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Abstract
In the age of connected vehicles, large amounts of data can be collected while driving through a variety of on-board sensors.
The information collected can be used for various types of data-driven analytics that can be of great benefit to both vehicle
owners, e.g., to reduce costs by means of predictive maintenance, and to society as a whole, e.g., to optimize mobility behavior.
Prior to any real-world data analysis, an investigation and characterization of the available data is of utmost importance in
order to evaluate the quality and quantity of the data and to set the right expectations.
In this paper, we focus on the data exploration and characterization step, which is necessary to avoid inconsistencies in the
collected parameters and to enable valid, data-driven modeling. The proposed data exploration considers both the frequency
of samples and their values for all monitored parameters. A specific cross-provider data comparison is performed to compare
values collected for the same vehicle at the same time from different fleet monitoring data providers. The study is applied to a
real-world use case with months of data from dozens of vehicles deployed in the waste collection service managed by SEA,
Soluzioni Eco Ambientali, in Italy. The analyzes uncover unexpected behaviors in the measurements and lead to their early
identification, bringing great benefits to the company operating the fleet by improving data collection and enabling a safe
modeling phase.
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1. Introduction
The recent rise of monitoring systems on modern ve-
hicles is opening a broad range of applications for ma-
chine learning (ML) techniques to process this data [1].
Among the most popular use cases, analyses that can be
implemented to leverage the collected data may include,
for example, estimating the best route for the vehicle,
predicting fuel consumption, or predicting a failure on
a particular component. However, ML algorithms are
effective as long as the available data are sufficiently
accurate. Then, it is fundamental to assert the reliabil-
ity of this data before going into any kind of analysis.
This evidence becomes even more important when deal-
ing with data coming from multiple sources, for which
collecting strategies, precision, and availability can sig-
nificantly vary. In this work, we present a real-world
use case where waste-collecting vehicles are monitored
by multiple data providers, and interventions to fix fail-
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ures on such vehicles are regularly recorded. The main
contribution of this paper are:

1. An exploratory analysis on real data from a waste-
collection company, which is tracking its fleet by
means of different data providers.

2. An exploratory analysis of the recorded mainte-
nance interventions to enable a future predictive
maintenance solution.

The rest of the paper is organized as follows. Section 2
presents the related works, Section 3 describes the real-
world use case under analysis, and Section 4 focuses
on vehicle-tracking data exploration. Finally, Section 5
draws conclusions and future works.

2. Related work
In recent years, the advent of the Internet of Things and
its rapid diffusion has facilitated real-time communica-
tion and data exchange between technological devices
that can be used in a wide variety of scenarios. When
the technologies involved are located on a vehicle (e.g.
car, truck), the term Internet of Vehicles (IoV) is used
[2, 3]. This term refers to the situation in which data are
collected locally on the vehicle and then sent to a remote
storage location (cloud) where it can be deeply analyzed.
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Many infrastructures and different technologies have
been implemented to support large-scale, real-time, and
reliable information services. Basically, for this purpose,
a three-tier architecture [4] is used: the first tier with all
the sensors within the vehicle, a second tier representing
the communication layer, and the third tier including
statistics tools, support for storage, and processing in-
frastructure. This last tier leverages collected data from
sensors to extract information that can bring value in
different contexts.

The GPS data which reflects the movement of vehi-
cles can be traced to simulate the mobility model in IoV.
Authors in [5] and [6] have presented different machine
learning techniques for short-term congestion prediction
using vehicle trajectory available for connected vehicles.
In another set of works, the goal is to correctly predict
fuel consumption under various driving conditions. This
is done for example in [7] and [8], where prediction re-
sults show the good value of mean absolute percentage
errors. Finally, a great deal of research has been done to
try to exploit the data collected to be able to do predictive
maintenance. This implies the building of a data-driven
model that can predict in advance a failure on a given
component, thus being able to intervene promptly, avoid-
ing breakdowns during vehicle travel. In this context, in
[9] authors try for example to estimate the probability
of fuel pump failure, while in [10] the goal is to predict
the presence of a Diagnostic Trouble Code ignition on
commercial trucks.

