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ABSTRACT10

Early detection of a contamination leach into a water distribution system, followed by the11

identification of the source and an evaluation of the total amount of contaminant that has been12

injected into the system is of paramount importance in order to protect water user’s health. The13

ensemble Kalman filter, which has been recently applied in hydrogeology to detect contaminant14

sources in aquifers, is extended to the identification of a contaminant source and its intensity in15

a water distribution system. The driving concept is the assimilation of contaminant observations16

at the nodes of the pipeline network at specified time intervals until enough information has been17

collected to allow the positioning of the source and the estimation of its intensity. Several scenarios18

are analyzed considering sources at different nodes, with different delays between the beginning of19

the pollution and the start of the measurements, with different sampling time intervals, and with20

different observation ending times. The scenarios are carried out in the bench-marking Anytown21

network demonstrating the ability of the ensemble Kalman filter for contaminant-source detection22

in real water distribution systems. The use of the ensemble Kalman filter supposed a major23
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breakthrough in the inverse modeling of subsurface flow and transport, the successful results of its24

application to the synthetic Anytown network warrant further exploration of its capabilities in the25

realm of water distribution systems.26

INTRODUCTION27

Water distribution systems (WDSs) are a key infrastructure for the preservation of people’s28

health. Intentional or accidental contamination of the systems has to be detected in the shortest29

possible period to reduce damages, for which Early Warning Systems are desirable. To limit the30

damages caused by a contamination event, it is important to detect both the source location and31

the release intensity; the source location will allow repairing the system and preventing further32

contamination and the release intensity will allow estimating the amount of contaminant injected.33

Measurement networks are being deployed in WDSs to detect the presence of pollutants and34

a large effort has been done to identify strategies for the optimal location of sensors (e.g., Hart35

and Murray 2010; Ung et al. 2017). In the last fifteen years, an interest in using the observed36

concentration measurements at some nodes of the WDS to identify the source location and the37

release history has grown, and a number of methodologies has been developed; a good review paper38

on the subject was published by Adedoja et al. (2018). The authors of this review identify three39

types of approaches: probabilistic approaches, simulation approaches and others, like artificial40

neutral networks (Kim et al. 2008) or hybrid methods (Liu et al. 2012). A few of the works41

discussed in the review are worth to be singled out: Tryby et al. (2010) propose an optimal sensor42

placement design for source identification using minimum least-squares optimization; De Sanctis43

et al. (2010) use a particle backtracking method to identify the nodes of a network that are coherent44

with the presence/absence of contamination at sensor locations; Liu et al. (2011) propose an45

adaptive dynamic optimization procedure for contaminant source identification aimed at avoiding46

the ill-posedness of the problem; Eliades and Polycarpou (2012) use decision trees to identify the47

network nodes where the contamination took place with as few manual samplings as possible;48

Shen and McBean (2012) identify potential intrusion nodes using parallel computing, a large49

database, and data-mining; Wang and Harrison (2013) implement Markov chain Monte Carlo for50
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contaminant source identification, although they recognize that further improvements are needed51

to make the approach operational; Perelman and Ostfeld (2013) use Bayesian networks to estimate52

the likelihood of the injection location of a contaminant and its propagation into the system; Butera53

et al. (2013a) use a geostatistical approach to recover the release history of a pollutant intrusion;54

Yang and Boccelli (2014) mix a Bayesian approach with backtracking to calculate the probabilities55

of potential source locations; Wang and Harrison (2014) mix a Bayesian approach with support56

vector machines to improve the likelihood calculations; Seth et al. (2016) propose a systematic57

procedure for testing and evaluating source identification methods; and Ung et al. (2017) couple an58

adjoint source identification method and a Monte Carlo sensor placement algorithm to optimally59

and accurately place sensors. The broad review by (Adedoja et al. 2018) highlights the current60

relevance of the research topic and concludes that more effort is necessary to make these models61

applicable in real life.62

From a mathematical point of view, identifying a contaminant source from some concentration63

data can be cast as an inverse problem: information about the state of the system is used to identify64

parameters, boundary conditions or forcing terms of the system, which is modeled by a system65

state equation. Inverse problems have been addressed for many years in hydrology and hydraulics66

with both deterministic and stochastic approaches. A good review of inverse models in subsurface67

hydrology can be found in Zhou et al. (2014), and some applications in surface hydrology in D’Oria68

