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Measurements of the production of muons from heavy-flavour hadron decays in Pb–Pb collisions at √
sNN = 5.02 and 2.76 TeV using the ALICE detector at the LHC are reported. The nuclear modification 

factor RAA at √
sNN = 5.02 TeV is measured at forward rapidity (2.5 < y < 4) as a function of 

transverse momentum pT in central, semi-central, and peripheral collisions over a wide pT interval, 
3 < pT < 20 GeV/c, in which muons from beauty-hadron decays are expected to take over from charm 
as the dominant source at high pT (pT > 7 GeV/c). The RAA shows an increase of the suppression of 
the yields of muons from heavy-flavour hadron decays with increasing centrality. A suppression by a 
factor of about three is observed in the 10% most central collisions. The RAA at √sNN = 5.02 TeV is 
similar to that at √sNN = 2.76 TeV. The precise RAA measurements have the potential to distinguish 
between model predictions implementing different mechanisms of parton energy loss in the high-density 
medium formed in heavy-ion collisions. They place important constraints for the understanding of the 
heavy-quark interaction with the hot and dense QCD medium.

© 2021 European Organization for Nuclear Research, ALICE. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The study of ultra-relativistic heavy-ion collisions aims to inves-
tigate a state of strongly-interacting matter at high energy density 
and temperature. Under these extreme conditions, quantum chro-
modynamics (QCD) calculations on the lattice predict the forma-
tion of a quark–gluon plasma (QGP), where quarks and gluons are 
deconfined, and chiral symmetry is partially restored [1–4].

Heavy quarks (charm and beauty) are key probes of the QGP 
properties in the laboratory. They are predominantly created in 
hard-scattering processes at the early stage of the collision on 
a timescale shorter than the formation time of the QGP of ∼
0.1–1 fm/c [5,6]. Therefore, they experience the full evolution of 
the hot and dense QCD medium. During their propagation through 
the medium, they lose energy via radiative and collisional pro-
cesses [7–12]. Quarks are expected to lose less energy than gluons 
due to the colour-charge dependence of the strong interaction. 
Furthermore, several mass-dependent effects can also influence 
the energy loss. Due to the dead-cone effect [8,9,13], the heavy-
quark radiative energy loss is reduced compared to that of light 
quarks and the energy loss of beauty quarks is expected to be 
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smaller than that of charm quarks. The collisional heavy-quark 
energy loss is also expected to be reduced since the spatial dif-
fusion coefficient, which controls the momentum exchange with 
the medium, is predicted to scale with the inverse of the quark 
mass [14]. In addition to the heavy-quark energy loss, modifica-
tions of the hadronisation process via fragmentation and/or re-
combination [15,16] and initial-state effects such as the modifi-
cation of the parton distribution functions (PDF) inside the nu-
cleus [17–19] can also change the particle yields and phase-space 
distributions. The medium effects can be quantified using the nu-
clear modification factor RAA, which is the ratio between the pT-
and y-differential particle yields in nucleus-nucleus (AA) collisions 
(d2NAA/dpTdy) and the corresponding production cross section in 
pp collisions (d2σpp/dpTdy) scaled by the average nuclear overlap 
function 〈TAA〉:

RAA(pT, y) = 1

〈TAA〉 × d2NAA/dpTdy

d2σpp/dpTdy
. (1)

The 〈TAA〉 is defined as the ratio between the average number 
of nucleon–nucleon collisions 〈Ncoll〉 and the inelastic nucleon–
nucleon cross section [20].

Evidence of a strong suppression of open heavy-flavour yields 
was observed in central Au–Au and Cu–Cu collisions at√

sNN = 200 GeV by the PHENIX and STAR collaborations at RHIC 
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and in Pb–Pb collisions at 
√

sNN = 2.76 TeV by the ALICE, ATLAS, 
and CMS collaborations at the LHC (see [5] and references therein, 
and [21–24]). Recently, the ALICE and CMS collaborations reported 
a significant suppression of the prompt D-meson yields mea-
sured at midrapidity in the 10% most central Pb–Pb collisions at √

sNN = 5.02 TeV with respect to the scaled pp reference, reach-
ing a factor of about 5–6 in the interval 8 < pT < 12 GeV/c [25,26]. 
A strong suppression of the yields of high-pT electrons from 
heavy-flavour hadron decays was also observed by the ALICE col-
laboration at midrapidity in the 0–10% centrality class, where the 
measured RAA is about 0.3 at pT ∼ 7 GeV/c [27]. The suppres-
sion is similar to that observed for prompt D mesons and leptons 
from heavy-flavour hadron decays at 

√
sNN = 2.76 TeV [21,24,28]. 

The nuclear modification factor of B± mesons, reconstructed via 
the exclusive decay channel B± → J/ψK± → μ+μ−K± with the 
CMS detector for |y| < 2.4 and 7 < pT < 50 GeV/c, indicates a 
suppression of about a factor two in Pb–Pb collisions (0–100% cen-
trality class) at 

√
sNN = 5.02 TeV [29] compatible with that of 

J/ψ from b-hadron decays (non-prompt J/ψ ) [30]. A similar sup-
pression as for B± mesons and non-prompt J/ψ is also observed 
for non-prompt D0 mesons in the kinematic region |y| < 2.4 and 
2 < pT < 100 GeV/c [31]. The suppression of B mesons is weaker 
than that of prompt D0 mesons at about pT = 10 GeV/c, in line 
with the expected quark-mass ordering of energy loss.

