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Enhancement of SSVEPs Classification in
BCI-based Wearable Instrumentation Through

Machine Learning Techniques
Andrea Apicella, Pasquale Arpaia, Senior Member, IEEE , Egidio De Benedetto, Senior Member, IEEE ,

Nicola Donato, Senior Member, IEEE , Luigi Duraccio, Salvatore Giugliano, and Roberto Prevete

Abstract— This work addresses the adoption of Machine Learning clas-
sifiers and Convolutional Neural Networks to improve the performance
of highly wearable, single-channel instrumentation for Brain-Computer
Interfaces. The proposed measurement system is based on the classifi-
cation of Steady-State Visually Evoked Potentials (SSVEPs). In particu-
lar, Head-Mounted Displays for Augmented Reality are used to generate
and display the flickering stimuli for the SSVEPs elicitation. Four exper-
iments were conducted by employing, in turn, a different Head-Mounted
Display. For each experiment, two different algorithms were applied and
compared with the state-of-the-art-techniques. Furthermore, the impact
of different Augmented Reality technologies in the elicitation and clas-
sification of SSVEPs was also explored. The experimental metrological
characterization demonstrates (i) that the proposed Machine Learning-
based processing strategies provide a significant enhancement of the
SSVEP classification accuracy with respect to the state of the art, and
(ii) that choosing an adequate Head-Mounted Display is crucial to obtain
acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the
Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1-σ reproducibility: this,
in turn, anticipates an easier development of ready-to-use systems.

Index Terms— Augmented Reality, Brain-Computer Interface, BCI, EEG, Industry 4.0, Instrumentation, Machine Learning,
Neural Networks, SSVEP, Real-Time Systems, Wearable.

I. INTRODUCTION

B rain-Computer Interfaces (BCIs) are an emerging tech-
nology able to create a direct communication path be-

tween the human brain and external devices, without the use of
peripheral nerves and muscles [1]–[4]. Among the major BCI
paradigms, Steady-State Visually Evoked Potential (SSVEP)
has rapidly gained interest for developing applications in
several fields, such as rehabilitation [5], [6], gaming [7],

This work was carried out as part of the ”ICT for Health” project, which
was financially supported by the Italian Ministry of Education, University
and Research (MIUR), under the initiative ‘Departments of Excellence’
(Italian Budget Law no. 232/2016), through an excellence grant awarded
to the Department of Information Technology and Electrical Engineering
of the University of Naples Federico II, Italy.

A. Apicella, E. De Benedetto, S. Giugliano and R. Prevete are
with the Department of Electrical Engineering and Information Tech-
nology, University of Naples Federico II, Naples, 80125 Italy (e-mail:
egidio.debenedetto@unina.it).

P. Arpaia is with the Interdepartmental Research Center in Health
Management and Innovation in Healthcare, University of Naples Fed-
erico II, Naples, 80125 Italy (e-mail: pasquale.arpaia@unina.it).

N. Donato is with the Department of Engineering, University of
Messina, Messina, 98122, Italy (e-mail nicola.donato@unime.it).

L. Duraccio is with the Department of Electronics and Telecommu-
nications, Polytechnic University of Turin, Turin, 10129, Italy (e-mail:
luigi.duraccio@polito.it).

