
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the Efficiency of Sparse-Tiled Tensor Graph Processing for Low Memory Usage / Cipolletta, A.; Calimera, A.. -
ELETTRONICO. - (2021), pp. 643-648. (Intervento presentato al convegno 58th ACM/IEEE Design Automation
Conference, DAC 2021 tenutosi a usa nel 2021) [10.1109/DAC18074.2021.9586154].

Original

On the Efficiency of Sparse-Tiled Tensor Graph Processing for Low Memory Usage

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DAC18074.2021.9586154

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2961251 since: 2022-04-13T12:05:16Z

Institute of Electrical and Electronics Engineers Inc.

On The Efficiency of Sparse-Tiled Tensor Graph
Processing For Low Memory Usage

Antonio Cipolletta, Andrea Calimera
Politecnico di Torino, 10129 Torino, Italy

Abstract—The memory space taken to host and process large
tensor graphs is a limiting factor for embedded ConvNets. Even
though many data-driven compression pipelines have proven
their efficacy, this work shows there is still room for optimization
at the intersection with compute-oriented optimizations. We
demonstrate that tensor pruning via weight sparsification can
cooperate with a model-agnostic tiling strategy, leading ConvNets
towards a new feasible region of the solution space. The collected
results show for the first time fast versions of MobileNets
deployed at full scale on an ARM M7 core with 512KB of RAM
and 2MB of FLASH memory.

I. INTRODUCTION

The deployment of Deep Convolutional Neural Networks
(ConvNets) on tiny devices, such as Micro-Controller Units
(MCUs), encompasses several design issues. The most critical
is the lack of memory resources, both for storing the weights of
the model (i.e., the off-chip FLASH) and the temporary results
produced during the forward pass of the model (i.e., the on-
chip SRAM). Even the most powerful off-the-shelf MCUs for
the IoT (such as the ARM M7 core [1] targeted in this work)
come with very few MBs of FLASH (2 MB) and hundreds of
KBs of SRAM (512KB), which is orders of magnitude smaller
than that of mobile CPUs [2]. Moreover, the available memory
is further reduced by other routines stored and processed in
the background to ensure device operability.

Several optimization techniques have been proposed in the
last few years. Most of them leverage the statistical nature of
Deep Learning (DL) and the inherent algorithmic resilience
of ConvNets to reduce the feature maps hosted by the SRAM
(also called activations) or the weights stored in the FLASH.
Seminal works include arithmetic precision scaling via quan-
tization [3], structured and unstructured pruning [4], [5],
resolution scaling and topology scaling via channel pruning
(a.k.a. width multiplier) [6], [7]. Those techniques are data-
driven and tend to degrade the model accuracy. Quantization
and pruning are fine-grain knobs that allow accuracy to be
recovered with iterative re-training stages, whereas resolution
and topology scaling are coarser knobs for fast and aggressive
memory compression that induce non-recoverable loss. A
discriminant factor is the kind of memory where savings
materialize: weights pruning generally works for the FLASH
memory only, input resolution scaling is for SRAM, quanti-
zation and topology scaling affect both FLASH and SRAM.
Therefore, which knobs to deploy should be weighted by the
characteristics of the ConvNet and the hardware specifications.

Another class of techniques tackles the problem from a
different angle, leveraging compilation strategies that are data-
independent, training-free, and contribute to iso-accuracy op-
timizations. Examples are the scheduling of the tensor graph
nodes to guarantee minimum activation footprint [8], or the
acceleration of the arithmetic operators with local transforma-
tions [9], [10]. Since the weights set of the ConvNet model
remains untouched, the savings brought are mostly on the
activation maps, and hence the active SRAM consumed during
inference.

The differences between the two kinds of strategies suggest
that optimality can be achieved through effective co-operation,
something partially shown in state-of-the-art works that pro-
posed training and optimization pipelines with different knobs
applied together [11], [12]. How to integrate data-independent
techniques has received little attention and remains the weak
ring of the chain, indeed. Compilation strategies aimed at
optimizing the resource allocations often come too late in the
pipeline, only after quantization, pruning, and topology scaling
already set the trade-off between accuracy and memory con-
sumption. As a side effect, some regions of the optimization
space may remain unexplored.