This letter presents the first measurement of open heavy-
flavour production via muons from semi-leptonic decays of charm 
and beauty hadrons in Pb–Pb collisions at 

√
sNN = 5.02 TeV with 

the ALICE detector at the LHC. These measurements are carried 
out in the forward rapidity region (2.5 < y < 4), presently only 
covered by the ALICE experiment at the LHC in Pb–Pb collisions. 
They extend the measurement of open heavy-flavour production 
from mid to forward rapidities, providing a tomography of the QGP 
medium in broader phase space region. The analysis of muon-
triggered events and large branching ratios (∼ 10%) allow us to 
perform high precision measurements of the pT-differential RAA of 
these muons over a broad pT interval, extended for the first time 
to pT = 20 GeV/c in central (0 − 10%), semi-central (20 − 40%), and 
peripheral (60 − 80%) collisions. This gives access to the investi-
gation of medium effects in a new kinematic regime where the 
contribution of muons originating from beauty hadrons is dom-
inant at high pT (pT > 7 GeV/c). New measurements in central 
Pb–Pb collisions at 

√
sNN = 2.76 TeV, with a significantly ex-

tended pT coverage and a higher precision compared to the pre-
vious ALICE publication [32], are reported and compared to the 
results at 

√
sNN = 5.02 TeV. The computation of the RAA makes 

use of the measured pp references published in [32,33]. Detailed 
comparisons with model calculations with different implementa-
tions of in-medium energy loss are discussed as well.

2. Experimental apparatus and data samples

The ALICE apparatus and its performance are described in [34,
35]. The analysis is based on the detection of muons in the forward 
muon spectrometer covering the pseudorapidity interval −4 < η <

−2.5. Note that the muon spectrometer covers a negative η range 
in the ALICE reference frame and consequently a negative y range. 
The results are chosen to be presented with a positive y notation, 
due to the symmetry of the collision system. The muon spectrom-
eter consists of a front absorber of 10 nuclear interaction lengths 
(λI) filtering hadrons, followed by five tracking stations, each com-
posed of two planes of Cathode Pad Chambers, with the third 
station inside a dipole magnet with a field integral of 3 T×m. 
The tracking system is complemented with two trigger stations, 
each equipped with two planes of Resistive Plate Chambers down-
stream an iron wall of 7 λI . Finally, a conical absorber shields the 
muon spectrometer against secondary particles produced by the 

interaction of primary particles at large η in the beam pipe. The 
Silicon Pixel Detector (SPD), made of two cylindrical layers cover-
ing the pseudorapidity intervals |η| < 2 and |η| < 1.4, is employed 
for the reconstruction of the primary vertex. Two V0-scintillator 
arrays covering 2.8 < η < 5.1 and −3.7 < η < −1.7 provide a min-
imum bias (MB) trigger defined as the coincidence of signals from 
the two hodoscopes. The V0 detectors are also used to classify 
events according to their centrality, determined from a fit of the 
total signal amplitude based on a two-component particle produc-
tion model connected to the collision geometry using the Glauber 
formalism [36]. The centrality intervals are defined as percentiles 
of the Pb–Pb hadronic cross section. The V0 and the Zero Degree 
Calorimeters (ZDC), placed at ±112.5 m from the interaction point 
along the beam direction, are used for the event selection.

The results presented in this letter are based on the data sam-
ple recorded with the ALICE detector during the 2015 Pb–Pb run 
at a centre-of-mass energy 

√
sNN = 5.02 TeV. For the compari-

son with measurements at lower energy, 
√

sNN = 2.76 TeV, the 
2011 data sample is used in order to extend the pT coverage with 
respect to the published results from the 2010 data sample [32]. 
The analysis of the two data samples is based on muon-triggered 
events requiring a MB trigger and at least one track segment in 
the muon trigger system with a pT larger than a programmable 
threshold [34]. Data were collected with two pT-trigger thresh-
olds of about 1 (0.5) and 4.2 (4.2) GeV/c at 

√
sNN = 5.02 TeV 

(
√

sNN = 2.76 TeV). The pT threshold of the trigger algorithm is 
set such that the corresponding efficiency for muon tracks is 50%. 
In the following, the low- and high-pT trigger-threshold samples 
are referred to as MSL and MSH, respectively. The beam-induced 
background is reduced offline using the V0 and ZDC timing infor-
mation, and electromagnetic interactions are removed by requiring 
a minimum energy deposited in the ZDC [37,38]. Only events with 
a primary vertex within ±10 cm along the beam line are analysed. 
Finally, the measurements are done in the three representative 
centrality classes 0–10%, 20–40% and 60–80% to investigate the 
evolution of the RAA with the collision centrality. After the event 
selection, the data samples correspond to integrated luminosities 
of about 21.9 (224.8) μb−1 and 4.0 (71.0) μb−1 for MSL- (MSH-
) triggered events at 

√
sNN = 5.02 and 2.76 TeV, respectively. 

The integrated luminosity is derived from the number of muon-
triggered events. These muon-triggered events are normalised by a 
factor, inversely proportional to the probability of having a muon 
trigger in a MB event in a given centrality class, calculated from 
the relative count rate between the muon and MB triggers.

3. Analysis procedure

3.1. Measurement of muons from heavy-flavour hadron decays

Standard selection criteria are applied to the muon candi-
dates [33]. Tracks in the muon spectrometer are reconstructed 
within the pseudorapidity range −4 < η < −2.5 and they are re-
quired to have a polar angle measured at the exit of the absorber 
in the interval 170◦ < θabs < 178◦ . Furthermore, tracks are identi-
fied as muons if they match a track segment in the trigger system. 
Finally, the remaining beam-induced background is reduced by re-
quiring the distance of the track to the primary vertex measured in 
the transverse plane (DCA, distance of closest approach) weighted 
with its momentum (p), p × DCA, to be smaller than 6 × σpDCA, 
where σpDCA is the width of the distribution.

