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QUADRIC SURFACES IN THE PFAFFIAN HYPERSURFACE IN P14

ADA BORALEVI, MARIA LUCIA FANIA, AND EMILIA MEZZETTI

Abstract. We study smooth quadric surfaces in the Pfaffian hypersurface in P14

parameterising 6 × 6 skew-symmetric matrices of rank at most 4, not intersecting
its singular locus. Such surfaces correspond to quadratic systems of skew-symmetric
matrices of size 6 and constant rank 4, and give rise to a globally generated vector
bundle E on the quadric. We analyse these bundles and their geometry, relating them
to linear congruences in P5.

1. Introduction

Denote by Vn+1 a complex vector space of dimension n+1. Recall that, after fixing a
basis, skew-symmetric tensors in ∧2Vn+1 can be interpreted as skew-symmetric matrices
of size n+1, and that the Grassmannian of lines in Pn = P(Vn+1) corresponds to matrices
of rank 2. A linear congruence in Pn is a (n− 1)-dimensional linear section of G(1, n),
given by the intersection G(1, n) ∩∆, where ∆ is a linear space of codimension n− 1.
The space ∆ is therefore given by the intersection of n− 1 hyperplanes, that, in turn,
correspond to points in the dual space P̌(∧2Vn+1), generating a (n− 2)-space ∆̌.

The study and classification of linear congruences in Pn is a classical topic, that has
recently found interesting applications in different areas, such as, for instance, systems
of conservation laws of Temple type [1], degree of irrationality [2, 3], foliations [4]. Thus
far, a complete classification is known only for values of n ≤ 4 [5, 6, 7].

In this article we give a contribution to the study of linear congruences in P5, that
amounts to describing all special positions of the 3-space ∆̌ with respect to the dual
Grassmannian Ǧ(1, 5) and to its singular locus. Let us consider the Grassmannian of
lines in P5 = P(V6):

G(1, 5) ↪→ P(∧2V6) = P14.

There is a natural filtration, based on the rank of tensors, namely

G(1, 5) ⊂ σ2(G(1, 5)) ⊂ P(∧2V6) = P14,

corresponding to 6× 6 skew-symmetric matrices of

{rk 6 2} ⊂ {rk 6 4} ⊂ {rk 6 6} = P(∧2V6),
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where we denote by σ2(G(1, 5)) the variety of secant lines to the Grassmannian.

Inside the dual space P̌14 there lives the dual variety Ǧ(1, 5) parameterising hy-
perplanes tangent to G(1, 5): it is the cubic hypersurface of 6 × 6 skew-symmetric
matrices defined by the equation Pfaff = 0, so it corresponds to matrices of rk 6 4:
Ǧ(1, 5) ' σ2(G(1, 5)). Its singular locus is naturally isomorphic to G(3, 5), and it is
formed by hyperplanes tangent to G(1, 5) at the points corresponding to the lines of a
P3, and the associated skew-symmetric matrix has rank 2.

If the 3-space ∆ is general, the intersection Ǧ(1, 5)∩∆̌ is a cubic surface S. Otherwise
∆̌ ⊂ Ǧ(1, 5), but in this second case ∆̌ meets the rank 2 locus (see [8]).

An interesting case arises when the intersection Ǧ(1, 5)∩∆̌ is a reducible cubic surface
S not intersecting G(3, 5), having a plane and a smooth quadric surface as irreducible
components. Then such a plane (respectively quadric surface) can be interpreted natu-
rally as a linear (respectively quadratic) system of skew-symmetric matrices of constant
rank 4, of projective dimension 2.

Planes of this type have been completely classified in [8]: up to the action of PGL6

there are exactly four different orbits, all of dimension 26; they correspond to the double
Veronese embeddings of P2 in G(1, 5), or, equivalently, to rank 2 globally generated
vector bundles on P2 with first Chern class c1 = 2 (see [9]). Indeed, given a plane of
6 × 6 skew-symmetric matrices of constant rank 4, there is an exact sequence of the
form

0→ E∗(−1)→ 6OP2(−1)→ 6OP2 → E → 0,

where E is a rank two vector bundle on P2 with c1(E) = 2.

The aim of this note is to study the embeddings of smooth quadric surfaces Q con-
tained in the smooth locus of Ǧ(1, 5), that we denote by Ǧ(1, 5)sm. The hope of achiev-
ing for quadric surfaces the same kind of classification obtained in the case of planes
fades immediately, after a quick parameter count shows the existence of an infinite
number of orbits.

However, since rank 2 globally generated bundles on a smooth quadric surface are
classified (see [10]), we have considered the following problems: first, understanding
which of these vector bundles are associated to a quadratic system of skew-symmetric
matrices of constant rank 4; second, studying the geometry of the found examples,
relating them to linear congruences of lines in P5.

Our main result is the existence Theorem 3.5, that gives the complete list of rank
2 globally generated vector bundles on Q associated to a quadratic system of skew-
symmetric matrices of size 6 and constant rank 4 (see Section 3 for a more precise
statement).

Our techniques rely on the already mentioned classification of planes contained in
Ǧ(1, 5)sm, and on a study of the geometry of the bundles involved. More precisely,
we construct examples of such quadric surfaces either by considering directly the case
of decomposable bundles (Section 4), or by constructing bigger size matrices and then
projecting them to desired size ones with a projection technique (Section 5), or else by
extending some known examples on P2 to a suitable 3-dimensional space (Section 6).
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We make frequent use of Macaulay2 software [11] to study details about the geometry
of our examples.

We end the article with an open problem that we believe is worthy of consideration,
since it would allow to take a step forward in the classification of linear congruences in
P5, begun in [12].

To the best of our knowledge, ours is the first instance of the study of nonlinear
spaces contained in these orbits. While some of the ideas and proofs working for the
linear case still hold on the quadric surface, there are a few differences to note, such
as the fact that the rank 2 vector bundles that we construct are globally generated (so
they define morphisms to the Grassmannian G(1, 5)), but they do not always define
embeddings the way they did in the linear case.

Finally, it is worth mentioning some interesting related work: in the paper [13],
Ferapontov-Manivel have considered a problem kindred to ours, that admits an inter-
pretation in terms of integrable systems: there, they are interested in 3-dimensional
linear spaces P3 ⊂ Ǧ(1, 5) satisfying some extra condition. In [14], Comaschi studied
and classified (stable) SL(V6)-orbits of linear systems in P(∧2V6), whose generic ele-
ment is a tensor of rank 4, thus generalising the work of [8] in a different direction with
respect to ours.

