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Abstract

In this paper, we derive second order hydrodynamic traffic models from kinetic-controlled
equations for driver-assist vehicles. At the vehicle level we take into account two main control
strategies synthesising the action of adaptive cruise controls and cooperative adaptive cruise
controls. The resulting macroscopic dynamics fulfil the anisotropy condition introduced in
the celebrated Aw-Rascle-Zhang model. Unlike other models based on heuristic arguments,
our approach unveils the main physical aspects behind frequently used hydrodynamic traffic
models and justifies the structure of the resulting macroscopic equations incorporating driver-
assist vehicles. Numerical insights show that the presence of driver-assist vehicles produces
an aggregate homogenisation of the mean flow speed, which may also be steered towards a
suitable desired speed in such a way that optimal flows and traffic stabilisation are reached.

Keywords: traffic models, Boltzmann-Enskog kinetic description, second order hydrodyna-
mic models, driver-assist vehicles, optimal control

MSC: 35Q20, 35Q70, 35Q93, 90B20

1 Introduction

In the field of vehicle automation, advanced driver assist technologies such as Adaptive Cruise
Control (ACC) and Cooperative Adaptive Cruise Control (CACC) systems are likely to modify
the classical paradigms of traffic dynamics to enhance driver safety. From the theoretical point of
view, these technologies call for quantitative mathematical approaches which allow one to under-
stand their aggregate effects and to design efficient next generation vehicles [9]. Among the most
prominent goals that driver-assist technologies may pursue, we find both driver-oriented and flow-
oriented issues. Driver-assist vehicles may indeed be programmed so as to either increase driver
safety and comfort or optimise traffic governance tasks such as e.g., solving traffic congestion issues.
For this, the development of mathematical tools able to model traffic flow incorporating vehicles
equipped with driver-assistance systems is essential for an organic investigation and simulation of
the potential of these technologies.

In the literature, these problems have been investigated under complementary mathematical
and engineering perspectives. From the mathematical side, we mention for instance recent ef-
forts based on the study of the controllability of partial differential equations modelling traffic
flow dynamics. In [7, 8, 34, 42, 43] suitable control strategies have been introduced to mimic
the local action of driver-assist or autonomous cars. In [44] robust control approaches aimed to
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enhance desired emerging features of automated traffic flows have been analysed. In [18] a hybrid
microscopic-macroscopic description is used to simulate a few individually controlled autonom-
ous vehicles embedded in an aggregate flow of non-controlled vehicles modelled by the classical
Lighthill-Whitham-Richards traffic equation [30]. Optimal control methods have also been de-
veloped on networks [20, 23, 26]. Conversely, from the engineering point of view we recall some
important contributions by Papageorgiou and co-authors. In [31] microscopic vehicle-wise control
models are reviewed while in [13] the contribution of adaptive cruise control systems is included in
a second order hydrodynamic traffic model. The model is then extended in [14] to the case of mul-
tilane traffic. These models take inspiration from the so-called gas-kinetic approach from [24, 25].
Extensions of controlled kinetic models to the multilane case has been studied in [7, 21]. Also field
experiments have been developed recently to understand the aggregate effects of a small portion
of automated vehicles in the traffic stream [40].

In this paper, we give a mathematical contribution within the conceptual framework of stat-
istical mechanics, kinetic theory and multi-agent systems. Such a formalism allows us to bridge
organically the microscopic scale of the vehicles, where driver-assist technologies act, and the
macroscopic scale of the observable aggregate traffic phenomena. We mention that the control of
multi-agent system has been recently explored as a natural follow-up of the description of their
self-organisation abilities. Several methods have been developed for mean-field and kinetic equa-
tions [2, 3, 6, 17] and for hyperbolic conservation laws [5, 10, 11]. Here we present an approach
based on a feedback formulation of the microscopic control, which may be effectively embedded
into an Enskog-type kinetic description of traffic whence suitable hydrodynamic limits can then
be computed.

