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Opinion polarisation in social networks

Nadia Loy∗ Matteo Raviola† Andrea Tosin‡

Department of Mathematical Sciences “G. L. Lagrange”

Politecnico di Torino, Italy

Abstract

In this paper, we propose a Boltzmann-type kinetic description of opinion formation on so-
cial networks, which takes into account a general connectivity distribution of the individuals.
We consider opinion exchange processes inspired by the Sznajd model and related simplifica-
tions but we do not assume that individuals interact on a regular lattice. Instead, we describe
the structure of the social network statistically, assuming that the number of contacts of a
given individual determines the probability that their opinion reaches and influences the opin-
ion of another individual. From the kinetic description of the system, we study the evolution
of the mean opinion, whence we find precise analytical conditions under which a polarisation
switch of the opinions, i.e. a change of sign between the initial and the asymptotic mean opin-
ions, occurs. In particular, we show that a non-zero correlation between the initial opinions
and the connectivity of the individuals is necessary to observe polarisation switch. Finally,
we validate our analytical results through Monte Carlo simulations of the stochastic opinion
exchange processes on the social network.

Keywords: Sznajd model, Boltzmann-type equations, statistical network description, Monte
Carlo simulations, influencers, sociophysics

Mathematics Subject Classification: 35Q20, 82B26, 82C26, 91D30

1 Introduction

Network-structured interactions permeate modern societies, a prominent example being online
communication platforms. It is therefore not surprising that a large part of sociophysical studies
focuses on the influence that an underlying network of connections among the individuals has on
the emergence of aggregate social trends.

Early theoretical investigations were devoted to the construction of graph models for complex
networks [24, 36] and to the characterisation of the statistical structure of social networks [2, 5, 6].
The reason for a statistical approach is clear: typically the number of nodes and links of a social
network is so large that a detailed description by means of classical graphs would be largely
unfeasible. Subsequently, the interest switched to the network-structured dynamical evolution of
social determinants, such as the wealth [18, 19] or the opinion [1, 3, 34] of the individuals to name
just the probably most common examples. Various mathematical approaches to these problems
have been proposed. Without intending to review all the pertinent literature, here we simply recall
some contributions relatively close to the approach that we will adopt in this paper:

i) microscopic models based on tracking the time evolution of the state of every node of the
network (with the identification “node = agent” or “node = metapopulation”) [7, 12, 38];
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ii) mesoscopic models which incorporate a statistical description of the connectivity of the
individuals to describe the time evolution of the distribution function of the social traits of
interest [3, 34];

iii) mesoscopic models, and corresponding macroscopic limits, in which the individuals are la-
belled by a variable discriminating their mutual interactions, which reproduces a (weighted)
graph [10, 21, 22].

In this paper, we are interested in opinion dynamics on social networks. A powerful mathem-
atical paradigm that has emerged in the last twenty years to address opinion formation problems
is inspired by statistical mechanics and consists in a revisitation of the methods of the collisional
kinetic theory applied to interacting multi-agent systems [26, 33]. Kinetic equations allow one to
investigate rigorously the emergence of complex aggregate features, such as the opinion distribu-
tion in a human society, starting from simple heuristic descriptions of the individual interactions.
However, most kinetic models of opinion formation do not consider networked interactions. They
assume instead that every individual can affect the opinion of every other individual, at least
within a certain opinion distance (bounded confidence, cf. [16]). Instead, here we want to include
the effect of the connectivity of the users of a social network on the opinion formation process,
so as to investigate the impact that the distribution of contacts has on the persuasiveness and
penetration of the opinions on the social network. In particular, we will opt for a statistical de-
scription of the connectivity, which can be quite naturally embedded in a kinetic framework. At
the same time, in order to make the problem amenable to analytical investigations, we will sim-
plify the opinion exchange setting, which usually assumes that the opinion is a continuous variable
ranging in some bounded interval, such as e.g., [−1, 1], cf. [4, 9, 33]. Taking inspiration from the
Sznajd model [30, 31], we will consider only the two opposite opinions ±1, which are conceptually
analogous to the atom spins of the celebrated Ising model for the magnetisation of the matter [17].

