
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Efficient Training and Hardware Co-design of Machine Learning Models / Mansoori, Mohammad Amir; Casu, Mario R.. -
ELETTRONICO. - 866:(2022), pp. 243-248. (Intervento presentato al convegno International Conference on
Applications in Electronics Pervading Industry, Environment and Society (Applepies), 2021 tenutosi a Pisa, Italy nel Sep.
2021) [10.1007/978-3-030-95498-7_34].

Original

Efficient Training and Hardware Co-design of Machine Learning Models

Springer postprint/Author's Accepted Manuscript (book chapters)

Publisher:

Published
DOI:10.1007/978-3-030-95498-7_34

Terms of use:

Publisher copyright

This is a post-peer-review, pre-copyedit version of a book chapter published in International Conference on Applications
in Electronics Pervading Industry, Environment and Society (Applepies), 2021. The final authenticated version is
available online at: http://dx.doi.org/10.1007/978-3-030-95498-7_34

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2961823 since: 2022-04-21T15:49:20Z

Springer

Efficient Training and Hardware Co-Design of
Machine Learning Models

Mohammad Amir Mansoori and Mario R. Casu

Politecnico di Torino, Turin, Italy
{mohammadamir.mansoori,mario.casu}@polito.it

Abstract. To implement a Machine Learning (ML) model in hardware
(Hw), usually a first Design Space Exploration (DSE) optimizes the
model hyper-parameters in search of the best ML performance, while a
second DSE finds the configuration with the best Hw performance. Mul-
tiple iterations of these steps might be needed as the optimal ML model
may not necessarily be implementable. To reduce the design-time and
provide the designer with a single exploration environment, we propose
a general framework based on Bayesian Optimization (BO) and High-
Level Synthesis (HLS), which performs at once both DSEs generating
efficient Pareto curves in the space of ML and Hw performance.

Keywords: Machine Learning (ML), Hardware Acceleration, High Level
Synthesis (HLS), FPGAs, Bayesian Optimization

1 Introduction

Machine Learning (ML) techniques can be very effective in various edge ap-
plications (medical diagnosis, computer vision, robotics) but very often require
hardware (Hw) accelerators for power- and cost-efficient inference. The usual
design method consists of a Design Space Exploration (DSE) to fine-tune the
hyper-parameters of an ML model, followed by another DSE that aims to opti-
mize the Hw design for a given target. In this work we consider small-size FPGAs
as Hw target and a high-level design approach using High-Level Synthesis (HLS).

This approach of separate DSE is shown in Fig. 1(a) and is useful for those
applications where the ML accuracy has to be maximized and powerful Hw
accelerators can be selected to meet the desired performance. However, being
bounded to one specific small-size Hw architecture makes the design more chal-
lenging, calling for the joint optimization strategy shown in Fig. 1(b). The joint
method avoids lengthy iterations that occur when the selected ML model is in-
compatible with the Hw constraints (e.g., it exceeds the available resources or
cannot meet the timing requirements) and can obtain a better trade-off between
ML performance and Hw performance.

For this reason, we propose a general framework for the joint optimization
of training hyper-parameters and HLS-based hardware configurations based on
Multi-Objective Bayesian Optimization (BO) with constraints. This methodol-
ogy allows for the optimization of multiple hardware parameters in HLS includ-
ing clock frequency, data precision, and different levels of parallelism (unroll

2 Lecture Notes in Computer Science: Authors’ Instructions

Fig. 1. Optimization of training hyper-parameters and hardware configurations: (a)
traditional separate DSE, (b) more efficient joint DSE. DS1 and DS2 stand for Design
Space of training and hardware design, respectively.

factor or array partitioning), together with the ML training hyper-parameters.
BO optimizes black-box objective functions that are expensive to evaluate. It
uses Gaussian Processes (GP) as the prior model to quantify the uncertainty
of these functions. An acquisition function is then constructed based on the
expected improvement of the prior model to decide where to sample the ob-
jective functions next [9]. In this work we use Predictive Entropy Search for
Multi-Objective Optimization with Constraints (PESMOC) [7] for the acquisi-
tion function. In each BO iteration a new sample is suggested by the acquisition
function and the objectives are evaluated for the new sample in order to update
the Gaussian models and the acquisition functions in the next iteration. The
main contributions of this work are as follows:

– An efficient method for the joint optimization of training hyper-parameters
and HLS-based hardware configurations in the context of Machine Learning.

– Exploitation of the capabilities of BO for Multi-Objective optimization sub-
ject to positive constraints in the design of ML models in hardware.

– Inclusion of the clock frequency as an optimization target, which is currently
not optimized in HLS tools for Xilinx devices (Vivado HLS).

– Evaluation of the proposed methodology for the efficient design of a Multi-
Layer Perceptron (MLP) type of Neural Network in a Zynq FPGA.

