
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A twofold model for VNF embedding and time-sensitive network flow scheduling / Bringhenti, Daniele; Valenza, Fulvio. -
In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 10:(2022), pp. 44384-44399.
[10.1109/ACCESS.2022.3169863]

Original

A twofold model for VNF embedding and time-sensitive network flow scheduling

Publisher:

Published
DOI:10.1109/ACCESS.2022.3169863

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2962049 since: 2022-07-04T09:03:34Z

IEEE

Received March 15, 2022, accepted April 20, 2022, date of publication April 22, 2022, date of current version April 29, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3169863

A Twofold Model for VNF Embedding and
Time-Sensitive Network Flow Scheduling
DANIELE BRINGHENTI , (Graduate Student Member, IEEE),
AND FULVIO VALENZA , (Member, IEEE)
Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Torino, Italy

Corresponding author: Daniele Bringhenti (daniele.bringhenti@polito.it)

ABSTRACT The revolution that Industrial Control Systems are undergoing is reshaping the traditional
network management and it is introducing new challenges. After the advent of network virtualization,
an enhanced level of automation has been required to cope with the safety-critical mission of industrial
systems and strict requirements for end-to-end latency. In the literature, there have been attempts to
automatically solve two strictly interconnected problems for the management of virtual industrial networks:
the Virtual Network Function embedding and the time-sensitive flow scheduling problems. However, dealing
with these problems separately can lead to unoptimized results, or in the worst case to situations where the
latency requirements cannot be satisfied because of a poorly chosen function embedding. In light of these
motivations, this paper proposes a formal approach to jointly solve the two problems through anOptimization
Satisfiability Modulo Theories formulation. This choice also allows combining two vital features: a formal
guarantee of the solution correctness and optimization targeting the minimization of the end-to-end delay for
flow scheduling. The feasibility of the proposed approach has been validated by implementing a prototype
framework and experimentally testing it on realistic use cases.

INDEX TERMS Network flow scheduling, time-sensitive SDN, VNF embedding.

I. INTRODUCTION
Nowadays, Industrial Control Systems (ICSs) are undergoing
a deep transformation of their communication infrastructures
towards increased connectivity of devices and extreme flexi-
bility of industrial plants. Examples where this transforma-
tion is evident are within the Industry 4.0 and Factory of
the Future (FoF) environments [1], [2]. Innovative industrial
applications are also exploiting benefits from Software-
Defined Networking (SDN) and Network Functions Virtu-
alization (NFV) [3], [4], two virtualization approaches that
determine a detachment from the traditional industrial net-
work design and the power to administer the entire network
environment from a centralized point. Specifically, there have
been several attempts to introduce SDN support for the
strict time requirements of Time-Sensitive Networking (TSN),
resulting in the Time-Sensitive Software-Defined Networking
(TSSDN) technology [5].

Two critical requirements emerge in a TSSDN envi-
ronment: high security and low end-to-end latency. About

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard P. Parr.

the former requirement, the number of cyberattacks driven
through the SDN-based industrial network infrastructure is
increasing, and they can exploit inadequate segregations
between different network environments [6]. Additionally,
cyberattacks are increasing when the corporate network is not
properly segregated from the industrial one, as well as when
it exposes industrial systems that are potentially vulnerable.
Maintaining industrial network systems safe is challenging
also due to their safety-critical mission inside the manufac-
turing process, and it cannot be managed manually anymore.
As the higher flexibility of TSSDN systems requires frequent
reconfiguration, an enhanced level of automation in the man-
agement of cybersecurity has become necessary [7]. Regard-
ing the latter requirement, TSSDN systems should regularly
make decisions, report data to a centralized collector, and
execute a remote command with a deterministic end-to-end
delay. If the operation is not completed in a specific timeslot,
the entire process may be invalidated [8]. The consequence
could vary depending on the industrial environment type.
In some environments, it can cause production line breaks and
only human assistance can restore the proper system func-
tioning. There are also safety-critical systems where issues

44384 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-3086-7364
https://orcid.org/0000-0002-8471-3029

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

in industrial systems communication could cause ecological
disasters or incidents that result in loss of life. Bringing
innovation inside these particular systems is very hard to
achieve. It is imperative to meet several requirements before
deploying solutions inside real ICSs.

Addressing these two requirements implies solving two
different problems. On the one hand, it is necessary to estab-
lish the deployment scheme of the Virtual Network Functions
(VNFs) composing the service, like firewalls or intrusion
detection systems, in such a way that the scheme proficiently
uses the resources of the physical network and ensures that
the traffic can safely reach the destination. This problem is
commonly known as the VNF embedding problem in the lit-
erature [9]. On the other hand, it is also essential to determine
the optimal scheduling of time-sensitive flows, i.e., packets
that cross a TSSDN-based network, so as to minimize their
end-to-end delay. Making improvements in terms of security
to the global network environment implies the introduction
of middleboxes that can analyze traffic, keep track of it and
possibly block flows considered malicious. The logic of the
blocks can vary depending on themiddleboxes referred to, but
they all have in common the introduction of non-negligible
latency for the time-sensitive flows.

Therefore, currently there is a high need to guarantee
real-time achievement requirements for networked hosts that
in a critical environment such as the industry remain of pri-
mary importance. Unfortunately, even though both the afore-
mentioned problems (i.e., VNF embedding and scheduling
of the time-sensitive flows) concur to this guarantee, they are
commonly challenged separately in the literature. The results
of applying two separate algorithms are thus sub-optimal,
as the computed embedding scheme may not be the most
suitable one to minimize the delay for time-sensitive flows.
Additionally, most of the related work about VNF embedding
overlooks common characteristics of TSSDN, so they cannot
be applied at all to this peculiar environment.

In light of these considerations, this paper proposes a novel
approach solving simultaneously and automatically the VNF
embedding and time-sensitive flow scheduling problems.
In doing so, it formalizes the problem with an Optimization
Satisfiability Modulo Theories (OptSMT) formulation, with
the aim of introducing two vital features for TSSDN: formal
verification and optimization. The former can guarantee that
the solution output by the proposed approach is effectively
correct, and is devoid of all the manual errors that human
users commonly produce. The latter is required for compli-
ance with the strict time constraints characterizing commu-
nications among ICSs. This approach represents a step ahead
in the literature related to TSSDN, as the following novelties
enhance it:
• By jointly automating two critical processes, i.e., VNF
embedding and flow scheduling, this approach improves
their effective results, because the two operations work
on the same network elements and strongly influence
each other. This aspect has high importance for the
management of TSSDN-based networks, because of the

specific requirements in terms of efficiency and latency
that have been previously illustrated.

• The OptSMT formulation avoids the application of an
a-posteriori formal verification technique, differently
from what commonly occurs in the literature, because
it pursues a so-called ‘‘correctness-by-construction’’
approachwhere the guarantee of the solution correctness
is automatically derived from the formal definition of
network and flow elements on the one hand, from the
problem constraints on the other one.

• The formal models not only formalize the interconnec-
tion among the functions composing the network topol-
ogy, but also take into account their behavior (e.g., the
filtering rules of firewalls). Therefore, the model com-
plexity is higher than the models of networks simply
composed of routers or switches. This feature is also
crucial for establishing a correct and optimal mapping
of VNFs onto the corresponding physical topology, as it
helps in establishing paths that allow the time-sensitive
flows crossing them, thus guaranteeing the effective
reachability among hosts.

The remainder of this paper is structured as follows.
Section II discusses related work, underlining the benefits
provided by the proposed approach, which simultaneously
solves the VNF embedding and time-sensitive flows schedul-
ing problems. Section III provides a high-level description
of the approach, aiming at explaining the main principles
behind its behavior. Section IV delves into the formalization
of the OptSMT problem that must be automatically solved.
Section V describes a prototype framework developed for
testing the formal approach, and it discusses its validation.
Finally, Section VI briefly draws conclusions and discusses
future work.

II. RELATED WORK
Two main literature areas pertain to the approach pro-
posed in this paper: VNF embedding (Subsection II-A) and
time-sensitive flow scheduling (Subsection II-B).

