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Abstract—The complexity of both hardware and software
makes GPUs reliability evaluation extremely challenging. A low
level fault injection on a GPU model, despite being accurate,
would take a prohibitively long time (months to years), while
software fault injection, despite being quick, cannot access critical
resources for GPUs and typically uses synthetic fault models (e.g.,
single bit-flips) that could result in unrealistic evaluations.

This paper proposes to combine the accuracy of Register-
Transfer Level (RTL) fault injection with the efficiency of soft-
ware fault injection. First, on an RTL GPU model (FlexGripPlus),
we inject over 1.5 million faults in low-level resources that are
unprotected and hidden to the programmer, and characterize
their effects on the output of common instructions. We create a
pool of possible fault effects on the operation output based on the
instruction opcode and input characteristics. We then inject these
fault effects, at the application level, using an updated version
of a software framework (NVBitFI).

Our strategy reduces the fault injection time from the tens
of years an RTL evaluation would need to tens of hours, thus
allowing, for the first time on GPUs, to track the fault propaga-
tion from the hardware to the output of complex applications.
Additionally, we provide a more realistic fault model and show
that single bit-flip injection would underestimate the error rate
of six HPC applications and two convolutional neural networks
by up to 48% (18% on average). The RTL fault models and
the injection framework we developed are made available in
a public repository to enable third-party evaluations and ease
results reproducibility.

Index Terms—Fault injection, Graphics Processing Unit
(GPU), Reliability

I. INTRODUCTION

The computational characteristics, efficiency, and flexibility
of modern Graphics Processing Units (GPUs) have pushed
their adoption in High Performance Computing (HPC) and
safety-critical applications, such as autonomous vehicles for
the automotive and aerospace markets. This market shift from
consumer applications has suddenly pushed the interest, and
posed questions, about GPUs reliability.

GPU vendors have worked to improve their devices’ re-
liability by designing more robust memory cells [1] and in
the qualification of platforms compliant with strict automotive
reliability standards as the ISO26262 [2]. In the meanwhile,
the research community has been carefully studying GPUs
reliability through fault injection/simulation [3]–[8] or beam
experiments [9], [10].

One of the main issues related to the characterization
of complex devices, such as GPUs, lies in the conflicting

limitations imposed by the available reliability evaluation
methodologies. These methodologies are either realistic and
exhaustive but offer limited visibility (beam experiments),
have full visibility but are extremely time-consuming (circuit
or gate-level fault simulations), or are fast and cheap, but inject
synthetic fault models in a limited set of programmer accessi-
ble resources (software fault injection). The single/double bit-
flip model, adopted in most software fault injectors, accurately
represents only faults in the memory resources, which are the
ones that can be easily protected with ECC. Unfortunately, a
fault in unprotected and hidden to software resources, such as
pipeline registers, ALU, and peculiar GPU modules (scheduler
or control units), might have a not-obvious impact on the
operation(s) output that we intend to characterize.

Inspired by previous works that define the concept of
multi-level or hybrid fault injection [11]–[18], we propose to
combine Register-Transfer Level (RTL) evaluation on a GPU
model (FlexGripPlus [19]) with software fault injection in a
real GPU (NVIDIA Volta). The time required to have an RTL
reliability evaluation of highly complex codes is exacerbated
by the number of available resources in modern GPUs. For
instance, an RTL fault injection, limited to a relatively small
module as the GPU scheduler, would require more than 720
hours using a 12 nodes server to characterize LeNET, the
simplest Convolutional Neural Network (CNN). Our idea is to
characterize, with the GPU RTL model, the effect of a transient
fault in unprotected resources (we do not consider the ECC
protected memories) in the execution of the most common
SASS instructions (i.e., machine operations that are effectively
executed in the NVIDIA GPU hardware) rather than of a
whole code. Additionally, we have characterized a tiled Matrix
Multiplication (t-MxM) mini-app for its importance in CNN’s
execution [20], [21].

We measure the impact of the generic RTL fault, that we call
fault syndrome, on the output value of 12 instructions (and the
mini-app) executed with three input ranges. Then, we use the
efficiency of a specially crafted version of NVBitFI [3] soft-
ware fault injector to inject the most suitable fault syndrome
in real-world applications (we consider 6 HPC applications
and 2 CNNs). This strategy reduces the time required to have
a detailed reliability evaluation of complex applications from
the tens of years an RTL fault injection would need to just
tens of hours.



Thanks to our framework, we are able, for the first time,
not only to unveil the effects of faults on otherwise hidden
GPU resources, but also to present a more detailed fault model
to be used in the reliability evaluation of complex codes.
Additionally, we can identify the hardware source of those
faults that are more likely to propagate to software visible
states and to the application output inducing, for instance,
misdetections in CNNs. This information is precious, as it
helps researchers to focus the design of a hardening solution
to a subset of critical resources. The RTL fault injection
highlights that functional units are the most probable source
for data errors, identifies a subset of 16% of pipeline registers
as responsible for the vast majority of Detected Unrecoverable
Errors (DUEs), and confirms previous assertions about the
scheduler corruption leading to multiple corrupted threads [9],
[22]. We found that the fault syndrome at the instruction output
does not follow a uniform distribution, but rather a power
law (few effects are extremely probable). Finally, we see that
scheduler faults are extremely critical for t-MxM. They can
cause multiple errors distributed in a row or block of the output
matrix that, if injected in CNNs, can cause misdetection.

The contributions in this paper are:
• A thorough analysis, based on over 1.5 million RTL

injections, of the effects of transient faults in the GPU
scheduler, pipeline registers, control units, functional
units, and special units on 12 instructions;

• A detailed characterization of RTL faults distribution at
the output of tiled MxM (used in CNNs);

• The description of a fault model (available on a public
repository [23]) to be adopted instead of single bit-flip;

• The adaptation of a software framework (NVBitFI) to
inject the RTL fault model in real GPUs;

• A method allowing the reliability evaluation of real-world
applications, from HPC and safety-critical domains.

• The identification of the GPU resources whose corruption
is more likely to generate errors.