2 Related work

To find the optimum hyper-parameters of an ML model during training, more
powerful approaches than simple Grid Search and Random Search are in use
nowadays, such as Auto-Sklearn, HyperOpt, Auto-Keras, and Keras-Tuner. In
[1], a review of commonly-used methods in automated ML has been presented.
The algorithms used in these methods can be divided into Reinforcement Learn-
ing (RL), BO, and Evolutionary Algorithms (EAs). Although RL and BO share
similar characteristics and have been proven effective in several works, one of the
difficulties of RL is that the policies and reward function need customization for
each DSE problem, while the BO’s Gaussian Process is a natural fit for these

Lecture Notes in Computer Science: Authors’ Instructions 3

optimization problems. EAs are computationally expensive, which led several
authors to propose other methods to speed up the computations.

Regarding the DSE aimed at optimizing the hardware configurations, several
works have focused on High Level Synthesis (HLS) as the hardware design tool
and proposed different methodologies for the optimum selection of HLS pragmas
([2], [3]). In [4] Multi-Objective Bayesian Optimization is used to tune the HLS
configurations. Although the generated Pareto Fronts are close to the actual
optimal points, it could not consider constraints in addition to multiple objectives
in the optimization process which increases the exploration time.

Recently, there has been a growing interest in the joint optimization of hard-
ware and training parameters, specially in the context of Deep Neural Networks
(DNNs) for which Hardware-aware Neural Architecture Search (HW-NAS) has
been introduced. In the context of HW-NAS, numerous works have been pre-
sented for the co-optimization of network architecture and hardware-related pa-
rameters that are thoroughly described in a recent review paper [5]. One of the
challenges in the recent HW-NAS methodologies is designing efficient algorithms
to solve the expensive Multi-Objective Optimization (MOO) problem. According
to [5], most of the previous works use single-objective optimization targeting net-
work accuracy constrained to hardware-aware characteristics. Other approaches
combine multiple objectives into one single function. Evolutionary algorithms
are mostly used for MOO in HW-NAS which are computationally expensive. In
[6] a two-step BO is used to reduce the complexity of MOO. Our work has fea-
tures in common with previous HW-NAS works, but is not restricted to DNNs,
uses BO as a more efficient exploration method for multi-objective functions,
and uses HLS in the optimization loop to obtain an accurate estimation of the
Hw performance for a given configuration.

Finding both optimum parameters for ML model training and hardware can
be seen as a Multi-Objective Optimization problem with Constraints (MOOC).
Recently, Garrido-Merchán et al. extended their Spearmint software for applying
BO to MOOC and proved its efficiency in designing a DNN architecture in
hardware [7]. The hardware area is selected as a constraint and is estimated
by Aladdin, a pre-RTL performance estimator for ASIC accelerator design [8].
Unlike our work, FPGA is not considered as a Hw target and HLS is not used.

3 Proposed methodology

Fig. 2 illustrates our methodology. The BO takes as input the range of param-
eters for both training and Hw exploration and aims to optimize at once three
objectives: (1) Training error on the ML dataset using floating-point precision
in Python; (2) Prediction (i.e., inference) error after Hw implementation, which
takes into account fixed-point quantization and is obtained with the HLS C-
simulation tool from the Vivado suite; (3) Hw inference performance expressed
as clock period times the number of clock cycles as obtained from the HLS tool1.
The constraints are the FPGA resources (BRAMs, DSPs, FFs, LUTs).

1 We leave power optimization for future work.

4 Lecture Notes in Computer Science: Authors’ Instructions

Fig. 2. Proposed methodology for the joint optimization of training parameters and
HLS-based hardware configurations (BO = Bayesian Optimization).

The BO considers a Gaussian Process for each of the objectives and con-
straints. The training hyper-parameters and the Hw configuration parameters
(HLS pragmas, data precision, clock frequency) are updated in each BO iteration
based on the maximization of PESMOC acquisition function, which suggests a
new sample in the design space to be evaluated by the objective functions. The
non-dominated points of the design space are obtained at the end of the iterative
process.

4 Results

For the evaluation, we used the MNIST dataset to train a Multi-Layer Perceptron
(MLP) to be implemented in a Zynq7000 FPGA. We used hls4ml [10] to convert
the MLP model to a synthesizable C++ code. The model hyper-parameters and
the ranges of the HLS and Hw knobs are in Tab.1.

Table 1. Ranges of parameters for the joint training/Hw optimization method.