The nuclear modification factor RAA of muons from heavy-
flavour hadron decays is measured down to pT = 3 GeV/c and up 
to pT = 20 GeV/c in all centrality classes at 

√
sNN = 5.02 TeV and 

in the 0–10% centrality class at 
√

sNN = 2.76 TeV. The RAA is com-
puted for pT > 3 GeV/c in order to limit the systematic uncertainty 
on the subtraction of the background of muons from light-hadron 
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decays, which increases with decreasing pT. These measurements 
are performed by using MSL-triggered events up to pT = 7 GeV/c
and MSH-triggered events for pT > 7 GeV/c. In the selected pT

interval, after the selection criteria are implemented, the main 
background contributions to the muon yields consist of muons 
from primary charged-pion and kaon decays for pT < 6 GeV/c, 
and muons from W-boson, Z-boson, and γ � (Drell-Yan process) 
decays for pT > 13 GeV/c. Two additional small contributions of 
muons from secondary (charged) light-hadron decays in the in-
terval 3 < pT < 5 GeV/c, resulting from the interaction of light 
hadrons with the material of the front absorber and of muons from 
J/ψ decays over the entire pT range, are also considered. There-
fore, the pT-differential RAA of muons from heavy-flavour hadron 
decays in a given centrality class is expressed as

RAA(pT, y) =

⎛
⎝d2Nμ±

dpTdy
−

∑
non-HF→μ±

d2Nnon-HF→μ±

dpTdy

⎞
⎠

Pb−Pb

〈TAA〉 ×
(

d2σ c,b→μ±

dpTdy

)
pp

,

(2)

where d2Nμ±
/dpTdy is the differential yield of inclusive muons 

and 
∑

non-HF→μ± d2Nnon-HF→μ±
/dpTdy refers to the differential 

yields of muons from various non heavy-flavour sources in Pb–
Pb collisions, as indicated above Eq. (2). In the denominator, 
d2σ c,b→μ±

/dpTdy is the pp differential production cross section 
of muons from heavy-flavour hadron decays at the same centre-
of-mass energy and in the same kinematic region (see [32,33]) as 
in Pb–Pb collisions.

3.2. Pb–Pb collisions at 
√

sNN = 5.02 TeV

3.2.1. Efficiency corrections
The inclusive muon yields in Pb–Pb collisions at 

√
sNN =

5.02 TeV are corrected for detector acceptance and detection ef-
ficiencies (A × ε) using the procedure described in previous pub-
lications [32,33]. In peripheral collisions, A × ε amounts to about 
90% with almost no pT dependence in the region of interest for 
MSL-triggered events, while for MSH-triggered events the A × ε
increases with pT from 75% at pT = 7 GeV/c towards a plateau at 
a value close to 90% for pT > 14 GeV/c. The dependence of the 
trigger and tracking efficiency on the detector occupancy is deter-
mined by embedding simulated muons from heavy-flavour hadron 
decays in measured MB Pb–Pb events. A decrease in the efficiency 
of 6% from peripheral (60–80%) to central (0–10%) collisions, inde-
pendent of pT is observed.

3.2.2. Estimation of the muon background sources
The estimation of the contribution of muons from primary π±

and K± decays is based on a data-tuned Monte Carlo cocktail. 
The procedure uses the midrapidity (|η| < 0.8) π± and K± spec-
tra measured by the ALICE collaboration up to pT = 20 GeV/c [39]
in pp and Pb–Pb collisions at 

√
sNN = 5.02 TeV. They are further 

extrapolated to higher pT, up to pT = 40 GeV/c, by means of a 
power-law fit to extend the pT coverage to the pT interval relevant 
for the estimation of the decay muons up to pT = 20 GeV/c. Then, 
the extrapolation to forward rapidities is performed assuming the 
same suppression of primary π± and K± yields from midrapidity 
up to y = 4 according to[

d2Nπ±(K±)

dpTdy

]
AA

=〈Ncoll〉 ×
[

Rπ±(K±)
AA

]mid−y

× [F π±(K±)
extrap (pT, y)]pp ×

[
d2Nπ±(K±)

dpTdy

]mid−y

pp
.

(3)

Equation (3) can be also expressed as[
d2Nπ±(K±)

dpTdy

]
AA

= [F π±(K±)
extrap (pT, y)]pp ×

[
d2Nπ±(K±)

dpTdy

]mid−y

AA
, (4)

where [F π±(K±)
extrap (pT, y)]pp is the pT- and y-dependent extrapola-

tion factor in pp collisions at 
√

s = 5.02 TeV, discussed in [33], 
which is based on Monte Carlo simulations. The systematic un-
certainty due to the unknown suppression at forward rapidity 
will be discussed below. The PYTHIA 6.4 [40] and PHOJET [41]
event generators are employed for the rapidity extrapolation, while 
PYTHIA 8.2 simulations [42] with various colour reconnection (CR) 
options are performed to take into account the rapidity depen-
dence of the pT extrapolation and its uncertainty. The pT and y
distributions of muons from primary π± and K± decays in Pb–Pb 
collisions are generated according to a fast detector simulation of 
the decay kinematics and of the effect of the front absorber [33]
using as input the extrapolated π± and K± spectra. For each cen-
trality class, the yields are further subtracted from the inclusive 
muon distribution. The total contribution of muons from primary 
π± and K± decays decreases with increasing pT from about 21%
(13%) at pT = 3 GeV/c down to about 7% (4%) at pT = 20 GeV/c in 
the 60–80% (0–10%) centrality class, with a weak pT dependence 
for pT > 10 GeV/c.

The estimation of the background muons from secondary π±
and K± decays produced in the front absorber is based on Monte 
Carlo simulations using the HIJING event generator [43] and the 
GEANT3 transport package [44]. These simulation results indicate 
that in the pT interval of interest, the relative contribution of sec-
ondary muons with respect to muons from primary π± and K±
decays is about 9%, independently of both pT and the collision cen-
trality. Given the estimated contamination of muons from primary 
π± and K± decays, the contribution of these secondary muons rel-
ative to the total muon yield decreases with increasing pT from 
about 2% (1%) at pT = 3 GeV/c in the 60–80% (0–10%) centrality 
class to less than 1% at pT = 5 GeV/c for all centrality classes.