entertainment [8], industrial inspection [9], [10], and health
monitoring [11], since it is characterized by easier detection
and higher Information Transfer Rates (ITRs) with respect to
other available BCIs [12], [13].
In particular, SSVEPs are a specific physiological brain re-
sponse to continuously flickering visual stimuli, typically
inducted after a latency varying from 80 ms to 160 ms [14].
Stimulation frequency bands usually range from 6 Hz to 30 Hz,
although the best Signal to Noise Ratio (SNR) is achieved
in the range 8-15 Hz [15]. Generally, the SSVEP shows a
sinusoidal-like waveform, with a fundamental frequency equal
to that of the gazed stimulus, and often higher harmonics [16],
as shown in Fig. 1. In practical applications, different visual
stimuli (at different frequencies) are associated to specific
commands: thus, such systems allow the user to perform a
selection by simply looking at the related flickering stimulus.
In traditional SSVEP-based experimental setups, the SSVEPs
are acquired through a multi-channel electroencephalogram
(EEG) data acquisition [17], while the flickering stimuli are
often visualized on a LCD monitor. However, this benchtop
instrumentation limits the portability of the system, thus
confining the use of BCI-SSVEP to laboratory environments.
Recently, wearable solutions, based on single-channel acqui-
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sitions, have been proposed in the literature [18], [19]. Addi-
tionally, the use of Augmented Reality (AR) Head-Mounted
Displays (HMDs), which are emerging devices of the 4.0
scenario [20], is establishing itself as a promising strategy
to render the flickering stimuli and guarantee, at the same
time, more immersivity and engagement in the fruition of BCI
applications [21]–[23].
Nevertheless, the overall performance of combined AR-BCI
instruments strongly depends on the specifications of the
HMD; in particular, on two characteristics. First, the field of
view (FOV) of HMDs is generally limited to some tens of
degrees: this limits the maximum number of flickering stimuli
that can be rendered simultaneously on the HMD. At the state
of the art, good performance has been achieved when, at most,
two visual stimuli are simultaneously displayed [6]. Secondly,
AR HMDs exhibit a significant non-predictability of the frame
rate. This uncertainty leads to a shift in the frequency values of
the rendered stimuli, thus reducing the classification accuracy
of the SSVEP elicited on the user’s EEG [11].
To preserve wearability of SSVEP-based AR-BCI instrumen-
tation, while still ensuring optimal performance, the challenge
is to keep the results obtained using HMDs close to those
achieved through traditional setups [24]. At the state of art, al-
gorithms based on the Canonical Correlation Analysis (CCA)
provide the best performance in terms both of classification
accuracy and time response [24], [25]. Another promising
strategy is the adoption of Machine Learning (ML) techniques
[26], in particular: (i) classical ML classifiers, such as Support
Vector Machine (SVM), k-Nearest Neighbors (k-NN) [27],
[28], and (ii) Artificial and Convolutional Neural Networks
(ANN, CNN) [29], [30]. In fact, recent works [30]–[32]
showed that, for low-channel EEG setups, these strategies
allow to outperform the results obtained through CCA. For
example, in [30] a one-dimensional CNN was realized for
a single-channel BCI instrument, managing to classify five-
class SSVEPs with an accuracy of 99% at 4-s time response
(whereas CCA reached 91% in the same conditions). A multi-
dimensional CNN, called PodNet, was proposed in [31] for a
three-channel setup: this CNN exceeded the results obtained
by CCA by about 5% at 2-s time response. Therefore, in
a single-channel AR-based instrumentation, the adoption of
traditional Machine Learning classifiers and Neural Networks
can represent an effective alternative to CCA.
Based on these considerations, in this paper, a metrologi-
cal characterization of a highly-wearable, AR-based SSVEP
BCI is performed. The aim is twofold: first, evaluating the
classification performance by comparing the adoption of the
aforementioned classifiers (SVM, k-NN, ANN, CNN) with the
state-of-the-art CCA; to this purpose, two algorithms were
designed, implemented and comparatively tested after four
different experiments. Each experiment was characterized by
the use of a different AR HMD to generate the flickering
stimuli. In this way, also a comparison between the impact
of different AR technologies in the elicitation of SSVEPs was
conducted.
The paper is organized as follows. Section II describes the
proposal in detail. The experimental metrological character-
ization is reported and discussed in Section III, while the

Fig. 1. Example of a SSVEP of a user staring at a 10 Hz-flickering
stimulus: EEG in the time domain (a); Filtered EEG in the time domain
(b); EEG in the frequency domain (c).

Fig. 2. Architecture of the wearable BCI-SSVEP system used for testing
the proposed alogirithm.

obtained results are shown in Section IV. Finally, in Section V,
conclusions are drawn.

II. PROPOSAL

In this work, an enhancement of the SSVEP classification
performance for highly wearable BCI instrumentation is pro-
posed. To this aim, the architecture of the single-channel BCI
developed in [6], [9], [11] was considered. This measurement
system is based on the real-time classification of users SSVEPs
elicited by AR HMDs. Such instrumentation is particularly
challenging for wearable applications as the number of elec-
trodes is very limited.
Fig. 2 summarizes the major blocks of the system architecture.
In particular, an AR Display renders the flickering stimuli
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in the range 8-15 Hz for the SSVEPs elicitation. Then,
only three Electrodes are used: a pair of active and dry
[33] electrodes are placed in Oz, Fz positions according to
the 10-20 International System [6] to capture the user EEG
signal; while a passive electrode (Driven Right Leg, DRL) is
placed on the earlobe and acts as a reference. In this way,
a single-channel, differential configuration is implemented,
reducing the common mode interference. The brain signal
is digitized by a portable Acquisition Unit, which sends the
EEG Samples to a portable Processing Unit. The signal is
processed by adopting an Enhanced Classification Algorithm,
and the detected command is sent in real time to the BCI
Application, which actuates the received command and also
provides a visual feedback to the User to show the output of
the desired selection.
In this work, two strategies were pursued to for enhancing the
classification algorithm block:

1) Feature Reduction (FR); and
2) Deep SSVEP Convolutional Unit (SCU).

In the following sections, both strategies are presented and
discussed in detail.

A. Features Reduction (FR)
The main blocks of FR algorithm, which was fully designed

and implemented by the Authors, are shown in Fig. 3(a). As
visible, the EEG Samples are processed both in frequency
and time domains, in order to obtain a reduced number of
significant features.

• In the frequency domain, first, a single-sided amplitude
spectrum is obtained by means of a Fast Fourier Trans-
form (FFT). No windowing is applied to the original
samples. Then, the actual SSVEPs Peaks are detected
around the n rendered stimulus frequencies: given a
generic nominal frequency value fn, the interval [fn ·
0.9, fn·1.1] was used to find the actual peak frequency fa.
This interval was considered suitable in order to properly
mitigate the uncertainty introduced by the fps variations
of the AR HMDs in the rendering of the flickering stim-
uli. Consequently, the resulting Power Spectral Density
(PSDs) coefficients [9] are more accurate.

