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Sensitivity Analysis of Passive Intermodulation due
to Electrical Contacts

Felipe Treviso, Student Member, IEEE, Riccardo Trinchero, Member, IEEE, Petri Keski-Opas, Ilkka Kelander,
Flavio G. Canavero, Fellow, IEEE.

Abstract—Non-linear phenomena in electrical contacts deterio-
rate the quality of communication systems with the production of
passive intermodulation (PIM). The theoretical evaluation of PIM
as a function of the physical parameters of the contact is rather
complicated. Standard linear and macroscopic contact models
do not take into account all microscopic aspects of the contact
responsible for its non-linear behavior. For the above reason, an
accurate analysis of the PIM should be carried out by using
microscopic contact models, defined by dozens of parameters,
some of which cannot be precisely measured or estimated. This
paper presents a statistical analysis of the PIM level by taking into
account a possible uncertain interval for the physical parameters
of the contact. Such statistical interpretation is then used in
order to identify the most relevant physical parameters for the
PIM generation via a sensitivity analysis, through the use of
a surrogate model that speeds up the huge amount of PIM
computations. The results of the sensitivity analysis allow to build
a simpler model depending only on few dominant parameters.

Index Terms—Passive intermodulation, sensitivity analysis,
electrical contact, surrogate model, support vector machine.

I. INTRODUCTION

PASSIVE intermodulation (PIM) is a form of signal distor-
tion where spurious frequency components are produced

by the non-linearity of passive elements. These spurious sig-
nals can seriously threaten the quality of communication sys-
tems, as intermodulation products may fall into the receiving
band or close to carrier frequencies, making their elimination
through filters difficult [1]–[3]. Therefore, a good system de-
sign must take into account the evaluation of PIM components
and use strategies to reduce this type of interference.

The literature describes many possible sources of PIM [1]–
[18], among which we can cite dynamic electro-thermal or
electro-mechanical mechanisms, electrical discharges across
micro-cracks in metals, non-linear materials (e.g. ferromag-
netic) and non-linear effects across contacts. In electrical
contacts, it is common to consider the tunnel effect as the
most relevant non-linear effect that acts as a PIM source [3]–
[6], together with the thermionic effect [7], [8]. Such effects
occur at the contact interface, where highly conductive metals
used in the contact might naturally form a thin film which
deteriorates the conduction mechanism from one surface to
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another. The non-linear effects above occur at such irregular
film.

An equivalent circuit is usually applied to model the elec-
trical contact, using resistors and capacitors to account for the
linear effects [2]–[5], [14], while the non-linear behavior is
represented by a non-linear element described via a low-order
polynomial expansion [1], [3], [4], [10]–[14], [17]. The result-
ing PIM is obtained from the analysis of this equivalent circuit.
The tuning of the parameters required for that analysis can be
either based on measured data of the contact [3], [14], or on
theoretical equations that model the relation of the physical
parameters of the contact and the considered phenomena [5].
Indeed, there are many physical parameters that can affect PIM
generation [18], and therefore those theoretical models should
be carefully assessed in order to achieve the accuracy obtained
by the behavioral models. However, it is also known that it
is hard to compare the PIM theory with measurements due to
the difficulty in isolating the PIM sources experimentally and
the reproducibility of experiments [5], [9].

Additionally, most of those parameters have an intrinsic
uncertainty, as they are related to microscopic aspects of the
contact, while the theoretical models take them into account as
macroscopic approximations. Therefore, even if deterministic
theoretical models allow to estimate the general trend of the
PIM level, it is unreasonable to expect from such models to
provide a deterministic and accurate prediction of the PIM
level. For such reasons, PIM should be analyzed either through
a statistical evaluation of the PIM level considering all the
involved uncertainties, or in a more compact way, through a
sensitivity analysis that will indicate which are the most rele-
vant factors in the production of PIM. Variations of the PIM
with respect to experimental parameters like carrier power and
measured error have been analyzed [9], but so far there is no
investigation about the sensitivity of the predictions provided
by theoretical models with respect to the large number of
parameters used by them (e.g., the energetic characteristics
of the material, contact area and pressure, etc.). Such analysis
can simplify the theoretical models by focusing only on the
parameters that are most dominant for PIM generation, making
its estimation simpler and speeding up its computation.