We thank the referee for the careful reading and for the keen observations made, that
allowed us to improve the article.

2. Quadrics of skew-symmetric matrices of constant rank and vector
bundles

Let Q be a smooth quadric surface, isomorphic to P1 × P1 and embedded into P3

through the Segre map, and let us call πi the projections to P1. Any line bundle
over Q is of the form OQ(a, b) = π∗1(OP1(a)) ⊗ π∗2(OP1(b)). For the sake of brevity,
we denote OQ(a, a) by OQ(a). Given a vector bundle E over Q, we write E(a, b)
(respectively E(a)) for the tensor product E ⊗ OQ(a, b) (resp. E ⊗ OQ(a)). We also
write c1(E) = (a, b) to mean c1(E) = OQ(a, b).

The existence of a smooth quadric surface Q ⊂ Ǧ(1, 5)sm of skew-symmetric matrices
of size 6 and constant rank 4 entails a long exact sequence of vector bundles on Q, of
the form:

0→ K → 6OQ(−1)
A−→ 6OQ → E → 0,

where E andK are rank 2 vector bundles on the surface, satisfying some non-degeneracy
conditions in cohomology. Notice that E is globally generated. The skew-symmetry of
the map A above implies a symmetry of the exact sequence above; in particular there
is an isomorphism K ' E∗(−1), so in fact the sequence looks like:

(2.1) 0→ E∗(−1)→ 6OQ(−1)
A−→ 6OQ → E → 0.

We refer to [15] for details.

Similarly to what happens in the linear case, the Chern classes of a bundle E fitting
in a long exact sequence of type (2.1) must meet some requirements.
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Proposition 2.1. Let E be a vector bundle, fitting in an exact sequence of the form
(2.1) as cokernel of a skew-symmetric matrix of size 6 and constant rank 4 over a quadric
surface Q. Then the Chern classes of E must satisfy c1(E) = (2, 2) and 0 6 c2(E) 6 6.

Proof. We split sequence (2.1) into two short exact sequences:

0→ E∗(−1)→ 6OQ(−1)→ F → 0,(2.2)

0→ F → 6OQ → E → 0,(2.3)

and compute invariants. From (2.3) we deduce c1(E) = (a, b) = −c1(F ), while from
(2.2) we get c1(E

∗(−1)) + (−a,−b) = (−6,−6). Since rk(E) = 2, we have an isomor-
phism E∗ ' E(−a,−b), and hence c1(E

∗(−1)) = (−a−2,−b−2). Putting all together
we conclude that (a, b) = (2, 2).

Moving on to the bounds on c2, we first remark that the globally generated bundle
E must have c2(E) > 0. For the upper bound, we tensor sequence (2.3) by OQ(−1, 0)
and compute cohomology: since the cohomology groups of bundle 6OQ(−1, 0) are all
zero, we deduce a vanishing H2(E(−1, 0)) = 0, and an isomorphism H1(E(−1, 0)) '
H2(F (−1, 0)). Computing cohomology of sequence (2.2), again tensored by OQ(−1, 0),
we see that the fact that 6OQ(−2,−1)’s cohomology vanishes entirely entails a van-
ishing H2(F (−1, 0)) = 0. All in all, χ(E(−1, 0)) = h0(E(−1, 0)) > 0. Computing the
same Euler characteristic via Hirzebruch-Riemann-Roch using Chern classes, we get
χ(E(−1, 0)) = 6− c2(E) > 0. �

2.1. The Gauss map. Consider the rational Gauss map γ : Ǧ(1, 5) 99K G(1, 5),
associating to a tangent hyperplane its tangency point when unique. It is defined by
the partial derivatives of Pfaff, the generic 6 × 6 Pfaffian determinant, that is, by the
4×4 principal minors’ Pfaffians. Given a quadric surface Q contained in Ǧ(1, 5)sm, the
equations defining γ cannot all vanish on Q, since the rank there is constant and equal
to 4, therefore the restriction

γ|Q : Q→ γ(Q) ⊂ G(1, 5)

is a regular map. For a line ` ∈ G(1, 5), the fibre of γ over ` consists of all hyperplanes
H tangent to G(1, 5) at `, i.e. such that T`G(1, 5) ⊆ H, so γ−1(`) ' (T`G(1, 5))̌ is a
5-dimensional linear space.

Remark 2.2. The regular map γ|Q has degree 1 or 2. In detail, if we choose a basis
{e0, . . . , e5} of V6 and ` =< e0, e1 >, then the tangent space T`G(1, 5) is defined by
equations pij = 0 for i > 2, so its dual (T`G(1, 5))̌ coincides with the space of 6 × 6
skew-symmetric matrices having all zero entries in the first two rows and columns, that
is, the space spanned by a sub-Grassmannian G(1, 3). Therefore, the general element of
(T`G(1, 5))̌ has rank 4, and those of rank 2 form a quadric hypersurface. This means
that the fibres of γ|Q are of the form (T`G(1, 5))̌ ∩Q, the intersection of a 5-dimensional
linear space with a quadric surface. If (T`G(1, 5))̌ ∩Q had positive dimension, the rank
on Q would not be constant, hence these fibres must consist of either 1 or 2 points: in
other words, deg(γ|Q) is either 1 or 2.
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Recall from [16] (and refer to the excellent notes [17] for details) that, given a globally
generated rank 2 vector bundle E on Q, and a fixed (N+1)-dimensional vector subspace
VN+1 ⊂ H0(E) generating E, that is, an epimorphism V ⊗OQ → E, one can construct
a morphism ϕE : Q→ G(1, N) from Q to the Grassmannian of lines in PN = P(VN+1).

Given the globally generated rank 2 vector bundle E from sequence (2.1), we remark
that E is generated by a 6-dimensional subspace of its space of global sections, which
gives a map ϕE : Q→ G(1, 5). Moreover E(−2,−2) ' E∗, therefore, up to a twist, E
is the kernel of the 6× 6 skew-symmetric matrix of linear forms A of constant rank 4.
Consider the 6× 6 matrix A′ whose entries are the 4× 4 principal minors’ Pfaffians of
the matrix A. Using a Laplace expansion for the Pfaffian of A, we see that locally E is
generated by the rows of the matrix A′. In other words, the map ϕE coincides exactly
with the Gauss map γ|Q. According to the remark above, ϕE is therefore a regular map
of degree 1 or 2. It is worth noticing that a similar reasoning in [16, Proposition 2.4]
entailed that ϕE was an embedding. Here, the fact that our system of constant rank
matrices is quadratic makes the difference: in what follows we will find examples where
ϕE is not an embedding.

