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Measuring node centrality when local and global measures overlap

Lorenzo Costantini ,* Carla Sciarra , Luca Ridolfi, and Francesco Laio
DIATI, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy

(Received 20 October 2021; revised 2 March 2022; accepted 5 April 2022; published 22 April 2022)

Centrality metrics aim to identify the most relevant nodes in a network. In the literature, a broad set of metrics
exists, measuring either local or global centrality characteristics. Nevertheless, when networks exhibit a high
spectral gap, the usual global centrality measures typically do not add significant information with respect to the
degree, i.e., the simplest local metric. To extract different information from this class of networks, we propose
the use of the Generalized Economic Complexity index (GENEPY). Despite its original definition within the
economic field, the GENEPY can be easily applied and interpreted on a wide range of networks, characterized
by high spectral gap, including monopartite and bipartite network systems. Tests on synthetic and real-world
networks show that the GENEPY can shed light about the node centrality, carrying information generally poorly
correlated with the node number of direct connections (node degree).

DOI: 10.1103/PhysRevE.105.044317

I. INTRODUCTION

In the last few decades, the use of network theory to
unravel systems’ features has emerged and spread over
different disciplines [1–3], with relevant applications in bi-
ology [4], economics [5], epidemics [6], social sciences [7],
electrical [8,9], and computer science engineering [10,11]. A
network describes the interactions among elements in a sys-
tem: the elements are called nodes, the interactions edges or
links [1–3], and for each system a proper matrix representation
exists.

It is crucial to determine the importance of the nodes in
a network for understanding the features of the system it
represents [12]. Centrality metrics aim to accomplish this
task by focusing on the matrix representation of the system.
Several centrality measures exist, depending on the chosen
criteria to score node importance. Among the most com-
mon centrality metrics, one finds the degree and eigenvector
centrality [1,2,12]. The degree centrality measures the impor-
tance of a node through the number of its connections [1,3],
whereas the eigenvector centrality ranks each node accounting
for the centrality of the nodes to which it is linked [1,13],
and thus considering the entire network structure. In light of
such difference of perspective about the network topology, the
eigenvector centrality is known to be a global measure of cen-
trality, and the degree a local one, since its centrality analysis
is limited to the node neighborhoods [1,12–15]. Other global
centrality metrics include closeness [16], betweenness [17],
subgraph centrality [18], and total communicability [19], to
cite a few.

Notwithstanding the difference in their rationales, high cor-
relation coefficients among the centrality metrics have been
observed in high spectral gap networks [14,20–23], namely,
those networks presenting a significant difference between the
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two largest eigenvalues of the matrix representing the system.
High spectral gap networks are homogeneous (i.e., with re-
peated edge patterns) and well connected (i.e., all networks
areas can be easily reached moving from one node to the
others) [22,24–29]. Several studies have shown that the larger
spectral gap, the higher is the Spearman’s correlation between
both local (hence the degree) and global centrality mea-
sures [14,20,30]. In such cases, when comparing the resulting
rankings, the degree centrality (i.e., the simplest metrics) is
a good proxy for the information provided by the global
metrics [21,30]. Therefore, for the networks featuring high
spectral gaps, the need emerges for global metrics providing
additional information about the node centrality beyond the
local one of the degree.

Against this background, we propose to extract such in-
formation by applying a centrality measure introduced in
the field of economic complexity, namely, the Generalized
Economic Complexity index (GENEPY) [31]. The GENEPY
metric proved capable of broadening the narrow information
that the degree centrality provides about the analysis of the
export capacity of countries in the international trade of com-
modities [31–33]. This feature suggests that the GENEPY
framework can be extended to general network systems
characterized by high spectral gaps, in order to gain com-
plementary information with respect to the degree centrality.
To this aim, after having provided further proof regarding the
correlation among common centrality metrics, we present the
GENEPY and its application to high spectral gap networks.
We refer to bipartite networks in our main results, but these are
easily extended also to monopartite ones. In testing the perfor-
mances of the GENEPY on a wide set of networks, ranging
from artificially generated to real-world ones, we show that
the information provided by the GENEPY is less related to
the degree of the nodes than other metrics, thus shedding light
about the node centrality and overcoming the limitations of
other metrics.
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II. MATHEMATICAL FRAMEWORK

A. Network science definitions and centrality measures

Networks (or graphs) can be mainly classified into two cat-
egories: monopartite and bipartite networks. In monopartite
networks, only one type of interacting entities exist, and the
system can either be undirected or directed depending on the
presence of directions in the edges. For example, the network
representation of the marriage relationships among the Re-
naissance families in Florence is undirected, since marriage
is mutual [1], whereas a directed network suitably represents
the citation space of scientific literature [1]. Monopartite net-
works are described by a square matrix A, called an adjacency
matrix, which is symmetric if the network is undirected, and
asymmetric when the graph is directed [1]. The dimension of
A depends on the number of nodes in the network, and its
entries Ai j describe the existence of a link between the nodes
i and j, either in logical information (1 or 0) or in weighted
form. Instead, bipartite networks describe systems with two
different kinds of interacting entities, and the nodes can be
divided into two disjoint subsets U and P. In such a system,
the interactions occur only among the elements of different
sets [1,34]. The incidence matrix B describing such systems
is rectangular with dimension NU × NP, i.e., the number of
elements is U and P, respectively. The element Bi j is 1 when
there exists a link between the node i in U and j in P, and 0
otherwise [1,34]. Examples of bipartite systems are the inter-
national trade of goods, where the interacting entities are the
exporting countries and corresponding export baskets [32,33],
and the plant-pollinator ecosystems, identifying the two sets
in the interacting species of flora and fauna [35].