In many works, data is collected and managed with a
clear purpose in mind. However, in other cases, compa-
nies would like to gain general insights of the information
they collected, and then drive the decisions on how to
effectively reach cost reductions and higher operational
efficiency. In such cases, an exhaustive exploration of the
available data is required, allowing the company to pos-
sibly introduce early changes in the collection process.
In this way, our work differs from the above-mentioned
ones because our focus is on the data exploration phase,
to highlight noteworthy behaviors or anomalies of in-
terest for the data owner. Furthermore, all the above-
mentioned works have been conducted on data collected
by a single provider. Instead, in our use case, we analyze
and compare three different data providers, each with its
own specific sensors. A single parameter can be either
specific to a single provider, or it can be monitored by
several providers (each with its peculiarities). For this
reason, we focus on a data comparison step, not covered
in previous related works, to highlight the benefits and
weaknesses of each data provider.

3. Use case description
We analyze real-world fleet data of garbage collection
operated by SEA, Soluzioni Eco Ambientali. The company
acts in cooperation with the local administration in many
Italian municipalities, to handle the collection, transport,
and selection of municipal waste. To this aim, the com-
pany deploys a fleet of trucks. They are equipped with
sensors able to track the vehicle during the trips. Every
day, more than 300 vehicles operate in 14 different work-
sites, located in different cities in the north and center
of Italy. An unexpected failure of one of these vehicles
would need a quick reorganization of the workload of all
the others, to optimally perform the service. Hence, an
early detection of the signals leading to possible failure
is of primary importance, both from an economic and an
organizational point of view.

In this context, we present a preliminary analysis and
characterizations of such data. Specifically, we focused
on a subset of 40 trucks, which are the most represen-
tative and well monitored, i.e., those for which the data
was extensively present for most of the time. From the
technological point of view, all the data is stored in a data
lake, managed by T2D Transfer to Digital, which collects
the results of regular calls to the REST APIs of the data
providers. The different service providers, being either
the truck manufacturer or an external supplier, added
sensors on the vehicle chassis and the top installations.
Hence, data sources are extremely heterogeneous, and
also irregular in their timings, which leads to the pres-
ence of a variety of anomalies. Among all the available
data sources, we can identify the following types of data
in the data lake.

• Tracking. This data describes the trips each
truck performs. We have 3 providers (named P1,
P2, and P3 in the following), each tracking dif-
ferent features. The only common measures are
GPS position, odometer value, total time of en-
gine activity, and average speed. Some providers
also include other measures such as acceleration
and estimated fuel consumption. In addition to
the variability on the tracked features, different
providers also have different policies on the sam-
pling of the data, hence leading to very diverse
daily measure rates. The raw datasets collected by
the providers are time series of a total of 117880
samples of 38 tracked features for 35 vehicles for
P1, 68611 samples of 68 features for 8 vehicles
for P2, and 91072 samples of 17 features for 15
vehicles for P3.

• Maintenance. Among the goals of the current
exploratory analysis, we would like to assess the
feasibility of a future predictive model aiming to
predict failures based on the historical mainte-
nance interventions. To this aim, in the data lake
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Figure 1: Overview of the invoices and sensors’ daily activity on the associated vehicles.

we analyzed the list of all the repairs of the dif-
ferent components of the trucks, for which the
corresponding invoices are collected. We have a
total of 120 invoices associated with 36 vehicles.

4. Exploratory analysis
In this section, we describe the data analysis process
and results. The dataset of interest in the current work
includes information of 40 vehicles from May 2021 to
January 2022. Even though the data providers’ REST
APIs have been directly used to collect the data at regular
and synchronous intervals during the whole period of
time, the timestamps of some samples refer to periods
sensibly far from the range (May 2021 - January 2022).
Furthermore, significant portions of the original data are
duplicated, i.e., different calls to the provider APIs return
the very same data, also with identical timestamps. Some
of these anomalous repeated data are associated with a
subsequent period with no collected data. Nevertheless,
the overall trend of the vehicles in these situations sug-
gests they where still moving without being tracked. For
this reason, we dropped all duplicated values down, since
we assumed they are only the result of irregularities of
the providers’ update systems. In the same way, we then
also removed all samples outside of the considered time
range.