The objective of this work is to fill this gap by showing a
memory optimization pipeline that combines two techniques
belonging to the two different classes of methods: data-driven
and data-independent. We deploy sparsification to reduce the
model size with minimal accuracy loss and tensor graph tiling
to reduce the activation size without any accuracy loss. Our
proposal is enabled by a functional-preserving rewriting proce-
dure that works at the graph-level, handling tensors as abstract
data objects, regardless of how they are actually packed,
stored, and processed. This procedure opens to memory-
efficient global graph transformations that can be applied with
more degrees of freedom in the earlier stages of the optimiza-
tion flow. A thorough assessment of MobileNets (v1 and v2)
deployed on the NUCLEO-F767ZI board [1] powered by an
ARM Cortex-M7 with 512KB/2MB of SRAM/FLASH shows
sparse-tiled graphs are dominant in the memory-accuracy
space. Compared to other compression pipelines that combine
either data-driven techniques, i.e., sparsity, resolution, and
topology scaling, or data-independent techniques, i.e., tensor
tiling, the proposed strategy enables the deployment of new
optimal configurations.

II. BACKGROUND AND MOTIVATIONS

A. Static Graph Memory Allocation

ConvNets, and any tensor graph in general, are modeled by
dataflow graphs (DFGs) where nodes represent the algebraic
operators and edges the tensors. Fig. 1 shows a DFG portion of
MobileNetV2 [7]. Tensors containing the weights are mapped
sequentially in the non-volatile memory, the FLASH memory.
Many MCUs have a direct access path to the FLASH that can
be exploited at run time for fast data retrieving [1]. The volatile
memory, usually an on-chip SRAM, hosts the activations and
the buffer used as a scratchpad for auxiliary procedures, e.g.,
the im2col buffer for GEMM-based convolutions. To notice
that only active maps, namely, those produced but not yet
consumed by all dependent operators, need to be kept alive.
The computational nodes are commonly processed sequen-
tially following a topological order of the DFG. Therefore, a
liveness analysis on the scheduled DFG estimates the amount
of memory to be allocated. The lifetime of a tensor is defined
as the difference between the end-time of its latest consumer
and the start-time of its producer. Non-overlapping tensors,
i.e., those with disjoint lifetimes, can share the same memory
region, enabling reuse. As shown in Fig. 1, the sum of
overlapping tensors in a given cycle sets the active memory,
while the cycle with peak memory utilization defines the total
SRAM footprint.

B. Data-Driven Memory Optimization Techniques

Arithmetic Precision. Precision scaling leverages an arith-
metic relaxation of the operations to reduce the computational
effort and to alleviate the memory bandwidth requirements.
Quantizing the model from 32-bit floating-point to 8-bit fixed-
point has become a standard for tiny devices, leading to 4x
global memory reduction and up to 4x speed-up [3].

Pruning. Over-parametrized ConvNets can be simplified
by dropping less important parameters at different levels of
granularity. With weight-pruning [4], close-to-zero weights are
zeroed until a pre-defined level of sparsity is reached. This
sparsification enables the use of compression methods based
on sparse data representations, like Huffman coding, leading
to substantial FLASH savings. The group-pruning works at a
higher level of granularity. Weights are pruned in blocks of
a size such that the utilization of the parallel arithmetic units
of the hosting hardware is maximized [13]. The main benefit
is to reduce the model footprint with savings on the FLASH
memory, whereas the speed-up may depend on the adoption
of sparse computational kernels. At the coarsest granularity,
kernel-pruning [5] drops entire convolutional kernels, with
proportional savings for the FLASH memory, the activation
footprint, and the number of operations.

Width Modulation. These methods play with the topology
of the ConvNets. Indeed, entire convolutional filters are cut,
reducing the cardinality of the inner feature maps. Specifically,
the number of filters are scaled across all the layers according
to a predefined ratio α, called the width multiplier [6]. Thin
layers take less FLASH (as fewer channels imply fewer

Schedule: < L0, L1, L2, L3 ,L4>

T0 : 4

T1 : 6

T2 : 8

T3 : 4

Active
Memory

4 10 18 16

L0
Add
4

L1
Conv
6

L2
Conv
8

L4
Add
4

L3
Conv
4

T4 : 4

12

Peak Value

Fig. 1: Dataflow graph of a MobileNetV2 block [7] (left) and
the conflict graph of its tensors Ti (right). Each node is labeled
with an ID, its operation, the size of the output tensor.

weights to store) and less SRAM (fewer features to be pro-
cessed). Obviously, the information stored in the ConvNet is
removed at a fast pace, leading to a substantial accuracy drop.