Let G(V, E ) be a graph where V and E are the sets of
the nodes and edges, respectively (if G is bipartite, then
V = U ∪ P). The neighbors of a node i are all the nodes to
which i is connected [1]. The graph is defined as connected if,
independently from the starting node, it is possible to reach all
the other nodes in the network [14,21]. A walk of length m is
a set of nodes v1, v2, ..., vm+1 such that for any integer value
of r between 1 and m the nodes vr and vr+1 are connected by
a (directed) link. A closed walk is a walk where v1 = vm+1.
A walk without repeated nodes is a path, and a closed walk
without repeated nodes (except the starting and arriving node)
is a cycle [14,19,21]. G′(V ′, E ′) is a subgraph of the graph G
if V ′ ⊆ V and E ′ ⊆ E [18].

To discuss the correlations among the centrality metrics
(including the degree, eigenvector, closeness, betweenness,
subgraph centrality, and total communicability) here follows a
brief description and interpretation of those centrality metrics.
For the sake of conciseness, the description is limited to the
general metric rationales, and we refer the reader to [1,2] for
further mathematical details (also concerning their tailoring
to the different network types). The degree centrality (D) of
a node measures its number of connections [1], computed
as the sum of all the entries of the matrix referring to that
node. The eigenvector centrality (E) scores the nodes accord-
ing to the number and importance of the nodes to which
they are connected. In mathematical terms, the eigenvector
centrality equals computing the first eigenvector (the one as-
sociated with the largest eigenvalue) of the matrix describing
the network at hand [1,13,18,34]. The closeness centrality (C)

measures the mean topological distance from one node to the
others [1,12,16,30]. The betweenness centrality (B) measures
the times a node appears along the shortest paths among
vertices [1,15,17]. Supposing a flow of information moving
through the system, the betweenness centrality defines the
amount of information that moves through a node [12,30]. The
subgraph centrality (SG) of the nodes in a network is defined
as the weighted sum of all the closed walks (of any length)
starting and ending in the same node [18], and the shorter the
closed walk, the higher is the associated weight. The subgraph
centrality scores the nodes considering their participation in
all the subgraphs of the considered network [18]. The total
communicability centrality (TC) of a node i is defined as
the row sum of the ith row of the exponential of the matrix
describing the considered network [19]. Under the assumption
of information spreading, this metric quantifies how well a
node spreads information to any other node in the network. All
the aforementioned metrics, exception made for the degree,
consider the entire network structure in the assignment of
a centrality score, and hence they are considered as global
centrality measures [12–15,19,30,36,37].

The spectral gap, which we will show determines the cor-
relations among these centrality metrics, can be computed
for all network kinds. Nevertheless, while the computation of
the eigenvalues is straightforward for the square matrices de-
scribing undirected networks [21], rectangular matrices need
some details. In particular, considering a bipartite network and
its incidence matrix B, to compute the spectral gap entails
considering the existing relationship between the eigenvalues
λ of the matrices BBT and BTB. The matrices have dimensions
NU × NU and NP × NP, respectively, and they represent the
monopartite projections of the bipartite system. The spectra
(i.e., set of all eigenvalues) of these two matrices coincide up
to the smallest value n between NU and NP [1] (the remaining
ones are zero). By ordering the eigenvalues in descending
order

λ1 > λ2 > . . . > λn,

we define the relative spectral gap (SGr) as

SGr = λ1 − λ2

λ1
. (1)

The aforementioned definition of the relative spectral gap can
be extended to monopartite directed networks substituting A
for B.

B. Artificial bipartite networks with high spectral gap

In their general structure, networks with high spectral gap
(typically SGr � 0.40 [21]) present: (1) high connectivity
among their nodes [22,24–29,38] and (2) high correlation
values among several centrality measures [14,20,21,23,39].
Aiming to explore the correlation among different centrality
metrics in high spectral gap networks, we artificially gener-
ated an ensemble of bipartite networks having this peculiar
characteristic. We considered two classes of graphs: (1) net-
works with a pseudotriangular incidence matrix, which we
call pseudotriangular networks (PTNs) [40,41], and (2) bipar-
tite Erdős-Rényi graphs (BERGs) [1,42].

044317-2



MEASURING NODE CENTRALITY WHEN LOCAL AND … PHYSICAL REVIEW E 105, 044317 (2022)

A bipartite network is defined as a PTN if by permut-
ing the rows and columns of its associated incidence matrix
B, it is possible to identify a separatrix (i.e., a border line)
above which the density of links—and, hence, of the nonzero
values—is much higher than below it [40]. The separatrix
is ideally placed in correspondence of the diagonal of the
incidence matrix [40]. Instead, full triangular matrices—and
corresponding networks—are those matrices in which, with
a proper permutation of rows and columns, all the nonzero
values lie above the separatrix, while all the zero ones are
below it. The matrix describing the international trade of
goods [33,41,43] in a given year is an example of a PTN.
Other examples include the plant-pollinator system in ecol-
ogy [44–46], the interbank payment network [47], and the
manufacturer-contractor network [48].

