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Abstract: With the increasingly stringent regulations on air quality and the consequent emission
limits for internal combustion engines, researchers are concentrating on studying new solutions
for improving efficiency and energy saving even in off-road mobile machines. To achieve this task,
pump-controlled or displacement-controlled systems have inspired interest for applications in off-
road working machines. Generally, these systems are derived from the union of a hydraulic machine
coupled to an electric one to create compact components that could be installed near the actuator. The
object of study of this work is a 9-ton excavator, whose hydraulic circuit is grounded on load sensing
logic. The validated mathematical model, created previously in the Simcenter Amesim© environment,
represents the starting point for developing electro-hydraulic solutions. Electric components have
been inserted to create different architectures, both with open- and closed-circuit layouts, in order
to compare the energy efficiency of the different configurations with respect to the traditional load
sensing system. The simulations of a typical working cycle show the energy benefits of electro-
hydraulic solutions that allow for drastically reducing the mechanical energy required by the diesel
engine and, consequently, the fuel consumption. This is mainly possible because of the elimination
of directional valves and pressure compensators, which are necessary in a load sensing circuit, but
are also a source of great energy dissipations. The results show that closed-circuit solutions produce
the greatest benefits, with higher energy efficiencies than the open-circuit solution. Furthermore,
closed-circuit configurations require fewer components, allowing for more compact and lighter
solutions, as well as being cheaper.

Keywords: excavator; electro-hydrostatic actuator; load sensing; energy saving; pump-controlled systems

1. Introduction

The study of new solutions for improving energy efficiency and fuel saving applied
to mobile off-road work machines is also due to the increasingly stringent regulations
on emissions from internal combustion engines. Among the different proposals, some
researchers have studied hybrid architectures to improve the energy efficiency of the
transmission system. In the literature [1,2], solutions are presented to increase the energy
efficiency of hydraulic systems, introducing architectures for energy recovery. In the case
of an excavator, the most commonly used strategy is generally the recovery of kinetic
energy given by the rotation of the swing and the potential energy of the arms; a complete
discussion of these solutions can be found in [3–5].

Nowadays, in many engineering fields, the interest of researchers is aimed at the
introduction of electro-mechanical actuation systems, replacing the traditional hydraulic
architectures controlled by valves [6]. The distributed hydraulic solutions, replacing the
centralized one, are derive from the aeronautical sector, where the thought of “more electric
aircraft (MEA)” [7] is predominant, and is also spreading in various fields of application
such as aeronautics [7], submarine [8], and land vehicles [9].
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Electro-hydraulic systems could be achieved using electro-hydrostatic actuators (EHA)
that combine compact dimensions and high energy efficiencies, while also offering the
advantage of allowing plug-and-play installations. Many scientific papers compare EHA
systems to traditional valve-controlled hydraulic architectures. Schmidt et al. [10] pro-
pose various solutions that provide pump control also with load holding characteristics.
The distribution of energy and the possibility of energy recovery are described for all of
the studied solutions, comparing the results with those of a traditional hydraulic system
controlled by valves. Padovani et al. [11] suggest another electro-hydraulic drive system
applied to single-rod cylinders with a passive load holding capability. Applying this ar-
chitecture to a single-arm crane, the authors highlight how the error on the final position
of the arm remains within ±2 mm, while the overall energy efficiency reaches about 60%
during handling. Among the various applications in the aeronautical field, Takahashi
et al. [12] have proposed an electro-hydraulic system applied to a single-rod double-acting
actuator for the landing gear. Ketelsen et al. [13] carry out a detailed review of the scientific
literature, including electro-actuated systems with variable displacement hydraulic pumps
and solutions with variable speed electric motors, comparing the advantages and disad-
vantages of each architecture. The authors report the progressive trend towards solutions
based on electric motors, moving further and further away from diesel engines. The EHA
architecture also offers the possibility of recovering energy, with the further advantage of
sharing it subsequently on several actuators.