A. VNF EMBEDDING
The VNF embedding problem consists of mapping the
virtual functions composing a network and security ser-
vice to the candidate substrate resources, represented by
general-purpose commodity servers. Only if an embedding
plan where all virtual resources can be mapped is computed,
the entire virtual network is then embedded and substrate
resources are effectively employed. This problem has been
extensively analyzed for NFV-based networks in the liter-
ature, as shown in a recent survey [9]. Most of the past
work formulate the embedding problem using combinato-
rial approaches such as mathematical programming. In the
most relevant papers proposing an exact formulation of the
VNF embedding ([10]–[15]), integer programming or mixed
integer linear programming are the most commonly used
techniques to solve the problem, with the exception of [15]
where an SMT formulation is used. Other papers ([16]–[21])

VOLUME 10, 2022 44385

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

introduce heuristic algorithms to quicken the resolution of
the VNF embedding problem, and provide higher compliance
with the strict time requirements of virtual networks.

Nevertheless, all these works have limitations with respect
to the formal approach presented in this paper. On the one
hand, a formalization based on mathematical programming
commonly entails the definition of problems with a bigger
size than the OptSMT formulation, because it is limited
to arithmetic expressions over integer, binary, or real vari-
ables [22]. Even though preliminary studies existed on trans-
forming propositional calculus statements into mathematical
programs ([23], [24]), which would avoid the manual formu-
lation of those big problems, these studies acknowledged that
the transformation is impractical in most cases and did not
get significant traction in the literature. Besides, an OptSMT
formulation is richer because it is sustained by theories such
as bit-array and string ones, enabling higher fidelity for repre-
senting the network behavior and their incorporation into the
problem constraints. On the other hand, even though heuristic
algorithms may be faster than mathematical programming or
OptSMT formulations, they cannot provide formal assurance
for the correctness of the computed solution, and may out-
put suboptimal VNF embeddings with consequent excessive
resource consumption. Therefore, two main features charac-
terizing our approach, i.e., formal verification and optimiza-
tion, are commonly overlooked in those works.

Among the papers related to this literature area, [14],
[18], [19], and [20] are the only ones dealing with the min-
imization of latency when computing the VNF embedding.
However, not only they do not solve the time scheduling
problem for time-sensitive flows, but they also have other
shortcomings. [18] simply aims at minimizing the number
of deployed network functions, but it fails in investigat-
ing resource-constrained scenarios of the embedding prob-
lem. [19] and [14] address resource-constrained cases, but
they are limited to smart grids placement. [20] presents an
optimization algorithm for the VNF embedding problem over
a set of distributed substrate nodes taking into account the
maximum allowed end-to-end delay, but it considers each net-
work flow separately, without providing a full optimization at
graph level.

B. TIME-SENSITIVE FLOW SCHEDULING
Scheduling network communications under strict real-time
requirements is a problem that has been known in the liter-
ature for years. Few resource-constrained approaches were
already proposed for the transmission scheduling at the hosts
in multi-hop Ethernet-like networks [25], [26], and other ones
tried to combine the computation of the scheduling for both
transmissions and networking software tasks [27], [28]. How-
ever, all these initial approaches assume previous knowledge
of the routes crossed by the communications, instead of using
an appropriate algorithm to decide them in a way to optimize
the flow scheduling (e.g., our approach computes the route
with the minimum number of hops for each time-sensitive
flow).

A larger batch of studies ([29], [30] [31], [32] [33], [34])
extended their scope to TSSDN-based environments. Their
ideas aim at matching the propositions related to end-to-end
latency requirements that were the focus for two large organi-
zations in the world of networking: the IETF DetNets Work-
ing Group and the IEEE 802.1 Time-Sensitive Networking
Task Group. The milestone in this literature area is repre-
sented by [29], the first work to exploit the logical centraliza-
tion paradigm of SDN to compute a transmission schedule
for time-sensitive flows on a global view. Multiple integer
linear program formulations that solve the combined problem
of routing and flow scheduling are also presented for the first
time, and they were used as the foundation for future work.
Variations of that initial study, having more features and
higher efficiency, are [30], [32], and [34]. First, [30] adapts
the job-shop scheduling problem [35] to a nowait packet
scheduling problem for the offline calculation of schedules
for periodic time-sensitive flows, aiming at minimizing the
network delay and compacting the schedule length. They also
side this formulation with a heuristic optimization algorithm
based on the Tabu search meta-heuristic, thus allowing a
more efficient schedule computation. Second, [32] presents
an algorithm that reduces the time complexity in the schedule
computation while maintaining the quality of the schedul-
ing system. Third, [34] applies the Logic-Based Benders
Decomposition on the time-sensitive flow scheduling prob-
lem, as according to their experimentation a model based
on that logic exhibits better performance and significantly
increases the schedulability. Finally, some studies attempt to
solve corner cases of the scheduling problem. On the one
hand, [31] proposes alternative integer programming formu-
lations for managing the problem of incremental schedules,
so as to approximate the optimal solutions of the correspond-
ing static scheduling problem. On the other hand, [33] tries
to ensure that no frames are lost during network update,
and avoids the introduction of extra update overhead in the
scheduling computation. In doing so, it proposes an online
algorithm that consumes less time than a static one, even
though it has slightly decreased schedulability.

Even though the studies belonging to this batch try to
combine the routing and flow scheduling problems, they
overlook the VNF embedding problem. Our approach is
thus more feature-complete than the state of the art, both in
terms of optimization and formal verification, because it can
compute a solution that is globally optimal for both VNF
embedding and flow scheduling, and due to the correctness-
by-construction principle pursued through the OptSMT
formulation.

III. APPROACH
The proposed approach aims at two simultaneous objectives:
• solving the VNF embedding problem, by placing the
VNFs included in the topology of a virtual network
onto the general-purpose servers composing the sub-
strate physical infrastructure, so as to satisfy the resource
consumption constraints;

44386 VOLUME 10, 2022

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

• solving a critical problem for TSSDN networks, i.e., the
flow scheduling, by establishing the optimal scheduling
of time-sensitive network flows which minimizes the
end-to-end delay without exceeding a threshold of max-
imum acceptable latency.

Multiple benefits derive from solving these two problems
simultaneously. A first one consists in determining a VNF
embedding scheme where also the time-sensitive flows are
directlymapped, avoiding inconsistencies between the virtual
paths and the physical paths that the flows effectively cross
depending on their scheduling. A second one is that common
errors due to the application of two separate algorithms for
solving the two problems are avoided, because a solution is
effectively reached only if it satisfies the requirements of both
the problems. Then, a third benefit is that it is less problematic
to introduce critical features for TSSDN environments such
as formal verification and optimization. These characteristics
are commonly counterbalanced by a higher time required
for computing the problems to which they are associated.
However, in this proposal, time is saved by combining two
problems into a single one, so adding formal verification and
optimization is feasible.

The inputs required by the approach, which the net-
work operator can specify, consist in the description of
the virtual and physical network topologies, and the dec-
laration of the time-sensitive flows that should cross them
(Subsection III-A). This information is employed to build
an optimization problem, called OptSMT problem, aim-
ing at reaching the two proposed objectives, i.e., mini-
mization of resource consumption and end-to-end delay
(Subsection III-B). At that point, an automated OptSMT
solver outputs both the VNF mapping onto the physical
infrastructure and the scheduling of the time-sensitive flows
(Subsection III-C).

A. INPUTS OF THE APPROACH
The inputs required by the approach are: 1) the description
of the topologies for the virtual and physical networks; 2) the
specification of the time-sensitive flows.

1) VIRTUAL AND PHYSICAL TOPOLOGIES
The virtual network topology represents the logical intercon-
nection of the VNFs, aiming at providing a complete end-
to-end service. In the latest years, the idea of network devices
seen as devices built to perform a specific function has been
progressively abandoned. Thanks to the virtualization layer
provided by the ETSI framework for the NFV environment,
it is possible to define a series of functions that can then
be deployed on one device rather than another in a com-
pletely transparent way. Various network reconfigurations,
also depending on the general environment state, aremanaged
by an orchestrator software. This element is also in charge of
deploying the VNFs on a physical substrate that consists of
general-purpose servers.