In more detail, starting from a recent result [15] about the kinetic derivation of macroscopic
traffic models of Aw-Rascle-Zhang (ARZ)-type [4, 47], we derive second order hydrodynamic
models accounting for the presence of driver-assist vehicles. Second order macroscopic traffic
models allow one to overcome several limitations of first order models and typically offer a richer
set of more realistic flow dynamics [32, 33]. Nevertheless, in the past they were the subject of a
strong controversy as the first attempts of building second order hydrodynamic equations failed
to reproduce the correct anisotropy of the interactions among the vehicles [12]. Indeed, in these
models information can propagate both backwards and forwards, thereby leading to a situation in
which vehicles ahead are influenced by those behind. This drawback was solved by Aw and Rascle
in their seminal paper [4] and independently Zhang [47]. For this reason we will refer to this class
of second order models as ARZ-type models. The ARZ correction guarantees that the movement
of each vehicle affects only the vehicles behind but in the original work it is derived heuristically at
the macroscopic scale, not from physical microscopic dynamics. Kinetic derivations of ARZ-type
models have been proposed in the literature starting from the pioneering works [27, 28] up to
the aforementioned recent one [15]. In particular, in [27] the authors were the first to obtain the
ARZ model as the hydrodynamic limit of an Enskog-type kinetic description. Their approach
is very much inspiring but features some limitations which here we try to overcome in order to
push ahead with our analytical investigation up to the explicit derivation of controlled ARZ-type
macroscopic models. For instance, in [27] the authors do not focus on the explicit characterisation
of elementary microscopic interactions able to generate, at the macroscopic level, the ARZ model.
Moreover, their hydrodynamic limit is performed by postulating the existence of an equilibrium
kinetic distribution, which is not exhibited explicitly and is replaced by partly heuristic closures
of some terms appearing in the equations. Taking advantage of our kinetic derivation, we can
instead define suitable control strategies at the vehicle level, that we subsequently upscale to the
aggregate flow scale by means of suitable hydrodynamic limits to build macroscopic models. The
key idea consists in considering both Boltzmann-type and Enskog-type kinetic descriptions leading
to a complementary hydrodynamic scaling of two different components of the collision operator.
The main contribution of the present work is therefore the derivation of second order ARZ-type
models which incorporate the upscaled action of plausible microscopic controls implemented at the
level of binary interactions among the vehicles. As a side result, we also identify the microscopic
ingredients responsible for the macroscopic terms leading to the controlled dynamics.

To model the action of driver-assist vehicles we consider two alternative control strategies
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yielding two different sets of hydrodynamic equations. The first strategy is based on a binary
control where we suppose that a driver-assist vehicle responds only locally, i.e. as a consequence
of the behaviour of the vehicle ahead. This leads to a set of ARZ-type equations in which the
pressure term responsible for the backward spreading of the information is consistently modified
by the action of the control. The second strategy is based instead on a desired speed control in
which a target speed is given as a function of the local level of traffic congestion. The resulting
hydrodynamic model contains now a relaxation term in the momentum equation, which drives
the mean flow towards the a priori prescribed desired speed. It is worth to remarking that this
control is consistent with existing macroscopic models where the action of controlled vehicles is
heuristically modelled directly at the macroscopic scale [29], see also [22] for an earlier approach.
In both strategies the strength of the control depends on the penetration rate, i.e. the fraction of
vehicles equipped with a control device, a parameter that we explicitly obtain in our macroscopic
equations from the upscaling of the microscopic vehicle dynamics.

The contents of the paper are specifically organised as follows. In Section 2, we generalise
the results obtained in [15] giving the necessary conditions needed to recover an ARZ-type model
from an Enskog-type kinetic description. We stress, in particular, the role played by the random
fluctuations in the driver behaviour. In Section 3, we discuss the binary control strategy leading
to an ARZ-type model with a modified pressure term with respect to the non-controlled case.
In Section 4, we derive instead the macroscopic model in the case of a desired speed control
strategy depending on the local congestion of traffic. In Section 5, we present several numerical
experiments. First, we discuss the discretisation technique and we analyse the different results
of the non-controlled system. Next, we investigate the trend of the system when the two control
methods are active, showing that traffic is homogenised and the desired speed is reached. Finally, in
Section 6 we present some concluding remarks and we briefly sketch further research perspectives.