We will investigate the appearance of what we call a polarisation switch in the opinion distri-
bution on the social network. By polarisation switch we mean, in particular, that the asymptotic
mean opinion emerging in the long run has opposite sign with respect to the initial mean opinion,
implying that most individuals switch to opposite sentiments over time. We stress that a polarisa-
tion switch is different from a phase transition, which refers instead to a transition from disordered
to ordered (or vice versa) opinion distributions over time without the possibility for the mean opin-
ion to change sign. Concerning this, we mention that several investigations of the phase transition
in the Sznajd model may be found in the literature, cf. e.g., [11, 23, 27, 28, 32, 37]. Owing to
the legacy of the Ising model, these works typically regard the network of individuals as either a
complete graph or a regular lattice. Consequently, interactions follow a first-neighbour scheme and
the geometrical dimension of the lattice plays a major role in determining the emergence of phase
transitions. Nevertheless, social networks cannot be completely assimilated to lattices, because the
latter are in general too regular and do not place enough emphasis on the possibly heterogeneous
distribution of the connectivity meant as the number of contacts of the individuals. In this work,
we conceive instead a quite general statistical description of the connectivity, which enters the
opinion exchange process through the probability that the opinion of a certain user reaches and
affects that of another user of the social network. Taking then advantage of the methods of the
kinetic theory, we show that a generic connectivity distribution may allow for polarisation switch
and we obtain precise analytical conditions under which the latter may occur. The conditions that
we find are valid for every connectivity distribution, hence for every statistical characterisation of
the social network.

In more detail, the paper is organised as follows. In Section 2 we introduce the general kinetic
approach to opinion formation on social networks, we detail two stochastic particle models at
the basis of the opinion exchange schemes that we consider in the work and finally we give the
corresponding kinetic descriptions in terms of Boltzmann-type equations. In Section 3 we use the
Boltzmann-type equations to investigate the emergence of polarisation switch in the two opinion
exchange models previously introduced. In Section 4 we draw further conclusions about the opinion
formation processes on the social network. In particular, we determine explicitly the large-time
opinion distributions and we explore the importance of the statistical correlation between opinion
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and connectivity for the emergence of polarisation switch. In Section 5 we simulate the original
stochastic particle models via a Monte Carlo method and we compare the numerical results with
the analytical predictions of the kinetic equations to validate our theoretical results. Finally, in
Section 6 we summarise the main results of the paper and we briefly sketch possible research
developments.

2 Particle models and their Boltzmann-type descriptions

2.1 Preliminaries

We consider a social network with a large number of users. We describe the state of a generic
user by their opinion-connectivity pair (w, c), where w ∈ {−1, 1} is a discrete binary variable and
c ∈ R+ is a continuous non-negative one. The values w = ±1 denote conventionally two opposite
opinions in the same spirit as the Sznajd model [30, 31]. The connectivity c is assumed to be a
representative measure of the followers of a given individual, namely of the number of users who
may be exposed to the opinion expressed by that individual. We consider this variable continuous
in accordance with the reference literature on the connectivity distribution of social networks, see
e.g., [5, 6, 13, 24, 36].

Let f = f(w, c, t) be the kinetic distribution function of the pair (w, c) at time t ≥ 0. Owing
to the discreteness of w, we may represent it as

f(w, c, t) = p(c, t)δ(w − 1) + q(c, t)δ(w + 1), (1)

where δ(w−w0) denotes the Dirac delta distribution centred at w = w0 and p, q ≥ 0 are coefficients
which depend in general on c and t. Moreover, we assume p(·, t), q(·, t) ∈ L1(R+) for all t ≥ 0.
Considering a constant-in-time number of users and connections of the social network, we may
impose the normalisation condition∫

R+

∫
{−1, 1}

f(w, c, t) dw dc = 1 ∀ t ≥ 0 (2)

and consequently think of f as the probability density of the pair (w, c).
The opinion density is then given by the marginal

h(w, t) :=

∫
R+

f(w, c, t) dc = p̂(t)δ(w − 1) + q̂(t)δ(w + 1),

where we have set

p̂(t) :=

∫
R+

p(c, t) dc, q̂(t) :=

∫
R+

q(c, t) dc.

Notice that p̂(t), q̂(t) are the probabilities that an individual expresses the opinion w = 1 or
w = −1, respectively, at time t. Consistently with (2), it results

p̂(t) + q̂(t) = 1, ∀ t ≥ 0. (3)

The connectivity density is instead given by the marginal

g(c, t) :=

∫
{−1, 1}

f(w, c, t) dw = p(c, t) + q(c, t).

We assume that the number of followers of a generic individual possibly varies in time more slowly
than their opinion, so that the marginal distribution g may be well considered constant in time:
g(c, t) = g(c) for all t ≥ 0. Consequently, the sum p(c, t) + q(c, t) is constant in t although the
single terms p(c, t), q(c, t) may be not.

3



2.2 Particle models

We now describe two representative particle models of opinion exchange, which are at the basis of
the kinetic equations satisfied by the distribution function f which we will subsequently analyse.

