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Abstract
In this work, we propose a model that can be used
to infer the behaviour of multiple animals. Our pro-
posal is defined as a set of hidden Markov models that
are based on the sticky hierarchical Dirichlet process,
with a shared base-measure, and a step and turn with
an attractive point (STAP) emission distribution. The
latent classifications are representative of the behaviour
assumed by the animals, which is described by the STAP
parameters. Given the latent classifications, the animals
are independent. As a result of the way we formalize
the distribution over the STAP parameters, the animals
may share, in different behaviours, the set or a sub-
set of the parameters, thereby allowing us to investi-
gate the similarities between them. The hidden Markov
models, based on the Dirichlet process, allow us to esti-
mate the number of latent behaviours for each animal,
as a model parameter. This proposal is motivated by a
real data problem, where the global positioning system
(GPS) coordinates of six Maremma Sheepdogs have been
observed. Among the other results, we show that four
dogs share most of the behaviour characteristics, while
two have specific behaviours.
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1 INTRODUCTION

Movement data are often based on a time-series of two-dimensional spatial coordinates recorded
using a global positioning system (GPS) device attached to an animal. Since the first paper by
Dunn and Gipson (1977), the statistical models used to analyse such data have become increas-
ingly popular, and are used to understand different aspects of the movement of animals, ranging
from habitat selection (Hebblewhite & Merrill, 2008) to behaviour analysis (Anderson & Lindzey,
2003; Maruotti et al., 2016; Mastrantonio, 2018; Merrill & David Mech, 2000); for a detailed review,
the reader may refer to Hooten et al. (2017).

Three major categories of movement-description models can be identified in the behaviour
modelling framework: biased random walks (BRWs), correlated random walks (CRWs), and bias
and correlated random walks (BCRWs). In a BRW, the animal movement is attracted (or biased)
toward a point in space, which is called center-of-attraction (see, e.g., Blackwell, 1997; Dunn &
Gipson, 1977). The center-of-attraction can be interpreted as a proxy of the home-range (Christ
et al., 2008) or it can describe a movement toward a patch of space (McClintock et al., 2012).
In a CRW, the movement direction, at any given time, depends on the previous direction. This
characteristic is called directional persistence (Jonsen et al., 2005) and it is useful to describe a con-
stant change in direction between consecutive observations. If both directional persistence and
attractors are used to describe a movement, the model is a BCRW (Codling et al., 2008; Fortin
et al., 2005; McClintock et al., 2012). A movement-description model is generally used as an emis-
sion distribution of a mixture-type model, where a latent cluster-membership variable is used to
identify the behaviour assumed by an animal. If the observed time-window is wide enough, the
use of a mixture-type model is justified by the assumption that an animal exhibits more than
one behaviour during the day (Patterson et al., 2008), e.g., sleeping and hunting. The switching
between behaviours is often temporally structured and, if formulated in a discrete-time frame-
work, the model is usually the hidden Markov model (HMM) (Langrock et al., 2012; Michelot
et al., 2016).

The literature on the modelling of multiple animals is not as extensive as that on single indi-
viduals, even though coordinates of different animals are often recorded. Nonetheless, interest in
this topic is increasing (see, e.g., Westley et al., 2018) since, as shown by (Jonsen, 2016), the joint
modelling of multiple animals often increases the precision of the estimates. By adopting the clas-
sification given by Scharf and Buderman (2020), it is possible to model multiple animals using
two approaches. In the first approach, called indirect, the parameters that govern the behaviours
are seen as random effects across animals, that is, they come from a common distribution, whose
parameters must be estimated, and the animals are conditionally independent (see, e.g.,
Buderman et al., 2018; McClintock et al., 2013; Michelot et al., 2017). However, in the direct appr-
oach, the dependence between animals is described by an unobserved graph or social network,
see, e.g., Calabrese et al. (2018), Hooten et al. (2018), Milner et al. (2021) and Niu et al. (2020).

We here propose a Bayesian model which can be used to describe multiple animals that
share certain movement characteristics, observed over different time-windows. The model is
based on the hierarchical Dirichlet process (HDP) (Teh et al., 2006) and it is a generalization of
the sticky hierarchical Dirichlet process HMM (sHDP-HMM) of Fox et al. (2011). In the model,
given the latent classification and likelihood parameters, the animals are independent and the
behaviours are described by the five parameters of the step and turn with an attractive point
(STAP) distribution, which is a BCRW emission-distribution that has recently been proposed
by Mastrantonio (2020). The main contributions of the present proposal are the possibility of
estimating the number of latent behaviours of each animal as model parameters, and of



MASTRANTONIO 3

introducing the sharing of parameters between behaviours and animals in HMMs based on
Dirichlet processes (DPs). The former is a by-product of the DP modelling, which allows us to
avoid the use of information criteria to select the number of behaviours, which has been shown
to be problematic in this context (Pohle et al., 2017), or a trans-dimensional Markov chain Monte
Carlo (MCMC) algorithm, such as the reversible jump MCMC (RJMCMC), which presents chal-
lenges in its implementation (Hastie & Green, 2012). The sharing of parameters is introduced in
the lower level of the model hierarchy, where the distribution over the STAP parameters is defined
by combining five different DPs. This distribution is discrete, with a countable number of atoms
being defined so that they can share some of their multivariate components. This approach is
similar to the one proposed by Mastrantonio et al. (2021), which was used to model climate data
in a change-point framework. Therefore, the behaviours within or between animals can have the
same value of an STAP parameter, and this allows us to investigate similarities and differences
between the analysed animals. Other approaches also exist that have the sharing of parameters as
one of their characteristics (see, e.g., Jonsen (2016) or Milner et al. (2021)), but they require one to
select, a priori, what parameters are allowed to change and the number of values that a parame-
ter can assume. However, in our proposal, everything is done during the model fitting and driven
by the information within the data.