The reminder of the paper is structured as follows: after
summarizing background and related work, highlighting the
contributions and limitations of our strategy (Section II),
we give an overview of the proposed idea (Section III). In
Section IV, we detail the two-levels fault injection frameworks
(RTL and software) and how we combine them. Section V
presents the results of the RTL-level fault injection and de-
scribes the fault model we propose. Section VI shows the
effects of the fault model in real world codes and compares our
data with naive fault-injection. Finally, Section VII concludes
the paper and paves a path for future work.

II. BACKGROUND AND RELATED WORK

A. Radiation Effects in Computing Devices

There are several sources of transient faults that can reduce
the reliability of a computing device, including environmen-
tal perturbations, software errors, process/temperature/voltage
variations, and radiation-induced events. The latter are par-
ticularly critical, as they dominate error rates in commercial

devices [24]. A transient fault leads to one of the following
outcomes: (1) no effect on the program output (i.e., the fault is
masked), (2) a Silent Data Corruption (SDC) (i.e., an incorrect
program output), or (3) a Detected Unrecoverable Error (DUE)
(i.e., a program crash or device hang/reboot).

Recent results, based on field data from HPC servers, have
highlighted that parallel architectures, particularly GPUs, have
a high fault rate because of the high amount of available
resources [25]–[27]. Additionally, recent works have identified
some peculiar reliability weaknesses of GPUs architecture,
suspecting that the corruption of the GPU hardware scheduler
or shared memories can severely impact the computation of
several parallel threads [9], [10], [22], [25], [26]. As a result,
multiple GPU output elements can potentially be corrupted,
effectively undermining the reliability of several applications,
including CNNs [28], [29]. Unfortunately, as it is not possible
to inject faults in software directly on the scheduler, all
previous findings are based only on experimental observations
and speculations that still need to be confirmed. One of the
goals of our paper is to understand if and how faults in
characteristic resources of GPUs affect HPC and safety-critical
applications correctness.

B. Reliability Evaluation Methodologies

The effects of faults in computing devices can be eval-
uated at different levels of abstractions, from gate level to
architectural level and system level, as illustrated in Figure 1.
Each evaluation methodology has some benefits and limita-
tions, which we summarize next. We also discuss why the
complexity of GPUs exacerbates the limitations associated
with the available methodologies. In general, methodologies
that act closer to the fault physical source (i.e., the silicon
implementation) are more realistic (and costly in terms of
processing time) while methodologies closer to the output
manifestation of the fault are more efficient (but less realistic
in terms of the fault effect in real applications).

Beam experiments induce faults directly in the transistors
by the interaction of accelerated particles with the Silicon
lattice, providing highly realistic error rates [24]. Beam ex-
periments are not included in Figure 1 because, as errors are
observed only when they appear at the output, generally they
do not allow to track faults propagation. This prevents one to
associate observed behaviors with the fault source and, thus,
to identify the most vulnerable device resources.

Software fault injection is performed at the highest level of
abstraction and, on GPUs, it was proved efficient in identifying
those code portions that, once corrupted, are more likely to
affect computation [3]–[5], [7], [8], [30]. However, the analysis
is limited as faults can be injected only on that subset of
resources which is visible to the programmer. Unfortunately,
critical resources for highly parallel devices (i.e., hardware
scheduler, threads control units, etc.) are not accessible to the
programmer and, thus, cannot be characterized via high level
fault injection. Additionally, the adopted fault model (typically
single/double bit-flip) might be accurate for the main memory
structures (register files, caches) but risks to be unrealistic
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when considering faults in the computing cores or control
logic, as also shown in [18]. In fact, as shown in Figure 1,
while a fault in the memory array directly translates into a
corrupted value, the single transient fault in a resource used for
the execution of an operation (pipelines, ALU, scheduler, etc..)
can have not-obvious effects on the operation output. We call
this not-obvious effect syndrome. The syndrome induced in
the instruction output by faults in the computing core depends
on the operation, on its input, and on the corrupted resource.
The only possible way to find this syndrome, as we do in our
paper, is to perform lower level fault injection.

Micro-architecture fault injection provides a higher fault
coverage than software fault injection as faults can, in princi-
ple, be injected in most modules. A preliminary work, based
on Multi2Sim, presented micro-architectural fault injection
data on GPUs, but the analysis is limited to just memories [6].
One of the issues of micro-architectural fault injection in GPUs
is that the description of some modules (including the sched-
uler and pipelines) is behavioural and their implementation is
not necessarily similar to the realistic one. A recent work has
demonstrated that micro-architectural fault injection provides a
sufficiently accurate reliability evaluation on ARM embedded
CPUs [31]. On GPUs such a demonstration is still missing,
and is likely to be more challenging due to the complexity of
the hardware underneath the micro-architecture.

Register-Transfer Level (RTL) fault injection accesses all
resources (flip flops and signals) and provides a more realistic
fault model, given the proximity of the RTL description
with the actual implementation of the final hardware [15],
[18], [19]. However, the time required to inject a statistically
significant number of faults makes RTL injections impractical.
The huge amount of modules and units in a GPU and the
complexity of modern HPC and safety-critical applications
exacerbate the time needed to have an exhaustive RTL fault
injection (hundreds of hours for small codes), making it un-
feasible. Previous work that evaluates GPUs reliability through
RTL fault injection is limited to naive benchmarks [19].

Circuit or Gate Level Simulations induce analog current

spikes or digital faults in the lowest abstraction level that still
allows to track fault propagation (not available with beam
tests). There are two main issues with the level of details
required to perform this analysis on GPUs: (1) a circuit or
gate level description of GPUs is not publicly available and,
even if it was, (2) the time required to evaluate the whole
circuit would definitely be excessive (the characterization of a
small circuit takes weeks [14]).