2 The Aw-Rascle-Zhang model from a Boltzmann-Enskog-
type kinetic description

We begin by introducing our kinetic description of traffic flow. Let f(x, v, t) be the distribution
function of vehicles located in x ∈ R and travelling at the (nondimensional) speed v ∈ [0, 1] at time
t ≥ 0. We assume that vehicles modify their speed via interactions with other vehicles located at
a given constant headway H > 0. At the kinetic level, these dynamics may be described by an
Enskog-type equation:

∂tf(x, v, t) + v∂xf(x, v, t) =
1

2

(〈∫ 1

0

1

|J |
f(x, v, t)f(x+H, v∗, t) dv

′
∗

〉
− ρ(x+H, t)f(x, v, t)

)
,

where ρ > 0 is the traffic density (see below for its precise definition) and J is the determinant
of the Jacobian matrix of the transformation from pre-interaction speeds v, v∗ to post-interaction
speeds v′, v′∗. In weak form this equation reads

∂t

∫ 1

0

ϕ(v)f(x, v, t) dv + ∂x

∫ 1

0

vϕ(v)f(x, v, t) dv

=
1

2

∫ 1

0

∫ 1

0

〈ϕ(v′)− ϕ(v)〉f(x, v, t)f(x+H, v∗, t) dv dv∗, (1)

where ϕ : [0, 1]→ R is a test function. Denoting by v, v∗ ∈ [0, 1] the pre-interaction speeds of any
two interacting vehicles, we prescribe the following follow-the-leader-inspired binary laws ruling
the speed changes after the interaction:{

v′ = v + γλ(ρ)(v∗ − v) +D(v)η

v′∗ = v∗,
(2)
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where v′, v′∗ are the post-interaction speeds and: (i) γ > 0 is a time-scale factor; (ii) η is a
centred random variable with positive variance, i.e. 〈η〉 = 0 and 〈η2〉 = σ2 > 0 with 〈·〉 denoting
expectation with respect to the law of η, which models random fluctuations in the driver beha-
viour; (iii) D : [0, 1]→ R+ is a function measuring the local relevance of the random fluctuations;
(iv) λ(ρ) > 0 is, in the tradition of follow-the-leader traffic models [19], the sensitivity (or reactive-
ness) of the drivers expressed as a function of the local vehicle density ρ (see below for its precise
definition).

Remark 2.1. Kinetic models of vehicular traffic date back to the pioneering works [35, 36], which
take formal inspiration from the statistical mechanics of colliding gas molecules. In vehicular
traffic, “collisions” do not mean of course real collisions among vehicles but repeated short inter-
actions each time with different vehicles (to fulfil the decorrelation assumption which allows one
to write (1) with the product of the two distribution functions on the right-hand side). It might be
questioned that, in contrast, one-lane traffic flow should rather consist of interactions lasting for a
long time with the same leading vehicle. Regarding this point it is useful to point out that, in spite
of the difference between molecule collisions and vehicles interactions, the spirit of the statistical
point of view remains the same. In the kinetic description one loses the microscopic detail of single
vehicles following each other along a one-lane road and accepts to describe a generic representative
interaction between any two vehicles picked randomly in the traffic stream. This corresponds to
admitting that vehicles may mix frequently, for instance because they are not necessarily aligned
along a single lane and may overtake each other. Actually, none of these mechanisms is physically
modelled in the kinetic approach but all of them are implicitly admitted by the aggregate nature of
the statistical description itself.