The aim of this work is a sensitivity analysis carried out via
a theoretical PIM model which considers electron tunneling
and thermionic emission as the non-linear mechanisms. It is
based on the equivalent circuit presented in Sec. II, estimated
from the physical aspects of the contact, and aims at extracting
the most relevant parameters for PIM generation through a
sensitivity analysis described in Sec. III. A surrogate model
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trained in Sec. IV is used to obtain a faster PIM evaluation
such that its global sensitivity to a large number of parameters
is evaluated. The results of this methodology are presented in
Section V, where the PIM produced by the contact of two
different metals and its sensitivity to physical parameters is
quantified and a simplified model is proposed.

II. PHYSICAL-BASED MODEL OF AN ELECTRICAL
CONTACT

The electrical contact between two metallic surfaces is
intricate. The usual way of describing this phenomenon is to
visualize it as the contact between a flat surface and a rough
surface that accounts for the roughness of both surfaces. An
illustrative diagram of this interface is shown in Fig. 1, and a
practical way to model them is briefly described in Appendix
A. Due to microasperities present in the surfaces, the true
contact area Ac where the surfaces are actually in contact
to each other will be smaller than the apparent contact area
An. The physical interface happens only where asperity peaks
of the surfaces touch each other. Those contact points are
called α-spots [19], [20], and a typical junction of two surfaces
comprises a large number of these spots. Common materials
used in electronic contacts, e.g., aluminum and nickel, will
also produce a thin layer of oxide over their surface after a
short exposition to the ambient air [21], and therefore when
the two surfaces are put in contact to each other, they produce
a metal-insulator-metal (MIM) interface. Depending on the
stress produced by the contact pressure, the thin oxide layer
can be ruptured, forming metal-metal (MM) contacts. There
are also sections of the apparent area where the surfaces do
not contact (NC) each other. All these types of interface can
be observed in Fig. 1.

Figure 1. Illustrative diagram of the contact between a flat surface covered
by an oxide layer and a clean rough surface. Regions of the three types can
be identified (NC, MM, MIM, see text for explanation).

The effects on those three areas can be modeled through
the equivalent circuit inside the right box in Fig. 2 [14]. The
void capacitor Cn accounts for the capacitance in the NC
region, where mostly air separates the conducting surfaces. In
the MM region, the only circuital element is the constriction
resistance R′

c, which models the restriction of the current flow
to the α-spots and the reduction of the volume of material
used for electrical conduction due to this fact. The current in
the MIM region is also constrained to flow towards the α-
spots, and therefore it also observes a constriction resistance
R′′

c similar to the MM region. However, the current is not
able to flow freely through the α-spots because of the thin
insulating oxide film. So, in series to R′′

c , three elements are
added to model the conduction mechanisms in this area: a film

capacitance Cf , representing the effect of this thin insulator
between the conducting metals, a film resistance Rf , and a
non-linear conductance Gf . This non-linear element is the
source of all passive intermodulation in our work, where the
considered sources of non-linearity are the electron tunneling
effect and the thermionic emission current through the barrier
created in the MIM region [8]. The procedure to obtain each
of those circuital elements is described in Appendix B. In
general, an increase in the contact force favors ruptures on
the film layer and increases also the contact area, bringing
R′

c to very low values, and bypassing the non-linear effects
of Gf , and therefore PIM is not observed on clean and tight
contacts. However, according to the equations collected in the
Appendices, the values and characteristics of the elements of
the contact model in Fig. 2 are defined by 22 parameters,
which will be listed in the next section, in order to investigate
which of those parameters are the main source of PIM in loose
electrical contacts.

Figure 2. Circuital model of an electric contact and simulation setup simulated
to evaluate the PIM produced by the contact.

