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Abstract
The paper is an attempt to resolve the prescribed Chern scalar curvature problem. We
look for solutions within the conformal class of a fixed Hermitian metric. We divide
the problem in three cases, according to the sign of the Gauduchon degree, that we
analyse separately. In the case where the Gauduchon degree is negative, we prove that
every non-identically zero and non-positive function is the Chern scalar curvature of a
unique metric conformal to the fixed one. Moreover, if there exists a balanced metric
with zero Chern scalar curvature, we prove that every smooth function changing sign
with negative mean value is the Chern scalar curvature of a metric conformal to the
balanced one.

Keywords Hermitian manifold · Chern scalar curvature · Prescribed Chern scalar
curvature problem · Chern–Yamabe problem

Mathematics Subject Classification Primary 53C55; Secondary 53C21

Introduction

A classical problem in Riemannian Geometry is the prescribed scalar curvature prob-
lem. This problem consists in finding aRiemannianmetric on a differentiablemanifold
such that its scalar curvature coincides with a smooth function previously fixed. The
prescribed scalar curvature problem was firstly studied by Kazdan and Warner in [10]
for 2-dimensional compact manifolds and in [11] for compact manifolds with higher
dimension. The same authors concluded the study of the prescribed scalar curvature
problem for compactmanifolds in [12], also thanks to the proof of theYamabe problem
by Schoen in [13]. Kazdan and Warner divided the class of compact manifolds into
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three subclasses depending on the set of smooth functions that are scalar curvature of
a Riemannian metric.

Theorem (See [12], Theorem 5.1 and 6.4)The class of compact differentiable mani-
folds of dimension 2 can be divided into three subclasses:

• every smooth function that is positive somewhere is the scalar curvature of a
Riemannian metric,

• the zero function and all the smooth functions changing sign are scalar curvature
of a Riemannian metric,

• every smooth function that is negative somewhere is the scalar curvature of a
Riemannian metric.

The class of compact differentiable manifolds of dimension at least 3 can be divided
into three subclasses:

• every smooth function is the scalar curvature of a Riemannian metric,
• the zero function and all the smooth functions that are negative somewhere are
scalar curvature of a Riemannian metric,

• every smooth function that is negative somewhere is the scalar curvature of a
Riemannian metric.

In this paper, we study the prescribed Chern scalar curvature problem, namely the Her-
mitian analogue of the prescribed scalar curvature problem. It consists in proving the
existence of a Hermitian metric on a complex manifold such that its scalar curvature
with respect to the Chern connection coincides with a fixed smooth real-valued func-
tion. The motivation of our study comes from the recent studies on Chern–Yamabe
problem (see [1, 3, 6–8] and [9] in the almost-Hermitian setting). In particular, in [6],
the prescribed Chern scalar curvature problem is also considered. The author uses
the so called Chern–Yamabe flow, firstly introduced in [3], to prove, supposing there
exists a balanced metric ω0 with negative Chern scalar curvature, that every negative
function is the Chern scalar curvature of a metric conformal to ω0, see [6,Theorem
1.1]. The objective of our work is to generalize the result mentioned before and study
the prescribed Chern scalar curvature more in depth.

The paper is divided in two sections. In the first one, we define the tools that we
used to prove our results, like the Chern Laplacian and the Gauduchon degree of a
conformal class, and we recall the results concerning the Chern–Yamabe problem,
see [1]. In the second section, we study the prescribed Chern scalar curvature on
connected, compact complex manifolds with complex dimension at least 2. Our first
approach is that of finding solutions within the conformal class of a fixed Hermitian
metric ω. In this setting, we see that the resolution of the problem is equivalent to
solving a non-linear elliptic PDE of 2nd order. Together with this equation, we find
an obstruction that suggests a division of the problem into 3 cases depending on the
sign of the Gauduchon degree of the conformal class of ω. We analyse separately each
case.

In the case where �({ω}) < 0, we find a necessary condition on a smooth function
in order for it to be Chern scalar curvature of a metric conformal to ω. We observe
that the smooth functions that are non-identically zero and non-positive satisfy this
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condition. Our first result states that all these functions are Chern scalar curvature of
a unique Hermitian metric in the conformal class of ω.

Theorem (See Theorem 2.5)Let Mn be a connected, compact complex manifold with
n ≥ 2 endowed with a Hermitian metric ω such that �({ω}) < 0. If g ∈ C∞(M, R) \
{0} is such that g ≤ 0, then g is the Chern scalar curvature of a unique Hermitian
metric conformal to ω.

A stronger necessary condition is obtained in Proposition 2.6. It allows us to construct
a function which satisfies the first necessary condition but which cannot be Chern
scalar curvature of any metric conformal to ω.Because of this, we try to find solutions
within the set ofmetrics conformally equivalent toω. In this case,wefind two sufficient
conditions on a smooth function to be Chern scalar curvature of a metric conformally
equivalent to ω, see Proposition 2.10 and Proposition 2.11.

In the case where �({ω}) = 0, first of all, we find two necessary conditions.
Then, under a suitable assumption, we interpret the prescribed Chern scalar curvature
equation as the Euler-Lagrange equation, with respect to the standard L2 pairing,
associated to an appropriate functional. This assumption concerns the existence of
a balanced metric with zero Chern scalar curvature. Using variational methods, we
prove the following Theorem.

Theorem (See Theorem 2.13) Let Mn be a connected, compact complex manifold with
n ≥ 2. Suppose there exists a balanced metric ω with SCh(ω) = 0. If g ∈ C∞(M, R)

changes sign on M and
∫
M g ωn

n! < 0, then g is the Chern scalar curvature of a
Hermitian metric conformal to ω.

The case where �({ω}) > 0 is the most difficult among the three. In this case, we find
a necessary condition and we prove a local result by applying the implicit function
Theorem, see Proposition 2.16.

After our work, there are many questions that remain open. One of the most impor-
tant result that Kazdan and Warner used to conclude the prescribed scalar curvature
problem is [12,Theorem 2.1]. Also in our setting, it can be useful to know the orbit of
a smooth function under the group of biholomorphisms in order to understand when
Proposition 2.10, Proposition 2.11 and Proposition 2.14 can be applied. Oncewe know
this, we can understand better which functions are Chern scalar curvature of a metric
conformally equivalent to ω and then conclude using [16,Theorem 1.1]. Another open
question is the generalization of Theorem 2.13, removing the hypothesis that there
exists a balanced metric. The last open question is the problem of existence of met-
ric with constant and positive Chern scalar curvature within a conformal class with
positive Gauduchon degree.