Hybrid or combined fault injections at different levels
of abstraction have been adopted to increase the reliability
evaluation efficiency without jeopardizing its accuracy. Some
works have proposed to use a detailed RTL fault injection
in specific portions of the circuit and a fast fault simulation
in others [15], [16]. Recent works combined an extremely
detailed gate level fault injection in tandem with a faster (but
still impracticable for complex devices) RTL evaluation [12],
[14]. Cho et al. used high level simulation (not using real
hardware) triggering a RTL model when the fault needs to be
injected [13]. Subasi et. al focuses on RTL injection to provide
a more detailed fault model, but limited to embedded proces-
sors ALU [18]. While our paper takes inspiration from the
two level fault injection concept, none of these works address
GPUs (nor parallel devices in general), but mainly embedded
processors, with a completely different complexity scenario.
CPUs, in fact, have just one or few pipelines and faults are
unlikely to affect multiple threads while, on GPUs, several
pipelines and computing units need to be characterized and
it is fundamental to consider also multiple threads corruption.
Previous solutions, then, do not scale to GPUs complexity.
Additionally none of previous works provide, as we do, a fault
model database that could be used in future evaluations.

C. Contributions and Limitations

In this paper we propose to combine, for the first time
for GPUs, the fine grain evaluation of RTL fault injection
with the flexibility and efficiency of software fault injection
in real GPUs. As characterizing realistic codes with RTL
fault injection is unfeasible, we limit the RTL analysis to
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Fig. 2. Scheme of the proposed two-level fault injection framework. Using the RTL model we characterize the effects that faults in GPU modules (we do not
inject in the modules depicted as white boxes) have on the SASS instructions output. Based on the instruction opcode, its input, and the module of interest
we pick the fault model (syndrome) to inject in software on a real GPU that executes a code.

common GPU SASS instructions (or simply instructions),
gathering the syndrome induced by faults in the instruction
output value, i.e., we produce an accurate fault model for the
most common machine operations. As all GPU modules are
accessible in the RTL model, we can provide deeper insights
on GPU faults source and characterize also the faults effects on
multiple threads. Then, using an updated software framework
(NVBitFI), we inject the syndrome that comes from our RTL
analysis (rather than a simplistic fault model as all previous
works on GPU software fault injection do). The high speed
of software fault injection allows us to observe the effect of
fault syndromes in the execution of real-world applications,
while the few previous works on GPU RTL fault injection are
limited to naive workloads.

While the proposed strategy can effectively allow a more
detailed and accurate GPU reliability analysis, we acknowl-
edge some intrinsic limitations. (1) RTL is not the lowest
possible abstraction layer (see Figure 1). We choose RTL
fault injection because the circuit or gate models are not
available for GPUs and their characterization would, in any
case, take too long. As shown in previous work, though, RTL
evaluation accuracy is very close to gate level simulation [14].
(2) Our evaluation shares with any other research work based
on open source models the limitation of being based on mature
architectures. FlexGripPlus, which is the only RTL open-
source GPU model currently available, is based on NVIDIA
G80 architecture. While we cannot guarantee that the observed
fault syndrome is representative of cutting-edge GPUs, the
G80 is still CUDA compliant and is based on the same
Instruction Set Architecture (ISA) of modern NVIDIA GPUs
such as Kepler, Volta, and Turing (with the exception of tensor
core and few other instructions based on updated modules).
As the hidden structures of a GPU, such as the scheduler and
the pipeline registers, are also supposed to be present even in
modern architectures, given the CUDA compatibility we made
the decision to use the RTL description we have available,
even if from a different generation. Also, while probably the
FlexGripPlus intrinsic limitation might impact the precision
of our evaluation, it does not undermine the impact of the
proposed strategy, that is directly adaptable to other GPU RTL

models, as they become available. (3) The syndrome imposed
by a fault could depend on the operation input. Testing all
inputs combination is obviously impossible. We decided to
limit the characterization to three input ranges.

III. OVERVIEW OF THE IDEA

The proposed reliability evaluation framework for GPUs is
divided in two main steps: RTL fault simulation and software
fault injection, as depicted in Figure 2.

Using a GPU RTL model (details in Section IV-A), we
inject faults in the GPU main computing modules. We consider
Pipeline Registers, Warp Scheduler, FP32 and INT functional
units, Special Function Units (SFUs), and control signals.
We do not inject errors in memories (caches and register
file) as we assume that GPUs employed in applications with
strict reliability requirements feature ECC. Moreover, as a
fault in a memory cell(s) affects a software visible state
directly (it translates into a corrupted value with no further
operations), its syndrome is already well known (single/double
bit-flip) and depends just on the memory technology [24]. On
the contrary, a fault inside a computing resource during an
operation’s execution has a not-obvious impact on the output
(syndrome) [18], which we intend to characterize.

Rather than executing an application in the RTL model,
we characterize the effect of faults in a subset of GPU ISA
SASS instructions. A SASS instructions is the simplest, atomic,
two-inputs machine operation that form the NVIDIA GPU
compiled code, and is directly translated into hardware signals
inside the device. We choose to characterize the instruc-
tions that, based on GPU code profiling, are more common
in applications taken from universally adopted benchmark
suites for HPC and safety-critical applications (Rodinia [32],
NVIDIA SDK [33], CNNs [20], [21]). The chosen instruc-
tions, described in details in [34], are: Floating point opera-
tions (FADD, FMUL, FFMA - Fused Mul and Add), Integer
operations (IADD, IMUL, IMAD - Mul and Add), Trascen-
dental functions (SIN, EXP), Load/Store (GLD, GST), Branch
(BRA), and Integer set predicate/register (ISET). While these
instructions represent only a small part of all the ≈200
different opcodes in a GPU ISA [34], they account for more
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than 70% of the executed instructions in common codes for
GPUs, as shown in Figure 3. Our framework allows future
updates, to add additional instructions that are of interest. We
also characterize a mini-app (tiled MxM) to highlight possible
scheduler corruption effects that could be hidden in the SASS
instructions characterization (details in Section V-A).

A perfect RTL fault injection would require one to test
each instruction with the exact input values it receives when
executed in the code being characterized, which is clearly
unfeasible. We decide to limit the analysis to three input ranges
(Small, Medium, Large, as detailed in Section IV). Previous
work has shown that software fault injection results for GPUs
do not depend on the input value (with unbiased values) [35].
Part of our contribution is to understand if this result still holds
for RTL fault injection and how much the fault effect on the
instruction output depends on the input value.