Consider also P(E), the projective bundle associated to E and let π : P(E) → Q
be the natural projection. The projective bundle P(E) has a tautological line bundle
OP(E)(1) with the property that π∗(OP(E)(1)) = E, and there is an epimorphism

π∗E → OP(E)(1)

that induces an isomorphism H0(Q,E) ∼= H0(P(E),OP(E)(1)). Hence an epimorphism
V ⊗ OQ → E induces an epimorphism V ⊗ OP(E) → π∗E → OP(E)(1). Viceversa, an
epimorphism V ⊗OP(E) → OP(E)(1) induces an epimorphism V ⊗OQ → π∗(OP(E)(1)) =
E. Thus the map ϕE : Q → G(1, N) defined by an epimorphism V ⊗ OQ → E is
equivalent to a map ϕ̄E : P(E)→ PN of the corresponding ruled variety.

Let Y be the image of ϕ̄E; since Q is a surface, Y is a threefold and the following
equality holds:

(2.4) c2(E) = c21(E)− deg(ϕ̄E) · deg(Y ) = 8− deg(ϕ̄E) · deg(Y ).

Finally, remark that if the morphism ϕ̄E has degree 1, the same is true for ϕE: if
deg(ϕ̄E) = 1, then for a general y ∈ Y there exists a unique element (x, [v]) ∈ P(E)
mapping to y, where x ∈ Q, and [v] ∈ π−1(x). The image ϕE(x) represents the only
line through x in the family parameterized by ϕE(Q): in other words, deg(ϕE) = 1.

3. Globally generated vector bundles with c1 = (2, 2) and main result.

There is a finite list of vector bundles of rank 2 on a smooth quadric surface Q that
can appear in an exact sequence of the form (2.1). The first ones that come to mind are
of course the ones decomposing as direct sum of two line bundles, that we list below.

Proposition 3.1. Let E be a decomposable globally generated vector bundle of rank 2
on a smooth quadric surface Q, fitting into an exact sequence of type (2.1). Then

E = OQ(a, b)⊕OQ(2− a, 2− b),
with 0 6 a, b 6 2, and the following cases can occur:
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(DEC1) a = b = 0, E = OQ ⊕OQ(2), c2(E) = 0;
(DEC2) a = b = 1, E = OQ(1)⊕OQ(1), c2(E) = 2;
(DEC3) a = 2, b = 1 (and its symmetric), E = OQ(2, 1)⊕OQ(0, 1), c2(E) = 2;
(DEC4) a = 2, b = 0 (and its symmetric), E = OQ(2, 0)⊕OQ(0, 2), c2(E) = 4.

Proof. A decomposable rank 2 bundle on Q is of the form OQ(a, b)⊕OQ(c, d); the fact
that c1 = (2, 2) implies a+c = b+d = 2, while global generation implies a, b, c, d > 0. �

Indecomposable globally generated vector bundles with low first Chern class on a
smooth quadric surface have been classified in the paper [10]. The authors prove that
there exist such indecomposable and globally generated vector bundles of rank 2 on Q
with c1 = (2, 2) if and only if c2 = 3, 4, 5, 6, 8.

In particular, there are no rank 2 globally generated vector bundles on Q satisfying
c1(E) = (2, 2) and c2(E) = 1.

One of the tools used in [10] is the notion of index: a pair (p, q) ∈ Z2 is an index for
a globally generated vector bundle E on Q if it is a maximal pair such that the twist
E(−p,−q) has global sections: H0(E(−p,−q)) 6= 0. Here one considers (p, q) > (p′, q′)
if and only if p > p′ and q > q′. Since the ordering is only partial, a vector bundle can
have more than one index.

If (p, q) is an index of our bundle E with p+q > 3, then E decomposes as a direct sum
E = OQ(p, q)⊕OQ(2− p, 2− q). On the other hand, if p+ q 6 1 then E is (Mumford-
Takemoto) stable, simply because E has rank 2, hence its stability is equivalent to the
vanishing of the three cohomology groups H0(E(−1)), H0(E(−2, 0)), and H0(E(0,−2)).

Lemma 3.2. Let E be a vector bundle appearing in an exact sequence of type (2.1) as
cokernel of a skew-symmetric constant rank matrix over the quadric surface Q, and let
(p, q) be an index for E. Then (q, p) is an index for E; if c2(E) 6 5, then (p, q) > (0, 0),
and if c2(E) = 6, then p = q = 0.

Proof. The first statement is an immediate consequence of the symmetry of the con-
struction with respect to the two rulings. The second statement follows from the equal-
ity h0(E(−1, 0)) = 6− c2(E) obtained in the proof of Proposition 2.1. �

Proposition 3.3. Let E be a globally generated vector bundle of rank 2 on a smooth
quadric surface Q, fitting into an exact sequence of type (2.1). If E has (2, 0) as index,
then it decomposes as a direct sum OQ(0, 2)⊕OQ(2, 0).

Proof. According to [10], if (2, 0) is an index, then E arises in the following extension:

(3.1) 0→ OQ(2, 0)
φ−→ E → OQ(0, 2)→ 0.

Now if E fits into sequence (2.1), then by Lemma 3.2 (2, 0) is an index if and only if
(0, 2) is also an index, and this, again from [10], is equivalent to an extension of type

(3.2) 0→ OQ(0, 2)→ E
ψ−→ OQ(2, 0)→ 0.

The composition ψ ◦ φ ∈ Hom(OQ(2, 0),OQ(2, 0)) can either be the zero map or a
scalar multiple of the identity. If it were zero, then it would induce a non-zero map
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OQ(2, 0)→ Ker(ψ) = OQ(0, 2), which is impossible. Hence it must be a scalar multiple
of the identity, meaning that the extension (3.1) must split. �

We are now ready to list all indecomposable bundles that can appear in the long exact
sequence (2.1); the following result, combined with Proposition 3.1, gives a complete
picture of all possible cases.

