c. Möller (1971) [103] proved that for
every odd prime number p there exists a ternary cyclotomic polynomial Φpqr(X), with
p < q < r, having a coefficient equal to (p + 1)/2. This shows that Beiter’s conjecture,
if true, is the best possible. Bachman (2003) [10] proved an upper bound for A+(pqr)
and a lower bound for A−(pqr) in terms of p and the inverses of q and r modulo p.
As corollaries, he deduced that: Beiter’s conjecture is true if q or r is equal to ±1,±2
modulo p; we have A(pqr) ≤ p−dp/4e; and A+(pqr)−A−(pqr) ≤ p, in particular either
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A+(pqr) ≤ (p−1)/2 or A−(pqr) ≥ −(p−1)/2. Note that the first two corollaries improve
the previous results of Beiter [21, 22]. Regarding the third, Bachman (2004) [11] also
proved that for every odd prime number p there exist infinitely many ternary cyclotomic
polynomials Φpqr(X), with p < q < r, such that A(pqr) = [−(p − 1)/2, (p + 1)/2] ∩ Z,
and similarly for the interval [−(p + 1)/2, (p − 1)/2]. Leher (2007) [88, p. 70] found a
counterexample to Beiter’s conjecture, that is, A(17 · 29 · 41) = 10 > (17 + 1)/2. Let
M(p) := maxp<q<r A(p). For every odd prime p, Gallot and Moree (2009) [61] defined
an effectively computable set of natural numbers B(p) such that if B(p) is nonempty
then

M(p) ≥ p−min(B(p)) > (p+ 1)/2,

and so Beiter’s conjecture is false for p. Then, for p ≥ 11 they showed that B(p) is
nonempty and max(B(p)) = (p− 3)/2. Moreover, for every ε > 0, they proved that(

2
3
− ε
)
p ≤M(p) ≤ 3

4
p, (6)

for all sufficiently large p. In light of these results, they formulated the following:

Conjecture 3.2 (Corrected Beiter’s conjecture). M(p) ≤ 2
3
p for every prime p.

Zhao and Zhang (2010) [138] gave a sufficient condition for the Corrected Beiter
conjecture and proved it when p = 7. (Note that for p = 7 the Corrected Beiter
Conjecture is equivalent to the original Beiter Conjecture.) Moree and Roşu (2012) [108]
showed that for each odd integer ` ≥ 1 there exist infinitely many odd primes p < q < r
such that

A(pqr) = [−(p− `− 2)/2, (p+ `+ 2)/2] ∩ Z.

This provides a family of cyclotomic polynomials that contradict the Beiter conjecture
and have the largest coefficient range possible. Bzdȩga (2010) [27] improved Bachman’s
bounds [10] by giving the following theorem.

Theorem 3.2. Let p < q < r be odd primes and let q′ and r′ be the inverses of q and r
modulo p, respectively. Then

A+(pqr) ≤ min{2α + β, p− β}, −A−(pqr) ≤ min{p+ 2α− β, β},

A(pqr) ≤ min{2α + β∗, p− β∗},
where α := min{q′, r′, p − q′, p − r′}, β is the inverse of αqr modulo p, and β∗ :=
min{β, p− β}.

As an application of Theorem 3.2, Bzdȩga proved a density result showing that
the Corrected Beiter conjecture holds for at least 25/27 + O(1/p) of all the ternary
cyclotomic polynomials with the smallest prime factor dividing their order equal to p.
He also proved that for these polynomials the average value of A(pqr) does not exceed
(p + 1)/2. Moreover, for every prime p ≥ 13, he provided some new classes of ternary
cyclotomic polynomials Φpqr(X) for which the set of coefficients is very small. Luca,
Moree, Osburn, Saad Eddin, and Sedunova (2019) [93], using Theorem 3.2 and some
analytic estimates for constrained ternary integers that they developed, showed that the
relative density of ternary integers for which the correct Sister Beiter conjecture holds
true is at least 25/27.
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Gallot, Moree, and Wilms (2011) [63] initiated the study of

M(p, q) := max{A(pqr) : r > q}.

They remarked that M(p, q) can be effectively computed for any given odd primes p < q.
For p = 3, 5, 7, 11, 13, 19, they proved that the set Qp of primes q with M(p, q) = M(p)
has a subset of positive density, which they determined, and they also conjectured the
value of the natural density of Qp. Moreover, they computed or bound M(p, q) for p and
q satisfying certain conditions, and they posed several problems regarding M(p, q) [63,
Section 11]. Cobeli, Gallot, Moree, and Zaharescu (2013) [41], using techniques from
the study of the distribution of modular inverses, in particular bounds on Kloosterman
sums, improved the lower bound in (6) to

M(p) > 2
3
p− 3p3/4 log p,

for every prime p, and
M(p) > 2

3
p− Cp1/2,

for infinitely many primes p, where C > 0 is a constant. Moreover, they proved that

lim inf
x→+∞

#{q : p < q ≤ x, M(p, q) > (p+ 1)/2}
#{p : p ≤ x} ≥ #B(p)

p− 1
.