et al. (2014), D’Oria et al. (2017) or Todaro et al. (2019). Probably, subsurface hydrology has been69

the area with the largest body of research in the subject, from the early deterministic works (i.e.,70

de Marsily et al. 1984; Carrera and Neuman 1986) to the later stochastic ones (i.e, Woodbury71

and Ulrych 1993; Wen et al. 1999; Li et al. 2012; Capilla et al. 1999; Sun et al. 2009; Zhou72

et al. 2012). In the last decades, the use of the ensemble Kalman filter has gained much attention73

as an inverse modeling method, even though in its inception it was not considered an inverse74

model but a filtering algorithm to filter out model and observation error from model predictions.75

Applications in hydrogeology (i.e., Franssen and Kinzelbach 2009; Schöniger et al. 2012; Zhou76

et al. 2012; Xu et al. 2013) and in petroleum engineering (ie.,Wen et al. 1999; Chen et al. 2010)77
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are abundant. Implementations of inverse modeling for the identification of contaminant sources78

in groundwater can be found in the reviews by Atmadja and Bagtzoglou (2001), Bagtzoglou and79

Atmadja (2005), Michalak and Kitanidis (2004) or Sun et al. (2006). More recent approaches have80

used methods based on minimum relative entropy, the geostatistical approach or the use of adjoint81

states (Bagtzoglou et al. 1992; Butera et al. 2013b; Koch and Nowak 2016; Neupauer and Wilson82

1999; Woodbury and Ulrych 1996).83

Aquifers and WDS are conceptually similar, in both cases water (and solutes) move in a84

heterogeneous media, driven mainly by gravity and pumping that induce changes in water pressures85

and solute concentrations in space and time. In both systems, there is a state equation that permits86

the prediction of the system state at time t, given the state at time t−∆t; a state equation that depends87

on geometrical and material parameters, such as aquifer extension and hydraulic conductivities (in88

aquifers), or pipe lengths and roughness coefficients (in WDS). These similarities suggested that89

an algorithm such as the The main difference is that the aquifer state is defined continuously in90

two-dimensional or three-dimensional space, but WDS state is defined continuously in a number of91

one-dimensional segments. This difference will require a special treatment as explained later. This92

similarity has encouraged some researchers to use approaches that have worked in hydrogeology93

in WDS. For example, the work by (Butera et al. 2013a) demonstrates the application of the94

geostatistical approach for the identification of the release history of a contamination event in a95

WDS. The motivation of this paper is to demonstrate the application of the ensemble Kalman filter,96

a technique that recently has demonstrated its potential in groundwater modeling for the purpose97

of contaminant-source identification (Chen et al. 2018; Xu and Gómez-Hernández 2016; Xu and98

Gómez-Hernández 2018) to the field of WDS. The ensemble Kalman filter has already been used99

in WDSs, for instance, (Rajakumar et al. 2019) applied it to model the uncertainty on chlorine100

concentration or (Ye and Fenner 2014) used it to detect bursts in WDSs, but, to the best of our101

knowledge, it has not been applied to the problem of contaminant source and release identification.102

This paper does benchmark the ensemble Kalman filter against other approaches developed for the103

same purpose; it shows the potential of a new approach for source identification that is general,104
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simple to understand and implement, and that has proven its effectiveness in other fields. The105

remainder of this manuscript is organized as follows: a brief description of the ensemble Kalman106

filter is presented, followed by a description of the case study and finalizing with a discussion of107

the results and some conclusions.108

THE ENSEMBLE KALMAN FILTER109

The ensemble Kalman filter (EnKF) was developed by Evensen (1994, 2003) to overcome the110

difficulties of theKalman filter to deal with systems that evolve non-linearly in space-time. Although111

the filter was originally designed to improve the estimation of the state of the system, it has been112

extended for the estimation of the parameters controlling the state equation, by considering these113

parameters as state variables as part of what is called an augmented state. The resulting filter with114

augmented state is a powerful inverse modeling algorithm. The main idea of the filtering algorithm115

is the sequential forecasting and updating of the augmented state vector, in which the forecasting is116

based on the state equation, and the updating is based on the discrepancy between observations and117

predictions to modify the augmented state. This forecast and update steps are repeated each time118

that a new sets of observations is available. The forecast can be done with regard to the last update119

of the state variables and using the last update of the system parameters, or it can be done with120