• In the time domain, first, a Band pass Filtering between
5 and 25 Hz is applied by means of a Finite Impulsive
Response (FIR) filter with linear phase response. Then,
the Canonical Correlation Analysis between the filtered
signal and a set of sinewaves, having the frequencies of
the n detected peaks and variable phase [6], is performed.
In this way, also the n canonical correlation coefficients
obtained for each frequency are more accurate.

Ultimately, for a given brain signal composed of a number
fs ·N of EEG samples and n classes (where fs is the sampling
frequency, N is the number of seconds, and n is the number
of stimulus frequencies), only 2n features are extracted and
normalized. Finally, the Classification is carried out with three
ML classifiers: in particular, Support Vector Machine (SVM),
k-Nearest Neighbor (k-NN), and Artificial Neural Network
(ANN) are employed since they guarantee the best results with
acceptable computational effort [27]–[29].

(a) (b)

Fig. 3. Block diagram of the Features Reduction (a) and DeepSCU
(b) classification algorithms. For the Feature Reduction architecture, the
two boxes represent a processing conducted in frequency (blue box)
and time (yellow box) domain. For the DeepSCU architecture, the SCU
and Dense blocks are highlighted in green and red, respectively.

• SVM is a binary classifier which separates data through a
decision hyperplane. SVM considers the inputs as points
in a vector space, finding an optimal hyperplane in order
to maximize the distance from the class boundaries.

• k-NN is a non-parametric ML method. It can be described
as follows: given a set of already labeled points, a positive
integer k, and a distance measure d (e.g., Euclidean), for
a new input point p, k-NN labels p as the most present
class among its k neighbors (through the measure d) that
are in the labelled set.

• ANN is a Feed-Forward Artificial Neural Network where
there are one or more layers of hidden neurons between
the input and output layers. Each layer has weighted
connections (W ) entering from the previous layer and
outgoing in the next one, so the propagation of the
signal occurs forward without loops and without cross
connections. In the learning phase, a error function E(W )
is minimized through a proper learning algorithm as
Gradient Descent.

B. Deep SSVEP Convolutional Unit (SCU)

In Aznan et Al. [34], the Deep SCU neural network architec-
ture was proposed, showing promising results in classification
tasks using SSVEP signals as input. Differently from the FR
algorithm, this processing strategy adopts all the EEG samples
acquired in the time window. It consists of one or more neural
network layers blocks (defined SCU blocks). Each SCU block
is composed of the following layers:

• 1D Convolutional layer:a 1D convolution is performed
on the EEG samples. The time window (kernel) scrolls
along one dimension, returning a feature maps on the
basis of the number of filters chosen.

• Batch Normalization layer: a transformation is applied in
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TABLE I
CLASSIFIERS, OPTIMIZED HYPERPARAMETERS, AND VARIATION RANGES

Classifier Optimized Hyperparameter Variation Range

k-Nearest Neighbour (k-NN)1
Distance {Minkowski, Chebychev, Manhattan, Cosine, Euclidean}
Distance Weight {equal, inverse, squaredinverse}
Num Neighbors {3, 5, 6, 7}

Support Vector Machine (SVM)1
C Regularization {0.01, 0.10, 1.00, 1.77, 5.00, 10.00, 15.00}
Kernel Function {linear, radial basis, polynomial}
Polynomial Order {2, 3, 4}

Artificial Neural Network (ANN)1
Activation Function {relu, tanh}
Hidden Layer nr. of Neurons [5, 505] step: 50
Learning Rate {0.0005, 0.0001, 0.0010, 0.0050, 0.0100}
Validation Fraction {0.2, 0.3}

Deep SSVEP Convolutional Unit2

Convolutional Layer nr. of Filters [16, 1024] step: x2
SCU Blocks [1, 7] step: 1
Kernel Size {10, 20, 30}
Dense Layer nr. of Neurons [60, 1260] step: 200
Dense Blocks {1, 2}
Learning Rate {0.0001, 0.0010}
Validation Fraction {0.2, 0.3}

1FR Algorithm
2Deep SCU Algorithm

order to keep the average and the standard deviation of
the output close to 0 and 1, respectively.

• Max Pooling layer: it downsamples the input representa-
tion of the previous layer by taking the maximum value
on a spatial window of size equal to 2.

• Rectifier Linear Unit (ReLU) activation function: it is
applied at the end of each SCU block. It is a function
that returns 0 if it receives negative input, otherwise it
returns the received value, thus increasing the sparsity in
the output.

Finally, fully-connected (Dense) layers equipped with ReLU
activation functions are used as final layers of the network.
The optimal number of SCU blocks, Dense blocks, and the
optimal values of the hyper parameters are found through a
grid-search approach (see Table I for the parameters ranges
used in the experiments). In the grid search, the number of
SCU blocks varies from a minimum of 1 to a maximum of
7. In each sequential SCU block, convolutional layers with
a variable number of filters are considered. For the sake of
the example, with 7 SCU blocks the number of filters for
each convolutional layer is the following: [16, 32, 64, 128,
256, 512, 1024]. Similarly, for Dense blocks, in which 1 or
maximum 2 blocks were different combinations in the number
of neurons between the different dense (fully-connected) layers
are considered.
In Fig. 3(b) an example of SCU architecture with one SCU
block and one full-connected layer is shown. With respect to
the approach proposed in [34], the Deep SCU architecture is
now applied to a single-channel setup. Furthermore, the EEG
Samples are pre-processed by a FIR Band pass filter between
5 and 25 Hz with linear phase response, and then normalized.