Proposition 3.4. Let E be an indecomposable globally generated vector bundle of rank
2 on a smooth quadric surface Q, fitting into an exact sequence of type (2.1). Then one
of the following occurs:

(IND1) E has (1, 1) as index, c2(E) = 3, and there is a short exact sequence of the form

0→ OQ → OQ(1)⊕OQ(1, 0)⊕OQ(0, 1)→ E → 0;

the restriction of E on both rulings of Q is OP1(1)⊕OP1(1).
(IND2) E has (1, 1) as index, c2(E) = 4, and there is a resolution of type

0→ OQ(−1)→ 2OQ ⊕OQ(1)→ E → 0;

in this case the restriction of E to both rulings is OP1(1)⊕OP1(1).
(IND3) E has indices (1, 0) and (0, 1) (hence it is a stable bundle), c2(E) = 4, and it

fits into the short exact sequence (and its symmetric equivalent)

0→ OQ(1, 0)→ E → IZ(1, 2)→ 0,

where Z is a zero-dimensional scheme of degree 2. E restricts as OP1(1)⊕OP1(1)
on one ruling, and as OP1 ⊕OP1(2) on the other one.

(IND4) E is a stable bundle having indices (1, 0) and (0, 1), c2(E) = 5, fitting in the
exact sequence

0→ OQ → E → IZ(2)→ 0,

where Z is a zero-dimensional scheme of degree 5.
(IND5) E is a stable bundle having index (0, 0) and c2(E) = 6, and it fits in the exact

sequence
0→ OQ → E → IZ(2)→ 0,

where Z is a zero-dimensional scheme of degree 6.

Proof. Analysing the classification from [10] in light of Proposition 2.1, Lemma 3.2, and
Proposition 3.3, we are able to rule out a few cases, and are left with the ones listed
above. �

A very natural question is whether all globally generated bundles appearing in Propo-
sitions 3.1 and 3.4 are attained with our construction: a positive answer to this question
is our main result.

Theorem 3.5. Let X ⊂ P14 be the cubic Pfaffian hypersurface parameterising 6 × 6
skew-symmetric matrices of rank at most 4. For all cases listed in Propositions 3.1 and
3.4, there exists a smooth quadric surface Q ⊂ X, not intersecting the Grassmannian
G(1, 5), giving rise to a long exact sequence of the form

(2.1) 0→ E∗(−1)→ 6OQ(−1)→ 6OQ → E → 0,

where the vector bundle E is of the desired type.
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We devote the rest of the paper to a constructive proof of Theorem 3.5, that we
achieve by giving explicit examples of the vector bundle E in all cases. To this end, we
use three different techniques: in Section 4 we use decomposable bundles to settle cases
(DEC1) and (DEC2) from Proposition 3.1. Then in Section 5 we introduce and develop
a projection technique, that allows us to construct case (DEC4) from Proposition 3.1,
as well as all 5 instances of Proposition 3.4. A different technique is needed for the
remaining case (DEC3) of Proposition 3.1: this is done in Section 6.

4. Construction techniques, part 1: some decomposable bundles

As anticipated, in this section we construct examples of smooth quadric surfaces
contained in Ǧ(1, 5)sm that give rise to the decomposable bundles OQ ⊕ OQ(2) and
OQ(1)⊕OQ(1), that is, cases (DEC1) and (DEC2) from Proposition 3.1.

Example 4.1. Consider the decomposable vector bundle (DEC1) E = OQ⊕OQ(2) from
Proposition 3.1, having c2(E) = 0. Since h0(E) = 10, taking all the global sections
of E we get a map from Q to G(1, 9), whose image represents the lines of a cone over
v2(Q). The map ϕE : Q→ G(1, 5), associated to the exact sequence (2.1) as explained
in Section 2.1, corresponds to a projection of this cone into P5, from a linear space
disjoint from the vertex, hence the projected variety is a cone again. Therefore, if one
has a smooth quadric surface in Ǧ(1, 5)sm corresponding to this bundle, by duality it
must be contained in the linear span of a sub-Grassmannian G(1, H) where H ⊂ P5

is a hyperplane, the dual of the vertex of the cone. But G(1, H) has codimension 3 in
its linear span P(∧2V5) ' P9, so a general quadric surface contained in this P9 will be
disjoint from G(1, H). After a linear change of coordinates, one can assume that the
matrix representing a constant rank map 6OQ(−1)→ 6OQ as in (2.1) is a general 6×6
skew-symmetric matrix of linear forms in four variables, suitably restricted to Q.

An explicit example is the following:

(4.1)


· a b c d ·
−a · a b c ·
−b −a · d a ·
−c −b −d · b ·
−d −c −a −b · ·
· · · · · ·

 ,

where for the reader’s convenience we have adopted the convention to denote a zero in
the matrix by a dot.

Matrix (4.1) has Pfaffian vanishing on the reducible cubic surface union of the plane
Π : {a = 0} and the quadric Q : {ad − bc = 0}. As expected, the vector bundle
corresponding to the restriction of (4.1) to the plane Π is OP2 ⊕OP2(2).

Example 4.2. Let P ∈ P3 be a point defined by equations `1 = `2 = `3 = 0, with `i
linear form in four variables. The 3× 3 skew-symmetric map
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(4.2)

 · `1 `2
−`1 · `3
−`2 −`3 ·


has constant rank 2 outside the point P , where it becomes the zero matrix. Therefore
it has constant rank 2 on every quadric disjoint from P , and on such quadrics defines
a long exact sequence of the form

(4.3) 0→ OQ(−2)→ 3OQ(−1)→ 3OQ → OQ(1)→ 0.

For instance, if P = [1 : 0 : 0 : 1], a possible matrix is

(4.4)

 · a− d b
−(a− d) · c
−b −c ·

 .

Taking the direct sum of two 3 × 3 blocks of the type described above, we obtain a
6× 6 matrix of constant rank 4 on a quadric Q not containing P , corresponding to the
bundle (DEC2) E = OQ(1)⊕OQ(1).

There is an interesting difference of behavior depending on whether or not the two
points centre of projections coincide.

More in detail, if the two centres of projections are distinct points P 6= P ′ not on Q,
we obtain a 6× 6 matrix, which has constant rank 4 on P3 \ {P, P ′}, and rank 2 at the
two points. For instance, taking P = [1 : 0 : 0 : 1], P ′ = [0 : 1 : 1 : 0], we can construct
the matrix

(4.5)


· a− d b · · ·

−a+ d · c · · ·
−b −c · · · ·
· · · · a b− c
· · · −a · d
· · · −b+ c −d ·

 .

It is worth noticing that in this example the P3 having coordinates a, b, c, d is com-
pletely contained in Ǧ(1, 5): indeed, the rank of the matrix (4.5) is at most 4 on all of
P3. Constant rank 4 is achieved on any quadric that does not contain the two points
P and P ′, such as the smooth quadric Q : {ad− bc = 0}.