For each class, we generated an ensemble of Nsim =
100 networks according to the following two procedures.
Notice that all generated networks are unweighted (i.e.,
the weights of the links are all unitary); moreover, in the
generation of the networks, we considered only connected
graphs.

In defining each network within the PTN ensemble, once
the system dimension has been set (i.e., the number of nodes),
we started by generating a full triangular incidence matrix,
which is then emptied. For each link (i.e., Bi j = 1), a random
edge probability was extracted from a uniform distribution
between 0 and 1. The link at hand was maintained if the
extracted probability was smaller than a given threshold value
β and removed otherwise. In this way, PTNs defined in a wide
range of densities were obtained as a function of the threshold
value β.

Instead, for the BERG ensemble, starting from an empty
matrix with fixed dimensions, we filled the matrix with en-
tries. Using a uniform distribution between 0 and 1, we
extracted a random value defining the probability of a link
between the node i of set U and j of set P. A network
was generated considering the links with a probability value
smaller than the threshold value β. In this way, the BERGs
also are defined in a wide range of densities, obtained as a
function of the threshold value β.

In setting the dimensions of the networks, the elements in
U range in the interval [10, 100], with step 15, and those in
P in the interval [100, 500] with step 25, thus totaling 119
dimension combinations for the generated artificial network
systems. In generating the networks, the link threshold value
β for PTNs ranges in the interval [0.15, 0.85] with step 0.10,
while for BERG networks, it varies in the range [0.10, 0.45]
with step 0.05. The β values are defined in different ranges to
generate artificial networks with comparable relative spectral
gaps.

These two ensembles define the experimental context
wherein analyzing the relationship between spectral gap and
the occurrence of correlation among centrality metrics. For
each system’s dimensions, the PTN and BERG ensembles can
be analyzed through the perspective of the threshold value β,
determining the density of the networks. In this main text,
all results are shown for the ensemble of artificial networks
of size 40 × 250, but similar evaluation and comments arise
from the analysis of other network sizes (see Supplemental
Material [49], Figs. S1 and S2).

Figure 1 exemplifies two of the generated artificial net-
works through their incidence matrices, describing a PTN
in Fig. 1(a), and a BERG in Fig. 1(d). Figure 1 also shows
the Spearman’s correlation coefficients between the degree
and other centrality metrics (eigenvector, closeness, between-
ness, subgraph, and total communicatility) obtained from
the analysis of all generated matrices of size 40 × 250 (the
Spearman’s correlation metric is a ranking-based one). The
correlation is given as a function of the relative spectral gap.
As the figure shows, the two ensembles of networks are de-
fined within comparable—although not equal—intervals of
relative spectral gap. Moreover, the relative spectral gap is
high [46,50,51], and it increases as the threshold value β

increases, thus with increasing number of connections in the
networks [29] for both PTNs and BERGs. In general, for both
network classes, the Spearman’s correlation coefficient takes
high values, with increasing trend as the relative spectral gap
increases (in line with previous studies [14,20]). Therefore,
although being global centrality measures, in terms of node
ranking the eigenvector, closeness, betweenness, subgraph,
and total communicability centrality measures add little infor-
mation compared to that provided by the degree centrality in
both network cases. This result can be further interpreted con-
sidering the existing literature. Benzi et al. [14] demonstrated
that the rankings provided by several centrality measures
converge to the ones obtained by applying the degree or eigen-
vector centrality for high spectral gap networks. As shown in
Fig. 1 (as well as in the Supplemental Material [49], Figs. S1
and S2), the rankings obtained from these two metrics also
present extremely high Spearman’s correlation coefficients.
Thus, following the guidelines of Li et al. [30], it is possi-
ble to approximate the more time-consuming centrality, i.e.,
the eigenvector one, to simpler one, i.e., the degree, if the
correlation between the two metrics is high. Therefore, for
the networks at hand, the degree centrality dominates the
centrality landscape.

III. BEYOND THE DEGREE: THE GENEPY INDEX

A. Definition

The Generalized Economic Complexity index (GENEPY)
was introduced by Sciarra et al. [31] to reconcile the contrast-
ing methodologies within the field of economic complexity. It
is grounded on the statistical and multidimensional approach
to network centrality, which is described in [52]. The method-
ologies of economic complexity were originally proposed to
update the simpler measure of export complexity of countries
provided by the degree [32,33]. Following up on the idea
of overcoming the limitation of the degree in the economic
context, we introduce here the use of the GENEPY to the more
general context of high spectral gap networks. The description
of the GENEPY framework applied to a general network
structure follows, and we refer the reader to [31] for further
technical details.