With the RTL fault injection we have measured both the
probability for the fault to reach a software visible state (i.e.,
the Architectural Vulnerability Factor, AVF [36]) and the fault
impact on the instruction output value. We built a database
of possible fault syndromes based on: the instruction opcode,
the input range, and the injection site (the corrupted module).
To quantify the syndrome we built a statistical distribution
of the relative difference (i.e., absolute difference between
the expected and the faulty instruction output, divided by the
expected value). In other words, we track how much, in per-
centage, the fault has modified the instruction(s) output. The
syndromes, the number of corrupted threads, and the spatial
distribution of wrong elements (for tiled-MxM), populate a
database used for the software fault injection [23].

To inject the RTL fault syndromes in software we update
the already developed NVBitFI framework [3] (details in
Section IV-B). NVBitFI profiles the compiled code to be
evaluated, listing all the executed SASS instructions. The
fault (or error as it has reached a visible state, according
to Avizienis definition [37]) is injected at the output of a
randomly selected instruction while the code is being executed
on the real GPU. The updated version of NVBitFI extracts,
from the RTL fault injection database, the most suitable fault
syndrome to apply, considering the opcode and input range.
Once the instruction output is corrupted, the code execution

TABLE I
EVALUATED MODULES, SIZES AND INSTRUCTIONS USED PER MODULE

Module RTL Size (Flip-Flops) Type Instructions
FP32 4,451 Execution/Data FADD, FMUL, FFMA
INT 1,542 Execution/Data IADD, IMUL, IMAD
SFU 3,231 Execution/Data FSIN, FEXP

SFU controller 190 Control FSIN, FEXP
Scheduler controller 3,358 Control ALL
Pipeline Registers 10,949 Control/Data ALL

continues and the effect on the output is characterized as
SDC, DUE, or Masked. With NVBitFI, then, we measure the
probability for the faults that reached a software visible state to
propagate further, till the application output (i.e., the Program
Vulnerability Factor, PVF [38]).

The benefit of our strategy relies on the fact that the detailed
and time consuming RTL evaluation on the SASS instructions
is done only ones, to populate the syndromes database. The
software fault injection maintains its efficiency (thus allowing
the evaluation of complex applications) but provides both extra
accuracy, by using the RTL syndromes, and impact, as we can
correlate the observed SDCs with their hardware source.

IV. EVALUATION METHODOLOGIES

In this section we detail the two-levels fault injection
frameworks and how they are combined.

A. RTL Fault Injection Framework

We use FlexGripPlus [19] GPU model to perform the RTL
fault injection. FlexGripPlus is an open-source VHDL-based
GPU model, which implements the Nvidia G80 architec-
ture [39], with details on the most representative modules,
and compatible with the commercial CUDA programming
environment. This model can use three different configurations
(8, 16, or 32) per Streaming Multiprocessor, selected before
simulation or synthesis.

A custom RT-level framework [40] performs the fault injec-
tion through a general controller that manages the ModelSim
environment, which hosts FlexGripPlus. The controller injects
one fault (as a single transient) in the targeted GPU module,
according to a faults list. For the analysis presented in this
paper, we inject errors in the warps scheduler, the pipeline
registers, the Integer Functional Units (INT FUs), the Single
Precision Floating Point FUs (FP32 FUs), the Special FUs
(SFUs) used for transcendental functions, and the control logic
(see Figure 2), but we expressly do not consider faults in the
main memory structures (caches, register file, shared memory).
Table I lists the characterized modules, their size, and the
instructions that use each module. Overall, our characterization
covers ≈84% of the resources (flip flops) involved in the com-
putation of the characterized instructions, excluding memories
(≈23% if considering ECC-protected memories).

Once the fault is propagated to any of the available outputs
(instruction output register, memories, or control signals), its
effect is classified, by comparing the output values and signals
with the golden ones obtained in a fault-free simulation, as
SDC (output values mismatch), DUE (hang), or Masked (no
effect).



We host the RTL model and fault injection framework on a
server built with 12 Intel Xeon CPUs running at 2.5 GHz and
256 GB of RAM. The duration of the fault campaign depends
directly on the program’s length and the number of locations
to inject, which is proportional to the target module’s size.
For instance, one micro-benchmark requires 8 and 5 hours,
in our server, to perform the fault injections on the scheduler
controller and the Floating-Point Unit, respectively.

We generate a general report per fault campaign, which
includes the effect (SDC, DUE, Masked) of each injected fault
based on (1) the characterized instruction, (2) the input value
range (we test three input ranges per instruction, details in
Section V-C), and (3) the target module (where the fault is
injected). We also classify the fault effect as individual (one
single thread affected) or multiple (more threads affected).
The general report allows to measure the AVF for each
module and instruction as the ration between observed errors
(SDCs/DUEs) and injected faults.

To characterize the syndrome at the output, we generate,
for each observed SDC, a detailed report that contains the
location of the injected fault, the golden value, the faulty value,
the number of affected bits, the number of affected threads, the
eventual spatial distribution of erroneous values in the warp
output, and the memory address.

B. Software Fault Injection Framework

To inject, in software, the fault syndrome obtained with
the RTL evaluation, we have updated the already available
NVBitFI framework [3]. NVBitFI is the most suitable fault
injector for this work since it allows to instruct the kernels at
SASS level (the machine code executed in the GPU hardware).
Other fault injectors such as GPUQin, CAROL-FI, Kayotee,
GPGPU-SIM, SASSIFI [4], [7], [41], [42] do not inject at
SASS level (but SASSIFI), do not offer support for Volta and
newer architectures, or do not inject in CUDA libraries.

NVBitFI can inject transient errors in the GPU’s ISA visible
states, modifying the SASS instructions output of a code
being exectuted on a real GPU. NVBitFI allows the user to
select the fault model to inject (single, double bit-flip). We
modify the injection procedure to inject the syndrome obtained
with the RTL evaluation (see Figure 2). When NVBitFI picks
an instruction to be corrupted, our framework identifies its
opcode. From the RTL fault database, we select the most
suitable syndrome to apply based on the source of the fault,
the opcode, and the input range (according to a statistical
distribution, as discussed in Section V-C). The syndrome,
as mentioned, is described as a relative error. The updated
NVBitFI, then, modifies the instruction output value of a
relative amount (e.g., if the syndrome is 100%, NVBitFI
multiplies by two the instruction output value).