In order to evaluate the PIM, the contact model is simulated
in a setup that simplifies a realistic use case. It comprises a
voltage source Vs with 0.45 V AC amplitude and frequency
f0= 900 MHz, in series with a resistance Rs = 2 Ω and the
contact model described above, as depicted in Fig. 2. The non-
linear resistance Gf is modeled through a voltage-dependent
current source which depends on its own voltage, with its
current given by a polynomial with maximum order N = 9
which approximates the V-I curve of the considered non-linear
effects according to

IGf (VGf ) =

N∑
n=1

pnV
n
Gf . (1)

The above setup is simulated in HSPICE, where the voltage
V and current I across the contact are obtained. Due to the
non-linear aspect of the circuit, the simulation is a transient
analysis adjusted to provide accurate frequency-domain data
by applying a fast-fourier transform (FFT) on the signal
waveforms with a Hamming window. The FFT is applied
only to the portion of the simulation corresponding to the
last 21 periods of the source Vs, to guarantee that the steady-
state has been reached and avoid spurious transitory data.
The procedure of setting and simulating the SPICE netlist to
obtain this PIM value for one instance of the input parameters
takes around 1.9 s. This work is mainly concerned with the
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third intermodulation harmonics at f = 3f0, i.e., V3f0 for
the voltage and I3f0 for the current. Hereafter, when a PIM
value is mentioned, it refers to the PIM power at this specific
frequency in dBm, which is computed according to

PIM = 10 log(ℜ
{
V3f0I

∗
3f0/2

}
) + 30. (2)

III. SENSITIVITY ANALYSIS

Sensitivity analysis is a technique that allows quantifying
the impact of each input parameter of a system on its output. It
describes how the variability of the output reacts to its combi-
nations of input parameters [22], and by doing this, it identifies
superfluous parameters that add unnecessary complexity to
the model but are not essential to explain the variability of
the output [22], [23]. Specifically, global sensitivity analysis
methods take into account the whole input domain, while
local approaches assess the impact of small perturbations
of the inputs around nominal values. The global sensitivity
techniques overcome the limitations of local methods, such
as assumptions of linearity and normality of the system [24].
Sobol’ indices are indeed one of the most advanced methods
for global sensitivity analysis adopted in many state of the
art papers and tools [22]–[27]. They are based on the idea of
defining the expansion of the system variance into a sum of
functions with inputs of increasing dimension [25]. First-order
Sobol’ indices Si express the share of the output variance
due to the i-th input. Interactions between parameters are
taken into account by higher order indices, which account
for combinations of the inputs. The total Sobol’ index ST,i

summarizes the contribution of the i-th parameter by summing
all the Sobol’ indices involving this parameter.

Each of these indices is traditionally evaluated through
a Monte Carlo simulation, thus making their extraction un-
practical with computationally expensive models or when
the number of input parameters is large [22]. In order to
efficiently compute the total Sobol’ indices, this work uses
Saltelli’s algorithm [26] implemented in the Python package
OpenTURNS [27]. However, a sensitivity analysis using the
contact model from Sec. II with 22 input parameters is
prohibitive. By considering that each Sobol’ index is estimated
through 100,000 PIM evaluations, 2,400,000 evaluations are
required to obtain the 22 first order and total Sobol’ indices
[26]. Such number of computations on the proposed circuital
SPICE model would require around 52 days. In order to speed
up the computation, a surrogate model is built following the
procedure described in the next section. This surrogate model
enables a fast PIM evaluation to compute the total Sobol’
indices, which provide the physical parameters with most
impact in the PIM generation within the defined interval of
variation.

The 22 parameters required to arrive at the contact model
are shown on Table I. They consider a contact between two
different metals, respectively metal 1 and metal 2, separated
by a film of oxide. The sensitivity analysis also requires the
definition of the range of variation of the input parameters
for which the sensitivity is investigated. Such range is also
indicated in Table I. Usually, contacts use highly conductive
material such as, e.g. brass, aluminum, steel, which are also

sometimes plated with nickel, gold, etc. Each material has
its mechanical (Young modulus, Poisson ratio) and electrical
properties (resistivity, work functions), as well as they might
produce a different barrier in the contact (the oxide layer which
they often form). All these parameters are inputs of our PIM
model, so variations in the material (expressed by changes in
its properties) will affect the PIM prediction. We are using
as range of variation for each of the material parameters, the
upper and lower bound among all the possible material com-
binations, in order to cover all the properties characterizing
common contact materials. A similar approach is used for the
other parameters. Profilometer rugosity measurements were
performed in a few samples of common contact surfaces, and
used to define the extremities of its variation intervals, while
the other parameters such as nominal area, force, temperature
were defined based on a specific contact design. The global
sensitivity analysis performed will quantify how much the
PIM is influenced by those parameters within these specified
intervals. But first, a surrogate model is needed in order to
speed up the PIM computation.