the state variables from time zero and the last update of the system parameters, in cases in which121

the update of the state may results in a state spatial distribution that may violate some fundamental122

laws, such as mass conservation, or, as it will be in this case, the updated parameters modify the123

way the system would have behaved since time zero. Indeed, in the problem of contaminant source124

identification, updating the position of the source can only be accounted for to predict the state in125

the next time step by rerunning the forecast from time zero, when the source enters the system. For126

this reason, this approach is referred to as the restart ensemble Kalman filter (rEnKF). In this paper,127

the state variables are solute concentrations and the model parameters to be inverted are the node at128

which the solute enters the WDS and the release intensity. Let X be the vector of parameters, and129

Y the vector of solute concentrations in the system. They both are related through a state equation130
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with given boundary, initial conditions and forcing terms,131

Y(t) = ψ(X,Y(t − ∆t)), (1)132

where t indicates time. In general, the state at time t is computed as a function of the state in the133

previous time step t − ∆t. In the rEnKF with augmented state, the state equation is rewritten as134

©­­«
X(t)

Y(t)

ª®®¬ =
©­­«

X(t − ∆t)

ψ(X(t − ∆t),Y(0))

ª®®¬ . (2)135

The first step in the rEnKF is the forecast of the (augmented) system state for the next time step. This136

forecast is performed using the state equation (2), on one hand we forecast the parameters, which137

remain the same since we have no state equation for its evolution in time, on the other hand we138

also forecast the state from time zero, this forecast will use the last update of the parameter values,139

which will be performed in the assimilation step. At time zero, we assume that the contaminant140

has not entered the system yet and therefore all values of Y(0) are equal to zero. The second141

step is the updating of the augmented state once new observations are available. In this specific142

implementation in which the forecast is always made from the state values at time zero, the interest143

is in the update of the parameter values, since the updated states will be of no use for the next144

forecast step. Given a set of state observations Yobs(t), the discrepancy between forecast values145

and observed ones will be used to update the parameter forecast in (2)146

Xa(t) = X(t) +G(t)
(
Yobs(t) + e(t) − Y(t)

)
, (3)147

where Xa(t) is the updated parameters values after data assimilation, e(t) is the observation error148

with zero mean and covariance given by the matrix R(t), and G(t) is the Kalman gain, given by149

G(t) = CXY (t) (CYY (t) + R(t))−1 , (4)150
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where CXY (t) is the covariance between all the parameters and the state variables at observation151

locations, and CYY (t) is the covariance of the state variable at observation locations. Therefore, if152

there are np parameters and no observations locations, vectors Xa(t) and X(t) have sizes np × 1,153

vectors Yobs(t), e(t) and Y(t) have sizes no × 1, the Kalman gain G(t) is a matrix of size np × no,154

the covariance CXY is a matrix of size np × no, and the matrices CYY (t) and R(t) are of size no × no,155

with the matrix R(t) generally being a diagonal matrix when the observation errors are modeled as156

uncorrelated. The Kalman gain is a unique matrix that is computed after each observation step and157

used to update all realizations.158

In the earlier versions of the Kalman filter and the extended Kalman filter, the covariance159

matrices were computed using the state equation. Such a computation is exact if the state equation160

is linear, but it is only approximate if it is not linear. The ensemble Kalman filter solves the problem161

of computing the covariances for non-linear state transition equations. In the EnKF formulation,162

the covariances in Eq. (4) are estimated from an ensemble of realizations of parameters and state163

variables (calculated according to the state equation) in which each realization goes through the164

two steps of forecast and update described above. It is after the forecast step that the covariances165

matrices are calculated; specifically, the two covariances involved in the computation of the Kalman166

gain are estimated from a set of N ensemble realizations as167

CXY (t) =
1

N − 1

(
(X − X11×N )(Y − Y11×N )

T
)
, (5)168

CYY (t) =
1

N − 1

(
(Y − Y11×N )(Y − Y11×N )

T
)
, (6)169

where 11×N represents a row vector with N ones, X is a matrix of size np×N in which each column170

contains the parameters values of a realization, X is a column vector of size np × 1 with the average171

values of each parameter computed through the realizations X = 1
N X1N×1 (now 1N×1 is a column172

vector with N ones) , and, similarly, Y is a matrix of size no ×N in which each column contains the173

forecast concentrations at observation locations, and Y is a column vector of size no × 1 with the174

average state values at each observation location computed through the ensemble of realizations175