Duda (2014) [47] put Mq′(p) := max{M(p, q) : q ≡ q′ (mod p)} and proved one of the
main conjectures on M(p, q) of Gallot, Moree, and Wilms [63, Conjecture 8], that is, for
all distinct primes p and q′ there exists q0 ≡ q′ (mod p) such that for every prime q ≥ q0
with q ≡ q′ (mod p) we have M(p, q) = Mq′(p). Also, he gave an effective method to
compute Mq(p), from which it follows an algorithm to effectively compute M(p), since
M(p) = max{Mq(p) : q < p}.

Kosyak, Moree, Sofos, and Zhang (2021) [84] conjectured that every positive integer
is of the form A(n), for some ternary integer n. They proved this conjecture under a
stronger form of Andrica’s conjecture on prime gaps, that is, assuming that pn+1− pn <√
pn + 1 holds for every n ≥ 31, where pn denotes the nth prime number. Furthermore,

they showed that almost all positive integers are of the form A(n) where n = pqr with
p < q < r primes is a ternary integer and #A(n) = p + 1 (which is the maximum
possible value for this cardinality). A nice survey regarding these connections between
cyclotomic polynomials and prime gaps was given by Moree (2021) [107].

3.2 Flatness

Recall that a cyclotomic polynomial Φn(X) is flat if A(n) = 1. Several families of
flat ternary cyclotomic polynomials have been constructed, but a complete classification
is still not known. Beiter (1978) [23] characterized the primes r > q > 3 such that
Φ3qr(X) is flat. In particular, there are infinitely many such primes. Bachman (2006) [12]
proved that if p ≥ 5, q ≡ −1 (mod p), and r ≡ 1 (mod pq) then Φpqr(X) is flat.
Note that, for every prime p ≥ 5, the existence of infinitely many primes q and r
satisfying the aforementioned congruences is guaranteed by Dirichlet’s theorem on primes
in arithmetic progressions. Flanagan (2007) [58] improved Bachman’s result by relaxing
the congruences to q ≡ ±1 (mod p) and r ≡ ±1 (mod pq). Kaplan (2007) [77] used
Lemma 3.1 to show that last congruence suffices, that is, the following holds:
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Theorem 3.3. Φpqr(X) is flat for all primes p < q < r with r ≡ ±1 (mod pq).

Luca, Moree, Osburn, Saad Eddin, and Sedunova (2019) [93] proved some asymp-
totic formulas for ternary integers that, together with Theorem 3.3, yield that for every
sufficiently large N > 1 there are at least CN/ logN ternary integers n ≤ N such that
Φn(X) is flat, where C := 1.195 . . . is an explicit constant.

Ji (2010) [72] considered odd primes p < q < r such that 2r ≡ ±1 (mod pq) and
showed that in such a case Φpqr(X) is flat if and only if p = 3 and q ≡ 1 (mod 3). For
a ∈ {3, 4, 5}, Zhang (2017) [132] gave similar characterizations for the odd primes such
that ar ≡ ±1 (mod pq) and Φpqr(X) is flat (see also [137] for a weaker result for the
case a = 4). For a ∈ {6, 7}, Zhang (2020, 2021) [135, 136] characterized the odd primes
such that q ≡ ±1 (mod p), ar ≡ ±1 (mod pq), and Φpqr(X) is flat. Zhang (2017) [133]
also showed that if p ≡ 1 (mod w), q ≡ 1 (mod pw), and r ≡ w (mod pq), for some
integer w ≥ 2, then A+(pqr) = 1. (See also the unpublished work of Elder (2012) [50].)
Furthermore, for q 6≡ 1 (mod p) and r ≡ −2 (mod pq), Zhang (2014) [130] constructed
an explicit j such that apqr(j) = −2, so that Φpqr(X) is not flat. Regarding nonflat
ternary cyclotomic polynomials with small heights, Zhang (2017) [131] showed that for
every prime p ≡ 1 (mod 3) there exist infinitely many q and r such that A(pqr) = 3.

3.3 Jump one property

Gallot and Moree (2009) [60] proved that neighboring coefficients of ternary cyclotomic
polynomials differ by at most one. They called this property jump one property.

Theorem 3.4 (Jump one property). Let n be a ternary integer. Then

|an(j)− an(j − 1)| ≤ 1

for every integer j ≥ 1.

Corollary 3.1. Let n be a ternary integer. Then A(n) is a set of consecutive integers.

Gallot and Moree used the jump one property to give a different proof of Bachman’s
result [11] on ternary polynomials with optimally large set of coefficients. Their proof
of the jump one property makes use of Kaplan’s lemma. Previously, Leher (2007) [88,
Theorem 57] proved the bound |an(j) − an(j − 1)| ≤ 4 using methods from the theory
of numerical semigroups. A different proof of the jump one property was given by
Bzdȩga (2010) [27]. Furthermore, for every ternary integer n, Bzdȩga (2014) [31] gave a
characterization of the positive integers j such that |an(j)−an(j−1)| = 1. A coefficient
an(j) is jumping up, respectively jumping down, if an(j) = an(j − 1) + 1, respectively
an(j) = an(j − 1) − 1. Since cyclotomic polynomials are palindromic, the number of
jumping up coefficients is equal to the number of jumping down coefficients. Let Jn
denote such number. Bzdȩga [31] proved that Jn > n1/3 for all ternary integers n. As a
corollary, θn > n1/3. Also, he showed that Schinzel Hypothesis H implies that for every
ε > 0 we have Jn < 10n1/3+ε for infinitely many ternary integers n. Camburu, Ciolan,
Luca, Moree, and Shparlinski (2016) [37] gave an unconditional proof that Jn < n7/8+ε

for infinitely many ternary integers n.
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4 Higher order cyclotomic polynomials