Additionally, we have included a dedicated procedure to
corrupt the output of tiled-MxM inside CNNs. The fault
injector picks a random tile during the execution of a random
CNN layer and modifies its output elements according to the
syndrome (relative error and spatial distribution) defined with
the RTL fault injection (details in Section V-D).

V. RTL RELIABILITY EVALUATION

In this Section we detail the results of the RTL character-
ization of faults effect in the considered GPU modules. We
first describe the tested micro-benchmarks and mini-app, then
we present the AVF and the fault syndrome description.

A. Micro-benchmarks and mini-app description

We design several micro-benchmarks to characterize the ef-
fects of RTL faults in integer, floating point, special functions,
memory movements, and control-flow instructions. To observe
the possible propagation of the single injected fault to individ-
ual or groups of threads, each micro-benchmark instantiates
64 threads (2 warps) executing the same instruction. We also
test a mini-app (i.e., tile-based matrix multiplication) to better
observer scheduler faults impact. It is worth noting that we
inject only one fault in one targeted injection site per micro-
benchmark execution. Possible multiple threads corruptions
are caused by that single fault propagation and not by multiple
fault injections.

With the goal of characterizing the syndrome at the out-
put of arithmetic instructions we have designed 8 specific
CUDA micro-benchmarks to run on FlexGripPlus, one for
each targeted floating point (FMUL, FADD, and FFMA),
integer (IADD, IMUL, and IMAD), and special (FSIN, FEXP)
instructions. Each of the 64 threads executes the same instruc-
tion without interactions between threads. We test the floating
point and integer opcodes with three different pre-defined
input ranges: Small (S, both inputs in the range 6.8x10−6

to 7.3x10−6), Medium (M, in the range 1.8 to 59.4), and
Large (L, in the range 3.8x109 to 12.5x109). In the software
fault injection any instruction with an input smaller than S
(bigger than L) receives the S (L) syndrome, values in between
receive the M syndrome. The range selection is heuristic, based
on observed common values for SASS instructions inputs on
the considered HPC and CNNs applications. We also test a
combinations of input ranges (first input S, second input L),
obtaining very similar results than S and M ranges (not shown
in the paper). For the special functions (FSIN, FEXP), we
select three inputs according to the operational constraints in
the SFU (in the range 0 to π/2), avoiding range reduction
procedures. To avoid the bias of our results we perform a fault
injection campaign on 4 different randomly selected values for
each input range.

We also consider memory movements (GLD and GST)
and control-flow instructions (BRA, ISET). The load and
store micro-benchmark performs a load operation followed by
a store operation. For the control-flow operation, we allocate
a limited number of set-register instructions before the branch
operation. A fault is detected when a set register is not
correctly assigned or when the branch condition fails. We
anticipate that, not surprisingly, in most cases faults in control-
flow instructions collapse the execution leading to a DUE.

Scheduler corruptions (and multiple threads corruptions in
general) may have specific effects on the execution of codes in
which threads interact with each other that may not be detected
with the micro-benchmarks we have designed. As a specific
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Fig. 4. AVF of the injections at RTL level on the functional units (FP32, INT, SFU), the scheduler, and pipeline registers for the different instructions. We
plot the average AVF measured with the S, M, L input ranges.

and extremely important case study, we also characterize with
RTL fault injection a tile-based matrix multiplication (t-
MxM) mini-app. The choice of the mini-app is dictated by
the observation that more than 70% of operations inside a
CNN is MxM related [21]. To avoid memory latencies and,
thus, improve matrix multiplication efficiency, large matrix
multiplications are split into tiles (smaller MxM). The tile size
is set to maximize performances without saturating caches and
registers. In our framework the optimal tile size is of 8x8. Each
tile is assigned to a Streaming Multiprocessor and, then, all
tiles are combined to form the output of MxM. In a CNN, the
MxM output forms the layer output (feature map).

To select the input for t-MxM, we execute LeNET and
YOLOv3 with the MNIST [20] and VOC2012 [21] datasets,
and observed that most tiles involved in convolution process
have similar values, while the tiles at the edge of the feature
map have a higher amount of zero operands, because of
padding [20], [21]. We then characterize three inputs for the
tiles with the RTL fault injection: (Max) Max tile (the tile
with the highest sum of elements values), (Z) Zero tile (the
tile with the highest number of zeros), and (R) Random tile
(a tile selected among the ones without significantly biased
values). We test 4 different values per tile type (Max, Z, R).

B. Architectural Vulnerability Factor

We perform fault injection in 6 GPU modules character-
izing, for most modules, 12 SASS instructions and t-MxM,
with different input sets (3 ranges and 4 values per range
for arithmetic operations and t-MxM). In total, we perform
144 RTL fault-injection campaigns and, for each campaign,
we inject more than 12,000 faults. That is, we present data
from more than 1,72x106 fault injections. This guarantees a
statistical margin error lower than 3%.

Figure 4 depicts, for injections in Functional Units (FP32,
INT, SFU), Warp Scheduler, and Pipeline Registers, the AVF
of each instruction. We have not considered injections in func-
tional units for GLD, GST, BRA, and ISET as the FUs are idle
when executing those instructions. In Figure 4 we distinguish
between SDCs affecting a single or multiple threads. As we
have observed, in accordance with [35], that the AVF does not
significantly depend on the input range (the AVF difference
between S, M, and L inputs is always lower than 5%), in

Figure 4 we show the average AVF measured with the three
input ranges.

Figure 4 shows that faults in the scheduler are less likely to
impact the computation than faults in the functional units or
pipeline (the y axes are on different scales). We recall that in
our micro-benchmarks threads do not interact with each others,
reducing the scheduling strain. In Section V-D we show that
the scheduler AVF increases significantly in more complex
codes. Moreover, the functional units corruptions are much
more likely to generate SDCs than DUEs while the outcome
of injections in the pipeline is mainly dominated by DUEs.
We further investigate the observed behaviours next.