1 Preliminaries

Let M be a connected, compact complex manifold of dimension n. In our discus-
sion, we will identify Hermitian metrics h on M with their fundamental (1,1)-forms
ω = h(J−,−). For any Hermitian structure (J , ω) on M , we can consider the Chern
connection ∇Ch , that is, the unique affine connection preserving both the Hermitian
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metric and the almost-complex structure, i.e.∇Chh = 0,∇Ch J = 0, whose (0,1)-part
coincides with the Cauchy-Riemann operator ∂̄ associatedwith the holomorphic struc-
ture of T 1,0M . Given a Hermitian metric ω on M and {z1, . . . , zn} local holomorphic
coordinates, we can write ω = √−1ωi j̄ dzi ∧dz j where ωi j̄ = h( ∂

∂zi
, ∂

∂z j
). Then, we

can define the Chern scalar curvature of ω as the function

SCh(ω) = trωRic
(1)(ω) = ωi j̄ωkl̄ Ri j̄kl̄ ,

where Ri j̄kl̄ are the components of the Chern curvature tensor and Ric(1)(ω) is called
the first Chern-Ricci form and it is the (1, 1)-form that, locally, can be written as
follows:

Ric(1)(ω) = √−1ωkl̄ Ri j̄kl̄ dzi ∧ dz j .

Given a Hermitian metric ω on M , we can define a differential operator called
Chern Laplacian �Ch

ω associated to ω that acts on a smooth function u ∈ C∞(M, R)

as follows:

�Ch
ω u = 2

√−1trω∂̄∂u.

Locally, we obtain that

�Ch
ω u = −2ωi j̄ ∂2u

∂zi∂z j
, ∀u ∈ C∞(M, R).

It is well known that a Riemannian metric induces an inner product on the algebra of
smooth differential forms on M . In the following, if α and β are k-forms on M and
ω is the fundamental form associated to a Hermitian metric h, we will set ω(α, β) =
h(α, β).

Observe that the Chern Laplacian is an elliptic differential operator of 2nd order.
On a compact Hermitian manifold (M, ω) both the Hodge Laplacian associated to the
metric, i.e�ω = [d, d∗], and the Chern Laplacian are defined. The difference between
these two operators on smooth functions is quantified in a result due to Gauduchon.

Theorem 1.1 ([4], p. 502-503) Let (Mn, ω) be a compact Hermitian manifold. Then,
we have

�Ch
ω u = �ωu + ω(du, θ), ∀u ∈ C∞(M, R),

where θ is called the torsion 1-form associated to ω and it is defined by the relation:
dωn−1 = θ ∧ ωn−1. Moreover, we have that the formal adjoint of �Ch

ω acts on
u ∈ C∞(M, R) as follows:

(�Ch
ω )∗u = �ωu − ω(du, θ) + ud∗θ.
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Remark 1.2 Let (Mn, ω) a Hermitian manifold with n ≥ 2, we can consider the
Lefschetz operator

L :
∧•

M →
∧•+2

M, L− = − ∧ ω.

We know that

Ln−1 :
∧1

M →
∧2n−1

M

is an isomorphism. This fact implies that the torsion 1-form is well defined.

The Hermitian metric ω is called Gauduchon if d∗θ = 0. Instead, one says that ω is
balanced if θ = 0. If dimC M = n, note that the condition d∗θ = 0 is equivalent
to ∂∂̄ωn−1 = 0. That is because θ = J ∗ dωn−1, where ∗ is the Hodge operator
associated to ω. Whereas, the condition θ = 0 is equivalent to dωn−1 = 0.

Remark 1.3 Theorem1.1 implies that the index of theChern Laplacian and the index of
theHodgeLaplacian coincide.This guarantees that the kernels of both theChernLapla-
cian and his formal adjoint are 1-dimensional. Moreover, ker(�Ch

ω ) = R. In general,
ker((�Ch

ω )∗) does not coincide with the set of constant functions. That is, essentially,
due to the presence of the additional term ud∗θ in the expression of (�Ch

ω )∗u, see
[4,p.388].

Remark 1.3 suggests the definition of a particular function, called eccentricity function
associated to a Hermitian metric.

Definition 1.4 ( [4], Définition 2)Let (M, ω) be a compact Hermitian manifold. A
function f0 ∈ C∞(M, R) is the eccentricity function associated to ω if f0 ∈
ker((�Ch

ω )∗) and 〈 f0, 1〉L2(M) = Vol(M, ω).

Gauduchon proved that f0 > 0. Moreover, he proved that f0 = 1 if and only
if ω is Gauduchon, see [4,Théorème 2]. As stated in Remark 1.3, the fact that
dim(ker(�Ch

ω )∗) = 1 easily guarantees that the eccentricity function associated to
a Hermitian metric is unique.

A simple definition that we want to remember is the definition of conformal class
and conformally equivalent metrics.

Definition 1.5 Let (Mn, ω) be a Hermitian manifold. The conformal class of ω is

{ω} =
{

exp

(
2u

n

)

ω
∣
∣ u ∈ C∞(M, R)

}

.

If ω and ω1 are Hermitian metrics on M , we say that ω1 is conformal to ω if ω1 ∈ {ω}.
We will say that ω1 is conformally equivalent to ω if there exists ϕ ∈ Aut(M), the
group of biholomorphisms of M , such that ϕ∗ω1 ∈ {ω}.
A result that will be very useful for our study of the prescribed Chern scalar curvature
problem is the characterization of the variation of the Chern scalar curvature after a
conformal change.
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Proposition 1.6 ( [5], p. 502)Let (Mn, ω) be a Hermitian manifold and u ∈
C∞(M, R). We have

SCh
(

exp

(
2u

n

)

ω

)

= exp

(

−2u

n

)

(�Ch
ω u + SCh(ω)).

See [9,Corollary 4.5] in the almost-Hermitian setting.
The last quantity that we want to recall is the so called Gauduchon degree of

a conformal class. To define it, we need to remember an important Theorem due
to Gauduchon. The proof of this result is based on the properties, that we already
mentioned, of the eccentricity function associated to a Hermitian metric.