Table I
INPUT PARAMETERS FOR THE MODEL OF AN ELECTRIC CONTACT.

Par. Range Description
η

[
1×104, 5×104

]
[/mm2] Density of asperities in the surface

σ [0.1, 2.0] [µm] Standard deviation of rugosity profile
µ [−30, 30] [nm] Mean value of rugosity profile
Ra [20, 50] [µm] Mean radius of the surface asperities
F [0.1, 0.2] [N] Contact force
An 4± 10% [cm2] Nominal area
T [25, 40] [C] Contact temperature
ρf

[
1×103, 1×1012

]
[Ωm] Resistivity of the film

s [12, 60] [Å] Average film thickness
εf [8, 12] [−] Dielectric constant of film
φf [4.5, 5.2] [eV] Work function of film
α [1, 2] [−] Cracking effect parameter
Eg [2, 3] [eV] Band gap of film
ρ1 [0.017, 0.67] [mΩmm] Resistivity of metal 1
φ1 [4, 4.9] [eV] Work function of metal 1
E1 [65, 200] [GPa] Young modulus of metal 1
ν1 [0.3, 0.4] [−] Poisson ratio of metal 1
λ0 [0.4, 6.5] [−] Richardson constant correction
φ2 [4, 4.9] [eV] Work function of metal 2
ρ2 [0.017, 0.67] [mΩmm] Resistivity of metal 2
E2 [65, 200] [GPa] Young modulus of metal 2
ν2 [0.3, 0.4] [−] Poisson ratio of metal 2

IV. SURROGATE MODEL FOR FASTER PIM EVALUATION

As anticipated above, a sensitivity analysis using the full
theoretical-based circuital PIM model has a heavy compu-
tational cost. A surrogate model built from samples of the
full simulation setup provides a simple mathematical relation
between the input and output of the model from Sec. II,
thus speeding up the computations. But any surrogate model
requires data in order to be trained. In order to generate this
data, a total of 10,972 samples are drawn in a latin hypercube
sampling (LHS) of the input space from Table I, considering
an uniform distribution of the specified intervals, except for
ρf , which considered a log-uniform distribution to account for
the very large variation of its interval. The uniform distribution
accounts equally for any value in the interval, while the LHS
draw random samples that will be guaranteed to cover in a
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homogeneous way the input space [28]. For each of those
samples, the output PIM level is computed according to the
procedure described in Sec. II. The total simulation time for all
samples takes only 5.79 hours to be performed and its result
are shown in the histogram in Fig. 3.
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Figure 3. Distribution of PIM level from 10,972 samples.

The target surrogate model uses as input the vector x
containing the 22 parameters from Table I, and from this input
evaluates as output PIM ′(x), which is a prediction of the
PIM produced with the parameters x. The histogram of Fig. 3
shows that in most cases, the PIM level is below -140 dBm,
with most samples crammed between -150 and -135 dBm.
Such value is a noise limit of the simulation setup, where
the numerical error becomes larger than the simulated value.
On one hand, those values correspond to PIM levels that do
not pose EMC issues, and thus, the focus should be on the
remaining samples, where the PIM level is higher. On the
other hand, such effect can compromise the accuracy of the
surrogate model. Due to this fact, we define a threshold PIMt,
so that any PIM value below PIMt is said to be negligible, and
thus its exact value is not important. Considering this detail,
we follow the two-step approach [29] shown in Fig. 4 when
training a surrogate model to obtain an approximate output
PIM ′: initially, the training samples are distinguished between
having a relevant or irrelevant PIM values, by separating the
samples above and below a threshold PIMt with the binary
label PIMr. Then, a classification surrogate C(x) is trained for
PIMr, and only the samples classified as having a relevant
PIMr, i. e., larger than PIMt, are passed to a regression
model M(x). Such regression estimates an exact value for
PIM ′ for all the relevant PIM samples. For the remaining,
where the PIM is negligible, we set PIM ′ = PIMt. The block
highlighted in green illustrates a pre-processing of the training
data made in order to add to the original data its right PIMr

label. The block in red is the actual surrogate model, trained
with the data at the output of the previous block and used to
predict a PIM ′ value for any input x thereafter.