More than 60% of the SDCs caused by scheduler corrup-
tions affect more than one thread for the INT and FP32 micro-
benchmarks while injections in the functional units cause
multiple threads corruption only for FSIN and FEXP. This is
because the GPU has a dedicated ADD, MUL, and MAD unit
for each thread while the few (two) available special function
units (SFUs) need to be shared among different threads (see
Figure 2). A deeper analysis of the multiple SDCs source
revealed that the multiple corrupted threads observed with
functional units corruptions in FSIN and FEXP are actually
caused by faults in the control units of the SFUs. Interestingly,
also pipeline injections cause multiple threads corruption.
Investigating the causes for those multiple threads we found
that, while most of pipeline registers (≈84%) store operands
for each parallel core, there is also a small portion of registers
(≈16%) devoted to control signals. The corruption of these
latter registers caused the observed multiple threads SDCs.

On the average, the number of corrupted parallel threads per
warp is 1 for INT and FP32 functional units, 8 for the SFUs,
28 for the scheduler, and 18 for the pipeline. These averages
show that the parallel operation’s modules in the GPU, such
as the scheduler and the pipeline, are more prone to corrupt a
high number of multiple threads in a warp than others. A fault
in the control structures and signals of the pipeline and, mainly,
of the scheduler (which manages the warp operation), affects
multiple threads. The lower number of threads corrupted in the
pipeline is related to the number of available FUs and active
threads at a given time (8 in our case). As some signals are
not updated until a new warp is dispatched, their corruption
affects, on the average, two of the four groups of 8 threads in
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Fig. 5. Distribution of the fault syndrome (relative error) from the RTL
fault injection in the Functional Units (top), Pipeline (middle), and Scheduler
(bottom) for the floating point instructions executed with S, M, L inputs.

a warp (32 threads).
The high DUE AVF for the pipeline (0.3% for floating point,

2% for integer, 4% for special units, 10% for control opera-
tions) is caused by corruptions of pipeline control registers
that, despite being few (≈16%), are confirmed to be highly
critical. The DUE AVF is exacerbated for special function
units, because of the additional control signals required to
share the use of the few available SFUs, and for control flow
operations (GLD, GST, BRA, ISET) for which faults in the
data path are likely to corrupt the control flow.

The scheduler DUE AVF is almost constant (between 0.5%
and 0.6%) for all instructions but BRA and ISET, for which
the DUE AVF is about 0.8%. Tracking the fault propagation
we found that scheduler DUEs are caused by faults affecting
structures in the controller devoted to store the state of the
warp or memory addresses. In contrast, the scheduler SDCs are
mostly caused by faults affecting warp state bits, so disabling
active or enabling inactive threads.

As observed in Figure 4, the functional units AVF for
the floating point instructions (FADD, FMUL, FMAD) is
much smaller than for the integer instructions (IADD, IMUL,
IMAD). This is caused by the higher complexity and area of
the floating point units, that are more than 3x larger than the
integer units (see Table I). A larger area increases the number
of injection sites, thus reducing the probability to hit a critical
resource for computation.

It is worth noting that the AVF assumes that a fault has
occurred and does not include any information about the
probability for the fault to be generated. In order to consider
also the fault generation probability, the modules AVF should
be weighted with the module relative size (shown in Table I).
A more accurate evaluation would consider the fault rate of
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Fig. 6. Distribution of the fault syndrome (relative error) from the RTL
fault injection in the Functional Units (top), Pipeline (middle), and Scheduler
(bottom) for the integer instructions executed with S, M, L inputs.

the different modules, for which either proprietary information
on the technology sensitivity or beam experiments would
be necessary. As a first evaluation, combining Table I and
Figure 4, we can say that functional units, having a huge size
and high AVF, are likely to be the source of most SDCs, while
pipelines are likely to be the cause of most DUEs.

C. Fault Syndrome

For each SDC observed at the instructions output we keep
a detailed report (described in Section IV-A), that includes
also the corrupted output value. We characterize the fault
syndrome by measuring the relative error induced by the
fault. We also perform an additional analysis of the binary
distribution of errors at the output (how many bits of the output
are corrupted and in which position). Nevertheless, there was
not a clear pattern for the bits corruption (in the large majority
of cases, ≈24 bits are wrong, randomly distributed). This is
in accordance with the fact that computational faults induce a
not-obvious syndrome, as also observed in [18].

The relative error syndrome analysis highlights a very
interesting trend. Figures 5 and 6 show the distribution of
relative errors for the tested micro-benchmarks. We plot, in
the y-axes, the percentage of observed SDCs that modify the
instruction output value from less than 10−8 to over 102. That
is, 0.2% of SDCs observed on FADD executed with the Small
input range modify the output value by 10−6× and 0.3% of
SDCs observed on FFMA executed with the Large input range
modify the output value by 10×.

As depicted in Figures 5 for floating point and in Figure 6
for integer instructions, the relative difference between the
observed corrupted values and the expected value does not
follow a Gaussian distribution. For all instructions there is a
clear peak that depends on the input range and on the injection
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TABLE II
DISTRIBUTION OF THE MULTIPLE PATTERNS (SINGLE CORRUPTED

ELEMENTS ARE NOT LISTED) OBSERVED WITH T-MXM.

inj. site row col. row+col. block rand. all
scheduler 0.96% 0.07% 0.45% 5.77% 0.69% 54.6%
pipeline 45.4% 1.36% 1.04% 7.29% 0.42% 4.17%

site. In some configurations (FFMA and FMUL FU injections
with L input) two peaks are present. It is also interesting
to notice that the relative difference distribution is narrow, if
compared to the floating point or integer representation range.
Only in few cases (less than 0.05%), we observed a syndrome
with a relative error higher than 102 (i.e., the corrupted output
value is 100x bigger/smaller than the expected one). This
observation attests that even injecting a random number of bit-
flips in the instruction output might not be realistic. Our results
show that there is a limited difference between corrupted
and correct values. Interestingly, the median of the syndrome
values between S/M/L varies by just ∼1% in all cases but
MUL and FMA, for which the median changes by up to 30%
(bigger input range has higher median). Only for MUL and
FMA, then, we expect a syndrome dependence on the input.