The rules (2) express the fact that the v-vehicle tends to adapt its speed to that of the v∗-
vehicle ahead while the latter is not influenced by the v-vehicle behind. Suitable conditions should
be placed on D, η in order to guarantee that (2) are physically admissible, in particular that
v′, v′∗ ∈ [0, 1] for all v, v∗ ∈ [0, 1]. In [15, 43] the following sufficient conditions are provided:{

|η| ≤ c(1− γλ(ρ))

cD(v) ≤ min{v, 1− v},

c > 0 being an arbitrary constant, along with the requirement γλ(ρ) < 1 in order for the first
condition to make sense. We will assume henceforth that this requirement is satisfied without
further notice and that the non-negative function D is not identically zero.

If, consistently with a hydrodynamic regime, we assume that the headway H is small we can
approximate

f(x+H, v∗, t) ≈ f(x, v∗, t) +H∂xf(x, v∗, t)

by a first order truncation of the Taylor expansion of f . Consequently, we also approximate (1) as

∂t

∫ 1

0

ϕ(v)f(x, v, t) dv + ∂x

∫ 1

0

vϕ(v)f(x, v, t) dv

=
1

2

∫ 1

0

∫ 1

0

〈ϕ(v′)− ϕ(v)〉f(x, v, t)f(x, v∗, t) dv dv∗

+
H

2

∫ 1

0

∫ 1

0

〈ϕ(v′)− ϕ(v)〉f(x, v, t)∂xf(x, v∗, t) dv dv∗. (3)

Starting from (3), hydrodynamic limits may be performed leading to second order macroscopic
traffic models ruled by the microscopic dynamics (2). In the following, we summarise the formal
procedure applied in [15], which is based on the local equilibrium closure and will be the basis for
the subsequent inclusion of driver-assist vehicles.

Let us introduce the following hyperbolic scaling of space and time:

x→ 2

ε
x, t→ 2

ε
t, (4)
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0 < ε� 1 being the analogous of the Knudsen number of the classical kinetic theory, i.e. a small
parameter defining the hydrodynamic regime. Under such a scaling, (3) becomes

∂t

∫ 1

0

ϕ(v)f(x, v, t) dv + ∂x

∫ 1

0

vϕ(v)f(x, v, t) dv =
1

ε
(Q(f, f), ϕ) +

H

2
(Q(f, ∂xf), ϕ), (5)

where Q = Q(f, g) is the collision operator defined as

(Q(f, g), ϕ) :=

∫ 1

0

∫ 1

0

〈ϕ(v′)− ϕ(v)〉f(x, v, t)g(x, v∗, t) dv dv∗

for every observable quantity ϕ. On the right-hand side of (5) we observe that, because of the
presence of the space derivative of f , the time scale of the second collisional term is naturally
different from that of the first collisional term. In particular, in the hydrodynamic limit ε → 0+

two time scales can be detected, which can be resolved by means of the following splitting, cf. [16]:

(Q(f, f), ϕ) = 0 (6a)

∂t

∫ 1

0

ϕ(v)f(x, v, t) dv + ∂x

∫ 1

0

vϕ(v)f(x, v, t) dv =
H

2
(Q(f, ∂xf), ϕ). (6b)

Equation (6a) describes now quick local interactions among the vehicles. Owing to the arbitrariness
of ϕ, it produces

Q(f, f) = 0, (6c)

whose solution yields the local equilibrium speed distribution, the so-called local Maxwellian in
the jargon of classical kinetic theory. Actually, we observe that in view of (2) it results

(Q(f, f), 1) = (Q(f, f), v) = 0

for every distribution function f , i.e. independently of (6a). Therefore, we deduce that the local
density and the local mean speed of the vehicles, defined respectively as

ρ(x, t) :=

∫ 1

0

f(x, v, t) dv, u(x, t) :=
1

ρ(x, t)

∫ 1

0

vf(x, v, t) dv,

are conserved by the interactions. Consequently, the local Maxwellian resulting from (6c) is
spanned by ρ and u. To stress this fact, we denote the local Maxwellian by Mρ,u = Mρ,u(v).
Specifically, we have that∫ 1

0

Mρ,u(v) dv = ρ,
1

ρ

∫ 1

0

vMρ,u(v) dv = u.