Since at each API call, all variables are returned by the
data provider, but not all variables effectively recorded a
change in their value, a feature selection step has been
used to remove irrelevant features. After removing dupli-
cate records, we also removed all those variables that we
felt would not be helpful for an upcoming data-driven
analysis. These variables were identified according to the
following criteria: (i) a missing value ratio greater than
50%, (ii) limited variance (e.g., variables whose values are
always constant).

As a first indicator of the remaining information car-
dinality, we defined the average number of samples per
vehicle per day as a synthetic and high-level measure.
Figure 1 shows how the different providers (P1, P2, and

P3 on the rows) supply information across the 40 vehi-
cles (on the columns). The heatmap shows the average
daily number of samples, for each vehicle (column) and
provider (row). The first row reports the number of in-
voices for each truck, each corresponding to the mainte-
nance interventions.

Among the 40 vehicles, the first 17 share tracking data
from multiple providers at the same time, and are de-
scribed by more than 30 samples per day per vehicles
in some cases, with the average being less than 5 sam-
ples per day per vehicle. The number of maintenance
interventions (invoices) ranges from zero to 15 in the 9
months under analysis.

In the following, we discuss the results of the ex-
ploratory analysis on such data.

4.1. Multi-provider data comparison

P1

P3

P2

Altitude 
Fuel_consumption

Performance_stats(5) 
Guidemode_distance(4)

Odometer 
current_speed 

GPS_coordinates

Engine_working_hour

Location_references(4) 
Alarm_id

Figure 2: Venn diagram of the high-level semantic aggrega-
tion of the features from 3 tracking data providers.

Since each provider has different variables, we exe-
cuted a semantic association to identify related features
from different providers. The resulting features with
the corresponding associations are presented in Figure 2,
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Figure 3: Comparison of the odometer and engine working time for 3 vehicles monitored by both P1 and P3.

where the Venn diagram shows how the semantic groups
are shared between the 3 providers.

The features in common to all the providers are the
odometer, the speed, and the geographical position of
the vehicles. The working time of the engine is available
in 2 out of 3 providers. The odometer and the engine
working time are of particular interest in our analysis
since they give a measure of the mechanical "age" of the
truck, and despite some possible differences on the ini-
tial offset among different providers, they are supposed
to be sampled coherently among them all. Other vari-
ables, such as the current speed, fuel consumption, and
performance statistics, are also potentially significant to
trace the degradation of the vehicles. However, even if
they share the same high-level semantics, we noticed
that their values were so different that each provider ac-
tually tracks a variable on its own, hence they cannot be
merged together.

4.1.1. Comparative analysis on monotonic features

The odometer and the engine working time are two mono-
tonic variables shared among different data providers (P1
and P3). Both variables are constant when the vehicle
is turned off, whereas both must be strictly increasing
while driving.

From Figure 1 we note that 10 vehicles share the P1-
and P3-provided odometer and engine working time. In
Figure 3 we report the comparison of such variables for
3 overlapping trucks (namely v13, v16, and v17) in the
period between August 2021 and November 2021, after a
simple conversion of units of measure (P1 uses kilometers
and hours, while P3 meters and minutes).

P1 presents a temporal gap in the collected samples, of
about one week from September 1st, for all the reported
trucks. Since the last measure for each vehicle before
the gap and the first one after drastically differ, we can
assume that within this period the trucks were still ac-
tive. This assumption is proven by the measures from
P3, confirming that it was associated with a lack of infor-
mation from the provider itself. The issue is common to
all the data of this source, and it was not reported to the
knowledge of the company before the current analysis.
Moreover, this period, as highlighted by the lower plot,
is also associated with a drastic lowering in the value
of the engine time. This can correspond to a sort of in-
ternal reset of the sensors, which may have made the
registered values start from a default position, slightly
different from any truck. In this situation, a fix for this
error can be obtained by adding the first value from P3 of
the correspondent vehicle to all measures of P1. With this
correction, each couple of curves after the gap becomes