Starting from the incidence matrix of a bipartite network
B, the GENEPY index is defined by the introduction of a
transformation matrix W, defined as

Wi j = Bi j

kik′
j

, (2)
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FIG. 1. Examples of two incidence matrices for each class of artificially generated networks of dimension 40 × 250 with a specific value
of the parameter β (yellow entries are nonzero values and blue otherwise) and corresponding correlation values between the degree and other
centrality metrics as applied to the set of equally sized networks. The Spearman’s correlation coefficients (ρS) between the degree (D) and
the eigenvector (E), closeness (C), betweenness (B), subgraph (SG) centrality, and total communicability (TC) are defined as functions of
the relative spectral gap, and the computation of the metrics for both nodes in the U and P sets of the networks is detailed. Top panels refer
to pseudotriangular networks (PTNs), and bottom ones to bipartite Erdős-Rényi graphs (BERGs). In panels (b), (c), (e), and (f), each point
represents the mean among Nsim = 100 networks of the considered class; the whiskers and the shaded regions describe ±1 standard deviation
of the correlation values and relative spectral gap, respectively. The arrows indicate the direction in which the threshold values β increase for
both PTNs and BERGs.

where ki = ∑NP
j=1 Bi j and k′

j = ∑NU
i=1

Bi j

ki
. W preserves the net-

work topology B describes, with the advantage of partially
filtering away the degree-biased information due to the divi-
sion of the Bi j entries for kik′

j [53]. The GENEPY index of
a generic node in either two sets U and P is the result of
the combination of the two largest eigenvalues (φ1 and φ2,
with φ1 > φ2) and corresponding eigenvectors (x1 and x2) of
a proximity matrix defined from W. For the nodes in U , the
proximity matrix N is defined as

Nii∗ =
{∑

j Wi jWi∗ j for i �= i∗,

0 for i = i∗;
(3)

whereas, for the ones in P, the proximity matrix G is defined
as

Gj j∗ =
{∑

i Wi jWi j∗ for j �= j∗,

0 for j = j∗.
(4)

The GENEPY index of a node i is defined as

GENEPY(i) =
(

2∑
t=1

φt x
2
t,i

)2

+ 2
2∑

t=1

φ2
t x2

t,i, (5)

where xt,i is the ith component of the eigenvector at the
dimension t = 1, 2 of the proximity matrix at hand (either

N or G). Since N and G are symmetric square matrices,
their eigenvectors are distinctly defined (i.e., the right and left
eigenvectors are the same).

The GENEPY index per each set of nodes is derived from
the matrices N and G describing the similarities among the
connectivity pattern of the nodes in the network. Such patterns
are differently interpreted by each proximity matrix and to
compute the GENEPY index for the nodes in U or for those
in P provides different information regarding the centrality of
the nodes [53]. Specifically, the GENEPY computed onto the
proximity matrix N ranks the nodes according to two criteria:
(1) the number of common neighbors that the considered node
shares with other nodes in the network and (2) how many
neighbors of the node at hand are also in the neighborhood of
only the top ranked nodes (by the GENEPY index computed
onto N). Instead, the GENEPY computed onto G ranks first
those nodes that share some neighbors with many other nodes
in the network and are also connected to the more isolated
nodes. Therefore, we expect the GENEPY computed onto N
to be better correlated with the degree centrality, since the
matrix N defines quantitative similarities in the number of
connections of the nodes. Conversely, the matrix G defines
structural similarities in the way the nodes are connected, and
thus a lower correlation between the degree of the nodes and
the GENEPY index from G is expected. To further show the
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functioning of the GENEPY index, we provide an example for
the bipartite networks in the Appendix, and one considering
the monopartite networks in the Supplemental Material [49].

It is worth notice that the matrix N (G) is the one-mode
projection of matrix W on U (P), with the diagonal values
set to 0. To set the diagonal values to zero entails removing
the information about the degree of the nodes, contained in
the nominator through the values

∑
j Bi jBi∗ j for i∗ = i [see

Eqs. (2)–(4)]. Therefore, setting to 0 these values filters away
the information of the degree from the one-mode projection.
Another crucial feature of the GENEPY is its multidimen-
sional framework: the first two eigenvectors of the proximity
matrices are combined in this metric. They carry different
information: x1 is the eigenvector centrality of the proximity
matrix N (G) that scores the elements in U (P) according
to the similarities in their neighborhood (the set of nodes
in P connected to a specific node in U and vice versa for
the elements in P). In contrast, the second eigenvector x2
identifies clusters of nodes in U (P) according to their con-
nections [27,31,52,54,55]. A final comment on k′

j is due to
the reader. This term describes the degree of an element j in
P taking into account the degree and the number of nodes
in U to which j is connected. In the transformation from B
to N [or G, Eqs. (2)–(4)], the term 1

k′
j

quantifies how poorly

connected is the element j with the nodes in U [31]. As a
consequence, the elements of N (G) associated to a small
value of k′

j receive a higher weight. Therefore, the GENEPY
ranks the nodes in P from the least to the most central, thus
returning an anticentrality score. It follows that, to compare
the nodes’ importance given by the GENEPY index (anticen-
trality measure) and the degree (centrality measure) for the
nodes in P, the GENEPY rankings should be inverted (e.g.,
by multiplying each GENEPY value by −1).

B. Tests on artificial networks

Following the correlation analysis of the artificially gen-
erated bipartite networks, we also test the performance of
the GENEPY index by computing the Spearman’s correlation
between the proposed metric and the degree, and by compar-
ing it with the degree-eigenvector correlation for both PTNs
and BERGs. Other correlation results between the GENEPY
and the centrality metrics used in this work can be found
in the Supplemental Material, Figs. S3– S7 [49]. Aiming to
demonstrate the added value of the use of the GENEPY, we
introduce here the Variance Inflation Factor (VIF) [56–58].
The VIF measures the collinearity between two variables (or
more than two, in which case the multicollinearity is mea-
sured [58]). Collinearity quantifies whether the variable at
hand is related through a linear relationship to another one,
collinearity being significant for VIF values larger than 5 [57].
The VIF is defined as

VIF = 1

1 − ρ2
S

, (6)

where ρS is the Spearman’s correlation coefficient between the
variables at hand.