Resolution Scaling. It reduces the spatial resolution of
the intermediate features by scaling the resolution of the
input patterns fed to the network [6]. High-resolution features
may contain more fine-grain details that help to improve the
prediction accuracy, which comes at the cost of larger SRAM
usage and more operations processed. On the other hand, lower
resolution features lighten the SRAM pressure but might affect
accuracy severely. Moreover, the model footprint does not
scale, that is, the same amount of FLASH is consumed.

Since the trade-off between accuracy degradation and mem-
ory savings is strictly related to the complexity of the task and
data, all the above methods call for re-training. Moreover, one
should consider that SRAM savings can be mainly obtained
by width modulation and resolution scaling, and when the
SRAM size is the dominant constraint, a sudden accuracy drop
is a cost to pay for getting the model deployable. The main
intention of this work is to show there exists a more effective
option.

C. Data-Independent Memory Optimization Techniques

Operator-Level Transformations. Optimize the computing
scheme of each neural operator by means of alternative multi-
loop implementations that minimize memory usage. They can
be operated automatically, using a code synthesis process [9],
or manually, through a hardware conscious code restyling [14],
[15]. The resulting code is custom-tailored to a specific
platform, e.g., CPUs, GPUs, or spatial accelerators.

Graph-Level Transformations. Aim at orchestrating the
flow of macro-operations rather than the inner code organi-
zation. They manipulate the DFG by removing, modifying,
or adding nodes while preserving the overall functionality.
Specifically, they make use of hand-crafted graph rewriting
rules to reduce the peak memory consumption leveraging the
algebraic properties of the operators [8]. Many prior works
elaborated on the concept of operator fusion [16], by which
the processing of chained operators is rearranged in a depth-
first manner: the outputs of an operator are consumed by the
next operator in the chain as soon as they get ready. The

Dataset

Quantizer

Fine Tuner

Sparsifier

Fine Tuner

Graph
Restructurer

Compiler

Trained
ConvNet Kernels

Front-end

Back-end

Fig. 2: The optimization pipeline implemented to translate the
high-level description of a neural network into an optimized
executable binary. The blue boxes indicate data-driven passes,
while the red boxes data-independent passes.

resulting graph has a different topology due to the presence of
fused operators. The authors of [17] introduced a framework
that first identifies the operators that can be aggregated and
then generates a fused code tailored for CPUs or GPUs. The
layer fusion applies for convolutions followed by element-
wise and pooling operators; therefore, it just covers specific
patterns and cannot be generalized to any tensor graph. In [16],
[18], more aggressive strategies were introduced, leveraging a
custom memory architecture for fusing multiple convolutional
operators.

Unlike the optimization methods discussed in the previous
sub-section, these data-independent techniques are functional
preserving and hence do not affect the ConvNet accuracy. This
property motivates the idea behind our proposal: to achieve a
better memory-accuracy trade-off backing up lossy statistical
methods with lossless graph transformations. In doing this, and
to make it applicable to general-purpose MCUs, we observed
the need for a graph-level restructuring procedure able to
(i) achieve fast memory reduction, greater or equal to that
attainable with width modulation and resolution scaling, (ii)
ensure generality, breaking any dependence from the ConvNet
architecture, the kind of neural operators adopted, or the
hardware specifications.

III. OPTIMIZATION PIPELINE

An overview of the optimization pipeline is shown in Fig. 2.
The input of the pipeline is a pre-trained ConvNet, and the
output is a binary file ready for the target device. The pipeline
consists of two main stages: (i) the front-end, where the
memory optimization happens; (ii) the back-end with the
compiler. The front-end consists of two data-driven passes,
quantization and sparsification, and the data-independent graph
restructuring procedure. The back-end uses low-level routines
extracted from a library of neural kernels optimized for the
target device. The following subsections provide details on
the memory optimization stages.

A. Data-Driven Passes

The quantizer reduces the arithmetic precision of weights
and activations to 8-bits, following a linear scheme with
power-of-two scaling to efficiently exploit the integer SIMD
extension of the Cortex-M architecture. While the bitwidth is
uniform for the entire network, the radix-points of the feature

maps, the weights, and the biases are assigned layer-by-layer.
Such values are calculated by minimizing the mean squared
error between the original floating-point distribution and the
quantized one. A fine-tuner is used to recover a possible
accuracy loss [19]. The effect of the quantization step is a
4x reduction in both activation and model footprint, with no
loss of accuracy.