There are few specific results regarding cyclotomic polynomials of order greater than
three. Bloom (1968) [25] proved that, for odd prime numbers p < q < r < s, it
holds A(pqrs) ≤ p(p − 1)(pq − 1). Kaplan (2010) [79] constructed the first infinite
family of flat cyclotomic polynomials of order four. Precisely, he proved that Φ3·5·31·s(X)
is flat for every prime number s ≡ −1 (mod 465). Also, he suggested that all flat
cyclotomic polynomials Φpqrs(X) satisfy q ≡ −1 (mod p), r ≡ ±1 (mod pq), and s ≡ ±1
(mod pqr). Furthermore, Bzdȩga (2012) [28] proved the upper bounds

A(pqrs) ≤ 3

4
p3q, A(pqrst) ≤ 135

512
p7q3r, A(pqrstu) ≤ 18225

262144
p15q7r3s,

for all odd prime numbers p < q < r < s < t < u.

5 Height of cyclotomic polynomials

5.1 Asymptotic bounds on A(n)

Schur (1931)2 was the first to prove that the coefficients of cyclotomic polynomials
can be arbitrarily large, that is, supn≥1A(n) = +∞. E. Lehmer (1936) [90] presented
Schur’s proof and proved the stronger result that A(n) is unbounded also when n is
restricted to ternary integers. Erdős (1946) [52] proved that A(n) > exp(C(log n)4/3) for
infinitely many positive integers n, for some constant C > 0. His proof rests on a lower
bound for the maximum of |Φn(X)| on the unit circle, and the simple consideration that
|Φn(z)| ≤ nA(n) for every z ∈ C with |z| ≤ 1. This is essentially the main technique
that has then been used to prove lower bounds for A(n) [35, 53, 54, 81, 94, 95, 97,
124]. Furthermore, Erdős suggested that3 A(n) > exp(nC/ log logn) for infinitely many
positive integers n, for some constant C > 0, and claimed that this is the best possible
upper bound. Bateman (1949) [18] gave a short proof that, for every ε > 0, it holds
A(n) < exp(n(1+ε) log 2/ log logn) for all sufficiently large integers n. Hence, the lower bound
suggested by Erdős, if true, is indeed the best possible. Then Erdős (1949) [53] proved
that in fact A(n) > exp(nC/ log logn) for infinitely many positive integers n, for some
constant C > 0, by showing that max|z|=1 |Φn(z)| > exp(nC/ log logn) for infinitely many
positive integers n. His proof of this last fact is quite involved. Later, Erdős (1957) [54]
found a simpler proof of the fact that maxx∈(0,1) |Φn(x)| > exp(nC/ log logn) for infinitely
many positive integers n, which again implies the lower bound on A(n). He conjectured
that one can take every positive constant C < log 2, and so Bateman’s result is the best
possible. This conjecture was settled by Vaughan (1974) [124], who proved that actually
C = log 2 is admissible (see also [35] for an alternative proof).

In summary, the maximal order of A(n) is given by the following theorem [18, 124].

Theorem 5.1 (Bateman–Vaughan). On the one hand, for every ε > 0, we have

A(n) < exp
(
n(log 2+ε)/ log logn

)
2Unpublished letter to Landau, see [90].
3The following formula was printed incorrectly in Erdős’ paper [52], see [18].
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for all sufficiently large positive integers n. On the other hand, we have

A(n) > exp
(
nlog 2/ log logn

)
for infinitely many positive integers n.

Maier (1990, 1996) [94, 96] proved that nf(n) < A(n) < ng(n) for almost all positive
integers, where f and g are arbitrary functions such that f(n) → 0 and g(n) → +∞
as n → +∞. Furthermore, Maier (1993) [95] proved that for any constant C > 0 the
inequality A(n) ≥ nC holds on a set of positive lower density. It is well known that
ω(n) ∼ log log n as n → +∞ over a set of natural density 1, where ω(n) is the number
of distinct prime factors of n (see, e.g., [121, Ch. III.3]). For every C > 1, let EC be
the set of squarefree integers n such that ω(n) ≥ C log log n. Maier (2001) [97] proved
that for every C > 2/ log 2 and ε > 0 the inequality A(n) > exp((log n)(C log 2)/2−ε) holds
for almost all n ∈ EC . Later, Konyagin, Maier, and Wirsing (2004) [81] showed that,
actually, such lower bound for A(n) holds for all positive integers with ω(n) ≥ C log log n.
The key part of their proof is a strong upper bound on the third moment of the function
log |Φn(z)| over the unit circle.