III. EXPERIMENTAL METROLOGICAL CHARACTERIZATION

A metrological characterization of the proposed algorithm
was performed by conducting four experiments involving
healthy adult volunteers. For each campaign, a different AR

HDM (which acted as the AR Display shown in Fig. 2) was
adopted. These devices were used to elicit the users’ SSVEPs
in the range 8-15 Hz. Consequently, four distinct data sets
for the testing of the SSVEPs classification algorithms were
provided (one for each HMD).

A. Hardware and software
The AR devices used in this work are listed below:
• Epson Moverio BT-200: Moverio BT-200 are AR Smart

Glasses with a 60 Hz Refresh Rate and a 23° diagonal
FOV. They are equipped with Android 4.0.

• Epson Moverio BT-350: Like BT-200 version, Moverio
BT-350 have a 23° diagonal FOV; however, the refresh
rate is limited to 30 Hz and the operative system on board
is Android 5.1.

• Microsoft Hololens 1: Microsoft Hololens 1 is an Optical-
See-Through (OST) AR HMD with a 60 Hz Refresh Rate
and a diagonal FOV of 34°.

• Oculus Rift S: Oculus Rift S is a HMD with 80 Hz
Refresh Rate. It is originally designed for Virtual Reality.
Thus, the integration of a HD Stereoscopic Camera (Zed
Mini) allows to use the device as a Video-See-Through
(VST) AR HMD.

The software employed to realize the AR environment for the
selected HMDs are described as follows.

• Epson Moverio BT-200/350: the AR applications running
on the Moverio glasses was developed in Android Studio.
In particular, the flickering squares were generated by
means the the Android library OpenGL.

• Microsoft Hololens and Oculus Rift S: the AR environ-
ment for Hololens and Oculus Rift was developed in
Unity 3D.

In all these cases, the flickering frequencies were realized with
a suitable white/black pixels alternation. For instance, given a
refresh rate of 60 Hz, a 10-Hz frequency is generated with a
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TABLE II
DETAILS OF THE DATA SETS

Data Set Index #1 #2 #3 #4
AR Device BT-200 BT-350 Hololens Rift S
Volunteers 20 9 9 9
Classes 2 4 4 4
Signals/subject 24 20 20 20
Signal length (s) 10 10 10 10

white/black alternation each three frame [35], while not sub-
multiple frequency values are obtained as a rounded average
of a variable frequency stimulus [36].
The wearable Acquisition Unit chosen to acquire the users’
brain signals is the Olimex EEG-SMT, a 10-bit, 256 S/s, open-
source Analog-to-Digital converter. It was preferred to other
consumer-grade EEG equipment such as Emotiv Epoch or
Neurosky Mindwave [37]–[39] since: (i) a recent metrological
characterization confirmed its suitability for BCI applications
[40], as it showed strong linearity and no long-term drift; (ii)
it has a very low cost (approximately 100 $). Finally, the
digitized signal is processed by a Raspberry Pi 4, a portable
single-board PC.

B. Data sets descriptions and validation strategy
Four different data sets were obtained by using each of

the considered four AR devices. The two algorithms were
validated on each data set by means of Leave One Subject
Out Cross Validation (LOSO CV). This represents a promis-
ing inter-individual validation approach aimed at increasing
reproducibility [41]. A grid search for the tuning of the models
hyperparameters was adopted. In Table I, the hyperparameters
values are reported for each classifier model.
Furthermore, in Table II the experimental details, regarding the
four AR devices, and the number of volunteers, classes, and
signals acquired for each subject, are provided. The number of
classes indicate the number of simultaneous flickering stimuli
rendered by the AR Device. As visible, the processing of the
data set #1 is a binary classification problem, since only two
frequencies are used. Instead, data sets #2, #3, and #4 are
characterized by the adoption of four frequencies. In particular,
the frequencies chosen for each data set are listed below:

• Data set #1 (BT-200): [10.00, 12.00] Hz
• Data set #2 (BT-350): [8.00, 10.00, 12.00, 15.00] Hz
• Data set #3 (Hololens): [8.57, 10.00, 12.00, 15.00] Hz
• Data set #4 (Rift S): [8.00, 10.00, 11.43, 13.33] Hz

The rendered stimuli are placed at the edges of the display to
avoid interferences. For each trial, each volunteer was asked
to focus at the selected stimulus for 10 s.
The performance of the proposed method was assessed both on
the accuracy and the related time response: the time response
is the signal duration T (also called epoch) extracted for each
trial and then classified; on the other hand, the classification
accuracy is the percentage of data set correctly classified.