Abekawa et al. [14] state that excavators are responsible for about 60% of the CO2
emissions produced by construction machinery. It follows that the implementation of
new solutions in order to reduce the emission of greenhouse gases by excavators makes it
possible to significantly decrease the amount of global CO2 emissions. Niraula et al. and
Zhang et al. [15,16], focusing on 1-ton mini excavators, showed that an electro-hydraulic
actuation system could lead to a reduction in energy consumption of up to 50% compared
to the traditional system based on load sensing circuit architecture. Budden et al. [17]
modified a 20-ton excavator by equipping it with a digital displacement pump instead of
the swashplate machine. The results show a significant increase in productivity, associated
with fuel savings.

This article presents further results of a research activity applied to a 9-ton excavator,
on which various electro-hydraulic solutions have been analyzed. The results, in terms of
mechanical energy and fuel consumption, have been compared with those obtained by the
traditional load sensing architecture. The results have been obtained through simulations
carried out using a mathematical model of the excavator created in the Simcenter Amesim©
environment. The standard load sensing model of the machine, created with a lumped
parameter approach, consists of modeling the diesel engine, the variable displacement
main pump, the post compensated flow sharing distributors, and the kinematics of the
front equipment. The model has been validated through extensive experimental activity,
which made it possible to quantify fuel consumption during the work cycles [18–25].

The mathematical model of the excavator has been modified to study new EHA
circuit architectures. In particular, an open-circuit and two closed-circuit solutions have
been studied. The energy performance of all configurations has been compared with that
of the load sensing system: the results show how the electro-hydraulic circuit solutions
offer a significantly higher energy performance than a traditional valve-controlled system,
allowing for savings on fuel consumption.

In the previous paper [26], the authors have already investigated an EHA architecture
based only on an open-circuit solution; in that solution, the accumulator was connected to
one side of the actuators where the lower average pressure occurs, obviously that solution
has a drawback because the side at lower pressure can change with the duty cycle. In this
paper, to overcome this limit, a shuttle valve has been added to connect the accumulator to
the lower pressure side of the actuator [13,27–29]. Furthermore, in this paper, two closed-
circuit solutions have been investigated, not considered in [26]. The first closed-circuit
presented is similar to the open-circuit in order to make a reliable comparison. The second
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closed-circuit solution [13] presents a different architecture where a further control of a
solenoid valve is requested. The methodology followed is that all the solutions investigated
are always compared with the traditional load sensing circuit in terms of both mechanical
energy and fuel consumption saving. The contribute of this paper is not in creating new
circuit architectures, which are already known, as reported in the cited papers, but in the
potential of the mathematical modeling that permits giving reliable information about
the application of different solutions in a mobile machine like the excavator considered.
This document is structured as follows. Section 2 describes the mathematical model of
the standard load sensing hydraulic excavator. Section 3 describes the different circuit
solutions based on EHA. The results of the simulations of all architectures are reported
in Section 4. Section 5 presents the comparison between the standard model LS and EHA
solutions. Finally, Section 6 reports the conclusions and future developments.

2. Mathematical Model of the Standard Hydraulic Excavator

The machine under consideration is a 9-ton hydraulic excavator. The standard version
features a 46-kW diesel (ICE) engine that drives an axial piston pump to feed a hydraulic
circuit based on a load sensing logic (LS) with flow sharing distributors. The ISO diagram of
the circuit layout of the machine is shown in Figure 1, where the several sensors used for the
testing activity are also indicated. The mathematical model, based on a lumped parameter
approach, has been developed in the Simcenter Amesim® environment. The complete and
detailed description of the model can be found in previous publications [18,20,22,23].

As shown in the ISO diagram, the standard hydraulic circuit consists of two pumps.
One is a fixed displacement machine with external gears, which feeds the circuit dedicated
to pilots. The main pump that supplies the users is a variable displacement axial piston
pump, equipped with a pressure compensator, flow compensator, and torque limiter. The
pump has been modeled with a gray box approach, where the models of the regulators are
white box, while a black box solution has been adopted for the pump flow characteristic,
thanks to the use of hydromechanical and volumetric efficiency maps obtained from the
experimental activity [25].