The quantized graph is then sparsified following the struc-
tured pruning strategy proposed in [13]. The weights are
pruned in groups of two, such that the sparse matrix multipli-
cation routine (spMM) can be efficiently implemented exploit-
ing the 2-lane SIMD datapath of the Cortex-M architecture.
The weight matrices are represented in a modified Compressed
Sparse Row format (CSR) according to [13]. In particular, each
sparse weight matrix is represented with three 1D vectors: the
nnz-values storing the non-zero weights, the j-idx storing the
first column index of each couple of non-zero elements, the i-
idx storing the number of non zero elements in each row. Both
nnz-values and j-idx vectors are accessed sequentially hence
ensuring good cache locality. Moreover, by properly unrolling
the spMM kernel’s hot-loop, it is possible to fully exploit
the vector load instructions and so the available bandwidth
to the L1 data cache. As a result of both sparsification and
compression, the memory footprint of the model reduces to
approximately one and a half times the number of non-zero
elements (some overhead due to the storage of the non-
zero elements along with the metadata of the CSR format).
Note that this pruning strategy does not reduce the activation
footprint; hence it only affects the FLASH occupation of the
model. The amount of sparsification enforced in the procedure
may lead to accuracy loss; however, an 80% of sparsity
represents a safe value, ensuring enough room to recover
accuracy with a fine-tuning procedure [13].

B. Data-Independent Pass

The last step of the front-end is the graph-restructuring,
which applies data-independent transformations on the tensor
graph. Specifically, it minimizes the volume of concurrent
tensors, and hence the overall allocated SRAM, by means
of functional preserving topology rewritings that flatten the
memory profile through tensor tiling.

The graph-restructurer first identifies the regions of the
models contributing to the peak memory value, then extends
these regions to include surrounding layers with fewer memory
demands, and, finally, rewrites the selected layers as smaller
independent branches that are less memory and computational
dense. Each of these branches computes a tile of the output
tensor by processing a tile of the original input tensor(s); the
input tiles are obtained through the insertion of proper split
operators, whereas the output tiles are concatenated (cat) to
reconnect the rewritten sub-graph with the other nodes of the
graph. The split and cat operators can be seen as the special
nodes that create lightweight, independent processing paths
between graph regions with a lower memory pressure.

The rewriting is functional preserving and it does not alter
the weights of the operators; therefore, it does not require

1 2 3 4 5

Processed Layers

0.0

2.5

5.0

7.5

10.0

12.5
M
em

or
y
[K
B
]

(a) Initial model memory profile

L0
Conv

2

L1
Conv

4

L3
Pool

2

L2
Conv

8

L4
Conv

2

(b) Toy Network DFG Initial

1 2 3 4 5 6 7 8 9 10 11

Processed Layers

0.0

2.5

5.0

7.5

10.0

12.5

M
em

or
y
[K
B
]

(c) End model memory profile

L0
Conv

2

L6
Split

1

L7
Split

1

L2a

Conv

4

L2b

Conv

4

L3a

Pool

1

L3b

Pool

1

L5
Cat

2

L4
Conv

2

L1a

Conv

2

L1b

Conv

2

(d) Toy Network DFG End

Fig. 3: Example of graph restructuring on a sequential DFG.

access to the input dataset. This topology transformation could
be interpreted as a generalization of depth-first processing,
but, differently from previous works [16]–[18], it plays at a
higher level of abstraction, managing tensors as abstract data
objects independently from the on-device representation and
the computing strategies adopted. Such characteristic breaks
external dependencies imposed by software and hardware
implementations, shifting the optimization in the front-end of
the pipeline closer to data-driven optimizations.