IV. RESULTS

Table III summarizes the results obtained through the
proposed algorithms, compared with those achieved through

TABLE III
CLASSIFICATION ACCURACY AND CORRESPONDING 1-σ

REPRODUCIBILITY ON THE FOUR DATA SETS

Data set #1 (Moverio BT-200)
T (s) CCA [6] (%) Deep SCU (%) FR* (%)
0.5 70.8 ± 10.0 74.4 ± 9.5 75.0 ± 9.5
1.0 74.8 ± 18.1 81.6 ± 9.6 82.1 ± 9.8
2.0 84.9 ± 12.1 87.5 ± 8.0 89.2 ± 7.8
3.0 91.0 ± 9.4 91.9 ± 7.3 93.7 ± 5.6
5.0 95.4 ± 5.6 95.7 ± 4.9 96.7 ± 3.9
10.0 - 97.7 ± 4.5 99.4 ± 2.7

Data set #2 (Moverio BT-350)
T (s) CCA [6] (%) Deep SCU (%) FR* (%)
0.5 - 30.9 ± 7.1 39.2 ± 13.5
1.0 - 35.8 ± 10.4 46.3 ± 19.2
2.0 51.9 ± 27.0 42.8 ± 13.2 53.9 ± 23.5
3.0 53.3 ± 25.6 43.5 ± 21.1 56.7 ± 24.9
5.0 56.7 ± 23.9 41.4 ± 17.9 57.5 ± 23.7
10.0 - 47.2 ± 23.0 62.2 ± 24.5

Data set #3 (Hololens)
T (s) CCA [6] (%) Deep SCU (%) FR* (%)
0.5 - 48.4 ± 11.3 44.9 ± 10.0
1.0 - 56.9 ± 13.9 66.8 ± 16.7
2.0 58.9 ± 20.6 72.3 ± 14.4 76.4 ± 16.9
3.0 70.5 ± 18.5 77.0 ± 15.8 82.6 ± 13.1
5.0 72.9 ± 28.3 80.0 ± 13.8 88.9 ± 8.6
10.0 - 75.0 ± 19.3 94.4 ± 8.3

Data set #4 (Oculus Rift S)
T (s) CCA [6] (%) Deep SCU (%) FR* (%)
0.5 - 36.7 ± 10.5 42.7 ± 16.8
1.0 - 40.6 ± 16.2 54.0 ± 21.5
2.0 56.1 ± 24.2 46.4 ± 18.6 62.3 ± 23.5
3.0 64.8 ± 20.9 56.3 ± 20.6 65.7 ± 25.3
5.0 68.5 ± 23.2 55.3 ± 18.6 70.6 ± 23.8
10.0 - 48.9 ± 21.2 72.2 ± 23.3

*Only the best result is reported for brevity.

the CCA used in [6]. It can be seen that the enhancement
reached by the FR algorithm is significant on each data set.
The main contribution to this improvement is given by the
peak detection block, which allows to obtain more accurate
features both in time and frequency domains, thus mitigating
the uncertainty caused by unpredictable fps variation of
AR devices. For the sake of example, Fig. 4 (top) shows
the fps variation of Epson Moverio BT-350. Despite the
declared 30 Hz refresh rate, the average fps obtained are
approximately 32. This translates into a shift of the rendered
frequencies, as visible in the bottom image of Fig. 4. In this
case, a white/black pixel alternation [35] generates a 16 Hz
stimulus, instead of the expected 15 Hz. Thus, an adaptive
strategy to find the FFT peak position represents the best
solution to improve the SSVEP classification, especially in
AR-based setup. On the other hand, Deep SCU algorithm
outperforms CCA only on data sets #1 and #3. However, in
all the data sets, the CCA strategy is characterized by a worse
inter-individual 1-σ reproducibility. Thus, the model built by
CCA offers lower possibility to be generalized.
With regards to the comparison between the performance
of each AR HMD, it is visible that Epson Moverio BT-200
(data set #1) provides the best classification accuracy (almost
90% at 2 s). The main reason is that only two flickering
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Fig. 4. Epson Moverio BT-350: measured and expected fps (top);
measured and expected FFT peak of the relative user brain signal
(bottom)

stimuli were rendered simultaneously on the display. When
considering the four-stimuli data sets (i.e., data set #2, #3, and
#4) the performance are significantly worse. In fact, Microsoft
Hololens 1 (data set #3) reaches a classification accuracy of
about 76% at 2 s, while Epson Moverio BT-350 (data set #2)
and Oculus Rift S (data set #4) achieve about 54% and 62%,
respectively. Clearly, the larger field of view of Microsoft
Hololens 1 (with respect to Epson Moverio BT-350), and
its Optical See-Through technology (with respect to Oculus
Rift) contribute to this difference in the outcomes. Overall,
it is evident the need of an adequate field of view when the
number of concurrent flickering stimuli increases, in order to
avoid interferences when users stare at the desired icon.
An overview of the results obtained through the FR algorithm
on data set #1 is provided in Fig. 5 and Table IV. In particular,
Fig. 5 shows the scatter plots of the features extracted by the
FR algorithm. As visible, even with 1-s epochs, it is possible
to discriminate the two classes. Clearly, increasing the
duration of the epochs leads to an easier patterns separation
and, thus, to an increase of the classification accuracy. Finally,
Table IV provides a focus on the obtained results for each
model used. The best performance are obtained by ANN
classifier; however, even a more simple classifier like k-NN
reaches comparable accuracy levels.