The directional valves are post compensated LS flow sharing valves, which allow for
extracting the load sensing pressure to be sent to the pump regulators. The main feature of
this type of valve is to maintain the same pressure drop in each section, even if the main
pump reaches saturation conditions. The distributor model has been validated through the
experimental results provided by the tests carried out in the laboratory of the Department
of Engineering and Architecture of the University of Parma, Italy, as described in detail
in [19,24].

The hydraulic cylinders are single rod double acting actuators. The model of every
cylinder includes the effects of linear friction and leakage between the two chambers.
The Coulomb and the viscous friction coefficients have been characterized by means of
the experimental activity. The hydraulic cylinders have been simulated by applying the
continuity equation and the fluid state equation for two control volumes, on the piston
side and rod side. The model of the actuators has also remained unchanged in the further
circuit solutions proposed in this article.

The kinematic model of the front attachment and of the swing has been developed in
order to correctly calculate the forces and torques acting on the hydraulic actuators [21,24].
The front attachment consists of boom, arm, and bucket, which have been modeled as rigid
bodies linked together by rotary joints and linear actuators. Characteristic properties such as
mass, moment of inertia, and center of gravity have been defined using the CAD geometry
of the components. For the swing model, assumed at constant inertia, both the Coulomb
friction and viscous friction terms have been considered, defined through experimental tests
carried out with fast and slow rotation cycles. In the different circuit solutions presented
hereinafter in this article, the kinematic model has remained unchanged.
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The model of the internal combustion engine, developed including some data pro-
vided by the manufacturer and other obtained experimentally, allows for calculating the
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instantaneous fuel consumption, as a function of the torque and of the engine speed, as in
Figure 2 [20,22].
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3. Electro-Hydraulics Solutions

The validated model of the excavator represents the starting point from which to
develop EHA solutions for carrying out energy comparison. An open-circuit configu-
ration introduced in a previous article [26] is re-proposed in this paper with the name
“Open Circuit—Layout 1”, with a few changes regarding the position of the accumulator;
moreover, two new closed-circuit configurations, called “Layout 2” and “Layout 3”, have
been developed.

3.1. Open Circuit—Layout 1

The circuit layout is shown in the ISO diagram in Figure 3: for each user, there is a
pair of hydraulic machines with fixed displacement, connected to an electric unit, that can
work as a pump or as a motor depending on the applied pressure difference. It has been
supposed to move the swing by means of only an electric motor. The internal combustion
engine, which is the same as in the standard excavator, drives an electric generator that
supplies the energy necessary to power the electric motor of each user. The hydraulic
machines have been supposed to be external gear units, and the models include maps of
volumetric and hydromechanical efficiency as functions of speed and delivery pressure.

The sizing of each hydraulic machine has been set starting from the displacement of
the actuator: the ratio between the displacement of the hydraulic machine on the piston
side and on the rod side must be similar to the ratio between the active surfaces of the
actuator; in general, it is advisable to keep the difference between these ratios below
2% [30,31]. As the displacements of the hydraulic machines are not exactly the same as
those of the cylinder and that the internal losses of each component are also considered, a
hydraulic accumulator has been introduced to compensate for the differences in flow rate.
The accumulator is connected to the side with the lowest pressure by means of a shuttle
valve. In case of overrunning load, the hydraulic motor allows for recovering energy, as the
electric unit can work as a generator. For this reason, it is necessary to introduce a battery
to store the energy produced.