5.2 Bounds on A(n) in terms of prime factors

Felsch and Schmidt (1968) [56] and, independently, Justin (1969) [76] proved that A(n)
has an upper bound that does not depend on the two largest prime factors of n. Let n =
p1 · · · pk, where p1 < · · · < pk are odd prime numbers and k ≥ 3. Bateman, Pomerance,
and Vaughan (1984) [19] proved that A(n) ≤ M(n), where M(n) :=

∏k−2
j=1 p

2k−j−1−1
j

(see also [98] for an upper bound of a similar form for |Φn(X)| on the unit circle).
Furthermore, they conjectured thatM(n) ≤ ϕ(n)2

k−1/k−1. This conjecture was proved by
Bzdȩga (2012) [28], who also proved that A(n) ≤ CkM(n), where (Ck)k≥3 is a sequence
such that C2−k

k converges to a constant less than 0.9541, as k → +∞. In the opposite
direction, Bzdȩga (2016) [33] proved that for every k ≥ 3 and ε > 0 there exists n
such that A(n) > (ck − ε)M(n), where (ck)k≥3 is a sequence such that c2

−k

k converges
to a constant that is about 0.71, as k → +∞. In particular, this last result implies
that in the upper bound on A(n) the product M(n) is optimal, which means that, in a
precise sense, it cannot be replaced by a smaller product of p1, . . . , pk−2. Furthermore,
Bzdȩga (2017) [34] proved several asymptotic bounds for quantities such as A(n), the
sum of the absolute values of the coefficients of Φn(X), the sum of the squares of the
coefficients of Φn(X), and the maximum of the absolute value of Φn(X) on the unit
circle, as p1 → +∞ and k is fixed.

5.3 The dual function a(j)

For every positive integer j define

a(j) := max
n≥ 1
|an(j)|. (7)

Thus a(j) is somehow a dual version of A(n). From (3) it follows that apqn(j) = an(j)
for all prime numbers p > q > j not dividing n. Hence, in (7) the maximum can be
replaced by a limit superior. Erdős and Vaughan (1974) [55] proved that log a(j) <
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2τ 1/2j1/2 + Cj3/8 for all positive integers j, where τ :=
∏

p

(
1− 2

p(p+1)

)
and C > 0 is a

constant, and conjectured that log a(j) = o(j1/2) as j → +∞. Also, they showed that
log a(j)� j1/2/(log j)1/2 for all sufficiently large integers j. Vaughan (1974) [124] proved
that log a(j) � j1/2/(log j)1/4 for infinitely many positive integers j. Montgomery and
Vaughan (1985) [104] determined the order of magnitude of log a(j) by proving that that
log a(j) � j1/2/(log j)1/4 for all sufficiently large integers j. Finally, Bachman (1993) [9]
proved the asymptotic formula log a(j) ∼ Cj1/2/(log j)1/4, where C > 0 is a constant
given by a quite complicate expression.

6 Maximum gap

Al-Kateeb, Ambrosino, Hong, and Lee (2021) [2] proved that G(pm) = ϕ(m) for every
prime number p and for every squarefree positive integer m with p > m. This was
previously numerically observed by Ambrosino, Hong, and Lee (2017) [4, 5]. The proof
is based on a new divisibility property regarding a partition of Φpm(X) into “blocks”
(see also [1, 3]). Furthermore, Al-Kateeb, Ambrosino, Hong, and Lee [2] conjectured
that G(pm) ≤ ϕ(m) for every prime number p and for every squarefree positive integer
m with p < m.

7 The set of coefficients

Suzuki (1987) [120] gave a short proof that every integer appears as the coefficient of some
cyclotomic polynomial. (Note that now this follows, for example, from Bachman’s result
on ternary cyclotomic polynomials with an optimally large set of coefficients [11]). Ji and
Li (2008) [73] proved that, for each fixed prime power p`, every integer appears as the
coefficient of a cyclotomic polynomial of the form Φp`n(X). Ji, Li, and Moree (2009) [74]
generalized this result by showing that, for each fixed positive integer m, every inte-
ger appears as the coefficient of a cyclotomic polynomial of the form Φmn(X). Then
Fintzen (2011) [57] determined the set {an(j) : n ≡ a (mod d), j ≡ b (mod f)} for any
given nonnegative integers a < d and b < f (see also [129]). In particular, she showed
that this set is either Z or {0}.

Recall that A(n) := {an(j) : 0 ≤ j ≤ ϕ(n)} is the set of coefficients of Φn(X).
Kaplan (2007, 2010) [77, Theorems 2 and 3][79, Theorem 4] proved4 the following two
results regarding a kind of periodicity of A(n).

Theorem 7.1. Let n be a binary integer, and let p and q be prime number greater than
the largest prime factor of n and such that p ≡ ±q (mod n). Then A(pn) = A(qn).

Theorem 7.2. Let n be a positive integer, and let p and q be prime numbers greater
than n and satisfying p ≡ q (mod n). Then A(pn) = A(qn).

4[77, Theorems 2 and 3] are stated with A(n) in place of A(n), but their proofs show that the result
do indeed hold with A(n).
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8 Formulas for the coefficients

Let n > 1 be an integer. From (3) it follows that

Φn(X) =
∞∏
d=1

(
1−Xd

)µ(n/d)
, (8)

with the convention that µ(x) = 0 if x is not an integer. Therefore, each coefficient
an(j) depends only on the values µ(n/d), with d a positive integer not exceeding j, and
using (8) one can obtain formulas for an(j) for each fixed j. For instance, we have

an(1) = −µ(n),

an(2) = 1
2
µ(n)2 − 1

2
µ(n)− µ

(
n
2

)
,

an(3) = 1
2
µ(n)2 − 1

2
µ(n) + µ(n)µ

(
n
2

)
− µ

(
n
3

)
.