With the notation of subsection 2.1, the threefold Y corresponding to the matrix
(4.5) turns out to have deg(Y ) = 6, as expected, and the morphism ϕ̄E : P(E) → P5

has degree 1 (see Remark 2.2), so the same is true for the morphism ϕE : Q→ G(1, 5).
The variety Y can be constructed by taking two isomorphic copies of Q in two disjoint
P3s, then projecting them 2 : 1 to two disjoint planes, and taking the union of the
family of lines joining pairs of points that are images of isomorphic points. Its singular
locus is formed by the two planes and a line.

If instead we use the same point P as centre of projection for both 3× 3 blocks, the
rank of the matrix drops to zero at P . For example, using the point P = [1 : 0 : 0 : 1]
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as centre of projection, we obtain the matrix

(4.6)


· a− d b · · ·

−a+ d · c · · ·
−b −c · · · ·
· · · · a− d b
· · · −a+ d · c
· · · −b −c ·

 .

Its generic rank is again 4, meaning that again the corresponding P3 is completely
contained in Ǧ(1, 5), and drops to 0 exactly on the point P . Hence we can still consider
the smooth quadric Q : {ad− bc = 0}. This time though, while the associated bundle
is still case (DEC2) E = OQ(1)⊕OQ(1), the induced threefold Y is the smooth cubic
scroll P1 × P2 and thus the morphism ϕ̄E : P(E) → P5 has degree 2. Via a direct
computation, we see that ϕE also has degree 2.

As we underlined in subsection 2.1, this situation never appears when dealing with
linear spaces of dimension two, where ϕE is always an embedding P2 ↪→ G(1, 5).

5. Construction techniques, part 2: projection

An efficient method to construct spaces of matrices of constant rank consists in
building bigger size matrices of a given rank, and then projecting them to smaller size
matrices of the same rank. This technique was introduced in [16] for the case of P2, and
later used in [18], but the results hold in more generality. Indeed, they were already
extended to linear spaces of matrices of any size in [19, Proposition 5.1]; here, we wish
to apply these results to the case of quadrics. In terms of bundles, this method amounts
to expressing the desired rank 2 bundle E as quotient of a bundle of higher rank having
the same Chern polynomial.

Let us denote by σr(X) the r-th secant variety of a projective variety X, that is, the
closure of the union of (r − 1)-planes generated by r independent points of X. Now,
assume that we have a surface S contained in the stratum σr(G(1, n)) \ σr−1(G(1, n)),
i.e. S is a surface of skew-symmetric matrices of size n+ 1 and constant rank 2r. If we
project Pn = P(Vn+1) to Pn−1 = P(Vn) from a point O, this projection induces another
projection πO from P(Λ2Vn+1) to P(Λ2Vn), whose centre is the subspace ΛO ⊆ G(1, n)
representing all lines through the point O.

It is well known (see [20] for a good reference) that point ω in the stratum σr(G(1, n))\
σr−1(G(1, n)) can be written in the form [v1 ∧ w1 + · · · + vr ∧ wr], where the vis and
wis are 2r linearly independent vectors; the corresponding points generate a subspace
Lω of Pn of dimension 2r − 1. The entry locus of ω is the sub-Grassmannian G(1, Lω),
namely a point in P(∧2Vn+1) belongs to some (r−1)-plane, which is r-secant to G(1, n)
and contains ω, if and only if it belongs to G(1, Lω).

Proposition 5.1. Let S ⊂ σr(G(1, n)) \ σr−1(G(1, n)) be a surface of skew-symmetric
matrices of size n + 1 and constant rank 2r, and let O ∈ Pn be a point such that
S ∩ΛO = ∅. Then the matrices of πO(S) have constant rank 2r if and only if the point
O does not belong to the union of the spaces Lω, as ω varies in S. As a consequence, S
can be projected to σr(G(1, 2r + 1)) so that its rank remains constant and equal to 2r.
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Proof. The proofs of [16, Proposition 5.8 and Corollary 5.9] go through step by step;
we report them for the reader’s convenience.

Since S ⊂ σr(G(1, n)), if ω is a point of S, it is the sum of r decomposable skew-
symmetric tensors of the form ω = [v1∧w1 + · · ·+ vr ∧wr]; then πO(ω) = [Av1∧Aw1 +
· · ·+Avr∧Awr], where A is a matrix representing the projection πO. Its rank is strictly
less than r if and only if the vectors vis and wis can be chosen so that some summand
Avi ∧Awi vanishes: this means precisely that O ∈ Lω. The last statement follows from
the fact that dim

⋃
ω∈S Lω 6 dimS + 2r − 1 = 2r + 1. �

As mentioned above, from the point of view of vector bundles, projecting to a smaller
size matrix means that the associated bundle E appearing in sequence (2.1) is a quotient
of a higher rank vector bundle F , in the sense that they fit into a short exact sequence
of type

(5.1) 0→ (rkF − 2)OQ → F → E → 0.

A logical way to construct bigger matrices (or higher rank bundles, if one prefers) is
using “building blocks”, that is, taking the vector bundle F in (5.1) to be a direct sum
of two globally generated bundles with first Chern class (1, 1). In order to apply this
method, we need to recall the classification of such bundles on Q of any rank.

Proposition 5.2. [10] Let F be a globally generated vector bundle on a smooth quadric
surface Q, with c1(F ) = (1, 1). Let r be the rank of F , and suppose that F has no trivial
summands. Then F is one of the following:

(i) OQ(1), r = 1;
(ii) OQ(1, 0)⊕OQ(0, 1), r = 2, c2 = 1;

(iii) TP3(−1)|Q, r = 3, c2 = 2;
(iv) AP = π∗P (TP2(−1)), where πP : Q → P2 is the projection of centre P /∈ Q,

r = 2, c2 = 2.

The rank 3 bundle of case (iii) is the only non-trivial extension of A by OQ, as shown
in [10, Proposition 5.4].

We now want to study the “building blocks” arising from each of the cases above.

The vector bundle AP has a locally free resolution of type

(5.2) 0→ OQ(−1)→ 3OQ → AP → 0,

where the first map is given by the equations of the point P /∈ Q (see [10, Proposition
3.5]). Dualising it, we get a short exact sequence of the form

0→ A∗P → 3OQ → OQ(1)→ 0,

that shows that the building block corresponding to case (i) is a 3 × 3 matrix of the
form (4.2) from Example 4.2, namely: · `1 `2

−`1 · `3
−`2 −`3 ·

 ,

where again `1, `2, `3 are the linear forms defining the point P .
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To see what kind of building block corresponds to case (ii), we remark that the
decomposable bundle OQ(1, 0)⊕OQ(0, 1) gives rise to an exact sequence of the form

0→ OQ(−2,−1)⊕OQ(−1,−2)→ 4OQ(−1)→ 4OQ → OQ(1, 0)⊕OQ(0, 1)→ 0.