We use the VIF to check the collinearity among the rank-
ings obtained by applying the degree, eigenvector centrality,
and GENEPY, thus allowing one to quantify the distinct in-

formation the GENEPY captures with respect to the degree or
eigenvector centrality.

In Fig. 2 we plot the correlation coefficients among the con-
sidered centrality measures and the VIF values as a function
of the relative spectral gap for PTNs and BERGs (top and
bottom panels, respectively) and for both sets U and P (left
and right panels, respectively). As the VIF values indicate, the
use of the GENEPY in all considered networks (and node sets)
allows one to overcome the degree-dominated information. As
a general rule of thumb, the VIF from the degree-GENEPY
correlation, VIFD-GEN , is always lower than the one computed
on the degree-eigenvector correlation, VIFD-E . These latter
values increase with increasing spectral gap. Although show-
ing the same increasing trends in case of PTNs [Figs. 2(a)
and 2(b)], the VIFD-GEN values stand below the VIFD-E ones.
Stable trends as a function of the relative spectral gap can
be seen for the BERGs [Figs. 2(c) and 2(d)]. In particular, in
these cases the VIFD-GEN values are smaller than 5, confirm-
ing that the GENEPY rankings are not collinear with those
obtained by applying the degree; thus, due to their high corre-
lation with the degree, neither does it with the other centrality
metrics (see Figs. S3– S7 of the Supplemental Material [49]).

Looking at the distinction between the two sets of nodes,
differences in the correlation values across the sets also
emerge [see Figs. 2(a) and 2(c) for the U nodes and Figs. 2(b)
and 2(d) for the P nodes] for both the PTN and BERG
cases. As expected, higher correlations between the degree
and GENEPY are found for the nodes in U rather than for
those in P (similar results were obtained for the other network
sizes, whose outcomes are given in Figs. S8– S11 in the
Supplemental Material [49]).

Notice that the choice of interpreting the nodes in U and
P through the matrices N and G, respectively, is arbitrary in
artificial networks since there is no physical meaning of the
nodes in the simulations. In fact, we can reverse our interpre-
tation of the system by reversing the analysis of the two sets
of nodes, thus computing the GENEPY by transposing the
incidence matrix B describing the artificial system at hand.
Therefore, the sets of nodes U and P would be analyzed by
means of the proximity matrices G and N, respectively. This
reversed interpretation of the system cannot be considered in
the cases of real-world bipartite systems, where the choice of
mapping the U and P node sets in N or G depends on the
nodes’ significance in the system. In any case, as we show in
Fig. S12 of the Supplemental Material [49], to reverse such an
analysis in the artificially generated networks does not change
the results presented in Fig. 2. In particular, the GENEPY
rankings computed on N and G are always collinear for PTNs,
while they differ for BERGs. However, as shown in Fig. 2, the
information provided by the GENEPY differs from the degree
or eigenvector centrality.

C. Application to real-world networks

In support of our results on artificially generated networks,
we extend the spectral gap-VIF analysis to real-world net-
works, in both monopartite and bipartite systems. These tests
allow one to further comprehend how the GENEPY captures
complementary characteristics of the system under study with
respect to previously proposed metrics.
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FIG. 2. The Spearman’s correlation coefficients among different centrality measures for the pseudotriangular networks (PTNs) (a, b) and
bipartite Erdős-Rényi graphs (BERGs) (c, d). The correlation values (ρS) between the degree (D) and eigenvector (E) centrality (blue dots),
and the degree and GENEPY index (red squares), are shown as functions of the relative spectral gap. The right panels refer to the U set, the left
ones to the P set. Each point represents the average value of Nsim = 100 realizations, and ±1 standard deviations are given for both correlation
(whiskers) and relative spectral gap (shaded regions) values. In purple, we show the mean variance inflation factor (VIF) computed over the
Nsim artificial networks between the degree and eigenvector centrality (diamonds) and the degree-GENEPY values (stars).

We start testing the GENEPY performances onto the
well-known bipartite system the “Women-Events network,”
detailing the attendance of women at social events in the
late 1930 [34,59]. The system comprises 18 women and 14
events. The relative spectral gap of this network is quite high,
0.54, and the rankings for both kind of entities computed
according to the degree, eigenvector, closeness, betweenness,
subgraph, and total communicability centrality are collinear,
i.e., their VIF values are greater than 5 [see points of the plots
in Figs. 3(a) and 3(b) indicated by the vertical black lines].
Since the spectral gap is related to the level of connectivity of
the network (as shown by Jun et al. [29] and confirmed by our
simulations on artificially generated networks), we performed
some numerical experiments to further investigate the rela-
tionship between centrality metrics and spectral gap. To this
aim, we randomly added (and removed) 100 (50) edges one at
a time in the incidence matrix of the network. We repeated the
link addition and removal process 100 times, thus generating
an ensemble of simulations at different number of links in
the thus modified network. Therefore, for each ensemble of
equal number of links, we evaluated the mean values of the
relative spectral gap and the VIF values among the centrality
measures considered in this work. Figure 3 presents the results
from these simulations for each set of nodes, and it details the
VIF values among the degree, GENEPY, and other centrality
metrics. As the number of links increases, the relative spectral
gap and the VIF values also increase, which is in line with
the simulations on the artificially generated networks. In par-

ticular, the VIF values computed among the degree and the
previously proposed metrics are in general greater than 5.