Once the opcode, the input range, and the injection site
have been determined, to injecting the syndrome in software
we need to select a relative error, statistically taken from
the data presented in Figures 5 and 6 and available in [23].
The syndrome (as relative error) does not follow a Gaussian
distribution (all distributions have a p-value smaller than 0.05
on the Shapiro-Wilk test), but rather follows a power law
distribution [43], in which few events are predominant. We
create a Pseudo-Random Number Generator (PRNG) function,
based on the mathematical formalization in [43], that generates
the syndrome to be injected as follows:

relative error = P−1(1− r) = xmin(1− r)−1/(α−1) (1)

Where 0 ≤ r < 1 is a uniformly distributed random value, α
is the scaling factor, and xmin is the values lower bound. Both
parameters are extracted from our data based on the methods
described in [43].

D. Tiled MxM errors distribution

To better study the impact of multiple threads corruptions in
codes with threads interactions we have characterized, with the

Fig. 8. Spatial distribution of the multiple corrupted elements patterns
observed in the RTL injection on the mini-app t-MxM. Arrows indicate that
neither the position of the observed pattern nor the block size are fixed.

RTL fault injector, the mini-app t-MxM. We test three input
types (Max, Zero, and Random tiles), averaging the results
obtained with four values per each input type. For t-MxM, we
inject faults in the scheduler and pipeline registers but not in
the functional units. Faults in this latter module, as shown
in Figure 4, would not cause multiple threads corruptions
in t-MxM (there is no transcendental operation). The effects
of the single thread SDC would then be the same as the
ones observed injecting the FU syndrome in software, without
requiring a costly RTL injection.

Figure 7 shows the average AVF for DUEs, single and
multiple corrupted elements in the t-MxM output for injections
in the scheduler and pipeline. We recall that we inject one fault
per execution: the multiple corrupted elements are caused by
the single fault propagation.

A major difference from the micro-benchmarks AVF in Fig-
ure 4 is that, for t-MxM, the scheduler AVF is higher than the
pipeline one. As mentioned, while the micro-benchmarks are
very simple and do not implement threads interactions, t-MxM
also includes several instructions for computing memory ad-
dresses and threads indices. The higher strain on the scheduler
and the higher portion of time spent in scheduling operation
increases the AVF (for both SDCs and DUEs). On the contrary,
the pipeline AVF is higher in the micro-benchmarks because,
when a fault appears at the first instruction output, it is marked
as SDCs, without further chances to be masked (there is no
other computation). In t-MxM an instruction’s wrong output
can be masked in a downstream operation (for instance, with
a multiplication by zero). This statement is supported by our
pipeline data in Figure 7, that shows a much lower SDC AVF
for the Z tile.

An additional interesting result from Figure 7 is that the
portion of SDCs that affect multiple elements is very high (at
least 70% of scheduler induced and 50% of pipeline induced
SDCs). We can further study the multiple errors at the t-
MxM output by visualizing the geometrical distribution of
the corrupted elements. In Figure 8 we plot the 6 different
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Fig. 9. Variance distribution of relative errors for an example of Row (left)
and Block (Right) patterns with multiple corrupted elements.

spatial multiple corrupted elements distribution patterns that
we have observed injecting faults in the scheduler and pipeline
registers. We have observed corrupted elements distributed in
a row, a column, a row and a column, a block of elements
(varying in size), randomly, and all (or almost all) elements
corrupted. Table II lists the percentage of occurrences of
the different patterns (single SDCs are not listed). As the
distribution of the observed patterns is very similar in the three
inputs we test (M, Z, R tiles), we list the average distributions.

Interestingly, pipeline injection mostly produces corrupted
rows, while scheduler injection is more likely to affect the
whole output matrix. Having a whole column corrupted is
very unlikely, for both injection sites. This is because t-MxM
calculation is row-major and, as mentioned, the distribution
of these error patterns depends not only on the way the
GPU hardware reacts to the faults, but also on the software
propagation. While this multiple elements distribution is not
generic, the choice of t-MxM extended evaluation is dictated
by its importance in CNNs execution. As shown in [28], [29],
the observed multiple errors patterns (but not single element
corruptions) can indeed induce misdetections in CNNs.

We have also characterized the syndrome of t-MxM. Most of
the syndromes are concentrated in few values, again following
a power-law distribution. In Figure 9 we plot the relative error
distribution for two examples: a row and a block error. As
shown, the relative error distribution varies among the cor-
rupted elements. To inject the t-MxM syndrome in software,
then, we use Equation 1 to select the range of the relative errors
for all the elements to corrupt. In this range, we again select
a power law distribution for the corruption of the individual
output elements.

VI. REAL-WORLD APPLICATIONS EVALUATION

In this section we present the results obtained injecting,
in software, the fault syndromes discussed in the previous
section. We inject at least 6,000 syndromes per application,
for a total of more than 48,000 injections that took 350 GPU
hours, ensuring 95% confidence intervals to be lower than 5%.

As discussed in Section IV-B, the specially crafted
NVBiTFI version selects the most suitable fault syndrome to
apply depending on the opcode, the input, and the module
that we assume to be the cause of the fault. For this paper, we
inject a cocktail of fault syndromes following the power-law

TABLE III
SIZES, DOMAIN, AND PVF FOR ALL TESTED APPLICATIONS.

Size Domain PVF
Single bit-flip Relative error

Gaussian 512x512 Linear algebra 1.0 1.0
Lava 2 3D boxes Particle simulation 0.69 0.91
Quicksort 4MB array Sorting 0.94 0.95
Hotspot 1024x1024 Physics simulation 0.25 0.37
LUD 2048x2048 Linear algebra 0.82 0.99
MxM 256x256 Linear algebra 0.95 0.99
LeNET MNIST Classification 0.03 0.04
YoloV3 VOC2012 Object detection 0.17 0.27
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Fig. 10. SDC Program Vulnerability Factor for HPC codes.

statistical distribution described in Section VI and depicted in
Figures 5 and 6. It is obviously possible to focus the software
fault injection in just one module or even to tune the syndrome
injection with the probabilities for the different modules and/or
instructions to be corrupted. While being potentially very
interesting, such an evaluation requires the area of the various
modules (as reported in Table I) but also the raw probability for
transient faults to be generated. Unfortunately, this information
is not publicly available and could only be measured through
beam experiments.