The entities involved in the virtual and physical topologies
are different. In general, within the virtual graph VNFs act as

middleboxes, depending on their configuration. Middleboxes
are devices that perform an active function when forward-
ing packets within the network infrastructure. Examples of
middlebox are firewalls, proxies, DPIs, NATs. The task of
the network operator is to specify the configuration of these
devices and then define the role they must play within the
infrastructure in question. For example, an operator maywant
to define the firewall configuration, defining access lists that
allow the transit of only one type of traffic. NAT configu-
ration in the network peripheral areas may also be handled
for publications and traffic management to the external net-
work. An example of virtual network topology is depicted in
FIGURE 1, where the network operator defines the role that
theVNFs play. For example, ENDHOSTA and ENDHOSTB
can be two client devices in an industrial network that need to
exchange information with ENDHOST C and ENDHOST D,
which instead act as servers. VNF1, VNF2, VNF4 and VNF5
can play the role of a firewall, filtering out not allowed traffic
while VNF3 can be a DPI, analyzing the traffic to prevent
possible attacks.

FIGURE 1. Virtual network example.

FIGURE 2. Physical network example.

Instead, the entities involved in the physical infrastructure
are straightforward general-purpose servers. The network
operator defines the characteristics in terms of available
resources and therefore quantity of RAM, CPU power, stor-
age and connections with other hosts. It should be noted
that both the processing operations of the packet on each
host and each physical connection among the various hosts
influence the forwarding of the network packets, introducing
a latency that is not always acceptable. In FIGURE 2 there is
an example of a physical topology that can be exploited as a
substrate for the virtual topology represented in FIGURE 1.
When defining the physical topology, it is necessary to spec-
ify the physical resources available for each physical host.

VOLUME 10, 2022 44387

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

These parameters are then taken into account during the
embedding operations of the VNFs. Physical resources must
not be saturated to ensure the correct behavior of the network
and the correct management of all the flows.

2) TIME-SENSITIVE FLOWS
The network operator specifies the time-sensitive flows while
using the virtual topology as a reference. For example, the
network operator may want to put two machines in commu-
nication, but the flow must be processed through particular
network functions. It could be required to keep track of the
flow or verify that legal operations are performed during data
exchange between the devices involved in that flow. In an
environment like the industrial one, it is essential because
of the criticality of the devices involved. Having a virtual
abstraction of what happens inside the network can signifi-
cantly help the network operator.

FIGURE 3. Virtual flows definition example.

Concerning the example illustrated in FIGURE 1, let us
suppose to specify two time-sensitive flows, so with the need
to be handled providing them guarantees about end-to-end
latency communication. For the flow from ENDHOST A
to ENDHOST C, packets must be processed by VNF1 and
VNF4 before reaching their destination. Instead, for the flow
from ENDHOST B to ENDHOST D, they must cross VNF2
and VNF5. These paths, graphically depicted in FIGURE 3,
must be taken into account when mapping the virtual topol-
ogy onto the physical infrastructure.

B. OPTSMT PROBLEM
The approach uses the inputs specified by the network oper-
ator to build an OptSMT (Optimization Satisfiability Mod-
ulo Theories) problem. This formulation is characterized
by two types of clauses: hard constraints and optimization
constraints. The first ones must always be satisfied in order
to achieve a correct solution, and therefore they represent
elements such as the connections among VNFs or physical
hosts and the time-sensitive flow paths. The second ones are
assignments that require minimizing an objective function,
e.g., minimization of resource consumption or end-to-end
delay. However, the biggerminimization is achieved compati-
bly with the satisfaction of the hard constraints. If an objective
function could be further minimized by not satisfying a hard
constraint, this solution would be forbidden and would not be
produced as output.

Formulating the problem as OptSMT enables the intro-
duction of formal verification and optimization. On the one
hand, an OptSMT formulation lays its foundation on the
correctness-by-construction principle. The produced solution
is already correct without applying a-posteriori formal verifi-
cation techniques because it is derived from formally defined
hard constraints. On the other hand, the optimization con-
straints allow reaching the best solution among the ones that
would only satisfy the hard constraints.

A detailed description of all the hard and optimization con-
straints composing the OptSMT problem will be presented in
Section IV.

C. OUTPUTS OF THE APPROACH
An automated solver is fed with the formulated OptSMT
problem and simultaneously produces two outputs: 1) the
VNF mapping onto the topology of the substrate physical
infrastructure; 2) the scheduling of the time-sensitive flows.

1) VNF MAPPING ONTO THE PHYSICAL NETWORK
For each pair of virtual and physical topologies, there are
several possibilities for deploying VNFs on the physical sub-
strate. All the various possibilities are taken into account by
the solver, which at the end chooses the best VNF positioning
that can ensure the correct management of time-sensitive
flows declared by the user in the shortest possible time,
and while satisfying the resource consumption constraints.
FIGURE 4 shows a possible deployment example of VNFs
declared in virtual topology of FIGURE 1 onto the sub-
strate physical infrastructure of FIGURE 2, according to the
requirements for the VNFs to properly operate and physical
resources available on the substrate network.

FIGURE 4. Deployment example.

Not only the VNFs, but also the time-sensitive flows
that are declared in the virtual network topology must be
mapped to the corresponding flows in physical topology.
In fact, a goal of the proposed approach is to find an optimal
positioning of the VNFs that can satisfy the user-defined
requirements on the virtual topology, scheduling transmis-
sion over time. Resuming the deployment scheme example
shown in FIGURE 4, the flows can be mapped as depicted in
FIGURE 5. In this mapping, many overlappings between the
flows must be managed to avoid the creation of queues in the
network.

44388 VOLUME 10, 2022

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

FIGURE 5. Physical flow mapping example.

2) SCHEDULING OF THE TIME-SENSITIVE FLOWS
The second component of the output is the scheduling
of the time-sensitive flows that minimizes the end-to-end
delay. Two factors must be taken into account for the delay
estimation:
• VNF execution: the execution of a VNF on a given
network flow takes some time. Assuming that queuing
and overloads cannot occur since the objective is to
schedule packet transmission to avoid these phenomena,
it is possible to calculate the delay introduced by a VNF
for a given flow in a deterministic manner. Instant by
instant, all the resources are allocated to the VNF that
must be executed. Using the DPDK technology, it is
possible to bypass the kernel and work closely with the
hardware [36]. Therefore, it is possible to perform tests
that provide us in a deterministic way the time needed to
perform the processing of anMTU-sized packet through
the VNF, also considering the device’s configuration.
Some firewall implementations, for example, have a
processing time that depends on the number of access
lists declared in their configuration. It is necessary to
have this information to calculate the introduced delay
in a deterministic manner.

• Physical Link Crossing: crossing a physical link intro-
duces a delay proportional to the characteristics of the
medium crossed. It is advisable to use reliable transmis-
sion media in critical communications, possibly redun-
dant to tolerate any faults.

On the basis of these considerations, it is possible to define
some configuration parameters regarding the scheduling of
transmissions in the network. In particular:
• Single timeslot length: this can be intended as the short-
est time scheduling unit. It must be long enough to
handle the flow element that takes the most time to run
inside the network.

• Base period length: this is determined by the number
of timeslots needed to manage the flows within the
network.

As shown in FIGURE 6, transmission timeslots are allo-
cated inside a base period that is repeated over time. Since
these two parameters have been defined, it is possible to
start estimating the maximum and average latency for each
time-sensitive network flow verifying that all constraints

FIGURE 6. TSSDN timeslots partitioning.

TABLE 1. Timeslot allocation example.

defined by a network operator are satisfied. Concerning the
example shown in FIGURE 5, supposing that the timeslots
have been sized to host the VNF or physical link that takes
the most time in the declared network environment, a possi-
ble scheduling that minimizes the number of used timeslots
maximizing the number of time-sensitive flows handled could
be the one shown in TABLE 1.