The comparisons between the GENEPY and the other met-
rics are presented in Fig. 3(c) for the women and Fig. 3(d)
for the events. In both cases, the GENEPY is never collinear
to other metrics, highlighting that the information it provides
differs from that of the other centrality measures. In com-
puting the GENEPY, the set U details the women (thus the
GENEPY is computed onto the proximity matrix N), and
the set P the events (i.e., the GENEPY computed onto the
proximity matrix G). We can interpret the centrality ranking
provided by the GENEPY considering its rationale and the
system at hand: a woman is considered more central if she
coattends events participating with many other women, some
of which exhibit high centrality. Instead, an event is classified
as central when it is attended, at the same time, by both
more and less socially engaged women, since the participation
of high-centrality women increases its centrality score. The
corresponding results in correlation are reported in Fig. S13
of the Supplemental Material [49].

Similar results hold for the monopartite example of the
Zachary’s karate club network [60]. The results, and re-
lated comments, are reported in the Supplemental Material,
Figs. S14 and S15 [49].

The results on the spectral gap, VIF, and correlation ob-
tained from the Women-Events and Zachary networks are
fully confirmed by the tests run on a wide set of real-world
network. We considered three different sets of systems: (1)
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FIG. 3. Values of the VIF computed among the centrality metrics (degree, D; eigenvector, E, blue circles; closeness, C, red squares;
betweenness, B, yellow triangles; subgraph centrality, SG, purple pentagrams; and total communicability, TC, green diamonds) applied onto
the Women-Events network [34,59] and its simulation with edges’ addition and removal. The benchmark for the computation of the VIF values
is the degree centrality in the top panels [(a) for the women set and (b) for the events set]; the GENEPY index computed onto N in (c); and
the GENEPY index computed onto G in (d). To modify the spectral gap, 100 (50) links were randomly added (removed), one at a time, to the
original network. Each point is the mean, computed at the same number of links in the network, among 100 repetition of the edges’ addition
and removal process. For the sake of graphical representation, the infinite values of the VIF (corresponding to a Spearman’s correlation of 1)
were replaced by VIF = 1000 (Spearman’s correlation value 0.9995). The black arrows indicate the direction in which the links were added,
and the vertical line in each panel highlights the VIF values and relative spectral gap of the original network.

the international trade of goods, taken from the BACI-CEPII
dataset [61]; (2) ecological systems, from the Web of Life
dataset [62]; and (3) monopartite systems (both undirected
and directed) from the SuiteSparse Matrix Collection [63,64].
The variety of these real-world systems allows us to extend
the analysis of the GENEPY performances on a broader
class of networks, also extending the proposed centrality onto
monopartite graphs.

For the sake of comparison with the artificially generated
networks, we considered only the networks’ topology, thus
neglecting any links’ weights. In our analysis, we included all
connected networks with at least seven nodes in the system.
As a result, a total of 284 networks were considered: 23 from
the trade systems (years from 1995 to 2017, the nodes in
U are in the range [174, 182] and those in P are between
1201 and 1241), 126 ecological networks (nodes in U in the
interval [7, 456] while those in P are in the range [7, 1044]),
and 135 monopartite networks (of which, 104 undirected and
31 directed, with number of nodes between 8 and 6765). The
results of these tests are shown in Fig. 4 (the corresponding
outcomes in correlation values are in Fig. S16 of the Supple-
mental Material [49]).

For each centrality metric, the figure shows their VIF
values with the GENEPY. The VIF behavior as functions
of the relative spectral gap is coherent with what observed
for the synthetic graphs and the Women-Events network: the

GENEPY index ranks the nodes differently from the metrics
previously proposed in network theory. This is also confirmed
by the fitting lines reported in the figure; in fact the thick
colored lines fitting the VIF values between the GENEPY
and the considered centrality metric are always below the
thin black lines fitting the degree and the metric indicated
in the panel title. These results endorse the outcomes from
the analysis on artificial networks about the potential of the
GENEPY framework in changing the perspective with respect
to the other centrality measures.

Since the plots in Fig. 4 refer to both undirected and di-
rected networks, a further comment is needed to understand
the application of the GENEPY framework to monopar-
tite graphs. The GENEPY index provides different results
whether the matrix N or G is used for computation. In partic-
ular, due to the similarities of bipartite graphs with directed
ones [1], in interpreting the result of the GENEPY frame-
work we associate the analysis related to the set U (i.e., the
GENEPY onto N) with the outgoing properties of the nodes,
and the one for the set P (i.e., the GENEPY onto G) with the
incoming properties.