Theorem 1.7 ( [4], Théorème 1)Let (Mn, ω) be a compact Hermitian manifold. There
exists a Gauduchon metric with volume 1 within {ω}. If n ≥ 2, this metric is also
unique.

Then, if dimC M ≥ 2, we can choose a particular metric in each conformal class of
a Hermitian metric. This allows us to define the Gauduchon degree of a conformal
class.

Definition 1.8 ( [4], I.17)Let (Mn, ω) be a compact Hermitian manifold with n ≥ 2.
Choose η ∈ {ω} the only Gauduchon metric with volume 1. The Gauduchon degree
of {ω} is

�({ω}) =
∫

M
SCh(η)

ηn

n! .

Remark 1.9 Note that

�({ω}) = 1

(n − 1)!
∫

M
cBC1 (M) ∧ ηn−1,

where cBC1 (M) = cBC1 (K ∗
M ) is the first Bott-Chern class of M . Thanks to this relation,

we have that the Gauduchon degree of a conf ormal class is an invariant depending
only on the complex structure of M and on the conformal class {ω}. The definition
we gave is nothing but a particular case of the so called degree of a line bundle with
respect to a conformal class, see [4,I.17].

Before we start analysing the prescribed Chern scalar curvature problem, it will be
useful to study the "constant" case, that is the Chern–Yamabe problem. This problem
consists in proving the existence of a metric conformal to a fixed one with constant
Chern scalar curvature. The Chern–Yamabe problem was firstly studied and, partially,
resolved by Angella, Calamai and Spotti. The solution of the Chern–Yamabe problem
canbe reduced to solving a non-linear elliptic PDEof 2ndorder. Studying this equation,
the authors were able to prove an important result.

Theorem 1.10 ( [1], Theorem 3.1 and Theorem 4.1 ) Let Mn be a connected, compact
complex manifold with n ≥ 2 endowed with a Hermitian metric ω with �({ω}) ≤
0. Then, there exists a unique Hermitian metric conformal to ω with Chern scalar
curvature that coincides with �({ω}) ≤ 0.
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So, if (Mn, ω) is a connected, compact Hermitian manifold with n ≥ 2, at least in
the case where �({ω}) ≤ 0, we can choose, within the conformal class, a metric with
constant Chern scalar curvature. Unfortunately, in the case where �({ω}) > 0, we do
not know if we can choose a metric conformal to the fixed one with constant Chern
scalar curvature. Surely, the uniqueness does not hold anymore. In [1], the authors
construct an example in which they prove that there exist at least two, non homothetic,
metrics with constant Chern scalar curvature within the conformal class of a particular
Hermitian metric.

2 The Prescribed Chern Scalar Curvature Problem

The prescribed Chern scalar curvature problem consists in proving the existence of a
Hermitian metric on a connected, compact complex manifold of dimension at least 2
such that its Chern scalar curvature coincides with a fixed smooth function.

Our approach to the resolution of the problem is that of finding solutions within
the conformal class of a fixed Hermitian metric. Therefore, we fix a Hermitian metric
ω and g ∈ C∞(M, R). Thanks to the Proposition 1.6, a metric conformal to ω has
Chern scalar curvature coinciding with g if and only if the Eq.

�Ch
ω u + SCh(ω) = g exp

(
2u

n

)

(1)

admits a solution. On the other hand, we can choose the unique Gauduchon metric
η ∈ {ω} with volume 1 as reference metric and rewrite the Eq. (1) as a function of η.

Integrating that equation over M , we obtain the condition

�({ω}) =
∫

M
g exp

(
2u

n

)
ηn

n! . (2)

The condition we just found suggests a division of the problem into three cases,
depending on the sign of �({ω}). We will analyse each of these cases separately. Note
that, in this problem, the Gauduchon degree of the conformal class plays the same role
as the first eigenvalue of the linear part of the operator defining the prescribed scalar
curvature equation studied in [11].

2.1 Case 0({!}) < 0.

In this case, the condition (2) implies that the function gmust be negative somewhere on
M . Furthermore, thanks to Theorem 1.10, we can choose the unique Hermitian metric
in {ω} with constant Chern scalar curvature equal to �({ω}) < 0. In the following, we
will indicate this metric with ω and with f0 its eccentricity function. We can rewrite
the Eq. (1) as follows:

�Ch
ω u + �({ω}) = g exp

(
2u

n

)

. (3)
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Multiplying the Eq. (3) by exp(− 2u
n ), we can use the formula

exp

(

−2u

n

)

�Ch
ω u = −n

2
�Ch

ω

(

exp

(

−2u

n

))

− 4

n
exp

(

−2u

n

)

ω(du, du). (4)

to obtain a new equation. By multiplying this new one by f0 and integrating on M ,
we obtain a new necessary condition on g, that is

∫

M
g f0

ωn

n! < 0. (∗)

We already noticed that f0 > 0 on M , so all non-identically zero and non-positive
smooth functions satisfy this condition. Then, our first objective is to prove that such
functions g are Chern scalar curvature of ametric conformal toω.Using the continuity
method, we prove the following generalization of [6,Theorem 1.1], removing the
hypothesis that ω is balanced.

Theorem 2.1 Let Mn be a connected, compact complex manifold with n ≥ 2 endowed
with a Hermitian metric ω such that �({ω}) < 0. If g ∈ C∞(M, R), g < 0, then g is
the Chern scalar curvature of a unique metric conformal to ω.

Proof The proof is essentially the same as in [1,Theorem 4.1]. First of all, suppose
that ω is such that SCh(ω) = �({ω}) < 0. The uniqueness is a direct consequence
of the maximum principle. We use the continuity method to obtain the existence. So,
define, for any t ∈ [0, 1], the equation

�Ch
ω u + t�({ω}) − g exp

(
2u

n

)

+ (1 − t)g = 0, (3t )

and

T = {t ∈ [0, 1] | (3_t) has a solution in C2,α(M)}.

Observe that T �= ∅ because u = 0 is a solution of (30).
Fix t ∈ [0, 1] anddefineG : C2,α(M) → C0,α(M) such that, for anyϕ ∈ C2,α(M),

G(ϕ) = �Ch
ω ϕ + t SCh(ω) − g exp

(
2ϕ

n

)

+ (1 − t)g.