The table shows how the AC flow starts to be managed
at the T1 timeslot of each base period and ends at the T7
timeslot, while the BD flow management, even when it starts
at the same time as the AC flow, ends at T8 timeslot. Note that
if an AC flow packet is ready to be sent to the T2 timeslot,
it will have to wait for the T1 timeslot of the next base period
to be managed by the network, to be then delivered to the
T7 timeslot. The same applies to the BD flow, but in return,
there is the guarantee of having a deterministic network
behavior.

IV. OPTSMT PROBLEM FORMULATION
The OptSMT problem is formulated by combining the
following classes of clauses, built on the formal models
defined for network topologies and time-sensitive flows
(Subsection IV-A):

1) hard constraints expressing the resource consumption
limitations which restrain the embedding of the VNFs
onto the general-purpose servers of the substrate infras-
tructure (Subsection IV-B);

2) hard constraints determining the time scheduling of the
flows, taking into account the crossed virtual paths,
their mapping onto the physical ones, the possible flow
ordering, their overlappings and the maximum accept-
able latency (Subsection IV-C);

VOLUME 10, 2022 44389

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

TABLE 2. Models for networks and time-sensitive flows.

3) optimization constraints for finding an optimal
VNF embedding and flow scheduling solution
(Subsection IV-D).

A. MODELS FOR NETWORKS AND TIME-SENSITIVE
FLOWS
The formal models listed in TABLE 2 represent the computer
networks and the time-sensitive flows for which the OptSMT
problem is solved. The notation will be used for the definition
of the hard and soft constraints.

According to this formalization, both the physical and the
virtual environments are modeled as unidirectional graphs.
The set of vertices in physical topology comprises hosts
capable of hosting VNFs or fixed endpoints. In the virtual
topology, the set of vertices is instead represented only by
VNFs. Attribute sets contain additional information about
the elements defined in the physical or virtual topology.
For example, in the case of physical hosts, two valuable
attributes for the VNF embedding are the storage and CPU
power. Instead, concerning physical connections, an impor-
tant parameter for the links is latency. The time-sensitive
flows set is built on the network operator requests during
real-time properties formulation. Each flow is associated with
a constraint in terms of maximum acceptable latency for end-
to-end flow management.

B. VNF EMBEDDING CONSTRAINTS
The function that maps a VNF to a host of the physical
substrate is formalized as:

Mv(vv) = vs (1)

The meaning of this function is that a vertex of the Service
Graph should be mapped on a vertex of the substrate topology
available.

Since there are two vertex types in the virtual topology,
the Mv function has two declinations. The first one refers to
endpoint mapping:

Me(ev) = es (2)

A virtual endpoint has a reserved host in the substrate graph,
so mapping function is very simple since it is fixed.

The second one refers to VNF mapping:

Mn(nv) = hs (3)

This mapping function must satisfy a higher number of con-
straints. VNFs deployed on one single host, in fact, share the

same physical resources (e.g., the same RAM capabilities).
Since all physical resources are allocated to the management
of one flow element in every instant, CPU consumption
by other VNFs executed on the same physical host is not
considered. However, it is important to guarantee that there
is enough CPU power to meet single VNF requirements.
Therefore, given the following elements:
• |N v

|, |H s
| as N v/H s set cardinality;

• memory(i), a function that returns the VNF memory for
element i;

• core(i), a function that returns the CPU core number for
element i;

• type(i), a function that returns the VNF type for
element i;

• supported_types(i), a function that returns the set of
supported VNF types by element i;

• max_vnf (i), a function that returns the maximum num-
ber of VNF that could be deployed on the i-th host;

• nihj, a Boolean variable that is true when the i-th VNF
is deployed on j-th host;

• hi, a Boolean variable that is true when the i-th physical
host is used;

• int(x) (where x is a Boolean variable), a function that
transforms true/false Boolean statement in 0/1 arithmeti-
cal number;

the following hard constraints, regarding physical host
resources type and consumption, must be included in the
formulation of the MaxSMT problem.
• RAM usage: each VNF requires a certain amount of
available RAM to be executed properly, i.e., the required
VNFs memory of nodes deployed on a physical host
must be lower that RAM host capability.

∀hj∈H s,

|N v
|∑

i=0

(memory(i)×int(nihj))≤ (memory(j))×hj

(4)

• CPU power consumption: each VNF requires a certain
CPU power, measurable in core number, to be executed.

∀ni∈N v,∀hj∈H s, (core(i)×int(nihj))≤ (core(j))×hj
(5)

• Maximum VNFs capability: the number of VNFs
deployed on a physical host must be lower than a specific
threshold.

∀ni ∈ H s,

|N v
|∑

j=0

int(njhi) ≤ max_vnf (i)× hi (6)

• Supported VNF functional type: a physical host can
host only VNFs of the supported types.

∀ni∈N v,∀hj∈H s, nihj⇒ type(i)∈supported_types(j)

(7)

Furthermore, two additional constraints must be accounted
to perform a reliable embedding.

44390 VOLUME 10, 2022

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

• Single VNF deployment: a VNF must be deployed on
one single host exactly.

∀ni ∈ N v,

|H s
|∑

j=0

nihj = 1 (8)

Thanks to this constraint, all VNFs are guaranteed to be
deployed on available physical hosts at least once and,
at the same time, multiple deployments of the sameVNF
are not considered.

• VNF deployment implication on physical host state:
if a VNF is deployed on a physical host, this host must
be put on active state.

∀hj ∈ H s, hj ⇒
|N v
|∨

i=0

nihj (9)

C. FLOW SCHEDULING CONSTRAINTS
Flow scheduling constraints are responsible for the schedul-
ing of time-sensitive network flows. The first operation to
be managed is to find all the possible flows in the physical
topology onto which the virtual flows that are declared by
the user can be mapped. The network operator defines the
flow by specifying the source, the destination, the reference
service graph and a number of timeslots. This last speci-
fication represents the maximum latency that the network
operator is willing to accept for the management of that flow.
The algorithms and constraints related to this operation are
explained in the following.

FIGURE 7. Virtual flow example.

1) VIRTUAL PATH COMPUTATION
Before the formulation of the flow scheduling constraints,
a preliminary algorithm that is applied is the generation of
the virtual paths. For each pair composed of a source node
and a destination node, the shortest virtual path is identi-
fied by considering the number and configuration of the
crossed VNFs. For instance, let us consider the example
shown in FIGURE 7. A firewall rule blocks the flow that
starts from host 10.0.0.1 and ends to host 10.0.1.1. Instead,
host 10.0.1.1 is reachable through a proxy device. So the path
between 10.0.0.1 and 10.0.1.1 is the best available one in
terms of number of VNFs crossed. Besides, if another path
between 10.0.0.1 and 10.0.1.1 were available but it included
more VNFs in its path, the smallest one would still be the one
that has been considered.

Algorithm 1 Virtual Flow Generation.
1: procedure VirtualFlowGeneration(source, destination)
2: COMPUTE all possible flows between source and

destination
3: for flow in just computed flows do
4: if reachability betweeen source and destination is

guaranteed then
5: STORE flow in the nominated flows
6: SELECT the shortest flow between the nominated

ones
7: return

Algorithm 1 formalizes how the best existing path between
source and destination is computed. In order to obtain the best
solution, all possible flows between source and destination
should be discussed, if existing flows are more than one.
In this way, overlapping flows can be avoided, as they should
be otherwise managed carefully in the scheduling phase.

2) FLOW MAPPING CONSTRAINTS
Next, all possible mappings of a virtual flow onto the paths of
the physical topology must be considered. For each possible
mapping, a constraint is included in the OptSMT problem.
This class of hard constraints is crucial for the problem
formalization, because it represents the link between virtual
and physical layers.

FIGURE 8. Physical topology example.

FIGURE 9. H1 deployment scenario.