Let Wt ∈ {−1, 1} and C ∈ R+ be two random variables, whose joint distribution at time t is
f(w, c, t). They represent the opinion and connectivity, respectively, of a generic user of the social
network. Consistently with the discussion set forth at the end of Section 2.1, C is constant in
time. Conversely, {Wt, t ∈ [0, +∞)} is the stochastic process of opinion formation of the given
user.

Taking inspiration from the opinion exchange models presented in [28], which are in turn
revisitations of the Sznajd model [30], see also [29], we consider the following interaction schemes:

i) The two-against-one model, which assumes ternary interactions in which the third indi-
vidual takes the opinion of the first two ones if the latter have the same opinion; otherwise,
no interaction takes place. In formulas:

Wt+∆t = Wt

W ∗t+∆t = W ∗t
W ∗∗t+∆t = (1−Θ)W ∗∗t + ΘWt,

(4)

where W ∗t , W
∗∗
t ∈ {−1, 1} are the opinions of two further users of the social network and

∆t > 0 is the amplitude of the time interval in which the interaction may happen. Moreover,
Θ ∈ {0, 1} is a Bernoulli random variable discriminating whether the interaction takes place
(Θ = 1) or not (Θ = 0). We assume:

Prob(Θ = 1) := µχ(Wt = W ∗t )CC∗∆t, (5)

where µ > 0 is a proportionality constant and χ(·) denotes the characteristic function of the
event indicated in parenthesis. Hence, consistently with the discussion above, an interaction
may take place only if Wt = W ∗t . In such a case, the probability that the third individual is
reached by the common opinion of the first two individuals and gets convinced by them is
proportional to the connectivities of the first two individuals and to the duration ∆t of the
interaction interval. Notice that, for consistency, in (5) we need to assume

∆t ≤ 1

µmax (CC∗)
,

the maximum being taken over all individuals of the system.

ii) An Ochrombel-type simplification of (4), cf. [25], which assumes that a cluster of
identical opinions (in our case, two identical opinions) is not necessary to convince a further
individual. Instead, any individual is in principle able to convince another individual in a
binary interaction, so that the particle model becomes:{

Wt+∆t = Wt

W ∗t+∆t = (1−Θ)W ∗t + ΘWt,
(6)

where this time we set
Prob(Θ = 1) := µC∆t (7)

to reproduce the idea that the probability that the second individual is reached and convinced
by the opinion of the first individual is proportional to the connectivity of the latter and to
the duration of the interaction. For consistency we assume

∆t ≤ 1

µmaxC
,

the maximum being again taken over all individuals of the system.
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2.3 Boltzmann-type descriptions

Following standard procedures, see e.g., [26] or [14, Appendix A], the discrete-in-time stochastic
particle models (4), (6) may be given a continuous-in-time statistical description in the limit
∆t→ 0+ in terms of Boltzmann-type “collisional” equations for the distribution function f .

The two-against-one model (4) involves interactions among three individuals at a time, thus
it requires a multiple-interaction kinetic equation, cf. [8, 35]. In this context “multiple” means
“more than pairwise”, interactions in pairs being the common standard in kinetic theory. In weak
form, using an arbitrary observable quantity (test function) φ = φ(w, c) : {−1, 1} × R+ → R, the
multiple-interaction kinetic equation describing the evolution of f ruled by the particle model (4)
reads

d

dt

∫
R+

∫
{−1, 1}

φ(w, c)f(w, c, t) dw dc

=
1

3

∫
R3
+

∫
{−1, 1}3

B(w, c, w∗, c∗)
(
φ(w, c∗∗)− φ(w∗∗, c∗∗)

)
× f(w, c, t)f(w∗, c∗, t)f(w∗∗, c∗∗, t) dw dw∗ dw∗∗ dc dc∗ dc∗∗, (8)

where the collision kernel B is

B(w, c, w∗, c∗) := µχ(w = w∗)cc∗.

This is the interaction frequency induced by the choice (5) of the law of Θ. Notice that such
a collision kernel confers on the kinetic equation (8) a non-Maxwellian character with cut-off,
because B is non-constant and the term χ(w = w∗) excludes the interactions with w 6= w∗.

The Ochrombel-type simplification (6) features instead binary interactions, hence the corres-
ponding equation for f resembles more closely the classical kinetic equations of statistical mech-
anics:

d

dt

∫
R+

∫
{−1, 1}

φ(w, c)f(w, c, t) dw dc

=
1

2

∫
R2
+

∫
{−1, 1}2

B(c)
(
φ(w, c∗)− φ(w∗, c∗)

)
f(w, c, t)f(w∗, c∗, t) dw dw∗ dc dc∗. (9)

In this case, the collision kernel is
B(c) := µc,

consistently with the interaction frequency induced by the choice (7) of the law of Θ. This kernel
is again non-Maxwellian, because it is non-constant, but without cut-off.