The estimation of the contribution of muons from W-boson 
decays and dimuons from Z-boson and γ � decays, which is rele-
vant in the high-pT region, is based on the POWHEG NLO event 
generator [45] combined with PYTHIA 6.4.25 [40] for the par-
ton shower, which reproduces within uncertainties the W- and 
Z-boson production in various LHC experiments [46–50]. These 
simulations include the CT10 PDF set [51] and the EPS09 NLO 
parameterisation [17] of the nuclear modification of the PDFs. In 
order to account for isospin effects, muons from W-boson decays 
and dimuons from Z-boson decays and γ � decays are simulated 
separately in pp, np, pn, and nn collisions. A weighted sum of 
the production cross sections in the four systems is performed to 
obtain the production cross section per nucleon–nucleon collision 
for the Pb–Pb system. The latter is further scaled with 〈TAA〉 in a 
given centrality class in order to estimate the corresponding rela-
tive contribution of W and Z/γ � with respect to inclusive muons. 
The relative contribution of muons from W and Z/γ � with re-
spect to inclusive muons is negligible for pT < 13 GeV/c and it 
increases with pT and the collision centrality from about 3% (6%) 
at pT = 14 GeV/c up to 18% (36%) at pT = 20 GeV/c in the 60–80% 
(0–10%) centrality class.

The contribution of muons from J/ψ decays is estimated by 
extrapolating the J/ψ pT and y spectra measured by ALICE at for-
ward rapidity (2.5 < y < 4) in the interval of pT < 12 GeV/c [52]. 
The J/ψ pT and rapidity spectra are extrapolated by means of 
a power-law and Gaussian function up to pT = 50 GeV/c and 
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|y| = 6.5, respectively. Then, the decay muon distributions are es-
timated with a fast detector simulation using the extrapolated J/ψ
distributions as inputs, similar to pp collisions [33]. In the 10%
most central collisions, the relative contribution to the inclusive 
muon distribution varies between 0.5 and 4%, with the maximum 
fraction at intermediate pT (4 < pT < 6 GeV/c).

3.2.3. Systematic uncertainties
The systematic uncertainties of the RAA of muons from heavy-

flavour hadron decays at 
√

sNN = 5.02 TeV are evaluated consid-
ering the following sources: uncertainties of the inclusive muon 
yields and background contributions in Pb–Pb collisions, the pp 
reference, and the normalisation in both pp and Pb–Pb collisions.

The procedure to determine the systematic uncertainty on the 
inclusive muon yields is similar to that described in [33] and in-
cludes the following contributions: i) the muon tracking efficiency 
(1.5%), ii) the muon trigger efficiency resulting from the intrinsic 
efficiency of the muon trigger chambers and the response of the 
trigger algorithm (1.4% (3%) for the MSL (MSH) data sample), and 
iii) the choice of the χ2 selection used in defining the matching 
of tracks reconstructed in the tracking system with those in the 
trigger system (0.5%). These systematic uncertainties are approxi-
mately independent of centrality and pT in the region of interest. 
The systematic uncertainty arising from the dependence of A × ε
on the detector occupancy, obtained from a fit with a constant 
of the pT-differential ratio of the efficiency in a given centrality 
class to that in peripheral collisions, increases up to 0.5% when 
going from peripheral to central collisions. Finally, the systematic 
uncertainty due to the tracking chamber resolution and alignment 
is based on a Monte Carlo simulation modelling the tracker re-
sponse with a parameterisation of the tracking chamber resolution 
and misalignment effects, as described in [33,50]. This systematic 
uncertainty is negligible for pT < 7 GeV/c and increases up to 12%
in the interval 18 < pT < 20 GeV/c.

The estimation of the yields of muons from primary π± and K±
decays is subject to systematic uncertainties arising, as described 
in [33], from i) the uncertainties of the measured midrapidity spec-
tra of π± (K±) and their pT extrapolation, which increase from 
about 3% (6%) to 6% (13%), ii) the rapidity extrapolation which 
results in a systematic uncertainty of about 8.5% (6%) for muons 
from π± (K±) decays obtained by comparing the results with 
PYTHIA 6 and PHOJET generators, iii) the rapidity dependence of 
the pT extrapolation with a systematic uncertainty, obtained from 
the PYTHIA 8 generator with different CR options, increasing up 
to about 4% (2%) at pT = 20 GeV/c for π± (K±), and iv) the sim-
ulation of hadronic interactions in the absorber which leads to a 
systematic uncertainty of 4% independently of the muon origin, 
as reported in [33]. Adding in quadrature the uncertainties com-
ing from each source, the total systematic uncertainty ranges from 
about 9% (10%) to 13% (15%) as a function of the pT of muons from 
primary π± (K±) decays. Finally, there is a contribution related to 
the assumption on the rapidity dependence of the suppression of 
π± and K± . Based on ATLAS measurements in Pb–Pb collisions at √

sNN = 2.76 TeV, which indicate no significant η dependence of 
the charged-particle RAA up to |η| < 2 [53], the suppression of π±
and K± is considered to be independent of rapidity up to y = 4, 
and the RAA of π± and K± is varied conservatively within ±50%. 
This uncertainty is propagated to the decay muons and the dif-
ference between the upper and lower limits is further divided by √

12, corresponding to the RMS of a uniform distribution. Further-
more, the effect of the transport code is conservatively evaluated 
by varying the estimated yield of muons from secondary π± and 
K± decays by ±100% and dividing also the difference between 
lower and upper limits by 

√
12.

The systematic uncertainty of the extracted muon yields from 
W and Z/γ � decays is obtained considering the CT10 PDF un-

certainty [51] and a different nuclear modification of the PDF 
(EKS98 [54–56] was used as well). It amounts to 5.9% (13.2%) for 
muons from W (Z/γ �) decays.