It can be obtained in the following way: first, compose the short exact sequence

0→ OQ(−1, 0)→ 2OQ → OQ(1, 0)→ 0

with itself tensored with OQ(−1):

OQ(−2,−1) �
� // 2OQ(−1) //

))

2OQ // // OQ(1, 0).

OQ(−1, 0)

66

Then, take the direct sum of the sequence obtained with the symmetric one with respect
to the rulings.

A corresponding building block is, for instance, the 4× 4 skew-symmetric matrix:

(5.3)


· · a b
· · c d
−a −c · ·
−b −d · ·

 .

It can be interpreted as a quadric surface contained in Ǧ(1, 3), and more precisely it is
a linear section of Ǧ(1, 3) cut out by two hyperplanes. It represents a linear congruence
of lines in P3, formed by the lines meeting two fixed skew lines in P3 (see for instance
[6]).

The bundle appearing in case (iii) gives rise to the 5× 5 skew-symmetric block

(5.4)


· a b c d
−a · · · ·
−b · · · ·
−c · · · ·
−d · · · ·

 .

The map represented by matrix (5.4) is obtained by taking the direct sum of the Euler
sequence on P3 restricted to Q:

0→ OQ(−1)→ 4OQ → TP3(−1)|Q → 0,

and its dualised sequence. Alternatively, one can compose the Euler sequence above
with its dualised sequence, and then glue an additional isomorphism OQ → OQ:

(TP3(−1)|Q)∗(−1) �
� // 5OQ(−1) //

**

5OQ // // TP3(−1)|Q.

OQ ⊕OQ(−1)

55

Finally, since the rank two bundle AP is a quotient of TP3(−1)|Q, a corresponding
building block can be obtained by projection from (5.4). For example, if we project
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from the point P = [1 : 0 : 0 : 1], we can take

(5.5)


· b c d− a
−b · · −b
−c · · −c
a− d b c ·

 .

Let us now give more details on how we apply the projection technique: first, we
consider a direct sum of two of the bundles with c1 = (1, 1) appearing in Proposition
5.2, and the direct sum of two corresponding matrices. Then, we take a quotient of rank
two of this bundle and the corresponding projection of the matrix. We compute the
Chern class c2 of the quotient, and we try to identify the rank two bundle so obtained.

The possible values of c2 that one can obtain are the following:

(1) OQ(1)⊕OQ(1): c2 = 2, the rank is 2, there is no projection;
(2) OQ(1)⊕OQ(1, 0)⊕OQ(0, 1): c2 = 3, E is of type (IND1);
(3) OQ(1)⊕ TP3(−1)|Q: c2 = 4;
(4) 2OQ(1, 0)⊕ 2OQ(0, 1): c2 = 4;
(5) OQ(1, 0)⊕OQ(0, 1)⊕ TP3(−1)|Q: c2 = 5, E is of type (IND4);
(6) 2 TP3(−1)|Q: c2 = 6, E is of type (IND5).

In the three instances (2), (5), (6), corresponding to second Chern class 3, 5, 6 re-
spectively, there is only one possible globally generated bundle having these invariants,
namely the ones appearing in cases (IND1), (IND4), (IND5) from Propositions 3.1 and
3.4. We start by giving explicit examples for all these three cases.

Example 5.3. The quotient of type

0→ OQ → OQ(1)⊕OQ(1, 0)⊕OQ(0, 1)→ E → 0

has c2(E) = 3, therefore the vector bundle E corresponds to case (IND1) in Proposition
3.4. A constant rank matrix obtained via the projection technique is:

(5.6)


· b+ c −a+ d −a+ d · −a+ d

−b− c · −b −b 0 −b
a− d b · · a −b
a− d b · · −c d
· · −a c · ·

a− d b b −d · ·

 .

Its Pfaffian defines the cubic surface union of the plane Π : {b + c = 0} and the
quadric surface Q : {ad − bc = 0}. With the help of Macaulay2, we get that Y is a
threefold of degree 5 as expected, and that its singular locus is the union of the line
x2 = x3 = x4 = x5 = 0 and the two points [0 : 0 : 1 : −1 : 0 : 0] and [0 : 0 : 0 : 0 : 1 : 0].

Example 5.4. The quotient of type

0→ 3OQ → OQ(1, 0)⊕OQ(0, 1)⊕ TP3(−1)|Q → E → 0
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has c2(E) = 5, therefore the bundle E corresponds to case (IND4) in Proposition 3.4.
A constant rank matrix obtained via the projection technique is:

(5.7)


· −b b · · −a
b · · −d · (b− c)
−b · · a c −d
· d −a · · c
· · −c · · ·
a −(b− c) d −c · ·

 .

Its Pfaffian defines the cubic surface union of the plane Π : {c = 0} and the quadric
surface Q : {ad − bc = 0}. We find that Y is a threefold of degree 3 as expected, and
it is singular at four points.

Example 5.5. A quotient of type

(5.8) 0→ 4OQ → 2(TP3(−1)|Q)→ E → 0

has c2(E) = 6, therefore the bundle E corresponds to case (IND5) in Proposition 3.4.
A constant rank matrix obtained via the projection technique is the following:

(5.9)


· a b c d ·
−a · a b c d
−b −a · · · ·
−c −b · · · ·
−d −c · · · ·
· −d · · · ·

 .

Matrix (5.9) has generic rank 4, meaning that in this example the P3 having coor-
dinates a, b, c, d is completely contained in Ǧ(1, 5): the rank drops to 2 exactly on the
point P = [1 : 0 : 0 : 0] so we can work on the quadric Q : {a2 − b2 − c2 + d2 = 0}. The
induced threefold is Y = ϕ̄E(P(E)) = P3, therefore this is another instance where ϕ̄E
has degree 2. With the help of Macaulay2 one can check that the same is true for the
map ϕE, that is, deg(ϕE) = 2.

Remark 5.6. We note that in the 10 × 10 matrix, direct sum of two blocks of type
(5.4), all the non-zero elements are contained in two rows and columns. This means
that the P3 represented by this matrix is entirely contained in the tangent space to the
Grassmannian G(1, 9) at a point `. After projecting and restricting to the quadric, we
see that Q is contained in the tangent space to G(1, 5) at the point `′ projection of `.
Therefore, when we apply the map ϕE = γ|Q to Q, the image is contained in G(1, H),
where H is the P3 dual of `′. Hence ϕ̄E(P(E)) is contained in a P3. It follows that ϕ̄E
has degree 2 for any choice of projection.