3 Conditions for polarisation switch

We say that the opinion formation process on the social network exhibits a polarisation switch if
the initial mean opinion of the users and their asymptotic mean opinion, i.e. the mean opinion
emerging in the long run in consequence of the interactions, have opposite sign. The mean opinion
is defined as

mW (t) :=

∫
R+

∫
{−1, 1}

wf(w, c, t) dw dc =

∫
{−1, 1}

wh(w, t) dw = p̂(t)− q̂(t) (10)

and in this context plays the role of the magnetisation of the Ising model [17], cf. also [28].
Denoting by m0

W and m∞W the initial and asymptotic mean opinions, respectively, the condition
for polarisation switch may be expressed as

m0
Wm

∞
W < 0.
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Notice that, according to this definition, if m0
W = 0 we cannot speak of polarisation switch

regardless of m∞W . Assuming therefore m0
W 6= 0, an equivalent condition for polarisation switch

that we will use in the sequel is
m∞W
m0
W

< 0. (11)

In this section, we will establish precise conditions for polarisation switch to happen in terms
of statistical features of the connectivity of the social network jointly with some aggregate char-
acteristics of the initial distribution of the opinions.

3.1 The two-against-one model

To study the time evolution of mW towards m∞W in model (4) we choose φ(w, c) = w in (8) and we
take advantage of the representation (1) of the distribution function f . After some computations
we get:

ṁW (t) =
2

3
µ

(∫
R+

cp(c, t) dc

)2

q̂(t)−

(∫
R+

cq(c, t) dc

)2

p̂(t)

 .
Next, from (3) and (10) we observe that

p̂(t) =
1 +mW (t)

2
, q̂(t) =

1−mW (t)

2
.

Moreover, by introducing the product moment mWC defined as

mWC(t) :=

∫
R+

∫
{−1, 1}

wcf(w, c, t) dw dc =

∫
R+

cp(c, t) dc−
∫

R+

cq(c, t) dc (12)

and the mean connectivity

mC :=

∫
R+

cg(c) dc =

∫
R+

cp(c, t) dc+

∫
R+

cq(c, t) dc

we deduce ∫
R+

cp(c, t) dc =
mC +mWC(t)

2
,

∫
R+

cq(c, t) dc =
mC −mWC(t)

2
,

whence, after some algebraic manipulations, we rewrite the equation for mW in the form

ṁW =
µ

6

[
2mCmWC −

(
m2
C +m2

WC

)
mW

]
. (13)

Notice thatmC is constant in time, because so is the entire marginal distribution g of the connectiv-
ity, and may therefore be considered as known once the characteristics of the network are fixed.
In particular, throughout the paper we will assume mC > 0, for mC = 0 would imply g(c) = δ(c),
i.e. no social connections at all. Conversely, mWC is in general not constant, hence (13) is not
sufficient by itself to extract information on the large time trend of mW .

From (8) we can study the evolution of mWC by choosing φ(w, c) = wc. This gives, after some
computations,

ṁWC =
µ

6

(
m2
C −m2

WC

)
mWC , (14)

which is a self-consistent equation for mWC . Solving by separation of variables we find

mWC(t) =
m0
WCmCe

µ
6m

2
Ct√

m2
C + (m0

WC)
2 (
e
µ
3m

2
Ct − 1

) ,
where m0

WC denotes the initial value of the product moment. From this representation formula
we obtain in particular that:
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i) mWC(t) → m∞WC := sgn
(
m0
WC

)
mC for t → +∞, thus mWC reaches asymptotically the

values ±mC depending on whether it is initially positive or negative. If instead m0
WC = 0

then mWC remains zero at all times;

ii) the convergence of mWC(t) to m∞WC = sgn
(
m0
WC

)
mC is exponentially fast in time, indeed:

|mWC(t)−m∞WC | ≤ mC

∣∣∣∣∣ e
µ
6m

2
Ct√

e
µ
3m

2
Ct − 1

− 1

∣∣∣∣∣ ∼ mC

2
e−

µ
3m

2
Ct for t→ +∞. (15)

These two facts allow us to infer from (13) the asymptotic trend of mW . By rewriting (13) as

ṁW =
µ

6

(
m2
C +m2

WC

)( 2mCmWC

m2
C +m2

WC

−mW

)
,

we observe that it is an ordinary differential equation of the form

ẋ = a(t)(b(t)− x).

It is known that if a(t) is such that a ≤ a(t) ≤ a for two constants a, a > 0 and if b(t) converges

exponentially fast to a limit value b∞ when t → +∞, i.e. |b(t)− b∞| . e−b̃t for t sufficiently
large and for a certain b̃ > a − a, then also x converges to b∞ as t → +∞. In our case, we have
x(t) = mW (t) and

a(t) =
µ

6

(
m2
C +m2

WC(t)
)
, b(t) =

2mCmWC(t)

m2
C +m2

WC(t)
.