The systematic uncertainty of the estimated yields of muons 
from J/ψ decays reflects the uncertainty of the measured J/ψ
spectra at forward rapidity and their extrapolation to a wider kine-
matic region. It varies from about 9% at pT = 3 GeV/c to 34% at 
pT = 20 GeV/c in central collisions.

Two sources contribute to the systematic uncertainty on the 
normalisation, the systematic uncertainty of 〈TAA〉 values [20] and 
the systematic uncertainty of the normalisation factor needed to 
calculate the number of equivalent MB events in the muon sam-
ples. The latter is evaluated comparing the values from the nomi-
nal procedure (see section 2) with those calculated by applying the 
muon-trigger condition in the analysis of MB events [33].

The sources of systematic uncertainty affecting the measure-
ment of the pp reference production cross section were evaluated 
in [33]. The total systematic uncertainty ranges from 2.1% to 15.1%, 
depending on pT. A global pp normalisation uncertainty of 2.1%, 
discussed in [33], is considered as well. When computing the nu-
clear modification factor, the systematic uncertainty on track res-
olution and misalignment is considered to be partially correlated 
between the pp and Pb–Pb measurements because the pp data 
were collected just before the Pb–Pb run at 

√
sNN = 5.02 TeV and 

the detector conditions remained unchanged. The other sources of 
systematic uncertainties are treated as uncorrelated. The system-
atic uncertainty on the pT-differential production cross section in 
pp collisions without including the correlated part of the uncer-
tainty varies from 2.1% to 4.2%. The uncorrelated part of the uncer-
tainty on track resolution and misalignment is due to the different 
shapes of the pT distribution between pp and Pb–Pb collisions. It 
is estimated by comparing the results with and without correcting 
the residual misalignment between data and Monte Carlo when 
calculating the RAA, as detailed in [33].

The various systematic uncertainties are propagated to the 
measurement of the yields or nuclear modification factors of 
muons from heavy-flavour hadron decays and added in quadrature, 
except for the systematic uncertainties on normalisation which are 
shown separately.

Table 1 presents a summary of the relative systematic un-
certainties assigned to the pT-differential yields of muons from 
heavy-flavour hadron decays in Pb–Pb collisions. The systematic 
uncertainty on the pp reference, needed for the computation of 
the RAA, is also reported.

3.3. Pb–Pb collisions at 
√

sNN = 2.76 TeV

For a direct comparison with lower energy measurements in 
the same pT interval, the Pb–Pb data sample at 

√
sNN = 2.76 TeV, 

collected in 2011, was analysed in order to significantly extend 
the pT interval of the published RAA measurements of muons 
from heavy-flavour hadron decays, which was limited to 4 < pT <

10 GeV/c [32]. Such an improvement is possible due to the larger 
integrated luminosity (4 μb−1 and 71 μb−1 for MSL- and MSH-
triggered collisions compared to 2.7 μb−1) and the use of a 
high-pT muon trigger.

The strategy to extract the yields of muons from heavy-flavour 
hadron decays in Pb–Pb collisions at 

√
sNN = 2.76 TeV is simi-

lar to that just discussed for 
√

sNN = 5.02 TeV. Compared to the 
latter case, the A × ε exhibits the same trend as a function of pT, 
although the values are smaller due to the status of the tracking 
chambers (larger number of inactive channels). The factor A × ε
saturates at a value close to 80% in the high-pT region for periph-
eral collisions (60–80% centrality class). A decrease of the efficiency 
of 4% from peripheral collisions to the 10% most central collisions, 
due to the detector occupancy, is seen. The fractions of the vari-
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Table 1
Summary of the relative systematic uncertainties of the pT-differential yields of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4) in Pb–Pb collisions 
at √sNN = 5.02 TeV (second and third columns) and 2.76 TeV (fourth column). The systematic uncertainties of the pp reference are also summarised. For the pT-dependent 
uncertainties, the minimum and maximum values are reported and correspond to the lowest and highest pT interval with the exception of the background of muons from 
light-hadron decays and the Rπ±(K±)

AA (y) assumption, where this is the opposite. See the text for details.

Source
√

sNN = 5.02 TeV
√

sNN = 2.76 TeV
0–10% centrality class 60–80% centrality class 0-10% centrality class

Tracking efficiency 1.5% 1.5% 2.5%
Trigger efficiency 1.4% (MSL), 3% (MSH) 1.4% (MSL), 3% (MSH) 1.4% (MSL), 2.3% (MSH)
Matching efficiency 0.5% 0.5% 0.5%
A × ε 0.5% 0 1%
Resolution and alignment 0–12% (0–4.1% on RAA) 0–12% (0–4.1% on RAA) 1% × pT (pT in GeV/c)
Background subtraction μ ← π < 1.6% < 2.5% < 1.8%
Background subtraction μ ← K < 1.6% < 2.5% < 4%

Rπ±(K±)
AA (y) assumption 1.3–4.8% 1.5–7.8% 1.8–5.2%

Background subtraction μ ← sec.π/K 0–0.8% 0–1.4% 0–0.9%
Background subtraction μ ← W/Z/γ � 0–1.6% 0–0.7% 0–3.1%
Background subtraction μ ← J/ψ <0.4% <0.4% <0.3%
Normalisation factor 0.3% (MSL), 0.7% (MSH) 0.3% (MSL), 0.7% (MSH) 0.4% (MSL), 1.6% (MSH)
〈TAA〉 0.7% 2.5% 0.9%
pp reference for RAA 2.1–4.2% 2.1–4.2% 15–18% (3 < pT < 10 GeV/c data)