The 10,972 samples are split into 70% for a training data
set and 30% for a test data set. The input parameters are
preprocessed by scaling them to an uniform distribution in

Figure 4. Structure of the surrogate model built to estimate PIM ′.

the range from 0 to 1. Based in the histogram from Fig. 3,
we also define the threshold PIMt = − 135 dBm, which is
below most practical PIM limits [32], and is also able to
separate the samples crowding at the numerical simulation
limit. The labeled training data set is used to train a Support
Vector Machine (SVM) model z = C(x) ≈ PIMr for using
a RBF kernel [30], [31]. The SVM is specially adequate
for the classification task due to its property of seeking a
maximum margin separation hyperplane in the input parameter
space. Its detailed description, along with the formulation
of the technique used for the regression model M(x is out
of the scope of this paper, but they can be found in the
aforementioned references. Both techniques are implemented
and optimized on Python, with functions and structures from
the Scikit-learn and Scikit-optimization packages. Its hyper-
parameters are optimized via a Bayesian scheme with 3-
fold cross-validation and 15 optimization iterations [33]. The
training is done accounting that a false negative (i.e., a relevant
PIM sample is classified as irrelevant) has a cost 5 times
larger than a false positive (i.e., an irrelevant PIM sample
classified as relevant). The reasons for this choice are three:
1: the data is unbalanced, i.e., there are more samples with
irrelevant PIM , which would have a larger weight in the final
model otherwise; 2: we are more interested in the cases where
electronic systems can suffer interference, which are the cases
with a large PIM value; and 3: the false positives still have
their value evaluated by the regression model, where they can
be estimated accordingly and corrected. Then, the obtained
model is used to predict PIMr on the test data set. The
confusion matrix of those predictions is shown in Fig. 5. It
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shows a remarkable model accuracy when the full simulation
obtains a value where PIMr is true: out of those 61 samples,
58 were classified accordingly, an accuracy of around 95%.
However, the model predicts a large absolute number of false
positives: out of the 3,231 samples where PIMr is false, 55
were misclassified as a relevant PIM sample. Despite the
large number, it amounts to only 1.7% of the cases and these
missclassifications produced by the model are not an issue
because they still can have their right value predicted in the
regression phase.
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3 58

3176 55

Confusion matrix

Figure 5. Confusion matrix of the model for classification of relevant PIM
values applied to the validation data set.

Out of the original 10,972 samples, 330 are classified as
having a relevant PIM by the validated SVM model. Only
these samples are passed to the regression model y = M(x) ≈
PIM , and they are now split into 90% for a training data
set and 10% for a test data set. The test set is small due to
limited number of samples that arrive at this branch of the
model. Polynomial features up to degree 2 are added to the
input parameters in order to capture higher order interactions
between them, making a new input variable containing 276
dimensions. The training set is used to train a least-squares
support vector machine (LS-SVM) model with a RBF kernel
[31], where the hyperparameters are optimized using a 3-fold
cross-validation via a Bayesian scheme with 20 iterations.
Figure 6 shows the scatter plot of this LS-SVM model,
providing a comparison between its predictions and the results
of the full circuital simulation. It has a good performance in
approximating the value of the complete model considering the
large number of input parameters and high output variability,
having a R2 score equal to 0.73. The reported R2 score refers
only to the regression part of the model, i.e., the samples
classified by the classification part as the ones which have
PIM > PIMt. Hence, it does not represent the R2 score
of the whole model, since it is computed on a small subset.
Indeed, the results of the complete model will be given by
the combination of the left column of Fig. 5, where 99.9%
of the samples are classified correctly, plus the regression
model (with R2 score equal to 0.73) applied only to the right
column of Fig. 5. The R2 score concerns only such samples
that are classified as having a relevant PIM value (3.4% of the
samples in our test scenario). All samples with PIM < PIMt