Our proposal has been used to model the trajectories of 6 Maremma Sheepdogs, observed
in Australia with recorded coordinates every 30 min. These dogs are used all over Europe and
Asia to protect livestock from possible predators and, in recent years, also in Australia (see, e.g.,
van Bommel & Johnson, 2016; Gehring et al., 2017). Maremma Sheepdogs are able to work in
synergy with the shepherd to keep the stock together but this is not always possible when the
property is too large. For this reason, the dogs are often left alone and are rarely visited by the
shepherd. The owner has no supervision over the dogs and it is therefore interesting to anal-
yse and understand their behaviour. The used dataset was taken from the movebank repository
(www.movebank.org) and is described in detail in van Bommel and Johnson (2014a) and van
Bommel and Johnson (2014b). With our model, we have identified many similarities and some
specific features between dogs, that are easy to interpret and which give a better insight into the
behaviour of the dogs. Two competitive models have also been estimated on the same data and
the results are compared with our proposal.

The paper is organized as follows. We introduce the STAP density in Section 2, and the hier-
archical formalization of our proposal in Section 3, while Section 4 contains the results of the
real data application. The paper ends with some conclusive remarks in Section 5. The Web-based
supporting materials, available on the web page of the journal, contain details of the MCMC
algorithm and on the results of the competitive models.

2 THE STAP DISTRIBUTION

With the aim of better understanding the results of the real data application (Section 4) and the
formalization of our proposal, we briefly describe the STAP distribution, which was introduced
in Mastrantonio (2020), and its parameters; for a more detailed description the reader may refer
to Mastrantonio (2020).

We assume we have a time-series of two-dimensional spatial locations s = (st1 , … , stT )
′ that

represent an animal’s path, where sti = (sti,1, sti,2) ∈  ⊂ R2, and ti is a temporal index. The coordi-
nates are recorded without any measurement error and the time difference between consecutive
points is constant. In order to formalize the STAP, we introduce the bearing angle
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𝜙ti = atan∗(sti+1,2 − sti,2, sti+1,1 − sti,1) ∈ [−𝜋, 𝜋),

and the rotation matrix

R(x) =

(
cos(x) − sin(x)
sin(x) cos(x)

)
,

where atan∗(⋅) is the two-argument tangent function (Jammalamadaka & Kozubowski, 2004).
The bearing-angle measures the direction of the movement between time ti and ti+1, and the
rotation matrix can be used to perform a rotation in a two-dimensional space, so that if it multi-
plies a two-dimensional vector, the vector is rotated anti-clockwise by an angle x. The conditional
distribution of sti+1 is assumed to be second-order Markovian, with the following specification:

sti+1 |sti , sti−1 ∼ N(sti + Mti ,Vti ), i ∈ {1, … ,T − 1},
Mti = (1 − 𝜌)𝜏

(
𝝁 − sti

)
+ 𝜌R(𝜙ti−1)𝜼,

Vti = R(𝜌𝜙ti−1)𝚺R′(𝜌𝜙ti−1), (1)

where 𝝁, 𝜼 ∈ R2, 𝜏 ∈ (0, 1), 𝜌 ∈ [0, 1], and 𝚺 is a two-dimensional covariance matrix. The
location st1 is fixed, and st0 is another parameters that is needed to compute 𝜙t0 in the condi-
tional distribution of st2 . If the path follows Equation (1), we write sti+1 |sti , sti−1 ∼ STAP(𝜽), with
𝜽 = (𝝁, 𝜼, 𝚺, 𝜏, 𝜌).

The movement described by the STAP can have directional-persistence and attraction to a
point in space, therefore, the STAP is a BCRW. To better understand these two properties and
how they are formalized in Equation (1), we introduce the vector F⃗ti , which is a vector with ini-
tial and terminal points equal to sti and sti + Mti respectively. This vector represents the expected
movement between time ti and ti+1, since its initial point is the previously observed location sti

and the terminal one is equal to E(sti+1 |sti). If 𝜌 = 0, the STAP reduces to a two-dimensional
AR(1) (a BRW), and F⃗ti points to the spatial location 𝝁, which is therefore the attractor. The
length of F⃗ti is 𝜏||(𝝁 − sti)||, which shows that 𝜏 measures how much of the total distance between
the last observation (sti ) and the attractor (𝝁) is expected to be covered or, in other words, how
strong the attraction to 𝝁 is. If 𝜌 = 1, the STAP reduces to a CRW, based on a normal den-
sity. In this case, the direction of F⃗ti is the same as the direction of R(𝜙ti−1)𝜼, which depends
on the previous bearing angle 𝜙ti−1 , and thus induces a directional-correlation between consec-
utive points. If 𝜌 ∈ (0, 1), F⃗ti is a weighted mean between its value in a BRW and a CRW, with
weights given by (1 − 𝜌) and 𝜌 respectively. The covariance matrix of the conditional distribu-
tion of sti+1 is fixed in a BRW (Cov(sti+1 |sti) = 𝚺), while it rotates with the bearing-angle for any
𝜌 > 0 (Cov(sti+1 |sti) = R(𝜌𝜙ti−1)𝚺R′(𝜌𝜙ti−1)): for more details, the reader may refer to Mastrantonio
(2020).