As shown in Fig. 4, the lines fitting the VIF values between
the degree and the usual centrality measures increase as the
the relative spectral gap increases. In particular, over a certain
value of the spectral gap, any centrality measure presents
collinearity (VIF larger than 5) with the degree. This fact is
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FIG. 4. Comparison of the VIF values between the GENEPY and the degree [D, (a)], eigenvector [E, (b)], closeness [C, (c)], betweenness
[B, (d)], subgraph [SG, (e)], and total communicability [TC, (f)] centrality measures as a function of the relative spectral gap for the 284
real-world networks considered in this work. In each panel, the blue circles (red diamond) report the VIF values computed between the
GENEPY calculated onto the proximity matrix N (G) with the Centrality Measure (CM) reported in the panel title. The thick blue dashed
(thick red solid) lines fit the logarithm (base 10) of blue circles (red diamonds) with a function a(SGr )b + c. The thin dashed and solid black
lines describe the fits of VIF values between the degree centrality and the centrality measure reported in the title of each panel. For sake of
graphical representation, the y axis is limited to the range [0, 100] to enhance the readability of the points.

in line with the conclusion of Benzi et al. [14] for the degree,
eigenvector, subgraph, and total communicability centrality
measures. In this work, we have enlarged these observations
to the closeness and betweenness centrality [see thin black
lines in Figs. 4(c) and 4(d), respectively]. Instead, the VIF
values between the GENEPY and the other metrics exhibit
a different behavior whether they are computed onto N or G,
in any case maintaining a noncollinear node ranking with the
other metrics.

The VIF values of the GENEPY computed on N are typi-
cally larger than those computed on G. This is consistent with
our previous comments on the rationale behind the GENEPY
computed on the proximity matrices N and G. In fact, because
the GENEPY on N is related to the number of neighbors a
node shares with the others, it is more correlated with the
degree (and thus with all the other metrics) than the GENEPY
computed on G. Furthermore, the fits of the VIF values corre-
sponding to GENEPY on N (thick dashed blue lines) exhibit
an increasing trend as the spectral gap increases, whereas the
behavior of the fits of the VIF values due to the GENEPY
on G (thick solid red lines) depends on the centrality metric
against which the GENEPY is compared. The solid thick lines
increase when the GENEPY on G is compared with the degree
and betweenness centrality, while it remains nearly constant
for the other centrality measures. This confirms the fact that
GENEPY provides two different centrality perspectives on the

nodes in the network in question that are less affected by the
spectral gap than the other centrality measures.

IV. CONCLUSIONS

In this work, we propose to use the GENEPY index to
shed light on high spectral gap networks. The proposed metric
ranks the nodes according to the similarities in their con-
nectivity pattern. We compared the GENEPY performances
with other commonly used centrality measures (such as the
degree, eigenvector, closeness, and betweenness centrality)
onto both synthetic and real-world networks. As we have
shown, the previously proposed metrics present high correla-
tion and collinearity with the degree centrality for increasing
relative spectral gap. Conversely, the GENEPY metrics and
the other centrality measures are less collinear, entailing that
the GENEPY can unveil new centrality characteristics of the
nodes.

The outcomes of our work demonstrate that the GENEPY
centrality offers a complementary approach to the network
centrality problem than those previously proposed, which
means that the GENEPY has the capability to enlarge the
information that can be obtained from an interacting system.

The rankings’ correlation analysis is one of the most
direct ways to evaluate the differences among several cen-
trality measures, yet other approaches can be employed. For

044317-8



MEASURING NODE CENTRALITY WHEN LOCAL AND … PHYSICAL REVIEW E 105, 044317 (2022)

FIG. 5. Representation of the bipartite network used as toy
model. The nodes in the set U (indicated with α, β, γ , δ, and ε) are
represented by red squares, while those in P (a, b, c, d , e, and f ) by
blue circles. The black solid lines represent the connections among
the nodes in the two sets. The nodes in U are ranked according to
the GENEPY computed onto N, and those in P onto the proximity
matrix G.

example, trending approaches consider centrality metrics as
the explanatory variable in a prediction exercise, where
the aim is to proxy a target variable characterizing the
system at hand through suitably system-specific functions
(e.g., [65,66]). Our results pave the way for future research
aimed at comparing the GENEPY and other centrality metrics
(in high spectral gap systems) from the predictive capability
perspective.

APPENDIX: A TOY MODEL TO EXPLAIN HOW
THE GENEPY WORKS

To show how the GENEPY works, let us consider the
bipartite network presented in Fig. 5 and described by the
following incidence matrix:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b c d e f

α 1 1 1 0 1 1

β 1 0 0 1 1 1

γ 1 0 1 1 0 0

δ 1 0 1 0 0 0

ε 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

This network has a relative spectral gap of 0.77. Aiming
at showing the benefits of the proposed metrics, we compare
the rankings obtained by applying to this graph the GENEPY
index and the degree, eigenvector, closeness, betweenness,
subgraph, and total communicability centrality measures.

In Tables I and II, one can see that the rankings obtained
from the classical centrality measures (degree, eigenvector,
closeness, and betweenness) and those from the eigenprop-
erties of the incidence matrix (subgraph centrality and total
communicability) are similar to each other. All metrics agree
in ranking the nodes α and the node a for the sets U and P,

TABLE I. Comparison among the rankings (R) of the nodes in
U obtained by applying several centrality measures: degree (D),
eigenvector (E), closeness (C), betweenness (B), subgraph central-
ity (SG), total communicability (TC), and the GENEPY computed
onto N (GENN). The rankings are arranged starting from the most
central node (with R = 1) to the least central node (with R = 5). The
value in the parentheses indicate the score obtained by applying the
considered centrality measure.