7Butera, Gómez-Hernández, NicotraOctober 9, 2020



Y = 1
N (Y1N×1).176

The restart ensemble Kalman filter workflow is as follows:177

1. Set the initial state of the system Y(0), and generate an initial ensemble of N realizations of178

the parameters to be identified X(0) then, repeat the following steps for as many time steps179

as observations are available.180

2. For each realization, forecast the state of the system to the next time step for which obser-181

vations are available using Eq. (2). In this case, a solute transport model is used for the182

forecast.183

3. Extract the forecast values at observed locations from all realizations, build matrices X and184

Y, and compute the covariances in Eqs. (5) and (6)185

4. Compute the Kalman gain in Eq. (4).186

5. For each realization, update the parameter values using Eq. (3).187

6. Go back to 2 while new observations are sampled.188

The ensemble of realizations provides a set of values for each parameter, which will converge to a189

final set of ensemble values the mean of which should be close to the actual parameter value and the190

variance of which gives an estimate of the uncertainty about the estimation. At time zero, the mean191

and variance of the parameters are those of the random functions used to generate them at step 1192

of the workflow; then, the ensembles of updated parameters should narrow their variability and193

converge towards the underlying values. The main problem of the ensemble Kalman filter occurs194

when the ensemble of realizations collapses onto a single value which is far from the actual value195

(i.e., Xu et al. 2013). This is referred to as filter collapsing, or filter inbreeding and it is generally196

related to an underestimation of the covariance in Eqs. (6) and (5).197

In the present application, the algorithm will be used for the identification of three parameters,198

the two spatial coordinates of the source and the logarithm of the release intensity of the contam-199

ination injected into the system. The use of the logarithm of the intensity is because the updating200

equation (3) does not preclude the updated values to be negative, while working with logarithms,201
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positive release intensities will be ensured.202

CASE STUDY203

This is an academic exercise in the absence of real data. It is intended to solve a set of different204

scenarios, each with a predefined source location and intensity. To expand the casuistry, up to 16205

different scenarios will be considered, with the source located in each case at a different node in the206

network, and for all of them an intensity of 100 mg/l will be assumed. As in this case the location207

of the source is known in advance for each scenario, the goal is that the evolution of the Xa(t), as208

new measurements are assimilated at each step, leads to the predefined location and intensity of the209

source considered for each scenario. In a real case, such location and intensity will not be known in210

advance, in such a case, the prediction will be given by the average of the ensemble of realizations211

and the prediction uncertainty by their standard deviation.212

The application of the rEnKF for the identification of the location and intensity of a contaminant213

release into aWDS is applied to the Anytown network ofWalski et al. (1987), a common benchmark214

in water supply analysis. The Anytown network is composed of 16 nodes (not sequentially215

numbered) and 32 links of lengths varying between 1828.8 m and 3657.7 m, which is sketched in216

Fig. 1a. Water is supplied from groundwater resources through a pumping system into two storage217

tanks. The daily mean discharge supplied by the network is equal to 365 l s−1. Hourly patterns are218

used to simulate a time variable demand, with values that go from 325 l s−1 to 475 l s−1. Pipeline219

roughness is described using a Hazen-Williams C-factor, which varies between 70 and 120.220

A contaminant release of uniform intensity occurs in one of the 16 nodes of the system. The221

release intensity, i, and the spatial coordinates of the source (x, y) are the three parameters to identify222

by the rEnKF. The contaminant is a non-reactive solute; however, the proposed methodology could223

be applied to reactive solutes simply modifying the state equation to account for the reactions.224

The contaminant enters the system as a single source; the problem of multiple sources or varying225

intensity sources has not been considered in this manuscript but deserves further consideration.226

The software used to simulate the flow and transport in the pipe network is version 2.2 of EPANET227

Rossman 2000.228
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The simulation of the contaminant evolution in the perfectly known Anytown system is sampled229

at all nodes at specified times. These samples will be the observations against which the forecasted230

values during the application of the EnKF will be contrasted.231

Contaminant sensors are located in all 16 nodes of the network. These sensors are activated232

at certain time t1 after the release happens and measure the concentration at time increments ∆t.233