30–34% (10 < pT < 20 GeV/c extrapolation)
pp reference (global) for RAA 2.1% 2.1% 1.9%

ous background sources with respect to the inclusive muon yields 
at 

√
sNN = 2.76 TeV are compatible with the ones measured at √

sNN = 5.02 TeV. The fraction of muons from primary π± and 
K± decays with respect to inclusive muons varies between about 
3% and 14% in the 0–10% centrality class, the largest values be-
ing obtained at pT = 3 GeV/c. On the other hand, the fraction of 
muons from secondary π± and K± decays reaches about 1% at 
pT = 3 GeV/c. The fraction of muons from electroweak-boson de-
cays is significant at high pT, where it reaches about 30% in the 
interval 16.5 < pT < 20 GeV/c for central collisions. Finally, the 
component of muons from J/ψ decays is small over the whole pT
interval with a maximum of 4% at intermediate pT (∼ 6 GeV/c) 
in central collisions. The same sources of systematic uncertain-
ties as for the 

√
sNN = 5.02 TeV analysis are considered and same 

methods to estimate them are employed, except the systematic un-
certainty of the tracking chamber resolution and alignment which 
varies linearly with pT as 1% × pT (pT in GeV/c) [32]. The pT-
differential cross section of muons from heavy-flavour hadron de-
cays in pp collisions at 

√
s = 2.76 TeV measured in the intervals 

2.5 < y < 4 and 3 < pT < 10 GeV/c is used for the RAA compu-
tation [32]. The measured production cross section is extrapolated 
up to pT = 20 GeV/c using fixed-order plus next-to-leading log-
arithms (FONLL) calculations [57,58]. The systematic uncertainty 
of the pT-differential production cross section in pp collisions at √

s = 2.76 TeV varies within 15–18% in 3 < pT < 10 GeV/c. At 
higher pT, the systematic uncertainty, which also includes the sys-
tematic uncertainty on the FONLL calculations, reaches 30–34%.

A summary of all systematic uncertainties taken into account 
in the measurement of the pT-differential yields of muons from 
heavy-flavour hadron decays at 

√
sNN = 2.76 TeV is reported in 

Table 1, including the uncertainties of the pp reference.

4. Results and model comparisons

The pT-differential yields of muons from heavy-flavour hadron 
decays normalised to the equivalent number of MB events at for-
ward rapidity (2.5 < y < 4) in central, semi-central and peripheral 
Pb–Pb collisions at 

√
sNN = 5.02 TeV are shown in Fig. 1 (upper 

panel). The same observable measured in central Pb–Pb collisions 
at 

√
sNN = 2.76 TeV is displayed in the lower panel of Fig. 1. 

The measurements are performed over a wide pT range from 3 to 
20 GeV/c for all centrality classes.

Fig. 1. The pT-differential yields of muons from heavy-flavour hadron decays at 
forward rapidity (2.5 < y < 4) in central (0–10%), semi-central (20–40%), and pe-
ripheral (60–80%) Pb–Pb collisions at √

sNN = 5.02 TeV (upper panel), and in 
central (0–10%) Pb–Pb collisions at √sNN = 2.76 TeV (lower panel). Statistical un-
certainties (vertical bars) and systematic uncertainties (open boxes) are shown. The 
additional systematic uncertainty on normalisation in Pb–Pb collisions at √sNN =
5.02 (2.76) TeV for MSL- and MSH-triggered events, respectively, is not included in 
the uncertainty boxes (see Table 1).

The pT-differential RAA of muons from heavy-flavour hadron 
decays at forward rapidity (2.5 < y < 4) in Pb–Pb collisions at √

sNN = 5.02 TeV is presented in Fig. 2 for the same central-
ity classes as in Fig. 1. An increasing reduction of the yield of 
muons from heavy-flavour hadron decays with increasing central-
ity with respect to the pp reference scaled by the average nuclear 
overlap function is clearly seen. The suppression is largest at in-
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Fig. 2. The pT-differential nuclear modification factor RAA of muons from heavy-
flavour hadron decays at forward rapidity (2.5 < y < 4) in central (0–10%, top), 
semi-central (20–40%, middle), and peripheral (60–80%, bottom) Pb–Pb collisions at √

sNN = 5.02 TeV (symbols). Statistical (vertical bars) and systematic uncertainties 
(open boxes) are shown. The filled boxes centered at RAA = 1 represent the nor-
malisation uncertainty of pp and Pb–Pb measurements. Horizontal bars reflect the 
bin widths and the values are shown at the centre of the bin. Left: the measured 
RAA is compared with the TAMU and SCET models [59,60] displayed with their un-
certainty bands. Right: the measured RAA is compared with MC@sHQ+EPOS2 model 
calculations with pure collisional energy loss (dashed lines) and a combination of 
collisional and radiative energy loss (full lines) [61,62].

termediate pT, in the interval from about 6 to 10 GeV/c, and 
reaches a factor of about three in the 10% most central collisions. 
Such behaviour is more pronounced in central and semi-central 
collisions, while moving towards peripheral collisions, the sup-
pression presents no significant pT dependence. In minimum bias 
p–Pb collisions at 

√
sNN = 5.02 TeV, where the formation of 

an extended QGP is not expected, the nuclear modification fac-
tor RpPb of muons from heavy-flavour hadron decays is consistent 
with unity at pT > 6 GeV/c [63]. The latter measurement confirms 
that the strong suppression observed in Pb–Pb collisions results 
from final-state interactions of charm and beauty quarks with the 
QGP. The evolution of RAA as a function of centrality is compat-
ible with the dependence of the heavy-quark energy loss on the 
medium density and the average path length in the medium, both 
of which are larger in central than in peripheral collisions.