Remark 5.7. An interesting observation is that the vector bundle E from (5.8), quotient
of a direct sum of copies of TP3(−1)|Q, attains the maximal possible value of the second
Chern class c2(E), from Proposition 2.1. This can be seen as a “quadratic counterpart”
to [18, Proposition 3.2]: there, in the classification of dimension 2 linear spaces of
matrices, an upper bound for the second Chern class was found. The bundles whose c2
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attained the maximal values were precisely the ones obtained on P2 as quotients of a
direct sum of copies of TP2(−1).

So far we have used the projection technique to construct examples where the value
of the second Chern class was associated with a unique vector bundle in Propositions
3.1 and 3.4. We now move on to the trickier case c2 = 4: we will see that, depending
on the choice of the centre of projection, we can obtain all three corresponding cases,
namely (DEC4), (IND2), and (IND3). Remark that these three cases have different
behaviours when restricted to the two rulings of the quadric: the decomposable case
(DEC4) restricts as OP1 ⊕OP1(2) on both rulings, (IND2) restricts as OP1(1)⊕OP1(1)
on both rulings, and finally (IND3) restricts as OP1 ⊕ OP1(2) on one ruling and as
OP1(1)⊕OP1(1) on the other one.

Example 5.8. Taking the 8× 8 skew-symmetric matrix direct sum of two blocks of type
(5.3), having constant rank 4 on the quadric surface Q : {ac − bd = 0}, we obtain a
quotient of type

(5.10) 0→ 2OQ → 2OQ(1, 0)⊕ 2OQ(0, 1)→ E → 0.

After computer tests with Macaulay2, we ended up with the following three cases to
be considered.

Projecting from the line L of equations x0 − x2 = x0 + x1 − x3 = 2x2 − x3 + x4 =
x3−x4−x5 = 2x4+x5−2x6 = x5−2x7 = 0, we obtain the following 6×6 skew-symmetric
matrix whose rank is constant and equal to 4 on Q:

(5.11)



· a− b+ c− d 2a− b+ 2c− d a+ c b+ d ·
−a+ b− c+ d · 2c− d c d ·

−2a+ b− 2c+ d −2c+ d · −a · −a+ b

−a− c −c a · −a− c b
−b− d −d · a+ c · a− b+ c− d

· · a− b −b −a+ b− c+ d ·

 .

Its Pfaffian vanishes on the quadric Q and on the plane Π : {a+b = 0}. The threefold
Y from subsection 2.1 has degree 4, which is consistent with the fact that the associated
bundle E in (5.10) has c2(E) = 4. Its singular locus consists of four points.

One can see from Macaulay2 computations that the restriction of E to both rulings
of the quadric is OP1(1)⊕OP1(1), hence E is an indecomposable bundle corresponding
to case (IND2) in Proposition 3.4.

Projecting from the line of equations x0 = x1 − x6 = x2 + x7 = x3 − x6 = x4 − x6 =
x5 = 0 we obtain the following 6 × 6 skew-symmetric matrix whose rank is constant
and equal to 4 on Q:

(5.12)


· · a b · ·
· · c d a c
−a −c · · −b −d
−b −d · · a c
· −a b −a · c
· −c d −c −c ·

 .
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Its Pfaffian vanishes on the quadric Q and on the plane {b− c = 0}. The threefold Y
has degree 4, as expected. Its singular locus is the union of a conic and two points. The
restriction of E to one of the rulings of the quadric is OP1(1)⊕OP1(1) and to the other
ruling is OP1 ⊕OP1(2), therefore we are dealing with case (IND3) from Proposition 3.4.

Finally, projecting from the line of equation x0 = x2 = x3+x7 = x4+x1 = x5 = x6 = 0
we obtain the following 6× 6 skew-symmetric matrix whose rank is constant and equal
to 4 on Q:

(5.13)


· a b · · ·
−a · · −(b+ c) −d ·
−b · · −d · ·
· b+ c d · · a
· d · · · c
· · · −a −c ·

 .

Its Pfaffian vanishes on the quadric Q and on the plane {b+ c = 0}. This time again
the threefold Y turns out to have degree 4 as expected. The singular locus of Y consists
of two disjoint conics.

Since the restriction of E to both rulings of the quadric is OP1 ⊕OP1(2), this means
that the matrix (5.13)’s cokernel is the decomposable bundle OQ(2, 0)⊕OQ(0, 2), and
that we have constructed an example of case (DEC4) from Proposition 3.1.

Remark 5.9 (Geometrical interpretation of the three cases). The difference among the
three cases in Example 5.8 can be explained looking at the position of the line L ⊂ P̌7,
centre of projection, with respect to four 5-spaces we now introduce. The vector bundle
F := 2OQ(1, 0) ⊕ 2OQ(0, 1) defines a map ψ : Q → G(3, 7) that can be interpreted as
follows. Each direct summand defines a map πi : Q → P1; we fix 4 general lines `i,
i = 1 . . . , 4, in P7 and identify them with the codomains of the maps πi. Then ψ sends
a point P ∈ Q to the P3 generated by the images πi(P ). The duals of the lines `i are
the 5-spaces S`i under consideration.

We have a family of 3-spaces in P7 parametrized by Q, whose union is ψ(Q); even
if two general planes in the family do no intersect, there is a fundamental locus, that
results to be union of two disjoint quadric surfaces G1, G2. When we consider the
projection from the line L giving rise to a rank two bundle E, the threefold Y =
ϕ̄E(P(E)) is precisely the intersection of ψ(Q) with the dual of L, which is a 5-space
ΛL ⊂ P7. The most special situation is when L meets all the 5-spaces S`i : dually, ΛL

intersects both G1 and G2 along two conics; they are met by all the lines of Y and form
the singular locus of Y . This means that E splits as OQ(2, 0)⊕OQ(0, 2) (case (DEC4)).

If L meets two of the 5-spaces S`i , dually ΛL intersects the quadrics G1 and G2

respectively along a conic and at two points, that form the singular locus of Y . This
implies that the splitting type of E on the lines of the two rulings of Q is different,
OP1(1)⊕OP1(1) for one ruling and to OP1 ⊕OP1(2) for the other; we get case (IND3).