In general, Möller (1970) [102] proved that

an(j) =
∑

λ1+2λ2+ ···+jλj = j
λ1,...,λj ≥ 0

j∏
d=1

(−1)λd
(
µ(n/d)

λd

)
,

for every integer j ≥ 0 (see [62, Lemma 4] for a short proof).
Kazandzidis (1963) [80] and D. H. Lehmer (1966) [89] noted that, by Newton’s iden-

tities for the symmetric elementary polynomials in terms of power sums, we have

an(j) =
∑

λ1+2λ2+ ···+jλj = j
λ1,..., λj ≥ 0

j∏
t=1

(−cn(t)/t)λt

λt!
,

where

cn(t) :=
∑

1≤ k≤n
gcd(n, k)= 1

e2πikt/n = ϕ(n)
µ(n/gcd(n, t))

ϕ(n/gcd(n, t))
,

is a Ramanujan’s sum and the second equality is due to Hölder (1936) [69]. Deaconescu
and Sándor (1987) [43] (see also [116, pp. 258–259]) gave another formula for an(j) in
terms of a determinant involving Ramanujan’s sums. Furthermore, Eaton (1939) [49]
proved a formula for an(j) in terms of a sum having each addend either equal to −1 or
+1 depending on a quite involved rule.

Grytczuk and Tropak (1991) [66] provided another method to compute an(j), which
makes use of the recurrence

an(j) = −µ(n)

j

j−1∑
i=0

an(i)µ(gcd(n, j − i))ϕ(gcd(n, j − i)), for j > 0,

with an(0) = 1. By using this method, they found for m = ±2, . . . ,±9, and 10 the
minimal positive integer j for which there exists a positive integer n such that an(j) = m.

Herrera-Poyatos and Moree (2021) [68] wrote a survey on formulas for an(j) involving
Bernoulli numbers, Stirling numbers, and Ramanujan’s sums. Also, they introduced a
new uniform approach that makes possible to provide shorter proofs for some of such
formulas and also to derive new ones.
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9 Miscellaneous results

Carlitz (1967) [39] proved some asymptotic formulas involving the sum of squares of the
coefficients of Φn(X). Endo (1974) [51] proved that 7 is the minimal nonnegative integer
j such that |an(j)| > 1 for some positive integer n. Dresden (2004) [46] proved that for
every n ≥ 3 the middle coefficient of Φn(X) is either 0, and in such a case n is a power of
2, or an odd integer. Dunand (2012) [48] studied the coefficients of the inverse of Φm(X)
modulo Φn(X), where m and n are distinct divisors of pq, with p < q primes, and
discussed an application to torus-based cryptography. Musiker and Reiner (2014) [111]
gave an interpretation of an(j) as the torsion order in the homology of certain simplicial
complexes. An alternative proof of this results was given by Meshulam (2012) [100].
Chu (2021) [40] gave necessary conditions on n so that the powers of positive, respectively
negative, coefficients of Φn(X) are in arithmetic progression. For all integers j, v ≥ 0,
let

a(j) := lim
N→+∞

1

N

∑
n≤N

an(j)

be the average value of the jth coefficient of the cyclotomic polynomials, and let

δ(j, v) := lim
N→+∞

1

N
#{n ≤ N : an(j) = v},

be the frequency that such coefficient is equal to v. Möller (1970) [102] proved that
a(j) = 6

π2 ej for every integer j ≥ 1, where ej > 0 is a rational number. Gallot, Moree,
and Hommersom (2011) [62] derived explicit formulas for a(j) and δ(j, v). Also, they
verified that fj := ejj

∏
p≤j(p + 1) is an integer for every positive integer j ≤ 100, and

asked whether it is true in general. Gong (2009) [65] proved that indeed every fj is
an integer, and also showed that, for every integer m, we have that m | fj for every
sufficiently large j.

10 Algorithms and numerical data

Arnold and Monagan (2011) [8] presented three algorithms for computing the coefficients
of the nth cyclotomic polynomial, and wrote a fast implementation using machine-
precision arithmetic. The first algorithm computes Φn(X) by a series of polynomial di-
visions using Lemma 1.1’s (ii). This method is well known [26], but Arnold and Monagan
optimized the polynomial division by way of the discrete Fast Fourier Transform. The
second algorithm computes Φn(X) as a quotient of sparse power series using (3). In such
algorithm, Φn(X) is treated as a truncated power series. Multiplication of a truncated
power series by Xd − 1 is easy, and division by Xd − 1 is equivalent to multiplication
by the power series −∑∞j=0X

dj. This algorithm was further improved in a subsequent
work [7]. The third algorithm, which they called the “big prime algorithm”, generates
the terms of Φn(X) sequentially, in a manner which reduces the memory cost.