To achieve memory saving, the graph-restructurer plays
with the number of created branches and the boundaries of
the restructuring region, i.e., the placement of the split and
cat operators. The number of branches affects the activation
footprint of the created paths; hence, it determines the savings
achieved by processing sequentially each lightweight branch
instead of the original monolithic path. If the restructuring
region contains stencil operators, such as convolution and
pooling, then some redundant computations and duplicated
elements are added to make the processing paths independent.
To select the restructuring region, we adopted a simple greedy
strategy, which we illustrate through a toy example reported
in Fig. 3. The DFG in Fig. 3b comprises a linear chain of
operators. As depicted in Fig. 3a, the peak of the activation
footprint (12 KB) is dictated by operator L2. We set a fraction
of the peak memory value (γ · peak value) as a threshold
value, and we include as part of the restructuring region
those layers whose active memory is above the threshold; the
restructured region covers L1, L2, and L3 as shown in Fig. 3a.
After the rewriting, the resulting DFG is shown in Fig. 3d;
it has two independent branches, p1={L1(a), L2(a), L3(a)}
and p2={L1(b), L2(b), L3(b)}, each containing copies of the
original layers playing with tensors halved in size. L6 and
L7 are the two newly inserted operators in charge of halving
the tensor produced by L0, whereas L5 concatenates the
output slices produced by the created branches. Intuitively,
the parallel branches are two times faster than the original
monolithic path, and the overall latency is the same (except
for a low overhead introduced by redundant operations due to
split). Moreover, they are independent, namely, they consume
and produce disjoint tensors that can be therefore scheduled
in sequence, as shown in Fig. 3d. The memory profile of
the tiled graph, which is reported in Fig. 3c, has a lower

peak value, hence a smaller memory footprint (33% less the
original DFG). Extensive analysis of state-of-the-art ConvNets
(e.g., ResNets, VGG, Inception) has shown SRAM savings
between 40% and 75% depending on the topology and the
hyperparameters of the model.

IV. RESULTS

A. Benchmarks and Deployment

We tested the proposed optimization pipeline on Mo-
bileNetV1 [6] and MobileNetV2 [7], two state-of-the-art
ConvNets designed to meet a broad range of hardware con-
straints. A set of public configurations is freely available,
including pre-trained configurations obtained under different
settings of the width multiplier α and the input resolution
ρ, the two main knobs adopted for scaling down the model
size. Table I provides a summary of the main features for
α ∈ {0.50, 0.75, 1.00} and ρ ∈ {160, 192}; all the mod-
els are quantized to 8-bit with a layer-wise binary scaling.
Although other configurations are available, e.g., α ≤ 0.25
and ρ={128, 224}, we decided not to report them because of
their sub-optimality. For instance, ρ=224 takes +50% SRAM
improving the accuracy by a mere 1% (w.r.t. ρ=192), while
with α = 0.35 (α = 0.25) accuracy gets below <60% (50%).
It is also worth emphasizing that our optimization pipeline
does apply to other ConvNets and tasks achieving similar
results, not reported in this manuscript for the sake of space.

The tests were conducted on a NUCLEO-F767ZI board [1]
hosting 512KB of on-chip SRAM and 2MB of FLASH. The
MCU is an ARM Cortex-M7, operating frequency 216 MHz.
We extended the CMSIS-NN library v.5.6.0 [15] with a modi-
fied in-house version of the SIMD-aware sparse matrix multi-
plication kernels presented in [13]1. The graph tiling procedure
does not require further modifications of the kernel library.
It is a model- and hardware-agnostic graph-level method that
works for any existing neural library [14], [15] and it does not
prevent other low-level automatic code optimization, e.g. [9].
We adopted the GNU Arm Embedded Toolchain (version
6.3.1) for cross-compilation.

1No official open-source implementation was available at the time of
writing.

Network α Parameter count [M] ρ Top-1 Accuracy [%]

MobileNetV1 1.0 4.24 192 69.2
160 67.2

0.75 2.59 192 66.1
160 62.3

0.50 1.34 192 60.0
160 57.7

MobileNetV2 1.0 3.47 192 70.7
160 68.8

0.75 2.61 192 68.7
160 66.4

0.50 1.95 192 63.9
160 61.0

TABLE I: Baseline Characterization. Accuracy on ImageNet
taken from tensorflow repositories2.

B. Pipeline Set-up

The sparse networks are obtained following the method
proposed in [13] with 80% of sparsity distributed across
all convolutional layers, except those containing depthwise
convolutions that have been implemented with the dedicated
dense operator available within the CMSIS-NN library. The
choice of the sparsity level is driven by the empirical analysis
provided in [13], [20], which demonstrates that 80% is a safe
threshold to preserve accuracy. Concerning the graph restruc-
turing procedure, the threshold is set to 0.4 · peak value;
namely, the restructuring region covers all the fan-in/out layers
with an active memory ≤ 0.4 · peak value. Each tensor is
split into four equally sized parts (2 slices along the width
and height dimensions of the convolutional filters), originating
four parallel branches for each tensor path. Finding the optimal
ratio between the extension of the restructuring region and the
number of slices is out of the scope of this paper.