The measured RAA is compared with various model pre-
dictions such as TAMU [59] and SCET [60] (Fig. 2, left), and 
MC@sHQ+EPOS2 [61,62] (Fig. 2, right). In the TAMU model, the 
interactions are described by elastic collisions only. The perturba-
tive QCD (pQCD)-based SCET model implements medium-induced 
gluon radiation via modified splitting functions with finite quark 
masses. These SCET calculations depend on the coupling constant 
g which describes the coupling strength between hard partons and 
the QGP medium. Its value is g = 1.9–2. In the MC@sHQ+EPOS2 
model, two different options are considered, energy loss from 

Fig. 3. Comparison of the pT-differential nuclear modification factor of muons from 
heavy-flavour hadron decays at forward rapidity (2.5 < y < 4) in central Pb–Pb col-
lisions at √sNN = 5.02 TeV (green symbols) and √sNN = 2.76 TeV (red symbols). 
Statistical (vertical bars) and systematic uncertainties (open boxes) are shown. The 
filled boxes centered at RAA = 1 are the normalisation uncertainties. Horizontal bars 
represent the bin widths.

medium-induced gluon radiation and collisional (elastic) processes 
or only collisional energy loss. In the scenario with pure collisional 
energy loss, the scattering rates are scaled by a global factor K
larger than unity (K = 1.5) in order to reproduce the RAA and 
elliptic flow of open heavy-flavour hadrons measured at midra-
pidity at the LHC [61]. With a combination of collisional and 
radiative energy loss, the scaling factor is K = 0.8. All these mod-
els also consider a nuclear modification of the PDF (EPS09) [17]. 
Note that in the MC@sHQ+EPOS2 model shadowing is not con-
sidered for beauty-quark production. In addition to independent 
fragmentation, a contribution of hadronisation via quark recombi-
nation is included in all models with the exception of SCET. The 
SCET model is based on pQCD calculations of high-pT parton en-
ergy loss and provides a fair description of the data in central 
collisions, but it deviates from the data in non-central collisions. 
The TAMU calculations, which do not include radiative energy loss 
processes, underestimate the suppression at pT > 6 GeV/c in cen-
tral and semi-central collisions, in particular. Both versions of the 
MC@sHQ+EPOS2 model, without and with radiative energy loss, 
describe the measurement within uncertainties for all centrality 
classes over the entire pT interval.

The results obtained at forward rapidity for muons from heavy-
flavour hadron decays at 

√
sNN = 5.02 TeV complement those ob-

tained at midrapidity for the electrons from heavy-flavour hadron 
decays [27] by the ALICE collaboration as well as the prompt D-
meson [25,26] and beauty measurements via B± mesons [31], non-
prompt D0 [31] and J/ψ [30] by the ALICE and CMS collaborations. 
The measured RAA of muons from heavy-flavour hadron decays 
for pT > 8 GeV/c is compatible with that obtained for beauty (D0

and J/ψ from beauty hadrons, B±) for pT
hadron > 10 GeV/c [30,31]

within uncertainties, although in a different kinematic region (dif-
ferent pT and y intervals).

A comparison of the RAA of muons from heavy-flavour hadron 
decays in the 10% most central Pb–Pb collisions at 

√
sNN = 2.76

and 5.02 TeV is presented in Fig. 3. The comparison illus-
trates the improvement of the precision of the measurement at √

sNN = 5.02 TeV with respect to that at 
√

sNN = 2.76 TeV. 
The total systematic uncertainty on the RAA at 

√
sNN = 5.02 TeV 

is reduced by a factor of about 3 to 6, depending on pT, com-
pared to the same measurement at 

√
sNN = 2.76 TeV using 

the 2011 data sample. The reasons for such an improvement are 
twofold. The detector conditions were more stable during the √

sNN = 5.02 TeV than the 
√

sNN = 2.76 TeV data taking cam-
paign and therefore better described in the simulations. Moreover, 
as the pp data at 

√
s = 5.02 TeV were collected just a few days 

before the Pb–Pb run at 
√

sNN = 5.02 TeV, the detector conditions 
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were comparable and the systematic uncertainty on alignment and 
resolution between the two systems partially cancel when com-
puting RAA, as discussed in section 3. The present measurement 
at 

√
sNN = 2.76 TeV is in agreement with the published re-

sults obtained at the same centre-of-mass energy in a smaller 
pT interval (4 < pT < 10 GeV/c) with larger uncertainties [32]. 
The precision is increased by a factor 1.1–1.6, mainly due to a 
better understanding of the detector response and a new data-
driven strategy for the estimation of the contribution of muons 
from primary light-hadron decays. The comparison between the 
results obtained at the two centre-of-mass energies indicates that 
the suppression of heavy quarks at 

√
sNN = 5.02 TeV is similar to 

that at 
√

sNN = 2.76 TeV, as already observed in the midrapidity 
region for electrons from heavy-flavour hadron decays [22,27] and 
prompt D mesons [25]. This similarity between the RAA measure-
ments at the two energies may result from the interplay of the 
following two effects as discussed in [64]: a flattening of the pT
spectra of charm and beauty quarks with increasing collision en-
ergy, and a medium temperature estimated to be higher by about 
7% at 

√
sNN = 5.02 TeV than at 2.76 TeV. The former would de-

crease the heavy-quark suppression (increase the RAA) by about 
5% if the medium temperature remains unchanged, while the lat-
ter would increase the suppression (decrease the RAA) by about 
10% (5%) for charm (beauty) quarks.

The measured RAA at 
√

sNN = 2.76 TeV is compatible with 
that measured for muons from heavy-flavour hadron decays in 
|η| < 1 with the ATLAS detector [21] and for electrons from heavy-
flavour hadron decays in the interval |y| < 0.6 − 0.8 by the AL-
ICE collaboration [24]. The same behaviour is also observed at √

sNN = 5.02 TeV when comparing the RAA of muons from 
heavy-flavour hadron decays with that measured at midrapidity 
for electrons from heavy-flavour hadron decays [27]. This confirms 
that heavy quarks suffer a strong in-medium energy loss over a 
wide rapidity interval. The similarity of the suppression in the two 
rapidity regions does not imply that heavy quarks lose similar en-
ergy. The observed trend may also result from the interplay of 
several effects such as the shape of initial heavy-quark pT spectra 
and the path-length dependence of the heavy-quark energy loss, 
as discussed in [65]. Indeed, the properties of the QGP medium 
differ between mid and forward rapidity. The measured charged-
particle multiplicity densities are smaller at forward rapidity than 
at midrapidity [66]. The created medium is also smaller and con-
sequently the travelled path length is shorter at forward rapidity.