They stop measuring after a certain tmax . In the following, a number of scenarios will be run to234

try to analyze the impact of t1. The meaning of t1 is associated to the idea that the sensors are not235

continuously running at all times, and that they only start measuring after some warning is received236

and then an operator activates them. This activation could be immediate or it can be later, once237

the contaminant has already spread through the pipeline system. The scenarios will analyze also238

the impact of the sampling interval size, ∆t; and the impact of the magnitude of tmax , the time at239

which the system stops measuring, a small value of it will replicate a possible rupture of the sensor240

system.241

The rEnKF starts with an ensemble of realizations for the three parameters. The number of242

realizations was initially 100 but it was reduced down to 48 when it was found that similar results243

were found with this smaller number. The initial set of coordinates for the 48 realizations is fixed244

and the same for all scenarios and realizations. It is shown in Fig. 1c. Notice that the source initial245

locations coincide with all nodes of the system plus the center point of all pipes. The initial set of246

release intensities is distributed uniformly in [0.5I1,2I1], where I1 is the release intensity estimated247

at time t1 when the sensors perform the first observation of concentrations and fluxes at all 16 nodes248

and given by:249

I1 =

16∑
i=1

Ci(t1)Qi(t1). (7)250

Measurement errors are modeled with a zero mean and a diagonal covariance matrix, R = σ2
eI,251

with σ2
e = 10−5 mg2l−2, with I being the identity matrix. This small measurement error variance252

is coherent with the concentrations observed in the network, which vary between 0 and 0.05 mg253

l−1. (Although the injection load is of 100 mgl−1, the contaminant gets quickly diluted and the254
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concentrations diminish very quickly.)255

During the forecast step, if the concentrations modeled were below 10−6 mg l−1, the concentra-256

tion was set to zero to mimic the detection limit of the sensors.257

During the forecast step, model uncertainties are introduced by adding an error to the base258

demand at each node from a distribution of zero mean and standard deviation equal to 5% of the259

base demand value.260

During the updating step of the rEnKF, the coordinates of the source will be updated to some261

values in the XY plane that will not necessarily fall on the pipeline system; for this reason, the262

updated coordinate values resulting from the application of Eq. (3) to all the realizations are263

relocated to the closest node on the discretized pipeline system shown in Fig. 1b.264

During the updating step and in order to prevent filter collapsing, it is convenient to inflate the265

covariance matrix, CYY . After some tests, it was found that multiplying the diagonal of CYY by 1.1266

gives stable results.267

RESULTS AND DISCUSSION268

As already mentioned, a preliminary analysis was performed to decide on the size of the269

ensemble and it was found that an ensemble of 48 realizations gave as good results as an ensemble270

of 100 realizations, so it was decided to perform all analyses with N = 48.271

In total, 16 scenarios have been considered with varying source locations, sensor start time272

after release, maximum monitoring time, and interval between measurements. The combinations273

of these values for each scenario are shown in Table 1.274

In order to quantify the performance of the rEnKF in each scenario, four indicators are built.275

The first one measures the lack of precision or the spread of the ensemble of coordinate realizations276

at the end of the assimilation process by computing the square root of the moment of inertia of277

these coordinates with respect to their center of mass. The second one measures the bias or the278

lack of accuracy of the final ensemble of coordinate realizations by computing the square root of279

the moment of inertia of these coordinates with respect to the true source location. In both cases,280

these values are normalized by the corresponding values computed with the coordinate realizations281
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at time zero. Similarly, to evaluate the uncertainty of the release intensities at the end of the282

assimilation process, its coefficient of variation is computed, and to evaluate their bias the square283

root of the average square deviation between the ensemble intensities and the true one is computed284

and normalized by the true release intensity. These indicators have the following expressions285

i1(t) =

√√√∑N
j=1 d2

j (t)∑N
j=1 d2

j (0)
, (8)286

i2(t) =

√√√∑N
j=1 s2

j (t)∑N
j=1 s2

j (0)
, (9)287

i3(t) =
σI

I
, (10)288

i4(t) =

√
1
N

∑N
j=1(I j − Is)

2

Is
, (11)289

where N is the number of realizations of the ensemble, {d j, j = 1, . . . ,N} are the distances between290

each realization position and their center of mass, {s j, j = 1, . . . ,N} are the distances between291

the each realization position and the true release location, {I j, j = 1, . . . ,N} are the ensemble292

intensities, σI is the standard deviation of this ensemble, I is the mean of this ensemble, and IS is293

the true release intensity. Notice that these indicators are computed at the end of each assimilation294

step and their evolution in time measure the speed of convergence of the algorithm.295