For instance, taking as a reference the virtual topology
depicted in FIGURE 7 and the physical topology depicted in
FIGURE 8, there are four deployment possibilities: 1) both
Firewall VNF and Proxy VNF are deployed on H1; 2) Fire-
wall VNF is deployed in H1, Proxy VNF in H2; Proxy VNF is
deployed in H1, Firewall VNF in H2; 4) both Firewall VNF
and Proxy VNF are deployed on H2. For each deployment
configuration and for each flow element, there must be a hard
constraint composing the OptSMT problem.

VOLUME 10, 2022 44391

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

For instance, considering scenario where both VNFs are
deployed in H1 (FIGURE 9), naming Firewall VNF as n1,
Proxy VNF as n2, flow from 10.0.0.1 to 10.0.1.1 as f1, three
constraints must be created, i.e., one for each node (f11, f12,
f13) of the path crossed by flow f1:

n1h1 ∧ n2h1 ⇒ f11 ≡ 10.0.0.1→ H1

n1h1 ∧ n2h1 ⇒ f12 ≡ Proxy Execution

n1h1 ∧ n2h1 ⇒ f13 ≡ H1→ 10.0.1.1

All possible deployment scenarios must be contemplated
for each flow. Taking this into account, Algorithm 2 concisely
describes how the flowmapping constraints are generated for
each flow.

Algorithm 2 Flow Mapping Constraints Generation
Procedure.
1: procedure Constraints generation(. . .)
2: for Flow declared as i do
3: FIND all possible physical flow mapping
4: for physical flow mapping as j do
5: COMPUTE needed embedding condition as
cond

6: for Flow element as k do
7: GENERATE constraint cond ⇒ k ≡ j(n)
F n is an index

8: PUSH generated constraint

The constraints output by this algorithm can be represented
with a formula. Given:
• a time-sensitive flow f ∈ F ins, where notation fi denotes
the i-th time-sensitive flow element;

• a set P where each element p ∈ P represents a possible
physical flow mapping;

• a function cond(x), where x is a physical flow corre-
sponding to the time-sensitive one, returning the embed-
ding condition that must be satisfied to have the x
mapping;

• a function length(x), where x is a flow, returning the flow
length in terms of flow element number;

the hard constraints for flow mapping are represented as
follows:

∀p ∈ P,∀i ≥ 0 ∧ i < length(p), cond(p)⇒ fi ≡ pi (10)

3) FLOW ORDER CONSTRAINTS
To ensure that the flow scheduling operations do not alter the
flow order previously calculated, adding another constraint
regarding the beginning and the end of a single flow element
is necessary. Three functions, operating on flow elements,
are introduced to handle flow scheduling operations. Given a
time-sensitive flow f ∈ F ins and the i-th time-sensitive flow
element fi:
• start(fi) returns the first timeslot from which the flow
element fi starts to be processed;

• end(fi) returns the last timeslot from which the flow
element fi ends to be processed;

• duration(fi) returns the number of timeslots required by
the flow element fi to be processed.

FIGURE 10. Time-sensitive flow elements.

For instance, for a time-sensitive flow as the one depicted
in FIGURE 10, where each block represents a single flow
element, the scheduling order must ensure the following
conditions:
• F1 must be handled before F2, F3 and F4;
• F2 must be handled after F1, but before F3 and F4;
• F3 must be handled after F1 and F2, but before F4;
• F4 must be handled after F1, F2 and F3.
Algorithm 3 describes how the procedure for the genera-

tion of the flow order constraints is structured.

Algorithm 3 Order Constraints Generation Procedure.
1: procedure OrderConstraintsGeneration(flow)
2: for i← 0 to length(flow) do
3: for j← 0 to length(flow) do
4: if fi precedes fj then
5: start(fi)+ duration(fi) ≤ start(fj)

The constraints output by this procedure are expressed as:

∀f ∈ F ins,∀i ≥ 0 ∧ i < length(f),∀j ≥ 0 ∧ j < length(f),

∀i < j, start(fi)+ duration(fi) ≤ start(fj) (11)

4) FLOW ELEMENT OVERLAPPING CONSTRAINTS
Another class of constraints to be considered concerns the
management of a flow scheduling that requires the same
physical resources to be processed. A primary objective
is to avoid queues in network devices to provide guar-
antees regarding the maximum end-to-end delay between
two or more hosts in the network. Therefore, the same
physical resources cannot handle multiple flow elements
simultaneously.

For instance, considering the case depicted in FIGURE 11,
the two illustrated flows can be scheduled simultaneously
since the physical resources involved, physical links and hosts
on which the VNFs are deployed, are different. Therefore,
it is possible to save considerably on the number of timeslots
globally used for the management of declared flows. How-
ever, this is not always feasible. It depends on the source and
destination host locations and the configuration of intermedi-
ate devices. In fact, considering instead the case depicted in
FIGURE 12, VNF2 andVNF3 execution cannot be scheduled
in the same timeslot since they require the same physical
resources to be used. In this case, it must be guaranteed that:

start(VNF2) ≥ end(VNF3) ∨ end(VNF2) ≤ start(VNF3)

44392 VOLUME 10, 2022

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

FIGURE 11. Non-overlapping flows example.

FIGURE 12. Overlapping flows example.

This statement must be verified for each flow pair that
shares the same physical resources. The constraints for check-
ing this statement are produced with the procedure described
by Algorithm 4.

Algorithm 4Overlapping Constraints Generation Procedure.
procedure OverlappingConstraintsGeneration(flows)

for each flow fi in flows data structure do
for each flow fj in flows data structure, different

from fi do
for each fim flow element do

for each fjn flow element do
if fim and fjn are deployed on the same

resource then
GENERATE constraint
PUSH constraint

The output constraints take into account also the relative
timeslot allocation of different flow elements. For instance,
supposing to have two different flow elements A and B
belonging to two different flows deployed on the same physi-
cal resource, the only allowed relative allocation of these flow
elements would be the one depicted in FIGURE 13.

FIGURE 13. Flow element relationships example.

Namely, the only allowed relative allocation could be
expressed with the following notation:

end(A) ≤ start(B) ∨ start(A) ≥ end(B)

The formalization of the constraints output by Algorithm 4
requires the introduction of a new function. Given a flow ele-
ment x, deployedOn(x) returns the physical resource where
the flow element x is mapped on. Thanks to this function, the
flow element overlapping constraints are formalized as:

∀x ∈ F ins,∀y ∈ F ins, x 6= y,

∀m ≥ 0 ∧ m < length(x),∀n ≥ 0 ∧ n < length(y),

deployedOn(xm) == deployedOn(yn)⇒

start(xm) ≥ end(yn) ∨ end(xm) ≤ start(yn) (12)

5) TOTAL TIMESLOT NUMBER VARIABLE CONSTRAINTS
A variable, named makespan, is introduced in the model to
represent the total number of timeslots defined within the
network environment for the management of all the time-
sensitive flows. The usage of this variable has been made
necessary because it is impossible to know in advance how
many timeslots are necessary for the management of the
flows. Some constraints must be defined over this variable.

First, the makespan variable must be limited between zero
and the maximum number of timeslots needed to handle all
time-sensitive flows declared in the network environment.
In the worst case, this number can be computed as the
algebraic sum of each single flow length. Two functions are
required for the formulation of this constraint:
• map(x), which returns the set of flows in the physical
topology onto which the virtual flow x can be mapped;

• max(x), which returns the longest path among the flows
in set x.

By using these functions, the first constraint, which imposes
a limit on the possible values for the makespan variable,
is expressed as:

makespan ≥ 0 ∧ makespan ≤
∑
f ∈F ins

max(map(f)) (13)

Then, other two constraints must be formulated, and for
them the last(x) function is required, so as to return the last
flow element of flow x. These two constraints are expressed
as:∑

int(
∨
f ∈F ins

(makespan, end(last(x)))) ≡ 1 (14)

VOLUME 10, 2022 44393

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

∀f ∈ F ins,makespan ≥ end(last(f)) (15)

Constraint (14) states that the makespan variable must be
equal at least to the end of one flow in the physical topology,
whereas constraint (15) states that the makespan variable
must be greater or equal then the end timeslot of the last flow
element for each flow.