For each side of the actuator, there are electrically controlled on/off valves to block
the load, with the pressure drop included. They are powered only when it is necessary to
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move the cylinder. For safety reasons, the valves are provided with a spring that blocks the
load, even in the case of a fault in the electrical power supply system.
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3.2. Closed Circuits

Two different circuit solutions based on EHA architecture are proposed, and the results
have been compared with those of the standard LS circuit and of the open-circuit. The
proposed configurations are closed-circuit layouts. The feature common to all layouts is
the presence of a bidirectional fixed displacement hydraulic pump, driven by an electric
motor, and for every cylinder, the connection of the pump delivery port with the rod side
or the piston side of the actuator is managed by the direction of rotation of the electric
motor. Electric motors are powered by a generator driven by the internal combustion
engine, the model of which is the same as in the standard excavator. An electric motor has
been inserted in place of the hydraulic motor to move the swing and the tracks have not
been considered. All of the proposed solutions permit removing the variable displacement
main pump and the directional valves, typical of the standard LS system.

The hydraulic machines are bi-directional external gear pumps and have been modeled
considering volumetric and hydromechanical efficiency maps as a function of rotation
speed and delivery pressure. The pumps and their electric motors are the same for all
proposed configurations.

The presence of different areas between the rod side and the piston side in the actuators
makes it essential to balance the differential flow. The two solutions differ in the strategy in
order to obtain the flow compensation.

3.3. Closed Circuit—Layout 2

Figure 4 shows the ISO scheme of Layout 1. The solution uses a flushing valve that
connects the low-pressure chamber of the cylinder with the accumulator to compensate for
the uneven flow rate given by the differential actuator [13]. When the piston side is fed,
the higher flow rate required by the pump depressurizes the rod side chamber; the valve
switches in order to connect the accumulator with the rod side, which provides the missing
flow rate to the pump. Conversely, when the rod side is powered, the excess flow rate from
the piston side is introduced into the accumulator.

In the case of an overrunning load, the hydraulic machine works as a motor and drives
the electric machine, which, acting as a generator, allows energy to be recovered, storing it
in the battery.
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Two block valves have been inserted, similarly to the open-circuit layout, to ensure the
position of the actuator even in the event of power failure. These on/off valves are opened
only when it is necessary to move the cylinder.
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3.4. Closed Circuit—Layout 3

Figure 5 shows the circuit diagram of Layout 3. This solution has been reported by
Padovani et al. [13]. Each user consists of an electric motor and a fixed displacement
hydraulic machine driving the double-acting single-rod cylinder, in a closed-circuit layout.
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The differential flow managed by the low-pressure accumulator is controlled by two
piloted check valves (CV1 and CV2). There are also two pilot operated check valves (CV3
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and CV4) for load holding, which, unlike Layout 1, are fully hydraulic valves. The actuation
of the solenoid valve transmits the signal of the maximum pressure of the actuator to the
pilot line to allow for the opening of the two load holding valves to permit the movement of
the actuator. When the solenoid valve is not powered, the piloting line of the load holding
valves is connected to the low-pressure line and does not allow for their opening. In the
event of a power failure, the solenoid valve assumes this latter position by means of a
spring, preventing the movement of the load.

The next sections describe the features common to all of the proposed EHA configurations.

3.5. Model of the Operator

The digging duty cycle defined by the JCMAS standard is replicated by the operator
model. In the standard model of the excavator, the position of the actuator is compared
with the desired position and, consequently, the opening of the directional valve is defined.

In all of the proposed EHA solutions, the position of the actuator depends on the flow
rate delivered, given by the rotation speed of the hydraulic machine: the error between the
desired position and the actual one controls the speed of the electric motor by means of a
PI type controller, as indicated in Figure 6.
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3.6. Electric Components

The electrical circuit is a feature common to all studied EHA configurations. It consists
of three electric machines, a battery, and a generator connected to the diesel engine.

To allow for energy recovery during the overrunning load phases, it is essential
to introduce a battery, which has been simulated as an ideal storage system without
considering its dynamic behavior or thermal effects. The data shown in the Table 1 refer to
a li-ion battery with characteristics that can be found in the scientific literature [32].

The electric machine model present in Amesim© allows for operating in all four
quadrants of the torque-speed map: the electric machine can act as a generator, producing
electricity that is then stored by the battery. In the operating range of the electric machines,
a constant average efficiency has been assumed.