The pT distributions of muons from heavy-flavour hadron de-
cays are sensitive to energy loss of both charm and beauty quarks. 
Due to the decay kinematics and the charm- and beauty-quark pT-
differential production cross sections, one expects that for pT �
5 GeV/c the distributions are predominantly sensitive to the charm 
in-medium energy loss. FONLL calculations [57,58] predict that in 
pp collisions at 

√
s = 5.02 TeV more than 70% of muons from 

heavy-flavour hadron decays originate from beauty quarks in the 
high-pT region (pT > 10 GeV/c ) and this contribution reaches 75%
in the interval 18 < pT < 20 GeV/c. Therefore, the strong suppres-
sion of muons from heavy-flavour hadron decays in the high-pT
region is expected to be dominated by the in-medium energy loss 
of beauty quarks. In order to further interpret the results, Fig. 4
shows a comparison with MC@sHQ+EPOS2 predictions for muons 
from charm- and beauty-hadron decays, separately, and for muons 
from the combination of the two, in central (0–10%) Pb–Pb col-
lisions at 

√
sNN = 5.02 TeV (top) and 2.76 TeV (bottom). The 

predictions considering the combination of elastic and radiative 
energy loss and pure elastic energy loss are shown in the left 
and right panels, respectively. Both versions of the MC@sHQ+EPOS2 
model provide a fair description of the measured RAA of muons 
from heavy-flavour hadron decays in central Pb–Pb collisions at √

sNN = 5.02 TeV within uncertainties. A similar agreement be-

Fig. 4. Comparison of the pT-differential nuclear modification factors RAA of muons 
from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4) in central Pb–
Pb collisions at √sNN = 5.02 TeV (top) and √sNN = 2.76 TeV (bottom) with 
MC@sHQ+EPOS2 calculations [61,62] with different scenarios considering either a 
combination of collisional and radiative energy loss (left) or a pure collisional en-
ergy loss (right). The predictions are shown for muons from heavy-flavour hadron 
decays, muons from only charm-hadron decays and muons from only beauty-hadron 
decays.

tween data and MC@sHQ+EPOS2 is achieved at 
√

sNN = 2.76 TeV 
although the model tends to slightly overestimate the measured 
RAA at low/intermediate pT. The measured RAA at large pT is 
closer to the model calculations for muons from beauty-hadron de-
cays than for muons from charm-hadron decays when considering 
both elastic and radiative energy loss. For the scenario involving 
only collisional energy loss, the predicted difference between the 
suppression of muons from charm and beauty-hadron decays is 
less pronounced. The predicted ratio of the pT-differential RAA of 
muons from beauty-hadron decays to that of muons from charm-
hadron decays for pT > 10 GeV/c is in the range 1.2–1.4 for the 
scenario involving only collisional energy loss and in the range 
2.5–2.8 when considering both elastic and radiative energy loss, 
depending on pT and centre-of-mass energy. It is worth mention-
ing that the MC@sHQ+EPOS2 model is characterised by a large run-
ning coupling constant αs and a reduced Debye mass in the elastic 
heavy-quark scattering generating the radiation [67]. As a conse-
quence, the radiative energy loss neglects finite path-length effects 
due to the gluon formation outside the QGP and is overestimated 
at high pT. Such an effect is expected to be more pronounced for 
charm quarks than for beauty quarks due to the dead-cone ef-
fect [8].

5. Conclusions

In summary, the pT-differential normalised yield and the nu-
clear modification factor RAA of muons from semi-leptonic decays 
of charm and beauty hadrons was measured at forward rapid-
ity (2.5 < y < 4) for the first time over the wide pT interval 
3 < pT < 20 GeV/c in central, semi-central, and peripheral Pb–Pb 
collisions at 

√
sNN = 5.02 TeV, and in central Pb–Pb collisions 

at 
√

sNN = 2.76 TeV with reduced systematic uncertainties com-
pared to previous measurements.

The measured RAA shows a clear evidence of a strong sup-
pression, up to a factor of three in the 10% most central col-
lisions with respect to the binary-scaled pp reference, for both 
collision energies. This suppression pattern is compatible with a 
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large heavy-quark in-medium energy loss. The strong suppression 
which persists in the high-pT region, up to pT = 20 GeV/c, indi-
cates that beauty quarks lose a significant fraction of their energy 
in the medium. The suppression becomes weaker from central to 
peripheral collisions. The evolution of RAA with the collision cen-
trality reflects the dependence of energy loss on the path length in 
the QGP and the QGP energy density.

The RAA measurements have the potential to discriminate be-
tween different model calculations. The RAA is in fair agreement 
with transport model calculations that consider both collisional 
and radiative energy loss. The MC@sHQ+EPOS2 transport model in-
cluding a hydrodynamic description of the medium, coupled with 
different implementations of the in-medium parton energy loss, 
describes the measured RAA well over the whole pT interval in 
central, semi-central, and peripheral collisions within uncertain-
ties. This comparison brings new constraints on the relative in-
medium energy loss of charm and beauty quarks.

The suppression is compatible with that measured at central 
rapidity for electrons from heavy-flavour hadron decays. These 
new precise RAA measurements carried out over a wide pT inter-
val at forward rapidity in Pb–Pb collisions at 

√
sNN = 5.02 TeV 

with smaller uncertainties with respect to same measurements at √
sNN = 2.76 TeV, currently only accessible by ALICE in cen-

tral collisions, bring significant constraints on the modelling of 
the longitudinal dependence of the open heavy-flavour RAA. There-
fore, the obtained results provide further insight on the in-medium 
parton energy loss mechanisms and, ultimately, will help deter-
mining the transport properties of the hot and dense deconfined 
QCD medium in the full phase space.
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