Suppose that u ∈ C2,α(M) is a solution of (3t ). We have that

duG = �Ch
ω − 2

n
g exp

(
2u

n

)

I d.

Obviously, duG is an elliptic differential operator. By the maximum principle, it fol-
lows that duG is injective. On the other hand, the index of duG coincides with the
index of the Hodge Laplacian. Therefore, (duG)∗ must be injective and then duG must
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be surjective too, so duG is invertible. Applying the implicit function Theorem, we
obtain that T is open.

If we can prove that T is closed too, automatically, we obtain that T = [0, 1]. In
particular, this fact guarantees that (31) has a solution in C2,α(M). But (31) coincides
with (3) and then we obtain the existence we are looking for. We need to find some
a priori estimates on solutions of (3t ) in order to prove that T is closed. Then, let
u ∈ C2,α(M) be a solution of (3t ) and let p, q ∈ M be, respectively, the maximum
and minimum point of u. We have

−g(p) exp

(
2u(p)

n

)

= −(�Ch
ω u)(p) − t SCh(ω)(p) − (1 − t)g(p)

≤ −t SCh(ω)(p) − (1 − t)g(p) ≤ −min
M

SCh(ω) − min
M

g.

Then

exp

(
2u(p)

n

)

≤ − 1

g(p)

(

−min
M

SCh(ω) − min
M

g

)

= C(M, ω, g).

Similarly,

−g(q) exp

(
2u(q)

n

)

≥ min
t∈[0,1]

(

t min
M

(
−SCh(ω)

)
+ (1 − t)min

M
(−g)

)

= C ′(M, ω, g).

These two inequalities imply that

‖u‖L∞(M) ≤ K ,

where K = K (M, ω, g) > 0. Thanks to this inequality, iterating the Calderón-
Zygmund inequality and using the Sobolev embedding, we obtain that there exists a
constant K ′ = K ′(M, ω, g) > 0 such that

‖u‖C3,α(M) ≤ K ′.

Then, choose {tk}k∈N ⊂ T such that tk → t∞ as k → +∞. We take {uk}k∈N ⊂
C2,α(M) such that uk is a solution of (3tk ), ∀k ∈ N. Thanks to the estimates above
and to Ascoli-Arzelà Theorem, we have that there exists u ∈ C2,α(M) such that
uk → u in C2,α(M). We see that u is a solution of (3t∞). Then T is closed. Finally,
if u ∈ C2,α(M) is a solution of (31), we can prove that u ∈ C∞(M, R) by using
Schauder estimates. ��

The a priori estimates in the proof of Theorem2.1 do not hold if g is zero somewhere
in M . So, we have to find some alternative method to solve the Eq. (3) in this case.
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Definition 2.2 Let (Mn, ω) be a connected, compact Hermitian manifold with n ≥
2. We say that u−, u+ ∈ W 2,p(M), p > n, are, respectively, a subsolution and a
supersolution for the Eq. (1) if

�Ch
ω u− ≤ g exp

(
2u−
n

)

− SCh(ω), �Ch
ω u+ ≥ g exp

(
2u+
n

)

− SCh(ω).

We prove the following Theorem which states that the existence of solution of (1) is
equivalent to the existence of both a subsolution and a supersolution.

Theorem 2.3 Let (Mn, ω) be a connected, compact Hermitian manifold with n ≥ 2.
Suppose that we have g ∈ C∞(M, R), p > n and u−, u+ ∈ W 2,p(M), respectively,
a subsolution and a supersolution of (1) such that u− ≤ u+. Then, there exists u ∈
C∞(M, R) a solution of (1) such that u− ≤ u ≤ u+.

Proof The proof of this result is similar to the proof of [11,Lemma 2.6]. We recall
here the main ideas. We set f (x, u) = g exp( 2un ) − SCh(ω). We define u0 = u+ and,
∀k ∈ N, k ≥ 1, the function uk as the only solution of the equation

�Ch
ω uk + Kuk = Luk = f (x, uk−1) + Kuk−1,

where K > 0 is an appropriate constant. The existence of the functionsuk is guaranteed
by the invertibility of the operator L : W 2,p(M) → L p(M), which is a consequence
of the standard theory of elliptic PDEs. Using the maximum principle, we prove that,
∀k ∈ N, u− ≤ uk−1 ≤ uk ≤ u+. On the other hand, using the inequality

‖v‖W 2,p(M) ≤ C‖Lv‖L p(M), ∀v ∈ W 2,p(M),

due to the invertibility of L , the Sobolev embeddings and the Ascoli-Arzelà theorem,
we prove that uk → u in C0(M). From this fact, we prove that uk → u in W 2,p(M),
so

Lu = f (x, u) + Ku.

This fact implies that u is a solution of (1). Using the Calderón-Zygmund inequality,
we obtain that u ∈ C∞(M, R). ��
So, thanks to Theorem 2.3, in order to find a solution of (1), we can concentrate on
finding both a subsolution u− and a supersolution u+ such that u− ≤ u+.Nevertheless,
in the case we are analysing in this subsection, it can be proved that this last condition
is equivalent to the existence of only a supersolution.

Corollary 2.4 Let (Mn, ω) be a connected, compact Hermitian manifold with SCh(ω)

= �({ω}) < 0 and n ≥ 2. Suppose that we have g ∈ C∞(M, R), p > n and
u+ ∈ W 2,p(M) a supersolution of (3). Then, there exists a subsolution u− ∈ W 2,p(M)

such that u− ≤ u+.
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Proof Thanks to the necessary condition (*), we can suppose that g ∈ C∞(M, R) is
negative somewhere on M . We can choose u− ∈ R satisfying the inequality

u− ≤ n

2
log

(
�({ω})
minM g

)

and obtain a subsolution of (3). But, if u+ is a supersolution of (3), we know that
u+ ∈ W 2,p(M). Using the Sobolev embeddings, u+ is continuous and then bounded
on M . So, we can choose appropriately the constant u− so that the inequality u− ≤ u+
is satisfied. ��
Corollary 2.4 allows us to prove the following generalization of Theorem 2.1.

Theorem 2.5 Let Mn be a connected, compact complex manifold with n ≥ 2 endowed
with a Hermitian metric ω such that �({ω}) < 0. If g ∈ C∞(M, R) \ {0} is such that
g ≤ 0, then g is the Chern scalar curvature of a unique metric conformal to ω.