We show examples of STAP densities, and the associated BRW (𝜌 = 0) and CRW (𝜌 = 1) in
Figure 1, to better understand the differences between the BRW, CRW and BCRW. The dashed
arrow in the figure is the movement between times ti−1 and ti, the solid arrow is F⃗ti , and the
ellipse is a contour of the conditional distribution of sti+1 with a constant density containing 95%
of the total probability mass. From 1 (a), we can see that the direction of F⃗ti and the ellipse change
according to 𝜙ti−1 in a CRW. However, F⃗ti and the ellipse are independent from the previous direc-
tion in a BRW (Figure 1b), and F⃗ti points to the spatial attractor 𝝁 = (0, 0)′. When 𝜌 ∈ (0, 1), the
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(a) (b)

(c) (d)

F I G U R E 1 Graphical representation of the conditional distribution of si+1 ((a) CRW, (b) BRW, (c), (d)
BCRW), for different possible values of si and the previous directions. The dashed arrow represents the movement
between si−1 and si. The solid arrow is F⃗i, while the ellipse is the area containing 95% of the probability mass of

the conditional distribution of si+1. 𝝁 = (0, 0)′, 𝜼 = (0, 6)′, 𝜏 = 0.25, 𝚺 =
(

0.2 0
0 1

)
in all figures, and the central

dot is the location 𝝁, which is the attractor in the biased random walks and the bias and correlated random walks

ellipse and F⃗ti are dependent on both the previous direction and the spatial attractor, see Figures 1c
and d.

3 THE PROPOSED MODEL

In this section, we introduce the components of the model and how they are used to introduce
the characteristics of our proposal. We extend the notation of the previous section to describe the
path of m animals, and to allow changes in the behaviour to be considered.
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We indicate the path of the j th animal with sj = (sj,tj,1 , sj,tj,2 , … , sj,tj,Tj
), where j = 1, … , m, and

j ≡ (tj,1, tj,2, … , tj,Tj ) is the set of temporal points, equally spaced in time, where the position of
the j th dog is recorded. The sets j and j′ can contain different time-points, but the time difference
must be constant across animals, that is, tj,i+1 − tj,i = c for all j = 1, … , m and i = 1, … Tj − 1. We
introduce a discrete random variable zj,tj,i ∈ N to represent the animal behaviour at time tj,i, where
zj,tj,i = k indicates that animal j follows behaviour k at time tj,i. Given the behaviour assumed by
each animal, the paths are independent and

sj,tj,i+1 |sj,tj,i , sj,tj,i−1 , zj,tj,i ∼ STAP(𝜽zj,tj,i
)

where 𝜽k = (𝝁k, 𝜼k,𝚺k, 𝜏k, 𝜌k). In other words, if the j th animal is following the k th behaviour at
time tj,i (i.e. zj,tj,i = k), the path is described by the set 𝜽k of STAP parameters. It should be noted
that the k th behaviours are represented by the same set of parameters 𝜽k for all animals.

Let s = {sj}m
j=1, zj = {zj,t}t∈j , z = {zj}m

j=1, and 𝜽 = {𝜽k}k∈N, then the model we propose is

f (s|𝜽, z) = m∏
j=1

Tj−1∏
i=1

f
(

sj,tj,i+1 |sj,tj,i , sj,tj,i−1 ,𝜽zj,tj,i

)
, (2)

sj,tj,i+1 |sj,tj,i , sj,tj,i−1 , zj,tj,i ,𝜽zj,tj,i
∼ STAP

(
𝜽zj,tj,i

)
, sj,tj,0 ∼ Unif(), (3)

zj,tj,i |zj,tj,i−1 ,𝝅j,zj,tj,i−1
∼ Multinomial

(
1,𝝅j,zj,tj,i−1

)
,

zj,tj,0 ∼ Geom(𝜖), (4)

𝝅j,l|𝛼, 𝜈, 𝜷 ∼ DP
(
𝛼 + 𝜈,

𝛼𝜷 + 𝜈𝛿l

𝛼 + 𝜈

)
, (5)

{𝛽k}k∈N = C1(𝜷∗
𝝁, 𝜷

∗
𝜼, 𝜷

∗
𝚺, 𝜷

∗
𝜏 , 𝜷

∗
𝜌), (6)

{𝜽k}k∈N = C2(𝝁∗, 𝜼∗,𝚺∗, 𝝉∗,𝝆∗), (7)

𝜷∗
𝝁|𝛾𝝁 ∼ Gem(𝛾𝝁), 𝜷∗

𝜼|𝛾𝜼 ∼ Gem(𝛾𝜼), 𝜷∗
𝚺|𝛾𝚺 ∼ Gem(𝛾𝚺),

𝜷∗
𝜏 |𝛾𝜏 ∼ Gem(𝛾𝜏), 𝜷∗

𝜌|𝛾𝜌 ∼ Gem(𝛾𝜌), (8)

𝝁∗
p|H𝝁 ∼ H𝝁, 𝜼

∗
p|H𝜼 ∼ H𝜼,𝚺∗

p|H𝚺 ∼ H𝚺,

𝜏∗p |H𝜏 ∼ H𝜏 , 𝜌
∗
p|H𝜌 ∼ H𝜌, (9)

where p ∈ N, l ∈ N, and i = 1, … ,Tj − 1. A full description of the components of the model and
how they are used to introduce the main novelties of our model is given below.

The DPs. In order to simplify the description of the lower levels of the model hierarchy, we
use 𝜒 as a variable that can be 𝝁, 𝜼, 𝚺, 𝜈, or 𝜌, and it is used when whatever is described can be
applied to any of the five parameters. In Equation (9) the values of the STAP parameter𝜒p are sam-
pled from the distribution H𝜒 , and the infinite-dimensional vector of probabilities𝜷∗

𝜒 = {𝛽∗𝜒,p}p∈N,
associated with parameter 𝜒 , is Gem distributed (Gnedin et al., 2001) with scaling parameter𝛾𝜒 .
The scaling parameter can easily be interpreted with the stick-breaking representation of the GEM
distribution, defined as follows:
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𝛽∗𝜒,1 ∼ B(1, 𝛾𝜒 ),
𝛽∗𝜒,p

1 −
∑p−1

h=1𝛽
∗
𝜒,h

∼ B(1, 𝛾𝜒 ), p ≠ 1. (10)

From Equation (10), we see that the smaller 𝛾𝜒 is, and the smaller is the number of elements of 𝜷𝜒

that contains most of the probability mass with lim𝛾𝜒→0 𝛽
∗
𝜒,1 = 1 and lim𝛾𝜒→0 𝛽

∗
𝜒,p = 0 for all p≠1.