Finally, the general case (IND2) is obtained when L is disjoint from all the 5-spaces,
and ΛL meets each quadric at two points, giving rise to the four singularities of Y ; the
splitting type is the same for the two families of lines, and it is OP1(1)⊕OP1(1).
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6. Construction techniques, part 3: extend & restrict

To conclude the proof of Theorem 3.5 there is only one case left, namely the decom-
posable bundle OQ(2, 1) ⊕ OQ(0, 1), case (DEC3) from Proposition 3.1: we could not
find a construction with the techniques from the previous sections, and we needed a
different approach.

Recall that we are looking at the smooth quadric surface Q as a quadratic system of
skew-symmetric matrices of constant rank 4, of projective dimension 2. The spanned
P3 =< Q > cannot be entirely contained in Ǧ(1, 5)sm, therefore two possibilities can
occur. The first one is that P3 ⊂ Ǧ(1, 5) and P3 ∩G(3, 5) 6= ∅: then the general plane
P2 ⊂ P3 will be a plane of constant rank matrices, and thus equivalent to one of the
four types described in [8]. The other instance that can arise is that P3 * Ǧ(1, 5): then

the intersection P3∩ Ǧ(1, 5) will be a cubic surface S, union of a quadric Q and a plane
Π. If the intersection of Π with the singular locus G(3, 5) of Ǧ(1, 5) were nonempty,
it would contain a singular point for S, which would then necessarily be in Q; since
Q ∩ G(3, 5) = ∅, the plane Π is completely contained in Ǧ(1, 5)sm, and is therefore a
plane of constant rank matrices, again equivalent to one of the types in [8].

Thus, if one considers a plane in one of the 4 orbits of [8], extends the associated 6×6
skew-symmetric matrix to a P3, and then restricts it to a quadric surface Q ⊂ P3 that
does not intersect the Grassmannian G(3, 5), one obtains exactly a quadratic system
of skew-symmetric matrices of constant rank 4. This should clarify why we call this
technique “extend & restrict”.

Example 6.1. We extend a plane of type Πt from [8, Example 3] to a P3, and then
intersect this P3 with the Pfaffian hypersurface: the intersection is a cubic surface,
union of Πt and a smooth quadric. The corresponding vector bundle on the plane is a
Steiner bundle E on P2 fitting in a short exact sequence of type

(6.1) 0→ 2OP2(−1)→ 2OP2 → E → 0.

Implementing this idea with the help of Macaulay2, we obtain the following example:

(6.2)


· · b c d a
· · a b c d
−b −a · · a −a
−c −b · · · ·
−d −c −a · · ·
−a −d a · · ·

 ,

whose Pfaffian vanishes, as expected, on the cubic surface in P3 union of the plane
Π : {a = 0} and the quadric Q : {ab− c2 + bd− cd = 0}.

The resulting threefold Y from subsection 2.1 had degree 6; therefore from equation
(2.4) we learn that deg(ϕ̄E) = 1 and c2(E) = 2, and hence E splits as the direct sum
of two line bundles. More in detail, Y is the union of cones having vertices on a given
line; its singular locus is the union of the line itself together with a twisted cubic.

Furthermore, the splitting type of E on the two rulings of the quadric is OP1⊕OP1(2)
on the first ruling and OP1(1)⊕OP1(1) on the second: we conclude that E is the vector



18

bundle OQ(2, 1) ⊕ OQ(0, 1) (or its symmetric equivalent OQ(1, 2) ⊕ OQ(1, 0)), that is,
we have constructed an example corresponding to case (DEC3).

The proof of the main Theorem 3.5 is now completed.

A natural question arises from this new method: since we saw in Example 6.1 that a
plane of type Πt does “extend & restrict”, one would like to show that this holds true
for all the planes in the four different orbits.

Of course, a plane of type Π5 from [8, Example 1], that is, a plane contained in
P(∧2V5) ⊂ P(∧2V6), associated to the split bundle OP2 ⊕OP2(2), will extend & restrict
to the decomposable bundle OQ ⊕ OQ(2), case (DEC1) from Proposition 3.1. Matrix
(4.1) is an explicit example.

A plane of type Πp from [8, Example 4], corresponding to the Null Correlation bundle
on P3 restricted to a hyperplane, extends & restrict to an indecomposable bundle of
type (IND1) in Proposition 3.4. An explicit example is the matrix:

(6.3)


· · d a b c
· · a c d ·
−d −a · b · d
−a −c −b · · ·
−b −d · · · ·
−c · −d · · ·

 .

Finally, a plane of type Πg from [8, Example 2], whose corresponding vector bundle
is the decomposable bundle OP2(1) ⊕ OP2(1), extends & restrict to the decomposable
bundle OQ(2, 0)⊕OQ(0, 2), case (DEC4) from Proposition 3.1. An explicit example is
the matrix:

(6.4)


· a −b d · ·
−a · c · −d ·
b −c · · · −d
−d · · · a b
· d · −a · c
· · d −b −c ·

 .

We conclude our paper with the following open problem.

Question: is it possible to classify all possible pairs quadric-plane (Q,Π) that arise from
an intersection of type Ǧ(1, 5) ∩ ∆̌ = Q ∪ Π, where ∆̌ is the 3-space in P̌14 generated
from a linear congruence in P5?

Such a classification would allow to continue the geometrical description of linear
congruences in P5 that was started in [12], clarifying the case when the cubic surface S
is reducible as union of a smooth quadric and a plane meeting transversally.

Below we collected all pairs that we have obtained throughout the article: for each
example of quadric Q we considered the position of the spanned P3 =< Q > with
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respect to Ǧ(1, 5), and then analysed either the residual plane, in the cases where
P3 ∩ Ǧ(1, 5) = Q ∪ Π, or a general plane in P3, in the cases where P3 ⊂ Ǧ(1, 5).

V.b. on Q Residual/general P2 Associated v.b. on P2

Matrix (4.1) (DEC1) residual, type Π5 OP2 ⊕OP2(2)
Matrices (4.5) and (4.6) (DEC2) general, type Πg 2OP2(1)
Matrix (5.3) (IND1) residual, type Πp Null correlation of P3 restricted to P2

Matrix (5.4) (IND4) residual, type Π5 OP2 ⊕OP2(2)
Matrix (5.5) (IND5) general, type Πt Steiner bundle with resolution (6.1)
Matrix (5.11) (IND2) residual, type Πg 2OP2(1)
Matrix (5.12) (IND3) residual, type Πg 2OP2(1)
Matrix (5.13) (DEC4) residual, type Πg 2OP2(1)
Matrix (6.2) (DEC3) residual, type Πt Steiner bundle with resolution (6.1)
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