Proof Consider φ ∈ C∞(M, R) such that

�Ch
ω φ = g − 1

Vol(M, ω)

∫

M
g f0

ωn

n! .

Let k1, k2 ∈ R be two constants that we will choose later and define u+ = k1φ + k2.
We have that

�Ch
ω u+ + �({ω}) − g exp

(
2u+
n

)

= k1g − k1
Vol(M, ω)

∫

M
g f0

ωn

n!
+ �({ω}) − g exp

(
2(k1φ + k2)

n

)

.

It is sufficient to choose k1, k2 such that

{
k1 ≥ Vol(M,ω)�({ω})

∫
M g f0

ωn
n!

> 0

k2 ≥ n
2 log(k1) − k1φ

to obtain a supersolution of (3). The uniqueness of the metric we found is due to the
maximum principle. ��
So, it remains only to understand when a smooth function which changes sign on M
and satisfies the necessary condition (*) can be the Chern scalar curvature of a metric
conformal to ω.

Proposition 2.6 Let Mn be a connected, compact complex manifold with n ≥ 2
endowed with a Hermitian metric ω such that SCh(ω) = �({ω}) < 0. Suppose
that g ∈ C∞(M, R) such that

∫
M g f0

ωn

n! < 0.
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a) If g is the Chern scalar curvature of a metric conformal to ω, then the unique
solution of the Eq.

�Ch
ω ψ − 2

n
�({ω})ψ = −2

n
g (5)

must be positive.
b) Let g1 ∈ C∞(M, R) be such that g1 ≤ g and λ > 0. If g is the Chern scalar

curvature of a metric conformal to ω, then both g1 and λg will be.
c) There exists a constant c(g) ∈ [−∞, 0) such that the Eq.

�Ch
ω u + c − g exp

(
2u

n

)

= 0 (6c)

admits a solution, ∀c ∈ (c(g), 0).

Proof a) Suppose that u ∈ C∞(M, R) is a solution of (3). Set v = exp(− 2u
n ). Easily,

we see that v satisfies the equation

�Ch
ω v − 2

n

(

−g + �({ω})v − n
ω(dv, dv)

v

)

= 0.

If ψ ∈ C∞(M, R) is the unique solution of (5), we see that

�Ch
ω (ψ − v) − 2

n
�({ω})(ψ − v) = 2

ω(dv, dv)

v
> 0.

By the maximum principle, we have ψ ≥ v > 0.
b) Note that, if u+ is a supersolution of (3) for g, it will be a supersolution of (3)

for g1 too. Moreover, we have SCh(λω) = λ−1SCh(ω), ∀λ > 0. From this, the
assertion follows.

c) Using the same arguments used to prove Theorem 2.3, it follows that the equation
(6c) admits a solution if and only if it admits a supersolution. As observed above,
if c > c̃, a supersolution of (6c) is a supersolution of (6c̃) too. The existence of
a supersolution of (6c) is equivalent to the existence of a positive solution of the
following inequality:

�Ch
ω v − 2

n

(

−g + cv − n
ω(dv, dv)

v

)

≤ 0. (7)

Choose φ ∈ C∞(M, R) such that

�Ch
ω φ = 2

n

(

−g + 1

Vol(M, ω)

∫

M
g f0

ωn

n!
)

.
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Considering a ∈ R such that

a ≥ max
M

{

−2nVol(M, ω)
∫
M g f0

ωn

n!
ω(dφ, dφ) − φ

}

and c ≥
∫
M g f0

ωn
n!

2Vol(M,ω)minM {φ+a} , we verify that φ + a satisfies (7). This fact implies
that

c(g) ≤
∫
M g f0

ωn

n!
2Vol(M, ω)minM {φ + a} < 0. (8)

��
Remark 2.7 In particular, the first part of the above Proposition guarantees a stronger
necessary condition than (*). Indeed, if we multiply (5) by f0 and then integrate on
M , we obtain that

∫

M
g f0

ωn

n! < 0.

Using the same arguments used to prove Theorem 2.5, observe that c(g) = −∞ for
all g ∈ C∞(M, R) \ {0} such that g ≤ 0. However, we do not know if these functions
are the only ones that satisfy this property.

Thanks to part a) of Proposition 2.6, we can prove the existence of smooth functions
that satisfy the condition (*) which can not be Chern scalar curvature of a metric
conformal to ω.

Corollary 2.8 Let Mn be a connected, compact complex manifold with n ≥ 2 endowed
with a Hermitian metric ω such that SCh(ω) = �({ω}) < 0. Then, there exists
g ∈ C∞(M, R) with

∫
M g f0

ωn

n! < 0 such that it cannot be the Chern scalar curvature
of any metric conformal to ω.

Proof Fix ψ ∈ C∞(M, R) \ {0} such that
∫
M ψ f0

ωn

n! = 0. Choosing 0 < a <

−minM ψ , we have that ψ + a changes sign and we can define

g = n

2

(

−�Ch
ω ψ + 2

n
�({ω})(ψ + a)

)

∈ C∞(M, R).

We can easily see that

∫

M
g f0

ωn

n! = �({ω})aVol(M, ω) < 0
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and

�Ch
ω (ψ + a) − 2

n
�({ω})(ψ + a) = −2

n
g.

The assertion now follows from this and part a) of Proposition 2.6. ��
Remark 2.9 The proof of Corollary 2.8 suggests a method whereby we can construct
explicit examples of smooth functions that satisfies condition (*) which cannot be
the Chern scalar curvature of a metric conformal to ω. Indeed, we can choose ψ ′ ∈
C∞(M, R) which is not constant and define ψ = ψ ′ + k, where k ∈ R such that∫
M ψ f0

ωn

n! = 0. Then, following the steps of the proof, we can obtain a function
which satisfies (*) that cannot be the Chern scalar curvature of a metric conformal to
ω.