C. Experimental Results

We do focus on two main extra-functional metrics: memory
(SRAM and FLASH) and accuracy.

Fig. 4 shows the RAM and FLASH consumed by Mo-
bileNetV1. The shaded area in the plot outlines the feasible
region: configurations within this region meet both RAM
and FLASH constraints and can be ported on the target
hardware3. Sparse and tiled networks (�) are those that meet
both SRAM and FLASH constraints at full scale; hence,
they can be deployed at full accuracy offering the highest
quality with the minimum memory usage. The same is not
for configurations obtained with the other knobs. Among the
dense networks (•), only two (.50@160 and .50@192) meet
the memory budget at the cost of a large penalty in terms
of accuracy (Table I). Sparse networks (◦) show a lower
FLASH footprint thanks to the sparse matrix format; this
lets a new configuration join the feasibility region (.75@160),
while the remaining ones violate the SRAM constraint. The
tiled networks (�) obtained with graph restructuring technique
(w/o sparsification) show ≈50% lower SRAM usage and

2github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet.md
github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet v1.md

3Due to additional overhead to run the network, the flash constraint is set
to 1.9MB and the RAM constraint to 500KB

are compliant with the constraint. However, they exceed the
available FLASH in most cases, which calls for aggressive
width modulation (α ≤ .50). The bar-chart in Fig. 5 shows
the latency collected on-board; the negative bars are for
models not fitting the memory space. Sparse-tiled networks
get much faster than dense only and tiled only nets; this
can be observed for the first two networks on the left side
of the chart ({.50@160, .50@192}). Moreover, they can be
processed at any width ({.75@192, 1.0@160, 1.0@192}), en-
suring the highest quality, which is a good option for non-
time-critical tasks. Obviously, latency increases proportion-
ally. As explained in Section III, the restructuring proce-
dure adds overhead due to redundant computations: ≈10%
penalty compared to dense and sparse (as shown for the
two configurations {.50@160, .50@192}). The three sparse
configurations ({.50@160, .50@192, .75@160}) dominate the
sparse-tiled version, which, however, could still be adopted in
case additional RAM is occupied by concurrent applications
running on the MCU, e.g., a sensor sampling procedure.

Similar conclusions can be inferred for MobileNetV2,
whose results are reported in Fig. 6 and 7 showing even
greater benefits. The sparse-tiled configurations are those that
fit into memory. Unlike MobileNetV1, none of the dense
networks is compliant with the memory constraints, mainly
due to the larger activations. Aggressive scaling factors, both
for the width multiplier and the input resolution, are needed to
push one configuration within the feasible region (.50@160),
resulting in a high accuracy drop. Tensor tiling is mandatory to
bring SRAM below the threshold, but still not enough due to
the model size that gets close to the boundaries of the feasible
region for highly scaled widths. A side comment raises from
the observation that shrinking α from 1.0 to .75 does not re-
flect a reduction of the activations. The main reason is that the
first layers of the 1.0 and the .75 configuration have the same
hyper-parameters; hence, since the activation memory peak
is achieved while processing the first layers of the network,
they share the same activation footprint. In terms of latency,
we observed the same trend reported for MobileNetV1, except
for the non-monotonic behavior recorded for one configuration
(1.0@160), where the speed-up by sparsity accumulates in a
specific way due to the topology of the network and the width-
resolution ratio.

V. CONCLUSION

This work introduced a memory optimization pipeline com-
bining statistical DL techniques with a functional-preserving
graph restructuring procedure. The model parameters are
group-pruned by a sparsification procedure, while regions of
the model contributing to the peak memory consumption are
identified and rewritten through tensor splitting and indepen-
dent processing. The combined effect is a reduction of both
RAM and FLASH footprint. The collected results show for
the first time several configurations of MobileNets deployed
on an ARM M7 core with 512KB/2MB of SRAM/FLASH.
We expect that the joint combination of data-driven and
data-independent optimizations will open to more efficient

200 400 600 800

RAM [KB]

0

1000

2000

3000

4000

5000
F

L
A

S
H

[K
B

]

Width Increases

Dense

Sparse

Tiled

Sparse-Tiled

192

160

Fig. 4: FLASH and RAM requirements for different con-
figurations of MobileNetV1. Width values are 0.50, 0.75,
1.00.