From (12) it results in general |mWC(t)| ≤ mC , thus a := µ
6m

2
C ≤ a(t) ≤ µ

3m
2
C =: a. Furthermore,

b(t)→ sgn
(
m0
WC

)
=: b∞ when t→ +∞ and

|b(t)− b∞| =

∣∣∣∣∣ 2mCmWC

m2
C +m2

WC

− 2mCm
∞
WC

m2
C + (m∞WC)

2

∣∣∣∣∣
= 2mC

∣∣∣mWC

(
m2
C + (m∞WC)

2
)
−m∞WC

(
m2
C +m2

WC

)∣∣∣
(m2

C +m2
WC)

(
m2
C + (m∞WC)

2
)

≤ 2

mC

(
1 +

1

mC

)
|mWC −m∞WC | ,

which, owing to (15), converges to zero exponentially fast when t→ +∞ with b̃ := µ
3m

2
C . Since

b̃ =
µ

3
m2
C >

µ

6
m2
C = a− a,

we conclude
mW (t)→ m∞W := sgn

(
m0
WC

)
for t→ +∞.

This result may be rewritten in a more informative form considering that

mWC(t) = mCmW (t) + Cov(Wt, C),

Cov(·, ·) being the covariance, and that sgn
(
m0
WC

)
= sgn

(
m0
WC

mC

)
. In particular,

m0
WC

mC
= m0

W +
Cov(W0, C)

mC
= m0

W +
ρ0
WCσ

0
WσC

mC
,
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where ρ0
WC is the correlation coefficient between the random variables W0 and C and σ0

W , σC are
their respective standard deviations. Observing furthermore that

σ0
W =

√∫
{−1, 1}

w2h(w, 0) dw − (m0
W )

2
=

√
p̂(0) + q̂(0)− (m0

W )
2

=

√
1− (m0

W )
2
,

where in the last passage we have recalled (3), we conclude

m∞W = sgn

(
m0
WC

mC

)
= sgn

(
m0
W +

σC
mC

ρ0
WC

√
1− (m0

W )
2
)
,

hence, owing to (11), there is polarisation switch if

0 >
m∞W
m0
W

=
1

|m0
W |

sgn

1 +
σC
mC

ρ0
WC

√
1− (m0

W )
2

m0
W

 ,

namely if 1 + σC
mC

ρ0
WC

√
1−(m0

W )2

m0
W

< 0 and finally
ρ0
WC < −mC

σC
· m0

W√
1− (m0

W )
2

if m0
W > 0

ρ0
WC > −mC

σC
· m0

W√
1− (m0

W )
2

if m0
W < 0.

(16)

The qualitative interpretation of this result is clear: in order for a polarisation switch to emerge
in the social network, the initial correlation between opinions and connectivity must have a sign
opposite to that of the initial mean opinion. Notice indeed that in (16) it results ρ0

WC < 0 when
m0
W > 0 and vice versa. This implies, in particular, that the most connected individuals, viz. the

influencers in the jargon of social networks, should express initially an opinion opposite to the
mean one.

The result (16) establishes quantitatively the necessary minimum threshold of positive or neg-
ative initial correlation, showing that it depends on both aggregate characteristics of the network
(the mean and standard deviation of the connectivity) and the initial mean opinion itself. No-
tice, in particular, that the more m0

W is biased towards ±1 the higher (in absolute value) such a
threshold is, consistently with the intuitive idea that it is more difficult to produce a polarisation
switch in the opinions of a strongly polarised society.

3.2 The Ochrombel-type simplification

Repeating the same arguments as in Section 3.1 for the particle model (6), we obtain from the
corresponding kinetic equation (9) with φ(w, c) = w the following evolution equation for the mean
opinion:

ṁW =
µ

2
(mWC −mCmW ) ,

which again requires some additional information on the evolution of the product moment mWC .
This may be obtained by plugging φ(w, c) = wc into (9), which, after some computations, yields

ṁWC = 0.

Hence in the Ochrombel-type simplification mWC is constant in time, i.e. mWC(t) = m0
WC for all

t > 0, which reduces the equation for mW to

ṁW =
µ

2

(
m0
WC −mCmW

)
.
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The solution issuing from a given initial mean opinion m0
W is easily found as

mW (t) = e−
µ
2mCtm0

W +
m0
WC

mC

(
1− e−

µ
2mCt

)
, (17)

therefore

mW (t)→ m∞W :=
m0
WC

mC
for t→ +∞.