Corollary 2.8 states that not all the functions satisfying the condition (*) can be Chern
scalar curvature of a metric conformal toω. So, we concentrate on searching solutions
of the Chern scalar curvature problemwithin the set of metrics conformally equivalent
toω, namely, we search a biholomorphism ϕ ofM and a function u ∈ C∞(M, R) such
that SCh(exp( 2un )ϕ∗ω) = g. Using the same methods we used above, this problem is
equivalent to find ϕ ∈ Aut(M) such that the equation

�Ch
ω u + �({ω}) = (g ◦ ϕ) exp

(
2u

n

)

(9)

admits a solution. We can observe immediately that the automorphism ϕ must be such
that

∫

M
(g ◦ ϕ) f0

ωn

n! < 0.

This condition is a first obstruction to our study. We do not know if, in general,
there exists an automorphism of M such that the condition above can be satisfied.
Nevertheless, we concentrate on searching sufficient conditions on g so that it is the
Chern scalar curvature of a metric conformally equivalent to ω. The part c) of the
Proposition 2.6 implies directly a sufficient condition.

Proposition 2.10 Let Mn be a connected, compact complex manifold with n ≥ 2
endowed with a Hermitian metric ω such that SCh(ω) = �({ω}) < 0. Suppose that
g ∈ C∞(M, R) is negative somewhere on M. Then, g is the Chern scalar curvature
of a metric conformally equivalent to ω if there exists ϕ ∈ Aut(M) such that

∫
M (g ◦

ϕ) f0
ωn

n! < 0 and c(g ◦ ϕ) < �({ω}).
Unfortunately, we do not have an explicit expression for the constant c(g ◦ ϕ). On
the other hand, we have some estimates on that constant. These estimates allow us to
improve the Proposition 2.10.

Proposition 2.11 Let Mn be a connected, compact complex manifold with n ≥ 2
endowed with a Hermitian metric ω such that SCh(ω) = �({ω}) < 0. Suppose that
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g ∈ C∞(M, R) is negative somewhere on M. Then, g is the Chern scalar curvature
of a metric conformally equivalent to ω if there exist ϕ ∈ Aut(M) and p > n such
that

∫
M (g ◦ ϕ) f0

ωn

n! < 0 and

∥
∥
∥
∥g ◦ ϕ − 1

Vol(M, ω)

∫

M
(g ◦ ϕ) f0

ωn

n!
∥
∥
∥
∥
L p(M)

< C,

where C = C(M, ω, g, p) > 0.

Proof Suppose that there exists ϕ ∈ Aut(M) such that
∫
M (g ◦ ϕ) f0

ωn

n! < 0. Thanks
to Proposition 2.10, it is sufficient to impose that c(g ◦ ϕ) < �({ω}). Using (8), we
obtain that it is sufficient to impose the following condition

∫
M (g ◦ ϕ) f0

ωn

n!
2Vol(M, ω)minM {φ + a} < �({ω}),

where �Ch
ω φ = 2

n (−g ◦ ϕ + 1
Vol(M,ω)

∫
M (g ◦ ϕ) f0

ωn

n! ) and

a = max
M

{

− 2nVol(M, ω)
∫
M (g ◦ ϕ) f0

ωn

n!
ω(dφ, dφ) − φ

}

.

With these choices, we have

min
M

{φ + a} ≤ − 2nVol(M, ω)
∫
M (g ◦ ϕ) f0

ωn

n!
max
M

ω(dφ, dφ).

Then, using this inequality, we obtain

∫
M (g ◦ ϕ) f0

ωn

n!
2Vol(M, ω)minM {φ + a} ≤ − (

∫
M (g ◦ ϕ) f0

ωn

n! )
2

4nVol(M, ω)2 maxM ω(dφ, dφ)
.

By the standard elliptic theory, we know that there exists, if p > n, a constant K =
K (M, ω, p) such that

‖du‖C0(M) ≤ K‖�Ch
ω u‖L p(M).

So, by straightforward calculations, it is sufficient to impose that there exists p > n
such that

∥
∥
∥
∥g ◦ ϕ − 1

Vol(M, ω)

∫

M
(g ◦ ϕ) f0

ωn

n!
∥
∥
∥
∥
L p(M)

< −
√
n

∫
M (g ◦ ϕ) f0

ωn

n!
4KVol(M, ω)

√−�({ω}) = C .

��
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Unfortunately, the condition found in the Proposition above is not easily checkable. As
we can see from the proof, the constantC depends on easily computable quantities like
Vol(M, ω) and�({ω}) but also on K , that is the norm of the embeddingW 2,p(M) ↪→
C1(M), which is not explicit, in general, for compact manifolds.

2.2 Case 0({!}) = 0

In this case, the condition (2) guarantees that g ∈ C∞(M, R)must either be identically
zero or change sign on M . Thanks to Theorem 1.10, we can choose a metric conformal
toω such that its Chern scalar curvature is identically zero.Wewill indicate suchmetric
with ω and with f0 its eccentricity function. The Eq. (3) can be rewritten as follows:

�Ch
ω u = g exp

(
2u

n

)

. (10)

As we already did in the previous case, we can multiply by exp(− 2u
n ) the Eq. (10),

use the formula (4), multiply by f0 and then integrate on M in order to obtain the
following additional necessary condition:

∫

M
g f0

ωn

n! < 0.

In general, we can guess if the Eq. (3) can be interpreted as the Euler-Lagrange equa-
tion, with respect to a pairing, associated to an appropriate functional. Unfortunately,
considering the L2 standard pairing, this interpretation is not possible unless themetric
we consider is balanced.

Proposition 2.12 ( [1], Proposition 5.3)Let Mn be a connected, compact complex
manifold endowed with a Hermitian metric ω. The 1-form on C∞(M, R)

α : h �→
∫

M
hω(d f , θ)

ωn

n!

is never closed, beside the case when it is identically zero, which happens if and only
if ω is balanced. It follows that Eq. (3) can be seen as the Euler-Lagrange equation
for the standard L2 pairing if and only if ω is balanced. In this case, the functional
takes the form:

F(u) =
∫

M
(ω(du, du) + SCh(ω)u)

ωn

n! , ∀u ∈ W 1,2(M)

subject to the constraint

∫

M
g exp

(
2u

n

)
ωn

n! = 0.
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As observed in [1,Remark 5.4], we do not know if the functional F is, in general,
bounded below. Clearly, this property is satisfied by imposing that SCh(ω) = 0. Then,
in the hypothesis that ω is balanced and SCh(ω) = 0, we can apply the variational
methods to find a solution of Eq. (3).