have their value adjusted to PIMt. With this consideration, the
total R2 score of the surrogate model is equal to 0.82, which
can be considered an acceptable value for performing the
sensitivity analysis. As a further proof, the histogram in Fig.
7 provides a statistical validation of the proposed surrogate
model. Specifically, it compares the PDF of the PIM predicted
by the regression part of the proposed surrogate model with
the one computed from the circuital simulations (which are
used as reference). The plots highlight the capability of the
proposed model to accurately predict the actual behavior of the
PIM level. It is important to remark, that without this unusual
two-step procedure, it would have been impossible to achieve
the model accuracy reported in this work, as the very high
number of samples with -150 dBm< PIM <-135 dBm (more
than 95% of all samples) would force the model to produced
outputs in that range.
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Figure 6. Scatter plot of the PIM level with a comparison between the true
value and the LS-SVM model prediction for the samples with relevant PIM.
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Figure 7. Distribution of PIM level on the samples classified with PIM >
PIMt.
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V. SENSITIVITY ANALYSIS’ RESULTS

A. PIM Sensitivity with Respect to Input Parameters

The first order and total Sobol’ indexes described in Sec.
for all the 22 parameters III are predicted by means of the
surrogate model for PIM ′ shown in Fig. 4. By using this
surrogate model, the total time is reduced from 52 days to
5.92 minutes, with little loss of accuracy. Figure 8 shows
the magnitude of the Sobol’ indexes for all the inputs of our
model.

η σ µ
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f s
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ν
2

0.0

0.2

0.4

0.6

Sobol indices

1st order

Total order

Figure 8. Total Sobol’ indexes obtained for the input parameters and
variability in Table I.

All the first order Sobol’ indexes obtained in the analysis
had a negligible value. This fact means that the variation of a
single parameter within the indicated intervals is not able to
explain the observed PIM level variations, i.e., no parameter
is able to explain PIM production alone. However, the total
Sobol’ indexes indicate the total cumulative importance of
each parameter in the output. Among the 22 parameters con-
sidered in the analysis, with the variability interval employed
there, the total Sobol’ indices show that the PIM level behavior
is dominated by 5 parameters: the work function of the film;
the bandgap of the film; the work functions of the metals; and
the standard deviation of the surface roughness profile. All
other inputs present a small contribution to the PIM level in
the analyzed model, yet one should keep in mind that they
might be relevant if the conditions are changed (e.g., if Vs

has a larger value or if parameters have a more restrict range
of variation), and thus should not be completely discarded in
other models. Additionally, the four most relevant parameters
are related to the involved material, where the possible design
choices are limited by the available options, thus the designer
might need to act also on the other parameters to mitigate the
PIM.

Nonetheless, we are able to provide a general trend of
the PIM variation as function of those most important input
parameters, and this can be done by observing the distribution
of parameters that produced a PIM larger than PIMt. Those
distributions are shown in Fig. 9. Out of the original uniformly
distributed parameters, a relevant PIM level clearly tends to

appear mostly for small values of the metal work functions
φ1 and φ2, small values of the bandgap Eg , and high values
for the film work function φf and roughness profile standard
deviation σ. Although the nominal contact area did not appear
in the list of most relevant parameters of the analysis, it is
strongly influenced by σ. Such parameter is used to compute
the standard deviation of the height of asperity peaks σs and
strongly influences the true contact area Ac.
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Figure 9. Distribution of the input parameters that generated a PIM level
larger than PIMt.