comparable.
Finally, the upper plot also shows another anomaly

concerning the odometer tracking of v17. The traces from
the two providers have significantly different trends that
continue diverging as time increases. Vehicle v17 traveled
with an average speed of 83 𝑘𝑚/𝑑𝑎𝑦 and 23 𝑘𝑚/𝑑𝑎𝑦,
for P1 and P3, respectively. All providers’ average speed
distributions are peaked at around 60 𝑘𝑚/𝑑𝑎𝑦, as shown
in Fig. 4, but the calculated average values are on the tails
of both distributions.

In this situation, as for other trucks monitored by more
than one data provider, we experienced that information
from different providers can reveal significant differences
in the reported values.

0 20 40 60 80 100
Speed

0.000

0.002

0.004

0.006

0.008

0.010

0.012

De
ns

ity

v17 | P3 v17 | P1

provider
P1
P2
P3

Figure 4: Daily speed distribution for each provider. Two
points highlight the measured average speed for v17

4.2. Analysis over time
An important analysis to perform in order to understand
effectively the data collected is an exploration of the time
period in which the vehicles are monitored. How long
and in which manner the data is collected is in fact a
useful information for the company that can highlight
important differences between the various providers. Be-
low, for each provider we have reported a graph repre-
senting the time on the x axis, and the different trucks
monitored by the provider on the y axis. In this way, for
each truck we can easily see the start and end date of
collection and whether there were any anomalies in the
monitored period (e.g. missing data or changes in the
daily data rate).

4.2.1. P1 provider

The graph shown in Fig 5 shows all trucks monitored by
provider P1. The different color shades of the points rep-
resent a different sampling frequency on a given day (the
darker the point, the more measurements were collected
on the same day for that truck). This graph shows that
the number of daily measurements collected is almost

the same and that all trucks were monitored during the
period from May 2021 to January 2022. The anomalies
are highlighted by the red rectangles in the figure. The
first anomaly that is detected is common to all trucks, and
is a lack of data at the beginning of 2021/09 (September).
This behavior can be explained by a period of company
closure, or by a general failure in the data collection pro-
cess, affecting all trucks. Other anomalies are instead
related to specific trucks, and show rather long periods
(even several months) of lack of data. In general, to see if
in all of these situations we don’t have data because the
truck was actually idled or because there was a problem
in the collection, we need to look at the cumulative val-
ues collected from variables such as the odometer. If the
value of this variable in the last sample collected before
the period without data is equal to the value of the first
sample collected after the period without data, it means
that the truck actually did not travel in that period, so no
information was lost. Otherwise, if the two values are dif-
ferent, it means that the truck moved but we don’t have
data that monitored its operations during that period. So
there was an error in the data collection phase.
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Figure 5: Temporal analysis for P1

4.2.2. P2 provider

A similar analysis was performed for the measurements
collected by provider P2 and shown in Figure 6. In this
case, the number of trucks monitored is much lower than
those monitored by P1. Moreover, all the trucks consid-
ered by P2 are also monitored by P1. This is useful in
order to make a quick cross-check on anomalies between
the two providers. In particular, we can easily notice that
in the same periods in which data for P1 was missing
(both the period common to all trucks and those for indi-
vidual trucks), we now have measurements collected by
P2. This leads us to assume that the previous lack of data
were really due to P1-related failures. The only period
in which we have no measurements in either providers
is between 2021/12 and 2022/01 for vehicle v03. In this
case, the only check we can do to verify if the truck was



really stopped is to monitor the odometer value before
and after the lack of data.
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Figure 6: Temporal analysis for P2

Regarding the measurements collected by P2, a partic-
ular behavior can be noticed in the sampling frequency.
Until 2021/12 there is a very low sampling frequency,
equal to around one daily measurement per truck. How-
ever, this behavior changes suddenly in the last months
of collection, where the sampling frequency increases
significantly. This seems to be due to a change in the
collection pattern from December onward, probably with
the aim of collecting information with a higher level of de-
tail than the single daily information previously collected.
The use of the trucks has not changed since December,
what has changed is the amount of information describ-
ing the behavior of a truck, with up to 200 samples per
day.