R D E C B SG TC GENN

1 α(5) α(0.64) α(0.06) α(22.7) α(5.98) α(33.0) β(0.73)
2 β(4) β(0.53) β(0.05) β(7.8) β(4.71) β(26.7) α(0.64)
3 γ (3) γ (0.43) γ (0.045) γ (4.03) γ (3.69) γ (22.1) γ (0.29)
4 δ(2) δ(0.34) δ(0.041) δ(0.5) δ(2.73) δ(17.1) δ(0.16)
5 ε(1) ε(0.07) ε(0.03) ε(0.0) ε(1.60) ε(5.43) ε(0.03)

respectively, as the most central ones in the network. This fact
demonstrates that different approaches to solve the central-
ity problem onto the same network provide about the same
information if the spectral gap of the graph is high, as in
this case. In contrast, the GENEPY index provides a different
node ranking based on the similarities among the connectivity
pattern of the nodes, which is described by the proximity
matrices N and G in a different way. Therefore, to compute
the GENEPY index onto N and G provides different infor-
mation regarding the centrality of the nodes. Specifically, the
GENEPY computed onto the proximity matrix N considers
two aspects of the node connectivity pattern: (1) important
nodes have one or more common neighbors (in P) with many
nodes of the same set (i.e., U ), and (2) relevant nodes share
common neighbors only with other important nodes. Con-
sidering these two aspects, the node β is the most important
element in U , according to the GENEPY centrality, because
it is connected to the node a in P, as the nodes α, γ , and
δ, and shares neighbors with nodes α and γ in an exclusive
way (nodes e, f , and d , respectively). The node α is in the
second position of the GENEPY ranking despite having the
same number or exclusive connections of the node β. This is

TABLE II. Comparison among the rankings (R) of the nodes
in P obtained by applying several centrality measures: degree (D),
eigenvector (E), closeness (C), betweenness (B), subgraph centrality
(SG), total communicability (TC), and the GENEPY computed onto
G (GENG). The rankings are arranged starting from the most central
node (with R = 1) to the least central node (with R = 6). The value
in the parentheses indicate the score obtained by applying the con-
sidered centrality measure. Notice that, for the GENEPY index, the
negative scores are given by the recast of the index into a centrality
metrics, rather than an anticentrality one.

R D E C B SG TC GENG

1 a(4) a(0.62) a(0.059) a(10.7) a(5.21) a(30.8) b(−0.019)
2 c(3) c(0.45) c(0.053) b(9) c(3.75) c(22.9) c(−0.186)
3 b(2) e(0.37) e(0.048) c(5.6) e(2.86) e(18.9) a(−0.318)
4 d(2) f (0.37) f (0.048) e(1.77) f (2.86) f (18.9) d (−0.349)
5 e(2) d(0.30) b(0.044) f (1.77) d(2.62) d(15.8) e(−0.701)
6 f (2) b(0.23) d(0.040) d(1.17) b(2.43) b(13.2) f (−0.701)
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due to the fact that the node α shares the node b as common
neighbor with the node ε, which is the least central element in
U for the GENEPY. Thus, for the GENEPY onto N, the node
α loses relevance in the network, and it is below the node β

in the ranking. Conversely, the GENEPY centrality computed
onto the proximity matrix G ranks as relevant those nodes that,

at the same time, share some neighbors with other nodes (in
the same set) and are connected to some more isolated nodes
of the other set. Thus, the node b in P is ranked as the most
important node; in fact, the node b is connected to the nodes
α (as other nodes in P) and ε, which is the most isolated node
(according to the GENEPY metric).

[1] M. Newman, Networks (Oxford University Press, New York,
2018).

[2] M. E. Newman, A.-L. E. Barabási, and D. J. Watts, The Struc-
ture and Dynamics of Networks (Princeton University Press,
Princeton, 2006).

[3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.
Hwang, Phys. Rep. 424, 175 (2006).

[4] E. Alm and A. P. Arkin, Curr. Opin. Struct. Biol. 13, 193
(2003).

[5] F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A.
Vespignani, and D. R. White, Science 325, 422 (2009).

[6] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A.
Vespignani, Rev. Mod. Phys. 87, 925 (2015).

[7] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca, Science
323, 892 (2009).

[8] G. A. Pagani and M. Aiello, Physica A 392, 2688 (2013).
[9] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, Nat.

Phys. 9, 191 (2013).
[10] W. Liu, C. Liu, Z. Yang, X. Liu, Y. Zhang, and Z. Wei,

Commun. Nonlinear Sci. Numer. Simulat. 37, 249 (2016).
[11] V. Karyotis and M. Khouzani, Malware Diffusion Models for

Modern Complex Networks: Theory and Applications (Morgan
Kaufmann, 2016).

[12] S. P. Borgatti, Social Netw. 27, 55 (2005).
[13] P. Bonacich, Social Netw. 29, 555 (2007).
[14] M. Benzi and C. Klymko, SIAM J. Matrix Anal. Appl. 36, 686

(2015).
[15] A. Salavaty, M. Ramialison, and P. D. Currie, Patterns 1,

100052 (2020).
[16] L. C. Freeman, D. Roeder, and R. R. Mulholland, Social Netw.

2, 119 (1979).
[17] L. C. Freeman, Sociometry 40, 35 (1977).
[18] E. Estrada and J. A. Rodriguez-Velazquez, Phys. Rev. E 71,

056103 (2005).
[19] M. Benzi and C. Klymko, J. Complex Netw. 1, 124 (2013).
[20] S. Oldham, B. Fulcher, L. Parkes, A. Arnatkevičiūtė, C. Suo,
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