These indicators can be calculated in this case since this is an academic exercise. In a real296

situation, only indicators i1 and i3 could be computed and the success of the approach would be297

measured by the effective identification of the source.298

The values of the four indicators together with the average distance between the ensemble of299

coordinate realizations and the true source location and the average difference between the ensemble300

of source intensities and the true one are shown in Table 2.301

First thing to notice is that, for scenarios S1 and S7 the identification of the source coordinates302

is perfect, in both cases the sensor sampling starts late and the sampling interval is short. Fig 2303

shows a histogram of i1 and i2 computed at the end of the sampling for all scenarios, recall that304
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they measure, respectively, the intrinsic spread of the ensemble of source positions and the bias305

with respect to the true value relative to the spread and bias of the initial source locations of Fig 1c.306

For all cases, the spread measured by i1 is reduced drastically to below 4% of the initial value, but307

the bias measured by i2 is kept at relatively larger values for a number of scenarios. The large bias308

in scenario 8 (source at node 11) may be explained by the late start of the sensors, the biases for309

scenarios 15 (source at 18) and 16 (source at 19) may be explained by the complex flow patterns310

through these nodes linking several pipes. However, overall, the estimation of the source locations311

is good to very good for all cases since the average deviation of the final positions from the true312

locations are, for all cases, below 150 m, a small value compared with the pipe lengths, which range313

between 1828 m and 3568 m.314

Fig. 3 shows a histogram of i3 and i4 computed at the end of the sampling for all scenarios. The315

spreads and the biases are always reduced below 10% of their initial values and for some scenarios316

below 2%. The average difference between the final ensemble of intensities and the true value is317

always small, less than ±7 mg l−1, except for S13. These results are indicative of a very good318

identification of the release intensity. The worst estimates occur for scenarios 5, 6, 12, 13 and 16.319

Scenarios 5 and 6 could be explained by a late start of the sampling process and the location of the320

sources along the edge of the network (sources at nodes 8 and 9, respectively) but the behavior of321

12, 13 and 16 is more difficult to explain (although it is worth to point out that, for these cases, the322

source nodes, 15, 16 and 19, are linked by three pipes in the center of the network).323

Fig. 4 shows the time evolution of i1 and i2 for case 6 (source at node 9) with a late start of the324

sampling and a long sampling interval; this figure also shows the positions of the source location325

realizations at tmax = 600 min. It is interesting to see how, after a few samples, both i1 and i2 are326

down to their minimum values, and how the final source location realizations are all very close to327

or at the true source locations. Similar results are shown in Fig. 5 for scenario 12 with a release328

from node 15. This scenario was not one of the best performers in terms of the indicators, yet, even329

if the final set of realizations is biased with respect to the true source, the final estimate is close to330

the true source.331
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Fig. 6 shows the time evolution of i3 and i4 for scenarios 6 and 12 that differ in the starting time332

of the sampling. The most noticeable item is the large spread and bias of the updated intensities333

during the first time steps and the sharp decrease of them as more concentrations are assimilated.334

It also shows that starting the sampling as early as possible can help in identifying the release335

intensity quickly.336

In general, it can be concluded that an early detection of the release (i.e., activating the sensors337

60 minutes after the release) followed by a continued sampling at a low frequency (i.e., every 30338

minutes) is preferable than a late detection (i.e., activating the sensors 180 minutes after the release)339

followed by a high-frequency sampling (i.e., every 10 minutes).340

Finally, to illustrate the updating process of the source locations, the time evolution of the341

ensemble of locations for scenarios 7 and 10 (release nodes 10 and 13, respectively) is shown in342

Figs. 7 and 8, respectively. It is interesting to see how the source locations are being updated after343

each observation to positions closer and closer to the true source until all ensemble converges onto344

it.345

The AnyTown network may be considered a simple network compared to a real network that346

could have up to 10,000 nodes for 100,000 inhabitants. The simple case was chosen to test a new347

approach that had never been tested in water distribution systems. Given its satisfactory results,348

and considering that in hydrogeology, the EnKF has been applied to numerical models with tens349

of thousands of discretizing elements, the method should also work in larger systems, with larger350

computational times.351

CONCLUSIONS352

This work proposes an application of the restart ensemble Kalman filter (rEnKF) to the identi-353

fication of the source location and intensity of a contaminant release in a water distribution system.354