Inputs Clk (ns)
Hidden
Layers

Neurons
Precision
#total

Precision
#Integer

Reuse
factor

Array
Partition

Learning
rate

Regul-
arization

rate

Ranges 4 - 7 1 - 3
32 - 256
step = 32

12 - 16 4 - 6 1 - 4
2x

x = [1 − 8]
1 × 10(−x)

x = [2 − 7]
1 × 10(−x)

x = [2 − 7]

Fig. 3 compares the evolution of the training error using a joint (Fig. 3(a))
and a separate (Fig. 3(b)) optimization approach. Fig. 3(a) shows that both
floating-point error during training and fixed-point error in hardware converge
as the BO iterations progress. Since the separate method returns only the best
training result, Fig. 3(b) shows only the fixed-point inference error and shows
an immediately low error in all BO iterations (less than 5%). This is because
the separate hardware design starts with a neural network already optimized in
terms of training error, which only needs to be tailored to the hardware target.

Lecture Notes in Computer Science: Authors’ Instructions 5

Fig. 3. Percentage of training error (float error) and hardware error (fixed-point error)
in each BO iteration, (a) proposed joint optimization, (b) separate optimization.

Fig. 4. Comparison of (a) prediction time and (b) Pareto fronts.

This last optimization of the separate method, however, is constrained by the
initial training. As a result, the BO cannot reach the same latency performance
of the joint optimization. This is visible in Fig. 4(a), with the relatively high
prediction time for the separate optimization method (red points).

The efficiency of the proposed methodology is apparent in Fig. 4(b), which
compares the Pareto curves obtained by separate (red) and joint (blue) opti-
mization methods. In the red curve, the training optimization is done by Keras-
Tuner. Note that in this case Keras-Tuner suggests an initial MLP with three
layers and a number of neurons that could not fit in the FPGA due to excessive
BRAM usage, leading to a failure in the subsequent hardware BO. This required
a second iteration to limit the neurons range from [32 − 256] to [32 − 128] in
the training DSE, which returned a feasible three-layer MLP with 128 neurons
in each layer, low error but relatively high prediction time. The subsequent Hw
DSE returned only three (red) Pareto points. On the contrary, the joint method
returns many more valid Pareto points (blue) because of its ample maneuver-

6 Lecture Notes in Computer Science: Authors’ Instructions

ability in the combined trainig and hardware design spaces. Most importantly,
the blue points dominate the red ones, as clearly shown in Fig. 4(b).

5 Conclusions and future work

We proposed a new strategy, based on Multi-Objective Bayesian Optimization
subject to positive constraints, for the efficient design of Machine Learning mod-
els in FPGA-based hardware accelerators, which can simultaneously optimize the
training hyper-parameters and HLS-based hardware configurations. It optimizes
prediction error and latency, subject to FPGA resource constraints. The results
show the efficiency of the Pareto sets obtained by the proposed method with
near 2× reduction of prediction time without an increase in the prediction error
compared to the traditional separate optimization design. In the future, we will
evaluate other ML models with this methodology, such as Support Vector Ma-
chine (SVM) and Random Forest (RF). Other techniques like Random Search
and evolutionary algorithms can be compared with our approach in terms of
computational time and efficiency of the Pareto fronts.

Acknowledgments. This work was supported by the EMERALD project funded
by the European Union’s Horizon 2020 research and innovation programme un-
der the Marie Sk lodowska-Curie grant agreement No. 764479.

References

1. Chen, Y., Song, Q., and Hu, X.: Techniques for automated machine learning. ACM
SIGKDD Explorations Newsletter 22.2 (2021) 35-50.

2. Sohrabizadeh, A., et al.: AutoDSE: Enabling Software Programmers Design Efficient
FPGA Accelerators. arXiv preprint arXiv:2009.14381 (2020).

3. Zhao, J., et al.: Performance modeling and directives optimization for high-level
synthesis on FPGA. IEEE TCAD, 39.7 (2019) 1428-1441.

4. Mehrabi, A., et al.: Bayesian optimization for efficient accelerator synthesis. ACM
TACO 18.1 (2020) 1-25.

5. Benmeziane, H., et al.: A Comprehensive Survey on Hardware-Aware Neural Archi-
tecture Search. arXiv preprint arXiv:2101.09336 (2021).

6. Parsa, M., et al.: Pabo: Pseudo agent-based multi-objective bayesian hyperparam-
eter optimization for efficient neural accelerator design. 2019 IEEE/ACM ICCAD
(2019).

7. Garrido-Merchán, E.C., Hernández-Lobato, D.: Predictive entropy search for multi-
objective bayesian optimization with constraints. Neurocomputing 361 (2019) 50-68.

8. Shao, Y.S, et al.: Aladdin: A pre-rtl, power-performance accelerator simulator en-
abling large design space exploration of customized architectures. 2014 ACM/IEEE
41st ISCA (2014).

9. Frazier, P.I: A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811
(2018).

10. Fahim, F., et al.: An Open-Source Codesign Workflow to Empower Scientific Low-
Power Machine Learning Devices. ArXiv preprint arxiv:2103.05579 (2021).