The main characteristics of the electrical components, which are the same for all of the
analyzed configurations, are shown in Table 1.

Table 1. Main features of the electric components.

Component Parameter Value

Electric motor
Voltage (V] 400

Max speed (r/min] 4000
Moment of inertia (kg/m2] 0.049

Generator
Min speed (r/min] 1000

Rated speed (r/min] 2200
Voltage (V] 400

Battery

Specific Energy (Wh/kg] 130
Nominal voltage (V] 400

Specific power (W/kg] 2000
Power (kW] 50
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4. Results

This section presents the results obtained with the standard LS circuit and EHA models
to compare their performance. Figure 7 shows the position of the actuators of the front
attachment during the imposed digging cycle. As can be appreciated from the graphs, all of
the analyzed configurations are able to follow the duty cycle, without significant differences
compared to the reference one. This result will allow for a reliable comparison of the fuel
consumption between the various architectures. Figure 8, obtained from the Amesim©
environment, shows the sequence of the positions of the front implement cylinders during
the digging cycle, which consists of lowering the arms to dig an earth bucket and, in the
subsequent extension, to unload the bucket and return it to the initial position.
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The simulations have been used to compare the energy demands of the different studied
solutions. Table 2 shows the mechanical energy supplied by the diesel engine and required by
the pumps for each configuration: for the LS solution, the value represents the energy required
by the main pump, while for the EHA solutions, the values are the ones needed by the alternator.
The results obtained show that EHA solutions allow for greatly reducing the mechanical energy
required, with savings of over 60% for all of the configurations, mainly due to the absence of
pressure compensators and directional valves, typical of the load sensing systems. In particular,
the closed-circuit solutions allow for obtaining higher improvements than the open-circuit
solution. Furthermore, Layout 2 permits a mechanical energy saving of 2% higher than that
of Layout 3. These trends are also confirmed by analyzing the fuel savings. Table 3 shows the
fuel consumption of the diesel engine for each layout, and this involves considering the engine
efficiency map. The savings are also significant in terms of fuel, but with lower percentage
values than for the mechanical energy saving: this is because the efficiency of the thermal engine
strongly depends on the absorbed torque value. During the cycle, the power required by the
diesel engine for EHA solutions is lower than the traditional LS circuit, as shown in Figure 9: in
general, the internal combustion engine has lower efficiency if subjected to lower loads. The
lower power required by the solutions studied opens up the possibility of downsizing the diesel
engine: this solution would allow for even greater fuel saving to be obtained, because it would
permit the engine to work at average loads closer to the maximum, where the efficiency is
higher. The possibility of downsizing the diesel engine has not been investigated in this paper,
but interesting results are reported in [26], applied to an open-circuit EHA solution.

Table 2. Mechanical energy.

Solutions
Mechanical Energy
Supplied by Diesel
Engine (kJ/Cycle)

Mechanical
Energy Saving (%)

Mechanical Energy
Supplied to the

Pumps (kJ/cycle)

Mechanical Energy
Saving (%)

LS 393.6 / 393.6 /
Open Circuit—Layout 1 143.6 63.5% 91.6 76.7%

Closed Circuit—Layout 2 112.2 71.5% 84.7 78.5%
Closed Circuit—Layout 3 136.2 65.4% 109.2 72.3%

Table 3. Diesel engine fuel consumption.