Theorem 2.13 Let Mn bea connected, compact complexmanifoldwith n ≥ 2. Suppose
that there exists a balanced metric ω such that SCh(ω) = 0. Then, all the functions
g ∈ C∞(M, R) changing sign and such that

∫
M g ωn

n! < 0 are Chern scalar curvature
of a metric conformal to ω.

Proof Define

B =
{

φ ∈ W 1,2(M)
∣
∣

∫

M
g exp

(
2φ

n

)
ωn

n! = 0,
∫

M
φ

ωn

n! = 0

}

and note that B �= ∅ because g changes sign on M . By straightforward calculations,
it follows that exp(−) : W 1,2(M) → W 1,2(M) is continuous. Define a = infB F . We
consider a minimizing sequence {vk}k∈N ⊂ W 1,2(M) such that {F(vk)}k∈N goes to
a decreasingly. We can choose v0 ∈ B and define b = F(v0) ≥ 0. Without loss of
generality, we can suppose that F(vk) ≤ b, ∀k ∈ N. Thanks to Poincaré inequality,
we verify that

‖vk‖2W 1,2(M)
≤ C‖dvk‖2L2(M)

= CF(vk) ≤ Cb.

So, {vk}k∈N is bounded inW 1,2(M) andweknow that a bounded set isweakly compact,
thanks to Banach-Alaouglu-Bourbaki Theorem. So, up to subsequences, there exists
a function v ∈ W 1,2(M) such that vk⇀v in W 1,2(M). This fact implies straight-
forwardly, using the continuity of exp( 2−n ), that v ∈ B. Moreover, using again the
Poincarè inequality, we know that ‖−‖W 1,2(M) is equivalent to

√F(−). So, using the
lower semicontinuity of the weak convergence with respect to

√F(−), we have

√
F(v) ≤ lim inf

k→+∞
√
F(vk) ≤ √

F(vk), ∀k ∈ N.

So, v ∈ B minimizes the functional F on B. By standard Lagrange multiplier theory,
we have two constant λ,μ ∈ R such that

∫

M

(

ω(dϕ, dv) + 2

n
λϕg exp

(
2v

n

)

+ 2

n
μϕ

)
ωn

n! = 0, ∀ϕ ∈ W 1,2(M). (11)

Choosing ϕ = 1, we obtain automatically that μ = 0. Moreover, if we choose ϕ =
exp(− 2v

n ) we obtain

∫

M
−2

n
exp

(

−2v

n

)

ω(dv, dv)
ωn

n! + 2

n
λ

∫

M
g
ωn

n! = 0.
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Using the hypothesis that
∫
M g ωn

n! < 0, we obtain that λ < 0. So, we can write

−λ = n
2 exp(

2γ
n ), where γ ∈ R is an appropriate constant. Integrating by parts the

Eq. (11), we verify that the function v is a solution of

�Ch
ω v = g exp

(
2(v + γ )

n

)

.

Then, u = v+γ ∈ W 1,2(M) is a solution of (10). Again using the Calderón-Zygmund
inequality, we prove that u ∈ C∞(M, R). ��

Notwithstanding the hypothesis of the Theorem above are very strong, we have
many examples of compact complex manifolds that satisfy them. Surely, on every
compact Kähler manifold with c1(M) = 0, we can consider a metric that satisfies the
hypothesis of the Theorem 2.13. In fact, thanks to Yau Theorem, see [17,Theorem 2],
on this type ofmanifold, we can always choose a Ricci-flat Kählermetric. In particular,
this metric is balanced and its Chern scalar curvature is identically zero. In the non-
Kähler case, we can construct balanced metrics with zero Chern scalar curvature on
every compact quotient of a holomorphic Lie group. We know that these manifolds
are the only compact complex manifolds that are holomorphically parallelizable, see
[15,Theorem 1]. Moreover, every holomorphically parallelizable manifold admits a
Chern-flat Hermitian metric, see [2,Theorem 3]. Such metric is balanced and its Chern
scalar curvature is equal to zero. More examples are conjectured in [14,Conjecture
4.1].

Theorem 2.13 allows us to formulate an equivalent condition so that a smooth
function changing sign on M can be Chern scalar curvature of a metric conformally
equivalent to a metric satisfying the hypothesis of the Thereom 2.13.

Proposition 2.14 Let Mn be a connected, compact complex manifold with n ≥ 2.
Suppose that there exists a balanced metric ω such that SCh(ω) = 0. Then, a function
g ∈ C∞(M, R) that changes sign is theChern scalar curvature of ametric conformally
equivalent to ω if and only if there exists ϕ ∈ Aut(M) such that

∫

M
g ◦ ϕ

ωn

n! < 0.

Remark 2.15 Unfortunately, we have some examples of functions that cannot be the
Chern scalar curvature of ametric conformally equivalent to one satisfying the hypoth-
esis of Theorem 2.13. Let M = C

n/� be a complex torus, where � is a discrete
translation subgroup of rank 2n acting freely on C

n . We know that

Aut(M) = GL(�) � M,

where GL(�) = {A ∈ GL(n, C) | A(�) = �}. We can consider the flat metric ω on
M . Clearly, ω is Kähler and its Chern scalar curvature is zero. On the other hand, we
observe that

∫

M
g ◦ ϕ

ωn

n! =
∫

M
g
(ϕ−1)∗ωn

n! , ∀ϕ ∈ Aut(M).
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Clearly, if x ∈ M , then x∗ω = ω, instead, if A ∈ GL(�), we have A∗ωn =
|det(A)|ωn . Moreover, we have that, ∀ϕ ∈ Aut(M), there exists a unique x ∈ M
and a unique A ∈ GL(�) such that ϕ = x ◦ A. So

∫

M
g ◦ ϕ

ωn

n! = |det(A−1)|
∫

M
g
ωn

n! .

Then, a function g ∈ C∞(M, R) that changes sign on M is the Chern scalar curvature
of a metric conformally equivalent to ω if and only if

∫
M g ωn

n! < 0 and then, using
Theorem 2.13, if and only if g is the Chern scalar curvature of a metric conformal to
ω. So, we can construct functions changing sign on M but which are not Chern scalar
curvature of any metric conformally equivalent to ω. For example, consider

� =
2n⊕

i=1

Zei ,

where {e1, . . . , e2n} is the standard basis of R
2n . If we consider the function

g(x1, . . . , x2n) = cos(2πx1), we note easily that
∫
M g ωn

n! = 0. So, g cannot be
the Chern scalar curvature of any metric conformal equivalent to ω.