The vectors 𝜷∗
𝜒 and 𝝌∗ = {𝜒∗

p}p∈N can be used to define the discrete distribution

G𝜒 =
∑
p∈N

𝛽∗𝜒,p𝛿𝜒∗
p
, (11)

where 𝛿⋅ is the Dirac delta function. Equation (11) is a draw from a DP(𝛾𝜒 ,H𝜒 ), and thus we can
equivalently describe 𝜷∗

𝜒 and 𝜒p as the components of a sample from DP(𝛾𝜒 ,H𝜒 ), or as Equations
(8) and (9). The vectors 𝝌∗ and 𝜷∗

𝜒 contain, respectively, the values that the parameters can
assume (𝜒∗

p ) and the ‘base’ probability (𝛽∗𝜒p
) that a particular value of the parameter is selected in

a behaviour (see Equation (15) below).

The functions C1(⋅) and C2(⋅). The function C1(⋅) and C2(⋅) (Equations (6) and (7)) intro-
duce the sharing of parameters between behaviours, which is one of the novelties of our proposal.
The role of function C2(⋅) is to produce the set of STAP parameters {𝜽k}k∈N, where we remind
the reader that 𝜽k = (𝝁k, 𝜼k,𝚺k, 𝜏k, 𝜌k). The set {𝜽k}k∈N is comprised of all the possible combina-
tions of the 5 STAP parameters, without repetitions. This means that 𝜽k ≠ 𝜽k′ , if k ≠ k′, but we
can have a subset of elements that has the same value, for example, 𝜏k ≡ 𝜏k′ . Hence, since each
behaviour selects its STAP parameters in 𝜽 = {𝜽k}k∈N, different behaviours can share parameters,
even though they are described by a different 𝜽k.

Function C1(⋅) is closely related to C2(⋅) since, if we introduce the new variables 𝜆𝝁,k, 𝜆𝜼,k, 𝜆𝚺,k,
𝜆𝜏,k and 𝜆𝜌,k that represent what parameter is in 𝜽k, that is,

𝝁k = 𝝁∗
𝜆𝝁,k

, 𝜼k = 𝜼∗𝜆𝜼,k
,𝚺k = 𝚺∗

𝜆𝚺,k
, 𝝉k = 𝜏∗𝜆𝜏,k

,𝝆k = 𝜌∗𝜆𝜌,k
, (12)

we can associate a value 𝛽k to 𝜽k which is computed as

𝛽k = 𝛽∗
𝝁,𝜆𝝁,k

𝛽∗
𝜼,𝜆𝜼,k

𝛽∗𝚺,𝜆𝚺,k
𝛽∗𝜏,𝜆𝜏,k

𝛽∗𝜌,𝜆𝜌,k
.

The set {𝛽k}k∈N is the output of C1(⋅) and it is a probability vector, since
∑

k∈N
𝛽k = 1 and 𝛽k ∈

(0, 1). We can define the discrete distribution

G0 =
∑
k∈N

𝛽k𝛿𝜽k , (13)

where, similarly to Equation (11), its atoms contain all the possible values that 𝜽k can assume
and 𝛽k is connected to the expected value of the probability of selection 𝜽k as the vector of
parameter in a behaviour (see Equation (14) below). This way to define the distribution G0
is closely related to the shared base-distribution of the change-point model of Mastrantonio
et al. (2021).

Behaviour switching. Let𝚷j be the matrix that has 𝝅j,l = {𝜋j,l,k}k∈N as lth row. Matrix𝚷j rules
the switching between the behaviours of animal j (Equation 4) and if the jth animal is following
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behaviour l at time tj,i−1, the probability of switching to behaviour k is given by the element of
𝚷j in row l and column k. Hence, the time evolution of zj,tj,i is modeled by a discrete first-order
Markov process, which defines an HMM with transition matrix𝚷j and initial state zj,tj,0 . The initial
state is drawn from a Geometric distribution with parameter 𝜖, which is defined as the number of
Bernoulli trials needed to have one success. The row 𝝅j,l is DP distributed (see Equation (5)) and
the expected value of 𝜋j,l,k is equal to

E(𝜋j,l,k|𝛼, 𝜈, 𝜷) = 𝛼𝛽k + 𝜈𝛿(l, k)
𝛼 + 𝜈

(14)

(see Fox et al., 2011), where 𝛿(l, k) is equal to 1 if l = k, and 0 otherwise. From Equation (14),
we can see that the kth element of 𝜷 is associated with the expected value of 𝜋j,l,k, for all
the animals (j = 1, … , m) and l ∈ N. Hence, a larger 𝛽k increases the probability of switch-
ing from any behaviour l to the kth, described by 𝜽k. However, Equation (14) can also be
stated as

E(𝜋j,l,k|𝛼, 𝜈, 𝜷) = 𝛼𝛽∗
𝝁,𝜆𝝁,k

𝛽∗
𝜼,𝜆𝜼,k

𝛽∗𝚺,𝜆𝚺,k
𝛽∗
𝜏,𝜆𝜏,k

𝛽∗
𝜌,𝜆𝜌,k

+ 𝜈𝛿(l, k)

𝛼 + 𝜈
, (15)

which highlights how the value 𝛽∗𝜒,p is connected to all 𝜋j,l,k, with l, k ∈ N and j = 1, … , m, so that
𝜆𝜒,k = p. Therefore, a larger 𝛽∗𝜒,p increases the expected values of all these probabilities, and for
this reason we call 𝛽∗𝜒 the ‘base probability’ as 𝜒∗

p . The variable 𝛼 is the scaling parameter of the
DP of Equation (5), which has the same interpretation of 𝛾𝜒 , while 𝜈 is a weight that is added to
the self transitions 𝜋j,l,l to increase their expected value, see Equation (14), which in turn is used to
reduce the tendency of the HDP-HMM to create redundant behaviours, that is, behaviours with
similar parameter vectors. For a more detailed description of parameters 𝛼 and 𝜈, the reader may
refer to Fox et al. (2011).