We select to characterize a set of applications, listed in Ta-
ble III, that are representative of different HPC computational
classes: Floating Matrix Multiplication (MxM), Lower Upper
Decomposition (LUD), Quicksort, particles simulation (Lava),
Gaussian elimination (Gaussian), fluid dynamics (Hotspot).
We also consider CNNs for classification and object detec-
tion (LeNET and YoloV3). Each code is likely to stimulate
specific GPU modules, according to the distribution of op-
codes depicted in Figure 3. Hence, results obtained with the
selected benchmarks could be representative also for similar
applications.

While NVBitFI could inject in multiple threads and the RTL
fault syndrome includes the information about the multiple
SDCs, to propose a better comparison with the traditional
single bit-flip evaluation, we decide to inject only single thread
SDC using our fault syndrome. We want to highlight how
accurate a random single bit-flip injection is compared to the
RTL fault syndrome. For CNNs, we also include an RTL fault-
injection on the execution of t-MxM to evaluate better the
effects of scheduler faults and multiple threads corruptions in
the detection and classification of objects.

Figure 10 shows and Table III lists the SDC Program



Vulnerability Factor (PVF) for the HPC codes. PVF is the
probability of the faults injected in the software visible states
to generate an SDC at the end of execution. In other words,
when injecting in software, we assume that the fault injected
in RTL has corrupted the instruction output. For the data in
Figure 10 and Table III we inject only in the 12 opcodes we
characterize with RTL fault injection (that represent more than
70% of all executed opcodes, as shown in Figure 3).

RTL faults that generate DUEs (shown in Figure 4) are not
considered in software fault injection, as they simply hang the
application. We never observed DUEs caused by the injections
of the syndromes obtained from the RTL injections. This is
mainly because GPU applications are highly data intensive,
and avoid data driven condition statements. Thus, it is hard
for a data error to affect the control flow in GPUs.

To compare our analysis with the traditional fault injection,
we consider two error models for our analysis, single bit-
flip (randomly injected in the 32 bits values) and the fault
syndrome (injected using the power law distribution) from
RTL injection. For all the codes presented in Figure 10,
the fault syndrome model generates a higher or equal PVF
compared with the traditional single bit-flip error model.
Interestingly, we observe that the single bit-flip injection would
underestimate the applications reliability of up to 30% for Lava
and 48% for Hotspot, respectively. For other codes (Gaussian
and Quicksort) the two fault models provide very similar
results, as the PVF of the considered instructions is, by itself,
extremely high (close to 1).

For CNNs, if we consider an SDC, as we do in Figure 10
and Table III, a mismatch in the application output (we will
consider misdetection/classification next), the single bit-flip
injection underestimates the PVF of 33% for LeNET and 50%
for YoloV3. The higher reliability to transient fault of CNNs
compared to HPC codes should not surprise, as it has already
been observed and studied on GPUs [28], [29].

For LeNET and YoloV3, we also have measured the PVF
when we inject the corrupted t-MxM, as presented earlier in
this section. On LeNET, the SDC PVF when t-MxM fault
model is injected is much higher than the other two fault
models (12x higher), while for YoloV3 it is similar to the
relative error PVF. This different behavior is because LeNET
has a very small number of network parameters per layer
(12,000, on average), and, thus, the corruption of a tile consists
in the corruption of a considerable number of parameters. On
the contrary, YoloV3 layers are very big (100,000 parameters,
on average), and even fully corrupted 8x8 tile represent a small
percentage of the matrix.

We can further analyze the impact of faults in CNNs by
distinguishing between tolerable SDCs and critical SDCs, i.e.
those that corrupt the output sufficiently to cause a network
misclassification/misdetection. We found that t-MxM injection
produce an unacceptable amount of critical errors. For LeNET,
the number of errors that completely change the classification
is 20% and, for YoloV3, it is 15%. It is worth noting that, in
LeNET, none of the injected single bit-flips nor RTL single
thread syndrome produce misclassifications nor misdetections.

A realistic and accurate fault model, that also considers faults
in GPU critical resources as the scheduler, is then necessary
not to risk to underestimate the effect of transient faults in
CNNs.

By investigating further the RTL fault propagation, we
found that the control structures (inside the scheduler, the
pipeline, and the SFU) are the primary sources of errors that
corrupt multiple threads, affecting a warp or even generating
the geometrical patterns of errors shown in Figure 8. As we
have seen with the software fault injection, despite the limited
size of these structures in a GPU core and the relative low AVF,
these critical modules might produce severe consequences for
an application, especially CNNs. An efficient, and effective,
hardening solution for GPU should definitely target these
modules.

Finally, we highlight that injecting at RTL level one single
fault in just one of the applications listed in Figure 10 would
take more than 10 hours, using our 12 CPUs server. As
we inject a total of 48,000 faults, it would take 4.8 × 105

hours to produce all data in Figure 10. That is more than 54
years. Despite the limitations listed in Section II-C and the
introduction of some simplifications on the input range, our
two-level framework allows an analysis that would otherwise
be impossible.

VII. CONCLUSIONS

In this paper we have applied the concept of multi-level
fault injection to GPUs. Thanks to the combination of RTL
and software fault injection, we reduce by several orders of
magnitude the time required to have a detailed and accurate
analysis of faults propagation from the hardware source to the
application output. The RTL accuracy of our framework identi-
fies the most critical GPU resources, for both SDCs and DUEs,
and identifies a set of possible fault effects (syndromes) in the
instructions output. The efficiency of our version of NVBitFI
allows to propagate these effects in real-world applications.

The faults syndrome database we present in this paper is
made publicity available with the intent of providing a more
accurate fault model than the naive single bit-flip, to evaluate
the reliability of applications and to validate hardening solu-
tions. Moreover, the flexibility of our framework grants the
possibility of future updates, both in terms of updated RTL
model or extended instructions evaluation.

In the future we intend to include a beam experiment FIT
rate evaluation of instructions, to provide also an estimation of
the faults occurrence rate together with the fault propagation.
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