2.3 Case 0({!}) > 0

This last case is the most difficult. We already said that, in this case, we do not
know if there exists a metric with constant and positive Chern scalar curvature within
the conformal class. On the other hand, the condition (2) guarantees that g must be
positive somewhere on M . The result we prove below follows from an application of
the Implicit function Theorem.

Proposition 2.16 Let Mn be a connected, compact complex manifold with n ≥ 2
endowed with a Hermitian metric ω such that �({ω}) > 0. Let η ∈ {ω} be the only
Gauduchon metric with volume 1. Then, there exists ε > 0, depending on M and
η, such that, if ‖SCh(η)‖C0,α(M), ‖g‖C0,α(M) < ε, where g ∈ C∞(M, R) is positive
somewhere on M and α ∈ (0, 1), then g is the Chern scalar curvature of a metric
conformal to ω.

Proof Fix α ∈ (0, 1) and consider the Banach manifolds:

X =
{

(u, g, S) ∈ C2,α(M) × C0,α(M)2
∣
∣

∫

M

(

S − g exp

(
2u

n

))
ηn

n! = 0

}

Y =
{

ψ ∈ C0,α(M)
∣
∣
∫

M
ψ

ηn

n! = 0

}

.

Consider the map F : X → Y such that

F(u, g, S) = �Ch
η u + S − g exp

(
2u

n

)

, ∀(u, g, S) ∈ X .
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Clearly, F is C1. Observe that F(0, 0, 0) = 0 and that

∂F

∂u |(0,0,0)
(φ) = �ηφ.

is invertible on T0Y � Y . So, using the implicit function Theorem, there exists a
neighbourhood U ⊂ C0,α(M)2 of (0, 0) and a C1 function � : U → X such that

F(�(g, S), g, S) = 0, ∀(g, S) ∈ U .

Choose ε > 0, depending only on M and η, such that

{

g ∈ C0,α(M)
∣
∣ max

M
g > 0, ‖g‖C0,α(M) < ε

}

× BC0,α(M)(0, ε) ⊆ U .

So, if η is such that ‖SCh(η)‖C0,α(M) < ε and g ∈ C∞(M, R) somewhere positive
on M and such that ‖g‖C0,α(M) < ε, we can choose u = �(g, S) and verify that
SCh(exp

( 2u
n

)
) = g. By Schauder estimates, we obtain that u ∈ C∞(M, R). ��

The Proposition above is a generalization of [1,Theorem 5.9]. We observe that the
condition on SCh(η) in Proposition 2.16 is expressed in terms of ε, which depends
itself on η. So, a priori, the result may be empty. However, in [1,Remark 5.10], the
authors present some examples where the [1,Theorem 5.9] can be applied. In these
examples, Proposition 2.16 can also be applied.

Acknowledgements The author is very grateful to Daniele Angella for his supervision, support and stim-
ulating discussions over months. Many thanks are also due to Francesco Pediconi for several discussions,
suggestions and his interest on the subject.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Angella, D., Calamai, S., Spotti, C.: OnChern-Yamabe problem.Math Res Lett 24(3), 645–677 (2017).
arXiv:1501.02638

2. Boothby, W.M.: Hermitian manifolds with zero curvature. Michigan Math. J. 5(2), 229–233 (1958)
3. Calamai, S., Zou, F.: A note on Chern-Yamabe problem. Differ. Geom. Appl. J Profile 69, Article ID

101612, 14 p. (2020)
4. Gauduchon, P.: Le théorème de l’excentricité nulle. C. R. Acad. Sci. Paris Sér. A-B 285(5), A387–A390

(1977)
5. Gauduchon, P.: La 1-forme de torsion d’une variété hermitienne compacte.Math.Ann. 267(4), 495–518

(1984)
6. Ho, P.T.: Results related to Chern-Yamabe flow. J. Geom. Anal. J. Profile 31(1), 187–220 (2021)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1501.02638


The Prescribed Chern Scalar Curvature Problem Page 21 of 21   187 

7. Ho, P.T., Shin, J.: Chern-Yamabe problem and Chern-Yamabe soliton. Int. J. Math. 32(3), 2150016,
pp 22 (2021)

8. Lejmi, M., Maalaoui, A.: On Chern-Yamabe flow. J. Geom. Anal. J. Profile 28(3), 2692–2706 (2018)
9. Lejmi, M., Upmeier, M.: Integrability theorems and conformally constant Chern scalar curvature

metrics in almost Hermitian geometry. Commun. Anal. Geom. 28(7), 1603–1645 (2020)
10. Kazdan, J.L.,Warner, F.W.: Curvature functions for compact 2-manifolds.Ann.Math. 99, 14–47 (1974)
11. Kazdan, J.L., Warner, F.W.: Scalar curvature and conformal deformation of Riemannian structure. J.

Differ. Geom. 10(1), 113–134 (1975)
12. Kazdan, J.L., Warner, F.W.: Existence and conformal deformation of metrics with prescribed Gaussian

and scalar curvature. Ann. Math. 2nd Ser, 101(2), 317–331 (1975)
13. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ.

Geom. 20(2), 479–495 (1984)
14. Tosatti, V.: Non-Kähler Calabi-Yau manifolds. In: Analysis, complex geometry, and mathematical

physics: in honor of Duong H. Phong, 261-277, Contemp. Math., 644, Amer. Math. Soc., Providence,
RI (2015)

15. Wang, H.C.: Complex parallisable manifolds. Proc. Am. Math. Soc. 5, 771–776 (1954)
16. Yang, X.-K.: Scalar curvature on compact complex manifolds. Trans. Am. Math. Soc. 371, 2073–2087

(2019)
17. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the Complex Monge-Ampére

equation, I. Commun. Pure Appl. Math. J. Profile 31, 339–411 (1978)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	The Prescribed Chern Scalar Curvature Problem
	Abstract
	Introduction
	1 Preliminaries
	2 The Prescribed Chern Scalar Curvature Problem
	2.1 Case Γ({ω})<0.
	2.2 Case Γ({ω})=0
	2.3 Case Γ({ω})>0

	Acknowledgements
	References