Equation (6b) expresses instead the slower transport of the local Maxwellian on the hydro-
dynamic spatio-temporal scale. This equation takes into account also the effect of the spatial
dislocation of the interactions (right-hand side). When plugging Mρ,u into (6b) with ϕ(v) = 1, v
one obtains the macroscopic spatio-temporal evolution of density ρ and the mean speed u of the
vehicles. Specifically, since

(Q(Mρ,u, ∂xMρ,u), 1) = 0, (Q(Mρ,u, ∂xMρ,u), v) = γρ2λ(ρ)∂xu,

we get ∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρE) =
γH

2
ρ2λ(ρ)∂xu,

(7)

where we denote by

E :=
1

ρ

∫ 1

0

v2Mρ,u(v) dv
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the energy of the local equilibrium distribution. Recalling (6c) for f = Mρ,u we deduce in particular
(Q(Mρ,u,Mρ,u), v2) = 0, whence the relationship among the energy of the local Maxwellian and
the density and mean speed may be made explicit. This gives

E = u2 +
σ2

2ργλ(ρ)(1− γλ(ρ))

∫ 1

0

D2(v)Mρ,u(v) dv, (8)

whence we see that the equilibrium energy can be expressed as a function E = E(ρ, u) of the
hydrodynamic parameters ρ, u. In particular, E ≥ u2 consistently with the standard case of
fluid dynamics where the total energy is the sum of the kinetic energy and the internal energy.
Moreover, E > u2 whenever σ2 > 0.

Coming back to system (7), we observe that it may be fruitfully rewritten in quasilinear vector
form as

∂tU + A(U)∂xU = 0,

with U := (ρ, u)T and

A(U) :=

(
u ρ

∂ρE + T
ρ ∂uE − u− γH

2 ρλ(ρ)

)
.

Here, T := E−u2 is the traffic temperature, viz. the variance of the vehicle speed at equilibrium.
The eigenvalues of A(U), representing the speeds of propagation of the small disturbances in the
traffic flow, are given in this system by

µ± :=
1

2
∂uE −

γH

4
ρλ(ρ)±

√(
u− 1

2
∂uE +

γH

4
ρλ(ρ)

)2

+ T + ρ∂ρE.

We observe that if T > 0 and ∂ρE ≥ 0 then µ± ∈ R, hence system (7) is hyperbolic, and

µ+ >
1

2
∂uE −

γH

4
ρλ(ρ) +

∣∣∣∣u− 1

2
∂uE +

γH

4
ρλ(ρ)

∣∣∣∣ .
From here it follows that in the subregion of the state space {(ρ, u) ∈ R+ × [0, 1]} defined by the
condition

∂uE ≤ 2u+
γH

2
ρλ(ρ) (9)

it results µ+ > u. Therefore, in general, the second order hydrodynamic traffic model (7) may
violate the so-called Aw-Rascle (AR) condition, which prescribes that the small disturbances of
traffic should propagate at a speed at most equal to the mean speed of the flow and not faster,
cf. [4]. In the following remark we provide evidence of the fact that non-empty regions of the state
space where µ+ > u might indeed exist.

Remark 2.2. From (8) we compute the derivatives of the energy E with respect to the density ρ
and the mean speed u:

∂ρE =
σ2

2ργλ(ρ)(1− γλ(ρ))

∫ 1

0

D2(v)

[
∂ρMρ,u(v)−

(
λ′(ρ)(1− 2γλ(ρ))

λ(ρ)(1− γλ(ρ))
+

1

ρ

)
Mρ,u(v)

]
dv,

∂uE = 2u+
σ2

2ργλ(ρ)(1− γλ(ρ))

∫ 1

0

D2(v)∂uMρ,u(v) dv.