Finally, constraints that limit the values returned by func-
tions start(x) and end(x), where x is a flow element, are
modeled as follows:

∀f ∈ F ins,∀i ≥ 0 ∧ i < length(f),

start(fi) ≥ 0 ∧ start(fi) ≤ makespan,

end(fi) ≥ 0 ∧ end(fi) ≤ makespan,

start(fi) < end(fi) (16)

FIGURE 14. Max latency computation.

6) MAXIMUM ACCEPTABLE LATENCY CONSTRAINTS
A constraint must also be included in the OptSMT formula-
tion regarding themaximum latency that the network operator
is willing to have for the management of that specific time-
sensitive flow. When declaring the time-sensitive flow, the
operator can define this parameter, taking into account the
duration of the timeslot that has been defined within that
particular network. Alternatively, it can be computed with the
following formula, where tslen is the timeslot length defined
by the network operator:

ceei = tslen × (makespan+ start(fi)− endfi) (17)

The maximum end-to-end delay thus computed for the
i-th flow is included in the C ins set.

Computing the delay as shown in (17) is helpful to manage
the worst cases. For instance, considering the case depicted
in FIGURE 14, a new packet transmission request arrives a
few moments after the beginning of the first flow element
handling. So, the packet has to wait a number of timeslots
equal to makespan until it starts to be handled. Then the
packet will be delivered to the destinationwhen flow handling
finishes.

At this point, the maximum acceptable latency constraints
can be computed. Given the set of time-sensitive flow F ins,
the set of constraints C ins related to the maximum acceptable
latency for the flows, a function constraint(f) returning the
constraint c ∈ C ins in terms of the maximum number of
timeslots acceptable for flow f ∈ F ins, the following con-
straint are included in the problem formulation:

∀f ∈ F ins,makespan+ end(f)− start(f) ≤ constraint(f)

(18)

D. OBJECTIVE FUNCTION
The declaration of the objective function represents the essen-
tial element for the formulation of the OptSMT problem.
Specifically, the objective of the proposed approach is to find
an optimal VNF embedding and flow scheduling solution
able to minimize the end-to-end latency of the managed
flows. For this reason, it was decided to include as an objec-
tive function the minimization of the end-to-end latency for
each flow:

∀f ∈ F ins,min(makespan+ end(f)− start(f)) (19)

Besides the assurance that the flows will be managed in
time according to the user-defined constraints, our approach
attempts to minimize the end-to-end delay as much as pos-
sible, thanks to the definition of this objective function. If a
solution is not found, that means it is impossible to find a
VNF embedding and flow scheduling solution that addresses
all constraints beforehand presented.

V. IMPLEMENTATION AND VALIDATION
This section describes how the proposed approach has been
implementedwith a prototype framework, and it discusses the
validation.

A. IMPLEMENTATION
FIGURE 15 highlights the main elements composing the
framework implementation, and it shows how it interacts
with human users and other existing tools. The framework
was developed in Java, and it requires a document written in
XML (eXtensible Markup Language) format as input. The
produced output provides information about the outcome of
the work produced by the framework, i.e., it informs the user
if a correct solution has been found for the VNF embedding
and flow mapping problems. In the positive case, it provides
the user with an indication of the optimal positioning of the
VNFs on the available physical substrate and the optimal
scheduling of the time-sensitive flows in the network. The
goal is to find an optimal solution for VNF embedding on
the physical substrate that uses the least possible number of
timeslots to manage all the time-sensitive flows defined by
the user.

The framework interacts with a series of already available
tools:

1) Microsoft Z3 Solver, a theorem prover provided by
Microsoft Research;

44394 VOLUME 10, 2022

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

FIGURE 15. Framework design overview.

2) Neo4J Graph Database, a database to store graph
information;

3) Java Jersey RESTful Web Services Framework,
a framework that provides libraries to easily develop
a Web Service.

Microsoft Z3 Solver is a tool that allows verifying the satis-
fiability of a set of logical formulas regarding a given formal
theory. Z3 is a low-level tool. The optimization and search
algorithms developed by Microsoft are accessible through
a high-level interface, convenient to be used by a program-
mer. Different programming languages are supported by the
tool. The most common and updated ones supported are
C++, Python and Java. Classes that support a large variety
of operations are displayed, depending on the needs of the
programmer. Z3, therefore, allows verifying if a set of logical
and mathematical conditions is respected.
Neo4J Graph Database allows easily schematizing the

mapping between the physical substrate and the virtual ser-
vice graphs. The interaction with Neo4j can occur in two
ways:
• Cypher Query Language is a graph query language
built to interact with the graph database efficiently.
It is a SQL-inspired language that allows performing
CRUD operations on graph databases. It is suited to
handle nodes and relationships with straightforward
instructions.

• Neo4j REST APIs make available a simple Web Ser-
vice with which users can interact to operate with a
graph database hosted in a machine. The framework has
been developed to be compliant with these REST APIs.
Many functions have been developed to interact with
the database through REST calls, e.g., handling physical
and virtual topology paths exploiting algorithms already
implemented in the Neo4j framework, such as the mini-
mum path research.

Java Jersey RESTful Web Services Framework is a REST
framework, which provides a JAX-RS, Java API for RESTful
Web Services implementation. This tool is used to implement
a web service through which an interaction with the devel-
oped framework is feasible. The REST web service has been

chosen because of its great flexibility and interoperability,
as it allows resource organization. The resources can be
managed through unique identifiers and many operations can
be made available on each resource, since methods available
inside HTTP protocol are used to distinguish operations.
For instance, HTTP GET operation is often used to retrieve
information on the resource requested, or HTTP POST and
HTTP PUT operations are instead used to update a resource
on the developed framework.

FIGURE 16. Physical topology test environment.

Interaction between the framework and these tools is han-
dled through themain Java class that acts as a proxy, dispatch-
ing operations through other Java classes.

B. VALIDATION
The feasibility of the framework has been validated through
some realistic use cases. The physical topology referred to
during the test phase is presented in FIGURE 16, and the
corresponding virtual topology is defined in FIGURE 17. The
virtual topology is the one that the network operator wants to
deploy on the given physical substrate.

Concerning the physical topology, it includes six end-
points that are used during end-to-end communications. Each
endpoint appears both in the virtual and physical topology
since its placement is fixed. Instead, for simplicity, only
three physical middleboxes are defined. They can host VNFs
defined in the virtual topology. The physical middleboxes

VOLUME 10, 2022 44395

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

FIGURE 17. Virtual topology test environment.

resources (RAM capability, CPU power, maximum number
of VNFs that the middlebox can support, list of supported
VNF functional types) are taken into account during the
embedding operation, by generating the proper constraints,
as shown in Section IV. In addition, each endpoint is con-
nected to eachmiddlebox defined in the physical environment
in order to guarantee high availability. If a failure occurs in
one physical link that connects the endpoint to themiddlebox,
a network reconfiguration is triggered on the network con-
troller. Reconfiguration obviously requires rerunning all the
algorithms. So a new potential VNFs embedding scheme and
flow scheduling result may be proposed. This operation takes
time since all controlled hosts must be reconfigured to deploy
the new configuration. The reconfiguration phase could be
optimized by introducing a smart logic that considers failures
and triggers a reconfiguration only when there is a real reach-
ability problem between the declared flows.

Concerning the virtual topology, the VNFs involved in the
network are represented more abstractly, showing relation-
ships between endpoints and other VNFs in the studied envi-
ronment. The presented flow scheduling results assume that
the timeslots duration is equivalent to the time required for
the longest flow element execution. In addition, we assume
that all flow elements require exactly one timeslot to be
completely executed.

On the basis of these two topologies, the behavior of the
framework has been evaluated on five different scenarios,
shown in FIGURE 18 differing for the number of declared
time-sensitive flows and relative flows position in the virtual
topology. The solutions for the VNFs embedding and flow
scheduling problems will be presented in the following, with
an explanation of how the framework can successfully com-
pute them.