V. CONCLUSIONS

This work proposes the adoption of ML techniques to
enhance the classification performance of a highly wearable,
single-channel instrumentation for BCI, based on the detection
and classification of SSVEPs. In this measurement system, AR
HMDs are used to generate the flickering stimuli necessary
to SSVEPs elicitation; it guarantees greater immersivity and
engagement with respect to traditional LCDs.
Two different ML-based algorithms were implemented to
improve the SSVEP classification, in terms of classification ac-
curacy and time response. Experimental results on four exper-

Fig. 5. Scatter plots of the extracted features for data set #1 (BT-200)
with different time responses (epochs).

TABLE IV
FR ALGORITHM RESULTS OBTAINED FOR DATA SET #1 (BT-200) FOR

EACH CONSIDERED MODEL

T (s) k-NN (%) SVM (%) ANN (%)
0.5 72.8 ± 9.3 74.8 ± 9.6 75.0 ± 9.5
1.0 80.7 ± 9.8 82.0 ± 9.8 82.1 ± 9.8
2.0 88.3 ± 8.8 89.2 ± 7.8 89.2 ± 7.8
3.0 93.3 ± 5.9 93.6 ± 5.2 93.7 ± 5.6
5.0 96.4 ± 4.8 96.4 ± 4.7 96.7 ± 3.9
10.0 99.0 ± 2.9 99.2 ± 2.8 99.4 ± 2.7

iments showed a significant enhancement of the performance
with respect to the consolidated CCA-based algorithm. In par-
ticular, the combined use of both time-domain and frequency-
domain features helps to mitigate the uncertainty introduced
by AR devices regarding the generation of the visual stimuli.
This translates into a better discrimination between classes
and, thus, into an improvement of the system performance,
without a significant increase of computational complexity. In
fact, the obtained results also demonstrate that even a simple
classifier like k-NN can outperform traditional processing
strategies such as CCA. This represents a great advantage
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in the development of wearable devices, when a low number
of channel is used and a small computational complexity is
required. An additional advantage in using ML is the increase
in the inter-individual 1-σ reproducibility, which leads to more
“ready-to-use” systems. Finally, the experimental results show
a significant difference in the classification accuracy between
two-stimuli and four-stimuli setups. In fact, it was observed
that increasing the number of concurrent stimuli inevitably led
to a decrease of the classification accuracy (more than 20%).
This is due to the reduced field of view of the devices which
causes interference between gazed and not-gazed flickering
stimuli. Further works will be dedicated to research a strategy
to increase the number of concurrent AR-based flickering
stimuli, still keeping the state-of-the-art performance, in order
to ensure high performance for a practical use in daily life.
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[7] I. Martišius and R. Damaševičius, “A prototype SSVEP based real
time BCI gaming system,” Computational intelligence and neuroscience,
vol. 2016, 2016.

[8] C.-M. Wu, Y.-J. Chen, I. A. Zaeni, and S.-C. Chen, “A new SSVEP
based BCI application on the mobile robot in a maze game,” in
2016 International Conference on Advanced Materials for Science and
Engineering (ICAMSE), pp. 550–553, IEEE, 2016.

[9] L. Angrisani, P. Arpaia, A. Esposito, and N. Moccaldi, “A wearable
brain–computer interface instrument for augmented reality-based in-
spection in industry 4.0,” IEEE Transactions on Instrumentation and
Measurement, vol. 69, no. 4, pp. 1530–1539, 2019.

[10] Y. Li and T. Kesavadas, “SSVEP-based brain-computer interface for
part-picking robotic co-worker,” Journal of Computing and Information
Science in Engineering, vol. 22, no. 2, p. 021001, 2021.

[11] P. Arpaia, E. De Benedetto, and L. Duraccio, “Design, implementation,
and metrological characterization of a wearable, integrated AR-BCI
hands-free system for health 4.0 monitoring,” Measurement, vol. 177,
p. 109280, 2021.

[12] R. Abiri, S. Borhani, E. W. Sellers, Y. Jiang, and X. Zhao, “A com-
prehensive review of eeg-based brain–computer interface paradigms,”
Journal of neural engineering, vol. 16, no. 1, p. 011001, 2019.

[13] Y. Zhang, S. Q. Xie, H. Wang, and Z. Zhang, “Data analytics in steady-
state visual evoked potential-based brain–computer interface: A review,”
IEEE Sensors Journal, vol. 21, no. 2, pp. 1124–1138, 2021.

[14] C. Jia, X. Gao, B. Hong, and S. Gao, “Frequency and phase mixed
coding in SSVEP-based brain–computer interface,” IEEE Transactions
on Biomedical Engineering, vol. 58, no. 1, pp. 200–206, 2010.

[15] Y. Wang, R. Wang, X. Gao, B. Hong, and S. Gao, “A practical vep-
based brain-computer interface,” IEEE Transactions on neural systems
and rehabilitation engineering, vol. 14, no. 2, pp. 234–240, 2006.

[16] G. R. Müller-Putz, R. Scherer, C. Brauneis, and G. Pfurtscheller,
“Steady-state visual evoked potential (SSVEP)-based communication:
impact of harmonic frequency components,” Journal of neural engi-
neering, vol. 2, no. 4, p. 123, 2005.