Let us now assume that λ does not depend on ρ. Then, the local Maxwellian takes the simpler form
Mρ,u(v) = ρgu(v), where gu is a probability density independent of ρ with mean u. The reason is
that, in this particular case, the interaction rules (2) do not depend on ρ any more, hence so does
also the probability distribution of v (in other words, different densities produce simply self-similar
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local Maxwellians). Consequently, from the formulas above we obtain that ∂ρE = 0. Moreover,
equation (9) becomes ∫ 1

0

D2(v)∂ugu(v) dv ≤ ρ2 γ
2λ2(1− γλ)H

σ2
.

Since the left-hand side is independent of ρ while the right-hand side is proportional to ρ2, this
condition, hence also µ+ > u, may well be satisfied in a non-empty subregion of the state space
where ρ is large enough.

From these results it is clear that if T > 0 the AR condition may be violated in general. If
conversely T = 0 then E = u2, therefore ∂ρE = 0 and

µ− = u− γH

2
ρλ(ρ), µ+ = u

fulfils the AR condition for all (ρ, u) ∈ R+ × [0, 1]. The hydrodynamic model resulting in this
case from (7) is an ARZ model [4, 47], which is more often written in the form{

∂tρ+ ∂x(ρu) = 0

∂t(u+ p(ρ)) + u∂x(u+ p(ρ)) = 0
(10)

with the traffic pressure p = p(ρ) defined by the relationship

p′(ρ) :=
γH

2
λ(ρ). (11)

The thermodynamic assumption T = 0 underlying the derivation of (10) is equivalent to
the microscopic assumption σ2 = 0, cf. (8). In other words, the ARZ model is obtained as the
hydrodynamic limit of the interacting particle model (2) only if the latter is deterministic, i.e.
if randomness in the driver behaviour is disregarded (η ≡ 0). This implies also that the local
Maxwellian is the monokinetic one Mρ,u(v) = ρδ(v − u), where δ(v − u) denotes the Dirac delta
distribution centred in v = u. Finally, it is worth pointing out that the Boltzmann-Enskog kinetic
description is essential to recover the ARZ model. Indeed, in the case H = 0 equation (1) reduces
to a Boltzmann-type equation. Then, from (7) one obtains either a pressureless hydrodynamic
model featuring two coincident eigenvalues µ± = u if T = 0 or a macroscopic model violating the
AR condition in the subregion of the state space where ∂uE ≤ 2u if T > 0, ∂ρE ≥ 0.

Remark 2.3. The results presented in this section generalise those presented in [15], which were
obtained in the particular case of a family of beta-type local Maxwellians stemming from (2)-(6a) in
the quasi-invariant interaction regime. The concept of quasi-invariant interactions was introduced
in the kinetic theory of multi-agent systems in [41], taking inspiration from the grazing collisions
of classical kinetic theory [45, 46]. We refer the interested reader to these contributions for details.

Since we are interested in second order hydrodynamic models fulfilling the AR condition, we
will henceforth fix η ≡ 0 in the interaction rules.

3 Binary variance control and modified Aw-Rascle-Zhang
model

We discuss in this section a first control strategy, which may be used to model ACC devices. A
driver-assist vehicle responds locally to the actions of its driver to optimise the driving style, taking
into account information coming from the vehicles ahead. Such an optimisation typically aims to
mitigate driving risks, for instance by keeping a safety distance or reducing the speed gap from
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the leading vehicle. A consistent way to describe a driver-assist vehicle of this kind is therefore
through a control of the basic binary dynamics (2):{

v′ = v + γ
(
λ(ρ)(v∗ − v) + Θu

)
v′∗ = v∗,

(12)

where, owing to the results of Section 2, we have set η ≡ 0. Here, u is the control of the interaction
operated by the driver-assist device, which, in view of the discussion above, we imagine in feedback
form, i.e. u = u(v, v∗). Furthermore, Θ ∼ Bernoulli(q) is a random variable discriminating
whether a randomly selected vehicle in the traffic flow is (Θ = 1) or is not (Θ = 0) equipped with
driver-assist technology. The parameter

q := Prob(Θ = 1) ∈ [0, 1]

gives then the fraction of driver-assist vehicles in the traffic stream. Commonly known as the
penetration rate in the transportation engineering literature, q is nowadays estimated within a
benchmark range of 5-10% [38].