1) FIRST SCENARIO
In this first scenario, a single time-sensitive flow is consid-
ered. Each flow element is allocated to an available timeslot.

TABLE 3. First scenario placement results.

The total number of timeslots needed to manage this situation
is equivalent to the number of flow elements of which the
defined time-sensitive flow is composed. TABLE 3 explains
the embedding scheme, whereas FIGURE 19 shows the flow
scheduling.

2) SECOND SCENARIO
In the second scenario, two time-sensitive flows must
be handled while guaranteeing a maximum end-to-end
latency between hosts involved in communication. The two
time-sensitive flows are not overlapping in their paths, as they
have been scheduled to be handled in parallel. The framework
computes the embedding scheme shown in TABLE 4 so that
the VNFs involved in their paths are deployed on different
hosts. In this way, there are no flow elements of the first
time-sensitive flow that have intersections with some flow
elements of second time-sensitive flow. As it can be seen from
the flow scheduling representation in FIGURE 20, no more
timeslots than the first scenario are needed to address this
case.

TABLE 4. Second scenario placement results.

3) THIRD SCENARIO
In the third scenario, a flow that in the virtual topology
has intersections with the two previously defined flows is
introduced. The framework computes a different embedding
solution, shown in TABLE 5. It allows the flows being han-
dled in parallel, although their mapping onto the physical
topology is not the optimal one. However, only one more
timeslot than in the previous scenarios is needed to manage
all the time-sensitive flows in this scenario. This result is
illustrated in FIGURE 21.

TABLE 5. Third scenario placement results.

4) FOURTH SCENARIO
In the fourth scenario, the time-sensitive flow DE (i.e., the
flow from D to E) is added to the already defined flows.

44396 VOLUME 10, 2022

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

FIGURE 18. All test scenarios.

FIGURE 19. First scenario flow scheduling results.

FIGURE 20. Second scenario flow scheduling results.

FIGURE 21. Third scenario flow scheduling results.

It must be noticed that, according to the VNFs configuration,
two possible paths with the same cost are available for the
previously defined flow BE:
• the path including VNF2, VNF4, and VNF5 avoids a
possible overlapping with flow CF, since VNF3 is not
crossed;

• the path including VNF3 generates an additional over-
lapping to be handled with flow CF.

The solutions for VNF embedding and time-sensitive flow
scheduling may be different, according to the path that is
selected. By running the framework, it selects the second

path. Therefore, the VNFs are embedded as illustrated in
TABLE 6, whereas seven timeslots are needed to handle all
the time-sensitive flows as shown in FIGURE 22.

TABLE 6. Fourth scenario placement results.

FIGURE 22. Fourth scenario flow scheduling results.

5) FIFTH SCENARIO
In the fifth scenario, one more flow is introduced. As it can
be seen from the VNF embedding scheme shown in TABLE 7
and the timeslots allocation represented in FIGURE 23, only
six timeslots have been used by the framework. This result
could be misleading since, in the previous scenario with one
less flow than the current scenario, seven timeslots were
needed to handle all the time-sensitive flows. However, this
is explained by the fact that no more constraints related to the
virtual flow computation are included. In fact, for the flow
definition phase, the network operator specifies the source
and destination of each time-sensitive flow. The virtual path
is computed automatically by the framework, in compliance
with the VNFs configuration. At that point, since multiple

VOLUME 10, 2022 44397

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

paths are available for flow BE, the algorithm chooses arbi-
trarily between the possible ones.

TABLE 7. Fifth scenario placement results.

FIGURE 23. Fifth scenario flow scheduling results.

VI. CONCLUSION AND FUTURE WORK
This paper presented a novel approach for solving simultane-
ously the VNF allocation and the time-sensitive flow schedul-
ing problems in TSSDN environments, where the presence
of ICSs determines strict requirements in terms of security
and maximum end-to-end delay for packet transmission. The
design of the proposed approach lays its foundations on the
formulation of an OptSMT problem, enabling formal cor-
rectness by construction and optimization for the automat-
ically computed solution. The validation of the framework
developed on the basis of this approach shows that it can
be successfully employed for computing the time scheduling
of the flows while correctly mapping the VNFs that process
them onto the substrate infrastructure.

However, this preliminary study has room for improvement
in future work. On the one hand, the OptSMT formulation
is flexible enough to support the introduction of a larger
number of optimization constraints. Therefore, an extensive
evaluation of additional parameters whose optimization may
benefit both VNF embedding and flow scheduling will be
performed. We will also investigate methods to derive the
problem constraints from real-time measures of VNF execu-
tion times directly in the kernel, in order to provide further
optimization. On the other hand, we will try to integrate the
resolution of a third problem, i.e., the automatic configu-
ration of network and security functions, with the aim of
enabling human users to specify which time-sensitive flows
should be denied to reach their destination due to secu-
rity reasons. With this integration, all-around management
of time-sensitive networks may become feasible and match
the high automation requirements characterizing industrial
networks.

REFERENCES
[1] G. Aceto, V. Persico, and A. Pescape, ‘‘A survey on information and

communication technologies for industry 4.0: State-of-the-art, taxonomies,
perspectives, and challenges,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 4,
pp. 3467–3501, Aug. 2019.

[2] C. Zunino, A. Valenzano, R. Obermaisser, and S. Petersen, ‘‘Factory
communications at the dawn of the fourth industrial revolution,’’ Comput.
Standards Interfaces, vol. 71, Aug. 2020, Art. no. 103433.

[3] M. Cheminod, L. Durante, L. Seno, F. Valenza, A. Valenzano, and
C. Zunino, ‘‘Leveraging SDN to improve security in industrial networks,’’
in Proc. IEEE 13th Int. Workshop Factory Commun. Syst. (WFCS), Trond-
heim, Norway, May 2017, pp. 1–7.

[4] S. Vitturi, C. Zunino, and T. Sauter, ‘‘Industrial communication systems
and their future challenges: Next-generation Ethernet, IIoT, and 5G,’’ Proc.
IEEE, vol. 107, no. 6, pp. 944–961, Jun. 2019.

[5] N. K. Haur and T. S. Chin, ‘‘Challenges and future direction of time-
sensitive software-defined networking (TSSDN) in automation industry,’’
in Security, Privacy, and Anonymity in Computation, Communication, and
Storage (Lecture Notes in Computer Science), vol. 11611. Atlanta, GA,
USA: Springer, Jul. 2019, pp. 309–324.

[6] D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and
J. Yusupov, ‘‘Improving the formal verification of reachability policies in
virtualized networks,’’ IEEE Trans. Netw. Service Manage., vol. 18, no. 1,
pp. 713–728, Mar. 2021.

[7] J. C. C. Chica, J. C. Imbachi, and J. F. B. Vega, ‘‘Security in SDN:
A comprehensive survey,’’ J. Netw. Comput. Appl., vol. 159, Jun. 2020,
Art. no. 102595.

[8] B. Yan, Q. Liu, J. Shen, D. Liang, B. Zhao, and L. Ouyang, ‘‘A survey
of low-latency transmission strategies in software defined networking,’’
Comput. Sci. Rev., vol. 40, May 2021, Art. no. 100386.

[9] J. G. Herrera and J. F. Botero, ‘‘Resource allocation in NFV: A com-
prehensive survey,’’ IEEE Trans. Netw. Service Manage., vol. 13, no. 3,
pp. 518–532, Sep. 2016.

[10] B. Addis, D. Belabed, M. Bouet, and S. Secci, ‘‘Virtual network functions
placement and routing optimization,’’ in Proc. IEEE 4th Int. Conf. Cloud
Netw. (CloudNet), Niagara Falls, ON, Canada, Oct. 2015, pp. 171–177.

[11] A. Gupta, M. F. Habib, P. Chowdhury, M. Tornatore, and B. Mukherjee,
‘‘On service chaining using virtual network functions in network-enabled
cloud systems,’’ in Proc. IEEE Int. Conf. Adv. Netw. Telecommuncations
Syst. (ANTS), Kolkata, India, Dec. 2015, pp. 1–3.