The method proposed has been tested in the Anytown network assuming a constant contaminant355

injection. Contaminant observations at the nodes of the network are made with varying sampling356

intervals and sampling start times since the release began. The exercise also considered a small357

sampling error and errors in the estimation of the demand at each node. Sixteen scenarios were358
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analyzed in order to reproduce different measurement schemes. From the analysis it is concluded359

that is best to detect the contamination as soon as possible, followed by a not necessarily very360

high measurement frequency, for, after a few sampling steps, identify the source location and the361

release intensity of the contamination release. Despite the small number of ensemble members362

(only 48) the method proved to successfully identify the source location and release intensity. It363

is concluded that the rEnKF is a valuable technique for source identification in water distribution364

systems. Future research should include more realistic cases, with smaller number of sensors,365

releases occurring anywhere in the network, non uniform releases, and larger sampling errors and366

modeling errors. Other avenues of research should explore the simultaneous identification of the367

source and the roughness coefficients of the pipes, in a manner similar how hydraulic conductivities368

and contaminant source parameters are identified in aquifer applications.369
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TABLE 1. Scenarios considered

Scenario Source location Source intensity t1 tmax ∆t
node number mg l−1 min min min

S1 1 100 180 360 10
S2 2 100 60 300 30
S3 3 100 180 430 10
S4 4 100 60 300 30
S5 8 100 180 600 10
S6 9 100 180 600 30
S7 10 100 180 600 10
S8 11 100 180 600 10
S9 12 100 60 390 30
S10 13 100 60 360 30
S11 14 100 180 600 10
S12 15 100 60 390 30
S13 16 100 180 600 10
S14 17 100 180 600 10
S15 18 100 60 200 10
S16 19 100 60 300 30
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TABLE 2. Indicators

Scenario i1(tmax) i2(tmax) i3(tmax) i4(tmax) Average distance Average difference
·10−2 ·10−2 ·10−2 ·10−2 from source location from true intensity

in m at tmax in mg l−1 at tmax
S1 0.00 0.00 0.04 0.43 0.00 -0.43
S2 2.90 1.76 2.94 5.03 16.23 4.02
S3 0.27 1.73 1.82 4.25 18.62 3.82
S4 0.92 1.74 4.84 6.96 16.33 -5.27
S5 0.00 4.15 5.05 7.87 36.38 5.83
S6 4.77 3.39 7.00 9.12 40.95 -6.41
S7 0.00 0.00 0.00 0.13 0.00 3.46
S8 1.83 15.74 5.58 0.32 148.00 -6.34
S9 0.00 8.86 3.38 0.23 69.16 4.73
S10 0.84 0.40 1.67 1.65 2.88 0.10
S11 1.21 0.74 0.96 1.93 5.18 -1.69
S12 1.75 3.14 5.71 6.33 21.41 2.55
S13 0.11 7.23 1.59 12.85 47.35 12.73
S14 0.00 3.04 1.86 1.87 25.18 -0.35
S15 0.00 18.93 2.17 2.90 117.38 -1.99
S16 1.82 20.17 5.72 7.54 118.16 4.67
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(a) (b)

(c)

Fig. 1. Sketch of the Anytown WDS, (a) original, (b) with all pipes discretized, and (c) with an
indication of the ensemble of 48 initial release locations.
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Fig. 2. Histograms of indicators i1 (coordinate spread) and i2 (coordinate bias) for all scenarios at
t = tmax .
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Fig. 3. Histograms of indicators i3 (intensity spread) and i4 (intensity bias) for all scenarios at
t = tmax .
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(a)

(b)

Fig. 4. Scenario 6. (a) Time evolution of i1 and i2. (b) Spatial distribution of the source estimate
positions of all 48 realizations at time tmax (light squares).
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(a)

(b)

Fig. 5. Scenario 12. (a) Time evolution of i1 and i2. (b) Spatial distribution of the source estimate
positions of all 48 realizations at time tmax (light squares).
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Fig. 6. Time evolution of i3 and i4 for scenarios 6 and 12.
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Fig. 7. Time evolution of the ensemble of source locations. Source positions shown by light squres.
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Fig. 8. Time evolution of the ensemble of source locations. Source positions shown by light
squares.
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