4.2.3. P3 provider

The same temporal analysis has also been performed for
the trucks monitored by provider P3. Five of the trucks
in Figure 7 (from v36 to v40) are monitored only by P3,
therefore it is impossible to cross-check them with the
data of the other providers to try to better understand the
anomalies. Regarding instead the remaining trucks, they
are all monitored by at least one between P1 and P2 and
this allows us to cross-check the collected measurements.
In particular, the most evident anomalies in the data
collected by P3 are for those five trucks where there are
no measurements in the period from 2021/05 to 2021/10.
However, for the same trucks and in the same months,
the other providers have collected measurements, so it is
fair to assume that the lack of data for P3 is a problem
related only to that provider.

4.3. Maintenance analysis
Concerning the maintenance data, we analyzed the col-
lection of invoices indicating failures of different com-
ponents on the trucks. With the help of domain experts,
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Figure 7: Temporal analysis for P3

we manually excluded all the elements associated with
periodical maintenance operations to be done as part of
the security enforcement by law, then all the resulting
elements have been grouped into meaningful categories
based on the failed components. Looking at the remain-
ing invoices, we then observed a significant number of
operations from the same category carried out on the
same vehicle within a short time (e.g., the day after). We
assumed all these cases describe a situation when the
repair was insufficient to solve the problem, hence not
relevant for a predictive-maintenance analysis. For this
reason, we excluded such data from the analysis. The re-
sulting, clean number of failures, grouped by categories,
is shown in Figure 8. For each row, besides the total num-
ber of failures, also the number of second occurrences,
i.e., those which are not the first failures for the vehicle
and the category, is reported. The failures coming from
this second group are particularly interesting when inves-
tigating the possibility of building a predictive model on
top of this data since they can give a preliminary measure
of the frequencies of the failures.

0 5 10 15 20 25
Count of labelled failures

Electrical system

Braking system

Mechanics

Engine lubrification system

Hydraulics

Sensors

Exhaust system

Power plant
Total
Second-occurrence

Figure 8: Clean count of the failures, separated by category.

The entire process of cleaning and correctly group-
ing the available invoices is fundamental whether the
collected data will be exploited to address a predictive
maintenance analysis, building a predictive model ca-
pable of estimating the residual life of a truck before a



maintenance intervention is needed. The possibility of
identifying malfunctions or component issues in advance
is in fact a key aspect for automotive companies, which
can then intervene properly before a failure occurs. This
leads to significant cost savings for the company, since
a properly implemented predictive model would allow
to avoid breakdowns during vehicle travel and to con-
stantly monitor the condition of the various components,
scheduling maintenance interventions only when they
are really necessary. From Figure 8, we note that for a
few categories we do not have enough data to be able
to build a robust predictive model for estimating future
failures. This is due to the limited time period in which
trucks are monitored, which is not long enough to collect
enough maintenance interventions for all categories.

5. Conclusions and future works
In this work, we presented an exploratory analysis and
preliminary characterization of real-world fleet data com-
ing from different tracking providers. We analyzed and
compared the data collected by 3 providers, on 40 vehi-
cles, over 9 months, highlighting issues and challenges.
The presence of multi-provider information for the same
vehicle, although more expensive, can help recover the
frequent issue of missing data. As future work, we plan
to extend the current work to integrate data from dif-
ferent sources with the goal of designing a predictive
maintenance algorithm, by exploiting the maintenance
intervention data. Anomalous information from the ve-
hicle tracing, like the ones we reported in this paper, can
lead to unreliable input features and consequently uncer-
tain prediction. Accurate data exploration can instead
improve its quality and then overcome the initial cost
of implementing redundant monitoring strategies with
all the benefits, both in terms of cost and environmen-
tal impact reduction, an accurate failure detection could
provide.
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