With their implementation, Arnold and Monagan produced a large amount of data
on the coefficients of Φn(X) for n in the range of billions [6]. For instance, they found the
minimal positive integer n such that A(n) is greater than n, n2, n3, and n4, respectively.
Also, they computed A(n) when n is equal to the product of the first 9 odd prime
numbers. (Partial computations on the cases of n equal to the product of the first 7 and
8 odd prime numbers were previously done by Koshiba (1998, 2000) [82, 83].)
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Figure 1: A plot of the coefficients of Φn(X) for n = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29.
The ϕ(n) + 1 = 1, 021, 870, 081 coefficients were computed using the program SPS4 64

of Arnold and Monagan [6]. Then the plot was produced by selecting a random sample
of 500, 000 coefficients.

Other numerical data on the coefficients of the cyclotomic polynomial can be found on
the Online Encyclopedia of Integer Sequences [117]. See for instance sequences A117223,
A117318, A138474, and A138475 of Noe.

11 Relatives of cyclotomic polynomials

In this section we collect results regarding the coefficients of polynomials that are closely
related to cyclotomic polynomials.

11.1 Inverse cyclotomic polynomials

Let n be a positive integer. The nth inverse cyclotomic polynomial Ψn(X) is defined
as the monic polynomial whose roots are exactly the nonprimitive nth roots of unity,
that is,

Ψn(X) :=
∏

1≤ k≤n
gcd(n, k)> 1

(
X − e2πik/n

)
=
Xn − 1

Φn(X)
. (9)
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Note that Φn(X) has degree n− ϕ(n). From (2) and (9) it follows that

Ψn(X) =
∏
d |n
d> 1

Φd(X).

In particular, Ψn(X) has integer coefficients. Moreover, from (9) we get that

1

Φn(X)
=

Ψn(X)

Xn − 1
= −Ψn(X)

∞∑
j=0

Xnj.

Thus, the Taylor coefficients of 1/Φn(X) are purely periodic, and the period consists of
the n − ϕ(n) + 1 coefficients of −Φn(X) followed by ϕ(n) − 1 zeros. The next lemma
collects some basic identities, which follows easily from Lemma 1.1 and (9).

Lemma 11.1. For every positive integer n and every prime number p, we have that:

(i) Ψpn(X) = Ψn(Xp) if p | n;

(ii) Ψpn(X) = Φn(X)Ψn(Xp) if p - n;

(iii) Ψ2n(X) = (−1)ϕ(n)(1−Xn)Ψn(−X) if 2 - n;

(iv) Ψn(X) = Ψrad(n)(X
n/rad(n));

(v) Ψn(1/X) = −X−(n−ϕ(n))Ψn(X) if n > 1.

Similarly to cyclotomic polynomials, in light of Lemma 11.1’s (iii) and (iv), for the
purpose of studying the coefficients of the inverse cyclotomic polynomial Ψn(X) it suffices
to consider only odd squarefree integers n. For a squarefree positive integer n, the inverse
cyclotomic polynomial Ψn(X) is binary, ternary, . . . if the number of prime factors of n
is 2, 3, . . . . The order of Ψn(X) is the number of prime factors of n. It is easy to check
that Ψ1(X) = 1, Ψp(X) = X − 1, and

Ψpq(X) = Xp+q−1 +Xp+q−2 + · · ·+Xq −Xp−1 −Xp−2 − · · · − 1

for all prime numbers p < q. Hence, the simplest nontrivial case in the study of the
coefficients of Ψn(X) occurs for ternary n.

Let C(n) denote the height of Ψn(X). Moree (2009) [105] proved that

C(pqr) ≤
⌊

(p− 1)(q − 1)

r

⌋
+ 1 ≤ p− 1,

for all odd primes p < q < r. Also, he showed that C(pqr) = p − 1 if and only if
q ≡ r ≡ ±1 (mod p) and r < p−1

p−2(q − 1). Furthermore, he provided several results on

flat inverse cyclotomic polynomials. For instance, he showed that Ψ15r(X) and Ψ21r(X)
are flat, for every prime p, and that Ψpqr(X) is flat for all primes p < q and r >
(p − 1)(q − 1). Furthermore, he proved that every integer appears as the coefficient of
some inverse cyclotomic polynomial. Bzdȩga (2014) [32] proved a formula for C(pqr)
in the case in which r = αp + βq ≤ ϕ(pq) for some positive integers α, β. Using such
formula, he gave necessary and sufficient conditions for Ψpqr(X) being flat in such a
case. Hong, Lee, Lee, and Park (2012) [70] proved that G(Ψpqr) = 2qr − deg(Ψpqr) for
all odd primes p < q < r such that q > 4(p − 1) or r > p2. Also, they gave lower
and upper bound for G(Ψpqr) for general Ψpqr. In general, many papers regarding the
coefficients of cyclotomic polynomials also provide related results for the coefficients of
inverse cyclotomic polynomials [7, 8, 28, 37, 57, 60, 62, 68, 93].
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11.2 Divisors of Xn − 1

A natural generalization of the study of the coefficients of Φn(X) is the study of the
coefficients of divisors of Xn − 1. Note that, in light of (2) and the irreducibility of
cyclotomic polynomials, Xn − 1 has 2τ(n) monic divisors in Z[X], where τ(n) is the
number of (positive) divisors of n, which are given by products of distinct cyclotomic
polynomials Φd(X) with d a divisor of n. Let B(n) be the maximum height of the
monic divisors of Xn− 1. Justin (1969) [76] showed that B(n) has an upper bound that
is independent from the largest prime factor of n. Pomerance and Ryan (2007) [114]
proved that

lim sup
n→+∞

log logB(n)

log n/ log log n
= log 3.