We observe that, apart from the sign function, this is the same quantity characterising the
asymptotic mean opinion of the two-against-one model. Taking advantage of the computations
performed in Section 3.1, we may therefore write condition (11) for polarisation switch as

0 >
m∞W
m0
W

= 1 +
σC
mC

ρ0
WC

√
1− (m0

W )
2

m0
W

,

which yields again (16). In conclusion, as far as the description of the emergence of polarisation
switch is concerned the Ochrombel-type simplification (6) retains all the essential features of the
more elaborated two-against-one model (4).

4 Additional considerations

4.1 Asymptotic opinion distributions

The two-against-one model produces m∞W = sgn
(
m0
WC

)
, hence, independently of the polarisation

switch, only three values are possible for the asymptotic mean opinion: m∞W = −1, 0, 1. In
particular, we observe that m∞W = 0 arises only if m0

WC = 0 and that the latter is an unstable
equilibrium of the product moment mWC , cf. (14). As a matter of fact, the relevant physically
observable cases are therefore m∞W = ±1, which identify a consensus in the social network with
asymptotic opinion distribution

h∞(w) = δ(w ± 1).

Conversely, the Ochrombel-type simplification produces m∞W =
m0
WC

mC
∈ [−1, 1], which need not

imply an asymptotic consensus because m∞W may be in principle any value in the interval [−1, 1].

A simple computation shows that the asymptotic variance σ2,∞
W of the opinion is

σ2,∞
W = 1− (m0

WC)2

m2
C

and that the asymptotic opinion distribution is in this case

h∞(w) =
1

2

(
1 +

m0
WC

mC

)
δ(w − 1) +

1

2

(
1− m0

WC

mC

)
δ(w + 1). (18)

All in all, the Ochrombel-type simplification produces a less sharp, thus probably more realistic,
big picture of the possible asymptotic scenarios on the social network while retaining all the
essential features characterising the polarisation switch.

4.2 Statistical independence

An intriguing simplification of the dynamics studied in Section 3 is obtained by assuming statistical
independence of the variables Wt, C, meaning that

f(w, c, t) = g(c)h(w, t) ∀ t ≥ 0. (19)
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Plugging this ansatz into (8) and choosing the observable quantity of the form φ(w, c) =
ϕ(w)ψ(c) for arbitrary functions ϕ : {−1, 1} → R and ψ : R+ → R, we obtain that the Boltzmann-
type equation of the two-against-one model reduces to

p̂′(t)ϕ(1) + q̂′(t)ϕ(−1) =
µ

3
m2
C p̂(t)q̂(t)

(
p̂(t)− q̂(t)

)(
ϕ(1)− ϕ(−1)

)
.

Recalling (3) and invoking the arbitrariness of ϕ yields

p̂′ =
µ

3
m2
C p̂(1− p̂)(2p̂− 1),

which admits the asymptotic states p̂∞ = 0, 1 (both stable) and p̂∞ = 1
2 (unstable). To them

there correspond the stable asymptotic opinion distributions

h∞(w) = δ(w ± 1)

and the unstable one

h∞(w) =
1

2
δ(w − 1) +

1

2
δ(w + 1),

which confirm that the two-against-one model tends to give rise to consensus. Moreover, the
evolution of the mean opinion mW (t) = p̂(t)− q̂(t) = 2p̂(t)− 1 is ruled by

ṁW =
µ

6
m2
C

(
1−m2

W

)
mW ,

which, solving by separation of variables, gives

mW (t) =
m0
W√

(m0
W )

2
+
(

1− (m0
W )

2
)
e−

µ
3m

2
Ct

.

In particular, it results mW (t) → m∞W := sgn
(
m0
W

)
as t → +∞, which shows that polarisation

switch is instead never observed in this case because the asymptotic and initial mean opinions
have always the same sign.

Plugging instead the ansatz (19) into (9) and letting again φ(w, c) = ϕ(w)ψ(c) we find that
the Boltzmann-type equation of the Ochrombel-type simplification reads

p̂′(t)ϕ(1) + q̂′(t)ϕ(−1) = 0,

i.e., for the arbitrariness of ϕ, p̂′(t) = q̂′(t) = 0. Therefore, the kinetic distribution function f
and in particular the opinion distribution h are constant in time. As a consequence, we neither
observe polarisation switch nor, more in general, any modification of the statistical distribution of
the opinions with respect to the initial condition.

These results are consistent with those found in [14], where the two-against-one model and
its Ochrombel-type simplification are addressed without social network, in particular by assuming
that any individual may be equally reached and convinced by the opinion of any other individual
regardless of the connectivity. In essence, these results show that, in the long run, the statistical
independence between opinion and connectivity is equivalent to the absence of the social network.
Moreover, they further stress the importance that the connectivity correlates with the expressed
opinions to observe interesting aggregate dynamics including polarisation switch.