B. Construction of Simplified Models from the Sensitivity
Analysis

We can exploit the sensitivity analysis of PIM carried
out in Sect. V-A in order to reduce the number of input
parameters required to predict PIM ′ [34]. The Sobol’ indices
in Fig. 8 show that most of the variance in the PIM is
explained by only 5 parameters: φ1, φ2, φf , Eg and σ. This
indicates that the energy barrier in the insulator is the main
responsible for the PIM production, together with σ, which
seems to be the parameter with most influence in the contact
area determination. Therefore, we propose to observe the PIM
production considering only such parameters as input. We
replace the classification model C(x) by a reduced model
Cr(xr), and the regression model M(x) by Mr(xr), which
are trained by taking as input only the reduced vector of
parameters xr = [φ1, φ2, φf , Eg, σ]

T . By following the same
procedure from Sec. IV, we can achieve a good surrogate
model which takes as input xr. The confusion matrix of
Cr(xr) is shown in Fig. 10, and the scatter plot of Mr(xr)
is shown in Fig. 11. These two figures show that a similar
accuracy performance can be obtained through the simplified
model, thus validating the results of the sensitivity analysis
via the Sobol’ indices. They also show that the most relevant
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parameters are able to predict the PIM in this system with
an acceptable accuracy, which could provide a more efficient
tool if other design characteristics of the PIM system would
be analyzed, e.g., the variability of some design target.
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Figure 10. Confusion matrix of the simplified model for classification of
relevant PIM values applied to the validation data set.
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Figure 11. Scatter plot of the PIM level with a comparison between the
true value and the LS-SVM simplified model prediction for the samples with
relevant PIM .

VI. CONCLUSION

The methodological application of current theory for the
modelling of electrical contacts allowed us to obtain a model
based on physical input parameters for the contact behavior.
The simulation of that model provides us the PIM level for
a certain combination of parameters. Our surrogate model
obtained from a few samples of the theoretical model provides
an accurate way to evaluate the PIM level without requiring
the estimation of the contact model and its simulation, and
thus it is much faster to evaluate: since a sensitivity analysis
via Sobol’ indices considering 22 parameters requires millions
of samples, such high number of simulations in the circuital
model would take around 52 days. In comparison, the trained
surrogate model can obtain those samples in only 5.92 minutes
(and up to 6 hours simulating the circuital model to generate

the training samples), enabling a sensitivity analysis of the
PIM with respect to all the input parameters.

The sensitivity analysis indicates that the most important
parameters for the PIM level are the work function of the
film, the bandgap of the film, the work functions of the
metals, and the standard deviation of the surface roughness
profile. A simplified model taking as input only these 5 most
relevant parameters provided a rough prediction of the PIM
level, validating the the sensitivity analysis. The above analysis
allows to identify a small set of physical parameters which
mostly affect the PIM. The obtained results can be used by
the EMC designer as a direction to be focused to minimize
the PIM level, when designing a problematic PIM contact. The
results of this work showed that a focus in material selection
and in the rugosity of the surface will have the most impact
in the PIM.

APPENDIX A
ANALYTICAL MODEL OF THE TRUE CONTACT AREA

Considering that the contact of the surfaces in Fig 1 is given
by elastic deformation, it is commonly treated through the
Greenwood-Williamson model. This statistical model depends
on the topography of the surface and the statistical distribution
of asperities [21], [35], [36]. Its theoretical details can be found
in the literature, but a practical implementation can start with
the computation of an equivalent Young’s modulus [5], [37]
E′:

E′ =

(
1− ν21
E1

+
1− ν22
E2

)−1

, (3)

where E1, E2, ν1 and ν2 are the Young’s modulus and Poisson
ratio of the two involved materials. Additionally, from the
the surface roughness profile, a roughness parameter β is
computed according to β = ησRa, where η is the density
of asperities, σ is the standard deviation of the roughness
profile and Ra is the mean radius of the surface asperities.
This parameter β is used to estimate the standard deviation of
the asperity heights σs through σs = σ

√
1− 3.717 · 10−4/β2

[5]. These are fundamental parameters to the Greenwood-
Williamson model. Another fundamental equation is the in-
tegral

Fn(x) =
1√
2π

∫ ∞

x

(t− x)ne−t2/2dt, (4)

which appears in different instances of the model with n =
0, 1 and 3/2 [37].