[17] E. Yin, Z. Zhou, J. Jiang, Y. Yu, and D. Hu, “A dynamically optimized
SSVEP brain–computer interface (BCI) speller,” IEEE Transactions on
Biomedical Engineering, vol. 62, no. 6, pp. 1447–1456, 2014.

[18] L.-W. Ko, S. Ranga, O. Komarov, and C.-C. Chen, “Development of
single-channel hybrid BCI system using motor imagery and ssvep,”
Journal of healthcare engineering, vol. 2017, 2017.

[19] P. Arpaia, N. Moccaldi, R. Prevete, I. Sannino, and A. Tedesco, “A
wearable EEG instrument for real-time frontal asymmetry monitoring
in worker stress analysis,” IEEE Transactions on Instrumentation and
Measurement, vol. 69, no. 10, pp. 8335–8343, 2020.

[20] P. Arpaia, E. De Benedetto, C. A. Dodaro, L. Duraccio, and G. Servillo,
“Metrology-based design of a wearable augmented reality system for
monitoring patient’s vitals in real time,” IEEE Sensors Journal, vol. 21,
no. 9, pp. 11176–11183, 2021.

[21] Y. Ke, P. Liu, X. An, X. Song, and D. Ming, “An online SSVEP-
BCI system in an optical see-through augmented reality environment,”
Journal of neural engineering, vol. 17, no. 1, p. 016066, 2020.

[22] A. Tedesco, D. Dallet, and P. Arpaia, “Augmented reality (AR) and
brain-computer interface (BCI): Two enabling technologies for empow-
ering the fruition of sensor data in the 4.0 era,” in Proceedings of the
AISEM 2020 Regional Workshop, vol. 753, pp. 85–91, 2021.

[23] P. Arpaia, E. De Benedetto, L. De Paolis, G. D’Errico, N. Donato,
and L. Duraccio, “Highly wearable SSVEP-based BCI: Performance
comparison of augmented reality solutions for the flickering stimuli
rendering,” Measurement: Sensors, vol. 18, p. 100305, 2021.

[24] Y. Wang, X. Chen, X. Gao, and S. Gao, “A benchmark dataset for
SSVEP-based brain–computer interfaces,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 25, no. 10, pp. 1746–1752, 2016.

[25] Y. Chen, C. Yang, X. Chen, Y. Wang, and X. Gao, “A novel training-
free recognition method for SSVEP-based BCIs using dynamic window
strategy,” Journal of neural engineering, vol. 18, no. 3, p. 036007, 2021.

[26] K.-R. Müller, M. Krauledat, G. Dornhege, G. Curio, and B. Blankertz,
“Machine learning techniques for brain-computer interfaces,” Biomed.
Tech, vol. 49, no. 1, pp. 11–22, 2004.

[27] R. Singla and B. Haseena, “Comparison of ssvep signal classification
techniques using svm and ann models for BCI applications,” Interna-
tional Journal of Information and Electronics Engineering, vol. 4, no. 1,
2014.

[28] M. Farooq and O. Dehzangi, “High accuracy wearable SSVEP detection
using feature profiling and dimensionality reduction,” in 2017 IEEE 14th
International Conference on Wearable and Implantable Body Sensor
Networks (BSN), pp. 161–164, IEEE, 2017.

[29] I. A. Ansari, R. Singla, and M. Singh, “SSVEP and ANN based optimal
speller design for brain computer interface,” Computational Science and
Techniques, vol. 2, no. 2, pp. 338–349, 2015.

[30] T.-H. Nguyen and W.-Y. Chung, “A single-channel SSVEP-based BCI
speller using deep learning,” IEEE Access, vol. 7, pp. 1752–1763, 2018.

[31] J. J. Podmore, T. P. Breckon, N. K. Aznan, and J. D. Connolly,
“On the relative contribution of deep convolutional neural networks
for ssvep-based bio-signal decoding in BCI speller applications,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 27,
no. 4, pp. 611–618, 2019.

[32] A. Ravi, N. H. Beni, J. Manuel, and N. Jiang, “Comparing user-
dependent and user-independent training of cnn for SSVEP BCI,”
Journal of neural engineering, vol. 17, no. 2, p. 026028, 2020.

[33] Y. M. Chi, Y.-T. Wang, Y. Wang, C. Maier, T.-P. Jung, and G. Cauwen-
berghs, “Dry and noncontact eeg sensors for mobile brain–computer
interfaces,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 20, no. 2, pp. 228–235, 2012.

[34] N. Aznan, S. Bonner, J. D. Connolly, N. A. Moubayed, and T. Breckon,
“On the classification of SSVEP-based dry-EEG signals via convo-
lutional neural networks,” 2018 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 3726–3731, 2018.

[35] Y. Wang, T.-P. Jung, et al., “Visual stimulus design for high-rate SSVEP
BCI,” Electronics letters, vol. 46, no. 15, pp. 1057–1058, 2010.

[36] X. Wang, T. Cao, B. Wang, F. Wan, P. U. Mak, P. I. Mak, M. I. Vai,
and C. Li, “An online ssvep-based chatting system,” in Proceedings 2011
International Conference on System Science and Engineering, pp. 536–
539, IEEE, 2011.