[12] J. Soares and S. Sargento, ‘‘Optimizing the embedding of virtualized cloud
network infrastructures across multiple domains,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), London, U.K., Jun. 2015, pp. 442–447.

[13] I. Jang, S. Choo, M. Kim, S. Pack, and M.-K. Shin, ‘‘Optimal network
resource utilization in service function chaining,’’ in Proc. IEEE NetSoft
Conf. Workshops (NetSoft), Seoul, South Korea, Jun. 2016, pp. 11–14.

[14] M. M. Hasan and H. T. Mouftah, ‘‘Cloud-centric collaborative security
service placement for advanced metering infrastructures,’’ IEEE Trans.
Smart Grid, vol. 10, no. 2, pp. 1339–1348, Mar. 2019.

[15] G. Marchetto, R. Sisto, F. Valenza, J. Yusupov, and A. Ksentini, ‘‘A formal
approach to verify connectivity and optimize VNF placement in industrial
networks,’’ IEEE Trans. Ind. Informat., vol. 17, no. 2, pp. 1515–1525,
Feb. 2021.

[16] M. Bagaa, T. Taleb, and A. Ksentini, ‘‘Service-aware network function
placement for efficient traffic handling in carrier cloud,’’ in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Istanbul, Turkey, Apr. 2014,
pp. 2402–2407.

[17] R. Riggio, T. Rasheed, and R. Narayanan, ‘‘Virtual network func-
tions orchestration in enterprise wlans,’’ in Proc. IFIP/IEEE Int. Symp.
Integr. Netw. Manage. (IM), R. Badonnel, J. Xiao, S. Ata, F. D. Turck,
V. Groza, and C. R. P. dos Santos, Eds. Ottawa, ON, Canada, May 2015,
pp. 1220–1225.

[18] M. M. Hasan and H. T. Mouftah, ‘‘Latency-aware segmentation and trust
system placement in smart grid SCADA networks,’’ in Proc. 21st IEEE
Int. Workshop Comput. Aided Modelling Design Commun. Links Netw.
(CAMAD), Toronto, ON, Canada, Oct. 2016, pp. 37–42.

[19] M. M. Hasan and H. T. Mouftah, ‘‘Optimal trust system placement
in smart grid scada networks,’’ IEEE Access, vol. 4, pp. 2907–2919,
2016.

[20] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
‘‘Latency-aware composition of virtual functions in 5G,’’ in Proc. 1st
IEEE Conf. Netw. Softwarization (NetSoft), London, U.K., Apr. 2015,
pp. 1–6.

44398 VOLUME 10, 2022

D. Bringhenti, F. Valenza: Twofold Model for VNF Embedding and Time-Sensitive Network Flow Scheduling

[21] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary,
‘‘Piecing together the NFV provisioning puzzle: Efficient placement and
chaining of virtual network functions,’’ in Proc. IFIP/IEEE Int. Symp.
Integr. Netw. Manage. (IM), R. Badonnel, J. Xiao, S. Ata, F. D. Turck,
V. Groza, and C. R. P. dos Santos, Eds. Ottawa, ON, Canada, May 2015,
pp. 98–106.

[22] E. Demirović, N. Musliu, and F. Winter, ‘‘Modeling and solving staff
scheduling with partial weighted maxSAT,’’ Ann. Oper. Res., vol. 275,
no. 1, pp. 79–99, Apr. 2019.

[23] E. Hadjiconstantinou and G. Mitra, ‘‘Transformation of propositional cal-
culus statements into integer and mixed integer programs: An approach
towards automatic reformulation,’’ U.S. Armyï£¡s Eur. Res. Office, U.S
Tech. Rep. TR/11/90, 1991.

[24] G. J. Gordon, S. A. Hong, and M. Dudík, ‘‘First-order mixed integer linear
programming,’’ 2012, arXiv: 1205.2644.

[25] Z. Hanzálek, P. Burget, and P. Sucha, ‘‘Profinet IO IRTmessage scheduling
with temporal constraints,’’ IEEE Trans. Ind. Informat., vol. 6, no. 3,
pp. 369–380, Aug. 2010.

[26] W. Steiner, ‘‘An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks,’’ in Proc. 31st IEEE Real-Time Syst. Symp.,
San Diego, CA, USA, Nov. 2010, pp. 375–384.

[27] S. S. Craciunas and R. S. Oliver, ‘‘SMT-based task- and network-
level static schedule generation for time-triggered networked systems,’’
in Proc. 22nd Int. Conf. Real-Time Netw. Syst. (RTNS), M. Jan,
B. B. Hedia, J. Goossens, and C. Maiza, Eds. Versaille, France, Oct. 2014,
p. 45.

[28] S. S. Craciunas and R. S. Oliver, ‘‘Combined task- and network-
level scheduling for distributed time-triggered systems,’’ Real-Time Syst.,
vol. 52, no. 2, pp. 161–200, Mar. 2016.

[29] N. G. Nayak, F. Dürr, and K. Rothermel, ‘‘Time-sensitive software-
defined network (TSSDN) for real-time applications,’’ in Proc.
24th Int. Conf. Real-Time Netw. Syst. (RTNS), Brest, France, 2016,
pp. 193–202.

[30] F. Dürr and N. G. Nayak, ‘‘No-wait packet scheduling for IEEE time-
sensitive networks (TSN),’’ in Proc. 24th Int. Conf. Real-Time Netw. Syst.
(RTNS), Brest, France, 2016, pp. 203–212.

[31] N. G. Nayak, F. Dürr, and K. Rothermel, ‘‘Incremental flow scheduling
and routing in time-sensitive software-defined networks,’’ IEEETrans. Ind.
Informat., vol. 14, no. 5, pp. 2066–2075, May 2017.

[32] N. K. Haur and T. S. Chin, ‘‘Time-sensitive-aware scheduling
traffic (TSA-ST) algorithm in software-defined networking,’’ in
Internet and Distributed Computing Systems (Lecture Notes in
Computer Science), vol. 11874. Naples, Italy: Springer, Oct. 2019,
pp. 248–259.

[33] Z. Pang, X. Huang, Z. Li, S. Zhang, Y. Xu, H. Wan, and X. Zhao,
‘‘Flow scheduling for conflict-free network updates in time-sensitive
software-defined networks,’’ IEEE Trans. Ind. Informat., vol. 17, no. 3,
pp. 1668–1678, Mar. 2021.

[34] M. Vlk, Z. Hanzálek, and S. Tang, ‘‘Constraint programming approaches
to joint routing and scheduling in time-sensitive networks,’’ Comput. Ind.
Eng., vol. 157, Jul. 2021, Art. no. 107317.

[35] A. Mascis and D. Pacciarelli, ‘‘Job-shop scheduling with blocking and no-
wait constraints,’’ Eur. J. Oper. Res., vol. 143, no. 3, pp. 498–517, 2002.

[36] R. Chen and G. Sun, ‘‘A survey of kernel-bypass techniques in network
stack,’’ in Proc. 2nd Int. Conf. Comput. Sci. Artif. Intell. (CSAI), Shenzhen,
China, 2018, pp. 474–477.

DANIELE BRINGHENTI (Graduate Student
Member, IEEE) received theM.Sc. degree (summa
cum laude) in computer engineering from the
Politecnico di Torino, Italy, in 2019, where he
is currently pursuing the Ph.D. degree in control
and computer engineering. His research interests
include novel networking technologies, automatic
orchestration and configuration of security func-
tions in virtualized networks, and formal verifica-
tion of networks security policies.

FULVIO VALENZA (Member, IEEE) received the
M.Sc. and Ph.D. degrees (summa cum laude)
in computer engineering from the Politecnico
di Torino, Torino, Italy, in 2013 and 2017,
respectively. He is currently an Assistant Profes-
sor with the Politecnico di Torino. His research
interests include networks security policies,
orchestration and management of networks secu-
rity functions in SDN/NFV-based networks, and
threat modeling.

VOLUME 10, 2022 44399