Furthermore, they showed that B(pq) = p for all primes p < q, and that B(n) = 1 if
and only if n is a prime power. Kaplan (2009) [78] proved that B(p2q) = min{p2, q} for
all distinct primes p and q, and that

1
3
(3p2q − p3 + 7p− 6) ≤ B(pqr) ≤ p2q2,

for all primes p < q < r. Moreover, letting n = pe11 · · · pekk , where p1 < · · · < pk are prime
numbers, e1, . . . , ek are positive integers, and k ≥ 2. Kaplan proved the upper bound

B(n) <
∏k−1

j=1 p
4·3k−2E−ej
i , where E :=

∏k
j=1 ej. Bzdȩga (2012) [28] showed that B(n) <

(C + o(1))3
k
n(3k−1)/(2k)−1, as k → +∞, where C < 0.9541 is an effectively computable

constant. Zhang (2019) [134] improved Kaplan’s bound to B(n) <
(
2
5

)∏k
j=2 ej p

4·3k−2E−ej
i .

Ryan, Ward, and Ward (2010) [115] proved that B(n) ≥ min{u, v} whenever n = uv,
where u and v are coprime positive integers. In particular, this implies that B(n) ≥
min{pe11 , · · · , pekk }. Furthermore, they made several conjectures on B(n), for n having
two, three, or four prime factors, based on extensive numerical computations. Some of
these conjectures were proved by Wang (2015) [126]. In particular, he showed that for
all odd primes p < q < r and every positive integer b we have that: B(pqb) is divisible
by p, B(2qb) = 2, if b ≥ 3 then B(pqb) > p, and if q ≡ ±r (mod p) and b ≤ 5 then
B(pqb) = B(prb). Thompson (2011) [123] proved that B(n) ≤ nτ(n)f(n) for almost all
positive integers n, where f(n) is any function such that f(n) → +∞ as n → +∞.
Decker and Moree (2013) [45] (see also the extended version [44]) determined the set
of coefficients of each of the 64 divisors of Xp2q − 1, where p and q are distinct primes.
In particular, their result shows that for most of the divisors the set of coefficients
consists of consecutive integers. Moreover, they proved that if fe is the number of flat
divisors of Xpeq − 1, for each integer e ≥ 1, then fe+1 ≥ 2fe + 2e+2 − 1.

For each integer r ≥ 1, let B(r, n) be the maximum of the absolute value of the coeffi-
cient of Xr in f(X), as f(X) ranges over the monic divisors of Xn−1. Somu (2016) [118]
gave upper and lower bounds for B(r, n) that imply

lim sup
n→+∞

logB(r, n)

log n/ log log n
= r log 2.

In the same work, Somu proved that if ` and m are positive integers, then there exist a
positive integer n and a monic divisor f(X) of Xn−1 having exactly m irreducible factors
such that each integers in [−`, `] appears among the coefficients of f(X). Moreover, he
showed that for all integers c1, . . . , cr there exist a positive integer n and a divisor
f(X) =

∑deg(f)
j=1 djX

j, with fi ∈ Z, of Xn − 1 such that di = ci for i = 1, . . . , r. Later
Somu (2017) [119] proved that the set of such n has positive natural density.
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11.3 Inclusion-exclusion polynomials

Inclusion-exclusion polynomials were introduced by Bachman (2010) [13] as a kind of
combinatorial generalization of cyclotomic polynomials. Let bold letters n,d, . . . denote
finite sets of pairwise coprime integers greater than 1. Furthermore, for each n =
{n1, . . . , nk}, where n1, . . . , nk > 1 are pairwise coprime integers, put ‖n‖ := n1 · · ·nk,
µ(n) := (−1)k, and ϕ(n) :=

∏k
i=1(ni − 1). The nth inclusion-exclusion polinomial is

defined as
Φn(X) =

∏
d⊆n

(
X‖n‖/‖d‖ − 1

)µ(d)
. (10)

Note the striking resemblance of (3) and (10). In particular, we have that

Φ{p1,...,pk}(X) = Φp1···pk(X),

for all prime numbers p1 < · · · < pk.
Many results regarding cyclotomic polynomials can be generalized to inclusion-exclusion

polynomials, and it might be even more natural to prove them directly for inclusion-
exclusion polynomials [31, 37, 40, 47, 106]. Also, the nth inverse inclusion-exclusion
polynomial, defined by Ψn(X) := (X‖n‖ − 1)/Φn(X), has been studied [32].

The following theorem summarizes the basic properties of inclusion-exclusion poly-
nomials, including the fact that they are indeed polynomials [13].

Theorem 11.2. For every n = {n1, . . . , nk}, where n1, . . . , nk > 1 are pairwise coprime
integers, we have that

Φn(X) =
∏
ω

(X − ω),

where ω runs over the ‖n‖th roots of unity satisfying ω‖n‖/ni 6= 1 for all i = 1, . . . , k.
Moreover, the degree of Φn(X) is equal to ϕ(n) and it holds

Φn(X) =
∏
d

Φd(X),

where d runs over the divisors of ‖n‖ such that (d, ni) > 1 for every i = 1, . . . , k.
In particular, Φn(X) has integer coefficients.