5 Comparison with numerical simulations

In this section, we solve numerically the stochastic particle models (4)-(5) and (6)-(7) by means
of a classical Monte Carlo algorithm, cf. e.g., [26], and compare the outcomes of the simulations
with the theoretical predictions obtained from the kinetic equations. Our numerical tests do not

10



Table 1: Parameters used in the numerical tests of Section 5

Parameter λ αp βp βq µ

Value 0.7 5 300 300 1

only provide further insights into the application considered in this paper but constitute also a
genuine microscopic validation of the aggregate analytical results.

As initial condition, we consider in both cases a joint opinion-connectivity probability distri-
bution of the form

f0(w, c) = λKαp,βp(c)δ(w − 1) + (1− λ)Kαq,βq (c)δ(w + 1), (20)

where: i) λ ∈ [0, 1] is the percentage of individuals expressing initially the opinion w = 1;
ii) 1−λ ∈ [0, 1] is the percentage of individuals expressing initially the opinion w = −1; iii) Kα,β(c)
is a two-parameter probability density function modelling the connectivity distribution of the
former individuals for α = αp, β = βp and of the latter individuals for α = αq, β = βq.

Following the literature, according to which many large networks feature a power-law distri-
bution of the connectivity, cf. e.g., [5], we choose Kα,β to be an inverse-gamma distribution:

Kα,β(c) =
βα

Γ(α)
· e
− βc

c1+α

with α, β > 0 the shape and scale parameters, respectively. Notice that Kα,β(c) ∼ βα

Γ(α)c
−(1+α) for

c→ +∞, thus for c large the decay to zero obeys a power law with exponent 1+α. We may argue
that the parameter α plays here the role of a Pareto index [15] measuring the heaviness of the tail
of Kα,β : the lower α the heavier the tail, meaning that users with a high number of contacts are
more frequent in the social network. In our application, these users represent the influencers.

From (20) we deduce that the initial opinion distribution is

h0(w) = λδ(w − 1) + (1− λ)δ(w + 1),

i.e. Prob(W0 = 1) = λ, Prob(W0 = −1) = 1 − λ consistently with the meaning of λ introduced
above. We also deduce that

p0(c) = λKαp,βp(c), q0(c) = (1− λ)Kαq,βq (c),

hence that
g(c) = λKαp,βp(c) + (1− λ)Kαq,βq (c).

Notice that if αp 6= αq or βp 6= βq the kinetic distribution function f0 is not the product of g and
h0, thus the opinion and the connectivity are not statistically independent.

In our numerical tests we fix the parameters listed in Table 1. They imply that 70% of the
users of the social network expresses initially the opinion w = 1, which becomes the dominant one,
with m0

W = 0.4 > 0 and σ0
W ≈ 0.9. The mean connectivity of the individuals expressing initially

the dominant opinion is

mC,p =
1

λ

∫
R+

cp0(c) dc =

∫
R+

cK5,300(c) dc = 75,

while that of the individuals expressing initially the opinion w = −1 is

mC,q =
1

1− λ

∫
R+

cq0(c) dc =

∫
R+

cKαq,300(c) dc =
300

αq − 1
(for αq > 1)

from the known formulas of the statistical moments of an inverse-gamma distribution. Further-
more, the global mean connectivity on the social network is

mC =

∫
R+

cg(c) dc = λmC,p + (1− λ)mC,q =
15

2
· 7αq + 5

αq − 1
(for αq > 1)

11



with standard deviation

σC =

√∫
R+

c2g(c) dc−m2
C =

√
λσ2

C,p + (1− λ)σ2
C,q + λ(1− λ)(mC,p −mC,q)

2

and

σ2
C,p = 1875, σ2

C,q =
9 · 104

(αq − 1)
2
(αq − 2)

(for αq > 2)

again from the formulas of the moments of an inverse-gamma distribution.
We test two scenarios corresponding to the values αq = 3.75 and αq = 2.25:

i) For αq = 3.75 we obtain mC,q ≈ 109.1, mC ≈ 85.2 and σC ≈ 60 with an initial correlation
between opinion and connectivity of

ρ0
WC =

Cov(W0, C)

σCσ0
W

=
m0
WC −mCm

0
W

σCσ0
W

=
λmC,p − (1− λ)mC,q −mCm

0
W

σCσ0
W

≈ −0.27

Since m0
W > 0, from the first condition in (16) we discover that the emergence of polarisation

switch would require ρ0
WC ≈ −0.27 < −mCσC ·

m0
W√

1−(m0
W )2
≈ −0.62, which is clearly violated.