It should be noted that, in most applications, see, e.g., McClintock et al. (2012) and
Leos-Barajas et al. (2017), zj,tj,i ∈ {1, 2, … ,K∗} is assumed, where K∗ indicates the maximum
number of behaviours, while we have zj,tj,i ∈ N in this work, since we define the HMM using
DPs. Thus, the model assumes an infinite and countable number of possible behaviours for each
animal, but, since we have a finite number of observed time-points, only a finite number Kj of
them can be ‘occupied’; these are generally called ‘non-empty states’ (Frühwirth-Schnatter &
Malsiner-Walli, 2019), or, in this context, ‘non-empty behaviours’. The random variable Kj is used
to estimate the number of latent behaviours of the jth animal. Parameters 𝛼, 𝜈 and 𝛾 (through
𝜷) determine the number of non-empty states Kj, since they are responsible with the total mass
associated with each of the 𝚷j elements.

The emission-distribution. The model specification is concluded with the emission dis-
tribution, which is given by Equations (2) and (3). It should be noted that, given the latent
behaviours, we consider the animals independent but, since they share the same set of atoms
{𝜽k}k∈N, the behaviours of the different animals can be described by the same STAP distri-
bution. From Equation (12), we know that 𝜽k and 𝜽k′ can have common components and
therefore, when an animal changes behaviour, it is not necessary for all the parameters to change
and, more importantly, we can also identify the features that two animals share for different
behaviours, for example, two behaviours can have the same attractive-point (𝝁∗

p), even though
the strength of attraction (𝜏∗p ) is different. This feature is one of the main novelties of our pro-
posal, and, although other approaches have a similar characteristic (see, e.g., Jonsen (2016)
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or Milner et al. (2021)), they do not allow the number of latent behaviours to be estimated,
which is the other main novelty of our proposal, the possibility of evaluating, during model fit-
ting, what parameters are allowed to change, or the number of values that a parameter can
assume. The sharing of a subset of the parameters between states is new in the context of HMMs
based on DPs.

Connection to the sHDP-HMM. To conclude this section, we would like to show that our
proposal can be considered as a generalization of the sHDP-HMM. The model of Fox et al.
(2011) is defined for a single time-series, and G0 is a draw from a DP. It is easy to see that,
if we consider only one animal and use only one multivariate parameter in Equation (9),
for example, 𝜽∗

p = (𝝁∗
p, 𝜼

∗
p,𝚺∗

p, 𝜏
∗
p , 𝜌

∗
p), with the associated vector of probability 𝜷∗

𝜽
, the distri-

bution G0 is a draw from a DP, since 𝛽k = 𝛽∗
𝜽,p and 𝜽k = 𝜽∗

p. Hence, the model reduces to a
sHDP-HMM.

4 REAL DATA APPLICATION

We have the recorded coordinates of 6 dogs, taken every 30 min at the Heatherlie property
in Australia, between 2012-11-10 15:30 and 2012-08-02 15:30. The data1 consist of 4801 obser-
vations for each dog, with less than 1% of missing points. To facilitate the specification of
the prior the coordinates are centered using the bivariate sample mean and scaled with a
common standard deviation, computed using both the X and Y coordinates, to maintain the
relative scale between the two coordinates; the recorded locations are shown in Figure 2. The
dogs are called Woody, Sherlock, Alvin, Rosie, Bear, and Lucy. Rosie and Lucy are female,
while the other four are male, and Woody, Sherlock, Bear and Lucy form a cohesive group,
which is responsible for livestock protection, while Rosie, due to her advanced age, is soli-
tary, and Alvin suffers from social exclusion, which restricted his movement (van Bommel &
Johnson, 2016).

Maremma Sheepdogs originate from Europe, and have been used for centuries to protect live-
stock from potential predators (Gehring et al., 2017). They are trained to live with the livestock
from birth and, as a result, they develop a strong bond with them and an instinct to protect them.
They can be fence-trained, but are generally allowed to move freely. The use of livestock guardian
dogs is relatively new outside Europe, especially in Australia, and, due to their effectiveness,
interest in their use is increasing (van Bommel & Invasive Animals Cooperative Research Cen-
tre, 2010; van Bommel & Johnson, 2016). Since the extension of properties in Australia can be as
much as several thousand hectares, it is hard for the owner to supervise the dogs (van Bommel &
Johnson, 2012) and to have information about their behaviour (van Bommel & Invasive Animals
Cooperative Research Centre, 2010).