Based on the total load supported by the asperities F (in N),
we can estimate the distance d from the summit mean plane
to the contact point between the surfaces as the argument of

F3/2(d/σs) =
3F

4AnE′R
1/2
a σ

3/2
s η

. (5)

Having encountered d/σs, the number of contact spots Nc can
also be estimated as [5]

Nc = ηAnF0(d/σs). (6)

Another important parameter is the average deformation
distance of each microasperity l̄ [5], which is computed as
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l̄ = F1(d/σs). Finally, the contact area is estimated from the
previous parameters as [37]

Ac = AnπRaσsηl̄. (7)

Originally, the surface was covered with a thin oxide layer.
The cracking of this layer to form MM contacts is not fully
understood and modeled yet, although Vicente postulates an
expression to take into account such phenomenon [5] and split
Ac into MM and MIM contact areas, respectively AMM and
AMIM . Intuitively, the film is more likely to rupture when the
applied contact pressure is larger, and when the original film
was thinner [5]. Therefore, it was postulated that this effect is
modeled through

AMM = Ac

(
l̄/s

1 + l̄/s

)α

, (8)

where α > 0 is a tunable parameter that models how the MM
region grows with the increase of the force. Evidently, the
contact area plus the area of the NC region Anc compose the
apparent contact area according to

An = Ac +Anc = AMM +AMIM +Anc. (9)

APPENDIX B
COMPUTATION OF THE CIRCUITAL ELEMENTS OF THE

CONTACT MODEL

Regarding the circuit in (2), the void capacitor Cn in the
NC region is computed according to [14]

Cn =
ε0Anc

d
, (10)

where ε0 is the dielectric constant of the vacuum.
In the contact region, the constriction resistance R′

c is
computed according to [19], [20]

R′
c =

ρ1 + ρ2
4a

=
ρ1 + ρ2
4Nc

√
Ncπ

AMM
, (11)

where ρ1 and ρ2 are the resistivity of the two contacting
metals, η is an empirical coefficient of order unity and a is
the Holm’s radius, a radius that defines a fictitious circular
contact area where the current is constrained to flow through
uniformly [20], and that is based on the true contact area.
Similarly, the constriction resistance in the MIM region R′′

c

follows the same logic, but this time related to AMIM :

R′′
c =

ρ1 + ρ2
4Nc

√
Ncπ

AMIM
. (12)

In series to R′′
c , the film capacitance Cf and a film resistance

Rf are computed as

Cf =
εfε0AMIM

s
, (13)

and
Rf =

s ρf
AMIM

, (14)

where s is the average film thickness, εf is the dielectric
constant of the oxide film and ρf is the film resistivity.

In order to model the non-linear effects of Gf , let us
consider the generic case of two metallic electrodes, each with

its own work function φ1 and φ2, that are separated by a thin
film with electron affinity χ. This insulating film creates a
potential barrier that interrupts the flow of electrons, as shown
in Fig. 12. Electronic current can pass through this region if
they have enough thermal energy to surmount the potential
barrier and flow into the conduction band or if the barrier
is thin enough to be penetrated by the tunnel effect when a
voltage V is applied [38], [39]. The tunnel current density Jtn
is computed according to (15) [40], where s is given in Å,
∆φ = φ1 −φ2, φ̄ = (φ1 +φ2)/2 and χ can be approximated
based on the work function of the insulating film φf and its
band gap Eg through χ = φf − Eg/2.

On the other hand, the thermal emission current density Jth
through the same barrier depends also on the temperature T
(in K), and is modeled through [8]

Jth = A∗T 2 exp
(
− qφ̄

k0T

)
exp

(
1

k0T

√
q3V

4πεfε0s

) [
1− exp

(
− qV

k0T

)]
,

(16)

where the Boltzman constant k0 = 1324 eV/K, and A∗ is
the effective Richardson constant. The effective Richardson
constant can be represented as A∗ = λ0A0, where λ0 is
a material specific coefficient and A0 = 1.20173 ×106

A/(m2K2). It can also be estimated [41] from the effective
mass m∗ and charge qe of the electrons as

A∗ =
4πm∗k2qe

h3
. (17)

By making the correction factor that considers the effective
mass of the electrons λ0 = m∗/me, the effective Richardson
constant is computed and used in the estimation of Jth.

After computing Jtn and Jth, the non-linear current IGf is
given by

IGf = (Jtn + Jth)AMIM . (18)

Figure 12. Illustration of a rectangular barrier between two different metals.
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