.5
0@
16
0

.5
0@
19
2

.7
5@
16
0

.7
5@
19
2

1.
0@
16
0

1.
0@
19
2

DNN Configuration Width@Resolution

0.0

0.5

1.0

1.5

2.0

L
at
en
cy

[s
]

Dense

Tiled

Sparse

Sparse-Tiled

Fig. 5: Latency measurements for MobileNetV1. Bars
sorted for accuracy, from least accurate (left) to most
accurate (right).

tensor graph computing to meet the needs of next-generation
intelligent applications deployed on tiny devices.

REFERENCES

[1] Nucleo-f767zi. [Online]. Available: https://www.st.com/en/
evaluation-tools/nucleo-f767zi.html

[2] Rpi3b+. [Online]. Available: https://www.raspberrypi.org/products/
raspberry-pi-3-model-b-plus

[3] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
2704–2713.

[4] S. Han et al., “Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding,” in Proc. of the
International Conference on Learning Representations, 2016.

[5] H. Li et al., “Pruning filters for efficient convnets,” CoRR, vol.
abs/1608.08710, 2016. [Online]. Available: http://arxiv.org/abs/1608.
08710

[6] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.
[Online]. Available: http://arxiv.org/abs/1704.04861

[7] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in Proc. of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 4510–4520.

[8] B. H. Ahn et al., “Ordering chaos: Memory-aware scheduling of
irregularly wired neural networks for edge devices,” in Proc. of Machine
Learning and Systems, 2020, pp. 44–57.

[9] T. Chen et al., “Learning to optimize tensor programs,” in Proc. of
the International Conference on Neural Information Processing Systems,
2018, p. 3393–3404.

[10] Y. Wen et al., “Taso: Time and space optimization for memory-
constrained dnn inference,” in Proc. of the IEEE International Sym-
posium on Computer Architecture and High Performance Computing,
2020, pp. 199–208.

200 400 600 800 1000

RAM [KB]

0

1000

2000

3000

4000

F
L

A
S

H
[K

B
]

Width Increases

Dense

Sparse

Tiled

Sparse-Tiled

192

160

Fig. 6: FLASH and RAM requirements for different con-
figurations of MobileNetV2. Width values are 0.50, 0.75,
1.00.

.5
0@
16
0

.5
0@
19
2

.7
5@
16
0

.7
5@
19
2

1.
0@
16
0

1.
0@
19
2

DNN Configuration Width@Resolution

0.0

0.5

1.0

1.5

L
at
en
cy

[s
]

Dense

Tiled

Sparse

Sparse-Tiled

Fig. 7: Latency measurements for MobileNetV2. Bars
sorted for accuracy, from least accurate (left) to most
accurate (right).

[11] H. Yang et al., “Automatic neural network compression by sparsity-
quantization joint learning: A constrained optimization-based approach,”
in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 2175–2185.

[12] F. Tung et al., “Clip-q: Deep network compression learning by in-
parallel pruning-quantization,” in Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018, pp. 7873–7882.

[13] J. Yu et al., “Scalpel: Customizing dnn pruning to the underlying
hardware parallelism,” in Proc. of the International Symposium on
Computer Architecture, 2017, p. 548–560.

[14] S. Chetlur et al., “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[15] L. Lai et al., “Cmsis-nn: Efficient neural network kernels for arm cortex-
m cpus,” arXiv preprint arXiv:1801.06601, 2018.

[16] M. Alwani et al., “Fused-layer cnn accelerators,” in Proc. of the
IEEE/ACM International Symposium on Microarchitecture, 2016, pp.
1–12.

[17] N. Weber et al., “Brainslug: Transparent acceleration of deep learning
through depth-first parallelism,” arXiv preprint arXiv:1804.08378, 2018.

[18] K. Goetschalckx et al., “Breaking high-resolution cnn bandwidth barriers
with enhanced depth-first execution,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 323–331,
2019.

[19] A. Mishra et al., “Apprentice: Using knowledge distillation tech-
niques to improve low-precision network accuracy,” arXiv preprint
arXiv:1711.05852, 2017.

[20] E. Elsen et al., “Fast sparse convnets,” in Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
14 617–14 626.