4.1 Comparison of the model and implementation details

We compare the predictive performances between our proposal (M1) and two competitive models
(M2 and M3), using the integrated completed likelihood (ICL) (Biernacki et al., 2000) and the

1The dataset is freely available from the movebank repository https://www.datarepository.movebank.org/handle/10255/
move.395

https://www.datarepository.movebank.org/handle/10255/move.395
https://www.datarepository.movebank.org/handle/10255/move.395
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(a) (b) (c)

(d) (e) (f)

F I G U R E 2 The observed spatial locations of the six dogs

deviance information criteria (DIC) DIC5 and DIC7 (Celeux et al., 2006). In the first competitive
model (M2), we assume that only the entire vector of STAP parameters can be shared between
animals, which means that each time-series is an sHDP-HMM with a share-based distribution.
In terms of model formalization, we assume

{𝛽k}k∈N|𝛾 ∼ Gem(𝛾),
𝜽k|H𝝁,H𝜼,H𝚺,H𝜏 ,H𝜌 ∼ H𝝁 × H𝜼 × H𝚺 × H𝜏 × H𝜌,

for the set of atoms and weights of G0 (Equation 13). In the second competitor (M3), each
animal follows the model of Mastrantonio (2020), which means they are completely indepen-
dent, and there is no sharing of parameters. Hence, we substitute G0 with the animal-specific
distribution

G0,j =
∑
k∈N

𝛽j,k𝛿�̃�j,k
,

where

{𝛽j,k}k∈N|𝛾j ∼ Gem(𝛾j),
�̃�j,k|H𝝁,H𝜼,H𝚺,H𝜏 ,H𝜌 ∼ H𝝁 × H𝜼 × H𝚺 × H𝜏 × H𝜌,

�̃�j,k = (𝝁j,k, 𝜼j,k,𝚺j,k, 𝜏j,k, 𝜌j,k),
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T A B L E 1 Information criteria for the proposed model (M1), sHDP-HHMMs with a common G0 (M2),
sHDP-HHMMs with animal-specific G0,j (M3). The model selected by each index is indicated in bold

M1 M2 M3

ICL 209593 201880 192145

DIC5 −457502 −441264 −407823

DIC7 −417544 −400786 −376037

and then

sj,tj,i+1 |sj,tj,i , sj,tj,i−1 , zj,tj,i , �̃�j,zj,tj,i
∼ STAP

(
�̃�j,zj,tj,i

)
.

By changing the way distribution G0 is defined, we aim to show that the main feature of our
proposal, that is, the sharing of sets and subsets of parameters, improves the model fitting and
leads to a better description of the data.

The models are implemented assuming H𝝁 ≡ N(0, 20I), H𝜼 ≡ N(0, 20I), H𝜏 ≡ U(0, 1), and
H𝚺 ≡ IW(3, I). The distribution H𝜌 is assumed to be a mixture of a U(0,1) and two bulks of proba-
bility on 0 and 1, with the 3 mixture weights equal to 1/3. This allows 𝜌k (in M1 and M2) and 𝜌j,k (in
M3) to be, a posteriori, equal to 0 or 1 with a greater probability than 0, which allows us to detect a
pure CRW or BRW behaviour. We assume 𝛼 + 𝜈, 𝛾𝝁, 𝛾𝜼, 𝛾𝚺, 𝛾𝜌, 𝛾𝜏 , 𝛾, 𝛾1, … , 𝛾m ∼ G(0.01, 0.01) and
𝜈/(𝛼 + 𝜈) ∼ B(1, 1), which allows us to easily sample from their full conditionals, see Fox et al.
(2011) and Section A of the Web-based Supporting Materials. All the distributions are chosen to
be weakly informative. The domain  is a square [−5, 5] × [−5, 5] and the parameter 𝜖 of the Geo-
metric distribution is equal to 0.00001, which means that the distribution over the initial state,
zj,tj,0 , is approximately uniform over the positive integers. Posterior estimates are obtained with
15,000 iterations, burnin 7500, thin 3, and thus 2500 samples are available for posterior infer-
ence. Convergence has been checked by means of a visual inspection of the posterior chains and
using the R̂ statistics (Gelman et al., 2013) Details on the MCMC algorithm, implemented in Julia
1.3 (Bezanson et al., 2017), can be found in the Web-based Supporting Materials, Section A, and
the codes used to replicate the results, tables, and figures are available at https://github.com/
GianlucaMastrantonio/multiple_animals_movement_model.

In Table 1, we can see that the three indices indicate that our model is the one with the best
fit,2 model M2 is the second, while M3 is always the last. Therefore, the joint modelling of the
six dogs improves the performances of the model (since M2 is always preferable to M3), but the
sharing of a subset of parameters also leads to a better description of the data (since M1 is better
than M2). We provide a description of the results obtained with M2 and M3 in the Web-based
Supporting Materials, Section B.

4.2 Description and interpretation of the output

Using the algorithm proposed by Wade and Ghahramani (2018), we find a representative
behaviour ẑj,tj,i associated with each animal and time, that we indicate as MAP behaviour. We
indicate the kth behaviour of the jth dog based on ẑj,tj,i as Bjk, and let nj,k be the number of
times we have ẑj,tj,i = k, without any loss of generality, we assume nj,1 > nj,2 > · · ·, that is, the

2It should be noted that a higher ICL and a lower DIC indicate a better fit.

https://github.com/GianlucaMastrantonio/multiple_animals_movement_model
https://github.com/GianlucaMastrantonio/multiple_animals_movement_model
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F I G U R E 3 Graphical representation of the conditional distribution of sj,tj,i+1
for the first three dogs

((a)(b)(c) Woody, (d)(e)(f) Sherlock, (g)(h)(i) Alvin), for different possible values of sj,tj,i
and previous directions.