Therefore, in this case we do not observe polarisation switch either in the two-against-one
model, cf. Figure 1a, or in the Ochrombel-type simplification, cf. Figure 1b. The reason is
that the Pareto index αq is not small enough to guarantee a sufficient presence of influencers
among the individuals expressing initially the opinion w = −1 opposite to the dominant
one. This is further stressed by the mean connectivity mC,q of the latter, which is only
slightly greater than that of the individuals expressing initially the dominant opinion w = 1.
Notice however that in the two-against-one model we observe in any case the emergence of
a consensus on the initially dominant opinion, cf. Figure 1a;

ii) For αq = 2.25 we obtain mC,q = 240, mC = 124.5 and σC ≈ 276, whence ρ0
WC ≈ −0.28. This

time the first condition in (16) is fulfilled, indeed ρ0
WC ≈ −0.28 < −mCσC ·

m0
W√

1−(m0
W )2
≈ −0.2.

Therefore, we observe polarisation switch in both the two-against-one model (together with
emergence of consensus), cf. Figure 1a, and its Ochrombel-type simplification (without
emergence of consensus), cf. Figure 1b. A suitable reduction of the Pareto index αq has
made the tail of the connectivity distribution Kαq,βq heavy enough to produce a sufficient
number of influencers expressing initially the opinion opposite to the dominant one. This is
also confirmed by the mean connectivity mC,q, which in this case is consistently larger than
mC,p.

Figure 1 shows the time trend of the mean opinion mW of the two-against-one model (panel a)
and of the Ochrombel-type simplification (panel b) in the two cases discussed above. Solid lines
are the graphs of the functions t 7→ mW (t) obtained from the kinetic description. Those in panel a
are obtained from the numerical solution of (13) by means of a fourth-order Runge-Kutta method
while those in panel b are plotted out of the analytical expression (17). Markers indicate instead
the means of the Monte Carlo solutions of the corresponding stochastic particle models (4)-(5)
and (6)-(7) with initial conditions sampled from the distribution (20).

Figure 2 shows instead the asymptotic opinion distribution h∞ emerging in the Ochrombel-
type simplification. Histogram bars are computed out of the Monte Carlo solution of the stochastic
particle model. Markers indicate instead the values predicted by the theory, cf. (18).

6 Conclusions

In this paper, we have proposed a strategy to study opinion formation on social networks, in
particular the emergence of polarisation switch, which takes advantage of a statistical description
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(a) (b)

Figure 1: Time trend of the mean opinion in: (a) the two-against-one model; (b) the Ochrombel
simplification for the values of the parameters in Table 1. Markers are the means of the Monte
Carlo solutions of the stochastic particle models; solid lines are the solutions of the differential
equations for mW obtained from the kinetic description.

Figure 2: Asymptotic opinion distribution of the Ochrombel simplification for the values of the
parameters discussed in the text. Histogram bars are the Monte Carlo solutions of the stochastic
particle models whereas markers are the theoretical values obtained from the kinetic description.

of the network embedded into a kinetic description of the opinion dynamics of social network users.
Unlike other approaches, this has allowed us to address very general connectivity distributions not
confined to the cases of complete graphs or regular lattices. Our main idea consists in assuming that
the connectivity of a user determines the probability that their opinion reaches and influences the
opinion of another user. This gives rise to non-Maxwellian kinetic equations for the joint opinion-
connectivity distribution, in which the non-constant collision kernel depends on the connectivity.
We have focused our analysis on simple opinion exchange rules in a discrete setting inspired by
the celebrated Sznajd model [30] and its simplification proposed by Ochrombel [25]. Moreover,
we have assumed a specific dependence of the interaction probability on the connectivity of the
individuals. Interesting developments may address more general opinion exchange models, possibly
in a continuous setting taking into account both consensus and dissent among the individuals [20,
33], and a sufficiently generic dependence of the interaction probability, hence of the collision
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kernel, on the connectivity of the social network users.
We stress that a polarisation switch is different from a phase transition, also frequently studied

in opinion dynamics, in that it allows for a change of sign of the mean opinion usually not observed
in opinion models inspired by the Sznajd one. In our model, mW = 0 is in general not an
equilibrium value of the mean opinion unless mWC ≡ 0, which explains why in general the state
mW = 0 can be crossed in time towards an asymptotic sign of mW opposite to the initial one.
In particular, from the evolution equations of mW reported in Section 3 and from the further
considerations proposed in Section 4.2, it is clear that the presence of a social network featuring
a non-zero correlation between the opinion and the connectivity of the users plays a crucial role
in the possible appearance of a polarisation switch.
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