Let p, q, r, s be pairwise coprime integers greater than 1. Bachman (2010) [13] proved
that the set of coefficients of every ternary inclusion-exclusion polynomial Φ{p,q,r}(X)
consists of consecutive integers and, assuming p < q < r, it depends only on the residue
class of r modulo pq. Let A(p, q, r) denote the height of Φ{p,q,r}(X). Bachman and
Moree (2011) [15] showed that, if r ≡ ±s (mod pq) and r > max{p, q} > s ≥ 1, then

A(p, q, s) ≤ A(p, q, r) ≤ A(p, q, s) + 1.

For every n = {n1, . . . , nk}, where n1 < · · · < nk are pairwise coprime integers greater

than 1, let A(n) be the height of Φn(X) and put M(n) :=
∏k−2

j=1 n
2k−j−1−1
j . Also, let

Dk be the smallest real number for which the inequality A(n) ≤ DkM(n) holds for all
sufficiently large n1. Bzdȩga (2013) [30] proved that (C1 + o(1))2

k
< Dk < (C2 + o(1))2

k
,

as k → ∞, where C1, C2 > 0 are constants, with C1 ≈ 0.5496 and C2 ≈ 0.9541.
Furthermore, Liu (2014) [92] studied the polynomial obtained by restricting (10) to the
sets d with at most two elements.
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11.4 Unitary cyclotomic polynomials

Let n be a positive integer. A unitary divisor of n is a divisor d of n such that d and n/d
are relatively prime. Moree and Tóth (2020) [109] defined the nth unitary cyclotomic
polynomial as

Φ∗n(X) :=
∏

1≤ k≤n
gcd∗(n, k)= 1

(
X − e2πik/n

)
,

where gcd∗(n, k) denotes the maximum unitary divisor of n which is a divisor of k.
It can be proved that Φ∗n(X) has integer coefficients. Moreover, the following analogs
of (2) and (3) holds:

Xn − 1 =
∏
d ||n

Φ∗d(X),

where d || n means that d is a unitary divisor of n, and

Φ∗n(X) =
∏
d ||n

(
Xn/d − 1

)µ∗(d)
,

where µ∗(n) := (−1)ω(n). Every unitary cyclotomic polynomial can be written as an
inclusion-exclusion polynomial, precisely Φ∗n(X) = Φ{pe11 ,..., p

ek
k }

(X) for n = pe11 · · · pekk ,
where p1 < · · · < pk are prime numbers and e1, . . . , ek are positive integers. Furthermore,
every unitary cyclotomic polynomial is equal to a product of cyclotomic polynomials:

Φ∗n(X) =
∏
d |n

rad(d)= rad(n)

Φd(X).

These and other properties of unitary cyclotomic polynomials were proved by Moree
and Tóth [109]. Jones, Kester, Martirosyan, Moree, Tóth, White, and Zhang (2020) [75]
proved that, given any positive integer m, every integer appears as a coefficient of
Φ∗mn(X), for some positive integer n. Also, they showed the analog result for co-
efficients of the inverse unitary cyclotomic polynomial Ψ∗n(X) := (Xn − 1)/Φ∗n(X).
Bachman (2021) [14] proved that, fixed three distinct odd primes p, q, r and ε > 0,
for every sufficiently large positive integer a, depending only on ε, there exist positive
integers b and c such that the the set of coefficients of Φ∗

paqbrc
(X) contains all the integers

in the interval
[
−(1

4
− ε)pa, (1

4
− ε)pa

]
. As a consequence, every integer appears as the

coefficient of some ternary unitary cyclotomic polynomial. Furthermore, he provided
an infinite family of ternary unitary cyclotomic polynomials Φ∗

paqbrc
(X) whose sets of

coefficients consist of all the integers in [−(pa − 1)/2, (pa + 1)/2], and he pointed out
that this interval is as large as possible.
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[69] O. Hölder, Zur Theorie der Kreisteilungsgleichung Km(x) = 0, Prace Mat.-Fiz. 43
(1936), 13–23 (German).

[70] H. Hong, E. Lee, H.-S. Lee, and C.-M. Park, Maximum gap in (inverse) cyclotomic
polynomial, J. Number Theory 132 (2012), no. 10, 2297–2315.

[71] C. Hooley, On the largest prime factor of p + a, Mathematika 20 (1973), 135–143.

[72] C. Ji, A specific family of cyclotomic polynomials of order three, Sci. China Math. 53
(2010), no. 9, 2269–2274.

[73] C.-G. Ji and W.-P. Li, Values of coefficients of cyclotomic polynomials, Discrete Math.
308 (2008), no. 23, 5860–5863.

[74] C.-G. Ji, W.-P. Li, and P. Moree, Values of coefficients of cyclotomic polynomials. II,
Discrete Math. 309 (2009), no. 6, 1720–1723.

[75] G. Jones, P. I. Kester, L. Martirosyan, P. Moree, L. Tóth, B. B. White, and B. Zhang,
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