The images has been obtained by using the posterior values that maximize the data likelihood of each animal,
given the representative clusterization ẑj,tj,i

. The dashed arrow represents the movement between sj,tj,i−1
and sj,tj,i

.
The solid arrow is F⃗j,tj,i

, while the ellipse is an area containing 95% of the probability mass of the conditional
distribution of sj,tj,i+1

. The asterisk represents the attractor, and it is only shown for behaviours that have posterior
values of 𝜌j,k < 0.9and 𝜏j,k > 0.1

behaviours are ordered with respect to the number of times they are observed. It should be noted
that Bjk is not the same as Bj′k, if j ≠ j′, and therefore, to avoid confusion, we indicate the vec-
tor of STAP parameters for Bjk with 𝜽j,k = (𝝁j,k, 𝜼j,k,𝚺j,k, 𝜏j,k, 𝜌j,k). For easiness of interpretation,
we only discuss behaviours that have been observed, on average, at least once a day (nj,k > 100),
thus obtaining then 3 behaviours for each dogs, with the exception of Rosie (dog 4) that has
2 behaviours; see Tables B.1–B.6 in the Web-based Supporting Materials, where the posterior
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(a) (b)

(c) (d) (e)

(f) (g) (h)

F I G U R E 4 Graphical representation of the conditional distribution of sj,tj,i+1
for the last three dogs ((a)(b)

Rosie, (c)(d)(e) Bear, (f)(g)(h) Lucy), for different possible values of sj,tj,i
and previous directions. The images has

been obtained by using the posterior values that maximize the data likelihood of each animal, given the
representative clusterization ẑj,tj,i

. The dashed arrow represents the movement between sj,tj,i−1
and sj,tj,i

. The solid
arrow is F⃗j,tj,i

, while the ellipse is an area containing 95% of the probability mass of the conditional distribution of
sj,tj,i+1

. The asterisk represents the attractor, and it is only shown for behaviours that have posterior values of
𝜌j,k < 0.9 and 𝜏j,k > 0.1

means (̂) and credible intervals (CIs) for the STAP parameters, nj,k, and the transition proba-
bilities for all the dogs and behaviours are shown. Using similar pictures to the ones used in
Figure 1, we show a graphical description of the behaviours found by the model in Figures 3
and 4; the behaviours are represented on different spatial scales. From the model output, we
computed the posterior mean of the variable 𝛿(𝜒j,k, 𝜒j′,k′ ), which is the posterior probability that
a STAP parameter assumes the same value in Bjk and Bj′k′ . These probabilities are depicted in
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(a) (b)

(c) (d)

(e)

F I G U R E 5 Graphical representation of the posterior mean of 𝛿(⋅,⋅), which represents the probability of the
parameters in its argument ((a) 𝝁j,k, (b) 𝜼j,k, (c) 𝜏j,k, (d) 𝚺j,k, (e) 𝜌j,k) having the same value for two behaviours
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T A B L E 2 The Adjusted Rand Index for all the pairs of dogs

Woody Sherlock Alvin Rosie Bear Lucy

Woody 1.000 0.094 0.006 0.030 0.181 0.414

Sherlock 0.094 1.000 −0.004 0.015 0.125 0.081

Alvin 0.006 −0.004 1.000 0.047 −0.002 0.003

Rosie 0.030 0.015 0.047 1.000 0.021 0.021

Bear 0.181 0.125 −0.002 0.021 1.000 0.159

Lucy 0.414 0.081 0.003 0.021 0.159 1.000

Figure 5 for all possible combinations of behaviours and animals. To take into account that iden-
tifiability for 𝝁j,k and 𝜼j,k is only granted if 𝜌j,k < 1 and 𝜌j,k > 0, respectively (see Equation 1),
we assume 𝛿(𝝁j,k,𝝁j′,k′ ) = 0, if 𝜌j,k = 1 or 𝜌j′,k′ = 1, and 𝛿(𝜼j,k, 𝜼j′,k′ ) = 0 if 𝜌j,k = 0 or 𝜌j′,k′ = 0,
for (i, j) ≠ (i′, j′).

Similarities between the MAP behaviours. One of the assumptions of our proposal is that
the temporal evolution of the behaviours are independent. To have a posterior confirmation that
this hypothesis is true, we computed the Adjusted Rand Index (Gates & Ahn, 2017) for the MAP
behaviours of each pair of animals. The Adjusted Rand Index, which is a measure of similarity (or
agreement) between two clusterizations, has a value close to one, if there is a strong agreement,
while its value is close to zero (even negative) if the clusterization is very dissimilar. It should
be noted that we are able to compute the index because the animals are observed in the same
temporal-window. The results in Table 2 show that the values of the index are very low, with
the exception of dogs 1 and 6, where the index is 0.414. We can conclude that our hypothesis is
reasonable.

The dogs in the cohesive group. We can clearly see, from Figures 3 and 4, that the four dogs
that form a cohesive group (dog 1 Woody, dog 2 Sherlock, dog 5 Bear and dog 6 Lucy) have similar
behaviours. In behaviour Bj1, the length of F⃗j,tj,i is ≈0, which means that the distribution of sj,tj,i+1

is centered on the previous location (sj,tj,i ), there is no a preferable direction, since the ellipses are
very close to a circle, the speed is very low (see the size of the ellipses), and there is no attractor.
Hence, the movement is only determined by the covariance matrix 𝚺j,1, which is the same for all
the first behaviours (Bj1), see Figure 5d. The first behaviour of the cohesive group can easily be
interpreted as boundary-patrolling- or scent-marking-behaviour, which is a common behaviour
in this dog breed, and it has already been observed and with similar movement characteristics
(Mastrantonio, 2020; McGrew & Blakesley, 1982).