Solutions Fuel Consumption (g/cycle) Fuel Saving (%)

LS 34.49 /
Open Circuit—Layout 1 23.92 30.6%

Closed Circuit—Layout 2 22.50 33.1%
Closed Circuit—Layout 3 23.60 31.6%
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The Figures 10–13 show the Sankey diagrams for all of the studied configurations,
which show the distribution of the mechanical input energy on the different components
that make up the circuit, allowing for quantifying the energy losses. In the LS standard
configuration, in Figure 10, the largest amount of energy loss is attributable to the valve
block, which dissipates more than 57% of the energy. The open-circuit EHA solution, in
Figure 11, has most of the energy losses concentrated in the group consisting of electric and
hydraulic machines. The closed-circuit variants, on the other hand, have similar energy
distributions, as seen in Figures 12 and 13, with lower losses than the open-circuit solution.
In particular, Layout 3 has less energy losses on hydraulic machines than Layout 2, but at
the same time, has much greater losses on the load holding valves, as the piloted check
valves generate higher pressure drops than the on/off valves used in Layout 2.
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5. Discussion

This research activity focused on the application of electro-hydraulic solutions to a
9-ton excavator to achieve energy improvements.

The results are obtained through simulations carried out in the Amesim© environment,
starting from a validated mathematical model of an excavator in LS logic, used as a reference.
Three EHA configurations have been considered, one in open-circuit configuration and
two in closed-circuit configuration.

The energy distributions obtained through the Sankey diagrams for the traditional LS
system and for the EHA configurations (open- and closed-circuit) have been determined
for a 9-ton excavator. It has been shown that all EHA solutions allow for reducing the
mechanical energy requirement by over 60%, mainly due to the elimination of the direction
valves required by the traditional load sensing circuit. Furthermore, closed-circuit solutions
show greater benefits than the open-circuit solution. The circuit layout therefore strongly
influences the efficiency and overall consumption of the system and must be carefully
designed. The closed-circuit solutions do not only bring advantages in energy terms. In
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fact, the open-circuit solution involves the use of two hydraulic machines for each actuator,
which involves a much greater cost, size, and weight than the closed-circuit solutions. From
these points of view, the Layout 2 solution allows for reducing the number of components,
also guaranteeing the best energy performance.

However, although closed-circuit solutions have fewer components, they still suffer
from the main drawback typical of all EHA solutions, which is the higher cost. In fact,
electric motors, alternators, and a battery (or supercapacitors) are required, as well as
electro-systems, to manage the electric drives that make this technology less competitive at
present compared with fully hydraulic solutions. Despite this, the advantages presented in
this article could help overcome these disadvantages.

The presented results evaluate the energy efficiency of all circuit solutions through the
application of characteristic work cycles: during the simulations, the digging cycle defined
by the JCMAS standard has been used [33], which takes place without a payload.

This simulation work made it possible to demonstrate the potential of electro-hydraulic
solutions by applying them to a medium-sized excavator. Future developments will
concern the study of other solutions for compensating the different flow rate given using a
differential cylinder.

A further important result is that the mechanical power required by the diesel engine
always has lower values than the standard LS circuit. A future development is represented
by the study of the possibility of reducing the size of the diesel engine: in this way, the
engine would always operate in working points with the highest efficiency, with the
advantage of further reducing fuel consumption.

6. Conclusions

This article presents the results from the application of electro-hydraulic actuation
(EHA) applied to a 9-ton excavator. A validated mathematical model of the traditional
excavator with load sensing circuit has been taken as a reference for subsequent energy
analyses. Three EHA configurations have been also considered: the first in open-circuit
layout and the other two in closed-circuit layouts. The results of the simulations permit to
quantify the possible energy saving given by each studied solution and to characterize in
detail the sources of energy losses.

The standard load sensing circuit features directional valves with pressure compen-
sators, which are a source of great energy losses. EHA solutions, on the other hand, make
it possible to eliminate these components, significantly reducing hydraulic losses and
allowing for considerable fuel savings.

In all of the EHA solutions studied, the mechanical power required by the diesel engine
has lower values compared to the LS standard circuit: this interesting result provides the
starting point for future developments where it is possible to reduce the displacement
of the diesel engine, allowing for increasing its efficiency with the advantage of further
reducing fuel consumption.
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Nomenclature

Abbreviation Definition
EHA Electro-hydraulic actuator
CAD Computer-aided design
ICE Internal combustion engine
JCMAS Japan Construction Machinery Association Standard
LS Load sensing
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