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

[37] P. Sawangjai, S. Hompoonsup, P. Leelaarporn, S. Kongwudhikunakorn,
and T. Wilaiprasitporn, “Consumer grade eeg measuring sensors as
research tools: A review,” IEEE Sensors Journal, vol. 20, no. 8,
pp. 3996–4024, 2019.

[38] R. Maskeliunas, R. Damasevicius, I. Martisius, and M. Vasiljevas,
“Consumer-grade eeg devices: are they usable for control tasks?,” PeerJ,
vol. 4, p. e1746, 2016.

[39] M. Van Vliet, A. Robben, N. Chumerin, N. V. Manyakov, A. Combaz,
and M. M. Van Hulle, “Designing a brain-computer interface controlled
video-game using consumer grade eeg hardware,” in 2012 ISSNIP
Biosignals and Biorobotics Conference: Biosignals and Robotics for
Better and Safer Living (BRC), pp. 1–6, IEEE, 2012.

[40] P. Arpaia, L. Callegaro, A. Cultrera, A. Esposito, and M. Ortolano,
“Metrological characterization of consumer-grade equipment for wear-
able brain-computer interfaces and extended reality,” IEEE Transactions
on Instrumentation and Measurement, pp. 1–1, 2021.

[41] D. Gholamiangonabadi, N. Kiselov, and K. Grolinger, “Deep neural
networks for human activity recognition with wearable sensors: Leave-
one-subject-out cross-validation for model selection,” IEEE Access,
vol. 8, pp. 133982–133994, 2020.

Andrea Apicella received the M.S. degree in Computer Science and the
Ph.D. degree in Mathematics and Computer Science from the University
of Naples Federico II, Italy, in 2014 and 2019, respectively. He is
currently a Researcher with the Department of Information Technology
and Electrical Engineering of University of Naples Federico II. His
current research interests include Artificial Intelligence methods and
eXplainable Artificial Intelligence (XAI) approaches for explaining the AI
system’s decisions.

Pasquale Arpaia (SM’14) received the M.S. and Ph.D. degrees in
electrical engineering from the University of Naples Federico II, Naples,
Italy, in 1987 and 1992, respectively. He was an Associate Professor with
the University of Sannio, Benevento, Italy. He is currently a Full Professor
of instrumentation and measurements with the University of Naples
Federico II, and a Team Leader with CERN, Geneva, Switzerland. Prof.
Arpaia is also the Head of the Interdepartmental Research Centre in
Health Management and Innovation in Healthcare of the University of
Naples Federico II. His current research interests include augmented
reality, brain computer interfaces, cyber-security, digital instrumentation
and measurement techniques, evolutionary diagnostics, and distributed
measurement systems.

Egidio De Benedetto (M’14, SM’16) received the M.S. degree in mate-
rials engineering and the Ph.D. degree in information engineering from
the University of Salento, Lecce, Italy, in 2006 and 2010, respectively.
He was with the Institute of Microelectronics and Microsystems, National
Research Council, Lecce, Italy, from 2010 to 2012.
From 2012 through 2019, he was a Research Fellow with the Univer-
sity of Salento (Lecce, Italy). Since 2019, Egidio De Benedetto is an
Associate Professor with the Department of Electrical Engineering and
Information Technology of the University of Naples Federico II (Italy).

Nicola Donato (SM) received the M.S. degree in electronic engineering
from the University of Messina, Messina, Italy, and the Ph.D. degree
from the University of Palermo, Palermo, Italy. He is currently an As-
sociate Professor of Electrical and Electronic Measurements and the
Head of the Laboratories of “Electronics for Sensors and for Systems
of Transduction” and “Electrical and Electronic Measurements” with the
University of Messina.
His current research interests include sensor characterization and mod-
eling, development of measurement systems for sensors, and charac-
terization of electronic devices up to microwave range and down to
cryogenic temperatures.

Luigi Duraccio rreceived the M.S. degree (cum laude) in electronic
engineering from the University of Naples Federico II in 2018. He
developed his master thesis at CERN, Geneva, Switzerland, in the field
of radiation measurement for electronics. His current research inter-
ests include biomedical instrumentation and measurement, electroen-
cephalographic data acquisition and processing, augmented reality, and
brain–computer interfaces.

Salvatore Giugliano rreceived the M.S. degree (cum laude) in com-
puter science in 2019. He developed his master thesis in neural net-
works. His current research interests include analysis and interpretation
of EEG signals with machine learning techniques, transfer learning on
EEG data and eXplainable Artificial Intelligence. He currently collabo-
rates as a consultant and researcher at the Villa delle Ginestre clinic in
Volla, Italy.

Roberto Prevete received the M.Sc. degree in physics and the Ph.D.
degree in mathematics and computer science from the Department of
Electrical Engineering and Information Technologies (DIETI), Univer-
sity of Naples Federico II, Naples, Italy. He is currently an Assistant
Professor of computer science with the DIETI, University of Naples
Federico II. His current research interests include computational models
of brain mechanisms, machine learning, and artificial neural networks
and their applications. His research has been published in international
journals, such as Biological Cybernetics, Experimental Brain Research,
Neurocomputing, Neural Networks, and Behavioral and Brain Sciences.