As in Bj1, the length of F⃗j,tj,i is ≈0 in Bj2, there is no attractor but, since the ellipses rotate
according to the previous directions, there is directional persistence. The major and minor axes
of the ellipses have different lengths, with the major one in the same direction as 𝜙j,tj,i−1 , which
means that we can expect to observe more movements on a straight line, that is, in the same
direction as the previous bearing angle 𝜙j,tj,i−1 , or in direction 𝜙j,tj,i−1 − 𝜋. The strength of direc-
tional persistence, measured by parameter 𝜌j,2, is very similar for all the Bj2, as we can see from
Figure 5e, where the probability values are close to 1. The movement speed in Bj2 increases com-
pared to Bj1, and Bj2 is fully characterized by 𝚺j,2 and 𝜌j,2. The strong directional persistence,
the movement along a straight line, and the higher speed can lead to Bj2 being interpreted as a
defending-behaviour, where the dog defends the territory and livestock from predators, that is,
mostly wild dogs and foxes that are present in the area (see Brook et al., 2012; Walton et al., 2017),
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or an explore-behaviour (van Bommel & Invasive Animals Cooperative Research Centre, 2010;
Mastrantonio, 2020).

The third behaviour is a BRW, since the CIs of 𝜌j,3 are very close to 0 and the ellipses are
independent of the previous direction (see Figures 3 and 4). The CIs of 𝜏j,3, which are in [0.1, 0.28],
indicate a moderate attraction to 𝝁j,3, see Tables B.1, B.2, B.5 and B.6 in the Web-based Supporting
Materials. The four dogs have the same spatial attractor, 𝝁j,3, the same covariance matrix, 𝚺j,3, the
same parameter 𝜌j,k and, with the exception of the second dog, the same 𝜏j,k, as we can see from
Figures 3–5. The spatial attractor, due to the large variance of the movement (the ellipses size),
can be considered as a tendency of these dogs to move to the central patch of the space and, since
we can see from figure c2 of van Bommel and Johnson (2012) that the attractor is close to where
the livestock is, it is easy to interpret this behaviour as the dog attending livestock.

It is interesting to note that the parameters that define the three behaviours, that is, 𝚺j,k in Bj1,
(𝚺j,k, 𝜌j,k) in Bj2, (𝝁j,k, 𝜏j,k,𝚺j,k, 𝜌j,k) in Bj3, have a high probability of being the same between dogs,
see Figure 5, which means that they behave in a similar manner. In transition matrix terms, we
can see, from Tables B.1, B.2, B.5, B.6 in the Web-based Supporting Materials, that �̂�j,1,2 > �̂�j,1,3
and �̂�j,3,2 > �̂�j,3,1. Then, after patrolling (Bj1), it is more probable that the dog begins to explore
the space, or to defend the property from predators spotted during patrolling (Bj2), than to guard
livestock (Bj3). After attending livestock, it is more probable that the dog switches to Bj2.

The socially excluded dog and the old one. The socially excluded dog (j = 3) has 3
behaviours, one of which, B31, is different from all the other dogs’ behaviours, while the other
two, B32 and B33, are similar to the ones of the cohesive group, for example, B32 is similar to Bj2
and B33 is similar to Bj1, with j = 1, 2, 5, 6, see Figures 3 and 4. B33 is only characterized by the
covariance matrix 𝚺j,3, since like Bj1 in the cohesive group, F⃗3,t3,i is ≈0 and there is no attractor
or directional persistence. Therefore, due to the high probability of 𝚺3,3 having the same value as
𝚺j,3, with j = 1, 2, 5, 6, see Figure 5d, B33 may be interpreted in the same way as the first behaviours
of the cohesive group, that is, a boundary-patrolling behaviour.

B32 is similar to the second behaviour of the cohesive group in terms of covariance matrix,
see Figure 5d, but there is a lack of directional persistence, and a slight bias toward an attractor
located in the central area, see the direction of F⃗3,t3,i . With this behaviour, the dog is exploring but,
at the same time, staying in the proximity of the sheep paddock, see Figure 2c.

The CI of 𝜏3,1 is very close to 1 and B31 therefore has a strong attraction to the coordinates
�̂�3,1 = (0.575,−381)′, as we can see from Table B.3 of the Web-based Supporting Materials. The CIs
of𝜇3,1,1 and𝜇3,1,2 are very small and equal to (0.575, 0.576) and (−0.381, 0.380), respectively, which
means that the attractor is well localized in space. We can see from figure c2 of van Bommel and
Johnson (2012), that �̂�3,1 is close to the owner’s homestead. This behaviour cannot be interpreted
as the dog attending livestock since, once it reaches the spatial attractor, it does not move very
much, that is, the sizes of the ellipses are very small. Hence, this is probably a behaviour in which
the dog stays close to the owner’s house, and rests.

For the last dog, that is the old one, the model has found only two behaviours. B41 has
the same characteristics as the first behaviour of the cohesive group, with the same values
of the covariance matrix, while B42 is similar to the second behaviour of the cohesive group, with
the same covariance matrix and similar directional persistence, see Figures 3–5. Hence, they can
be interpreted as the first and second behaviours of the cohesive group. It is interesting to note
that, since this dog is very old, she is no longer able to attend livestock, which is the activity that
requires the most energy (higher speed), but she is still working, that is, checking the boundaries
(B41), exploring the space, and defending the territory (B42).
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5 FINAL REMARKS

In this work, we have proposed a new HMM which can be used to model trajectory-tracking
data of multiple animals and which, according to the classification given by Scharf and
Buderman (2020), is part of the indirect approach. Our model allows subsets of parameters to
be shared between animals and behaviours, and the number of latent behaviours to be selected
during the model fitting. The emission distribution is the STAP, but other distributions can be
used by changing the model formalization accordingly. The model was used to help understand
the behaviour of 6 Maremma Sheepdogs, observed in a property in Australia. The results show
that there are many common features between the animals, such as the attractive point, and
most of them share the same number of behaviours as well as the same parameter values. The
obtained results are easily interpretable, and the rich output offers an insight into the similarities
between animals.

As a possible extension, we are currently exploring the use of covariates to model the prob-
ability that behaviours share parameters, and we are working on a different formalization that
makes the model able to detect whether different animals tend to follow the same behaviours at
the same time-points.
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