The control u is chosen as the minimiser of a prescribed instantaneous cost functional J =
J(v′, v′∗, u). Therefore, the instantaneous optimal control u∗ is such that

u∗ = arg min
u∈U

J(v′, v′∗, u)

subject to (12), U being the set of admissible controls. In our context, the admissibility of a
control u is essentially related to the physical admissibility of the resulting binary rules (12), i.e.
U = {u : v′ ∈ [0, 1]}.

As far as the choice of the cost functional J is concerned, similarly to [42, 43] we are interested
in steering the post-interaction speed v′ towards a prescribed target speed. A concrete possibility
is to take such a target speed coinciding with v′∗, which corresponds to aligning v′ to the speed
of the leading vehicle thereby aiming at reducing the local speed fluctuations produced by the
interactions. Therefore we consider

J(v′, v′∗, u) =
1

2

[
(v′∗ − v′)2 + νu2

]
, (13)

where the first term penalises too different post-interaction speeds and may be conceptually assim-
ilated to the binary variance of the speeds of the interacting vehicles. According to (13), the cost
increases quadratically with the difference between the speeds of the interacting vehicles. This
choice mimics the fact that more efforts are needed to steer v′ towards v′∗ = v∗ for heterogeneous
speeds. The second term penalises instead too strong controls. Notice that a penalisation of the
form νu2, with ν > 0, is partly arbitrary but has the advantage of adding a smooth convexity to
the mapping u 7→ J , which then allows for an explicit solution of the optimal control problem free
from inessential technicalities. Other convex cost functionals could be considered, which however
often lead to control problems whose analytical solution cannot be obtained explicitly. In such a
more general context, one may be forced to rely on suitable numerical solutions, see e.g. [1].

We may determine the optimal control through a standard approach based on Lagrange mul-
tipliers. We define the Lagrangian

L(v′, u, β) = J(v′, v∗, u) + β[v′ − v − γ(λ(ρ)(v∗ − v) + Θu)],

where β ∈ R is the Lagrange multiplier associated with the first constraint in (12). Notice that the
second constraint has been directly imposed in the expression of the functional J . The optimality
conditions are then given by

∂L
∂v′

= −(v∗ − v′) + β = 0

∂L
∂u

= νu− βγΘ = 0

∂L
∂β

= v′ − v − γ(λ(ρ)(v∗ − v) + Θu) = 0,

8



whence we get the optimal binary control in feedback form

u∗ =
γΘ(1− γλ(ρ))

ν + γ2Θ2
(v∗ − v)

which may be directly substituted in (12) to give the following instantaneously controlled binary
interactions: v′ = v + γ

νλ(ρ) + γΘ2

ν + γ2Θ2
(v∗ − v)

v′∗ = v∗.
(14)

It can be checked that the condition γλ(ρ) < 1 guarantees the physical admissibility also of these
new interaction rules, hence in particular that u∗ ∈ U .

The Boltzmann-Enskog kinetic description of the particle system ruled by (14) is provided,
under the hydrodynamic scaling (4) of space and time and within the approximation of H small,
by (5) with a suitable modification of the collision operator Q, which now averages the microscopic
interactions also with respect to the randomness induced by Θ:

(Q(f, g), ϕ) := EΘ

[∫ 1

0

∫ 1

0

(ϕ(v′)− ϕ(v))f(x, v, t)g(x, v∗, t) dv dv∗

]
,

where EΘ[·] denotes the expectation with respect to the law of Θ. At the same time, we notice
that the η-average 〈·〉 is no longer needed, being the stochastic fluctuations of the driver behaviour
set to zero.

For ε > 0 small we can perform the same splitting (6a)-(6b) and subsequently the same formal
limit procedure. In particular, from (6a) we observe that ϕ(v) = 1, v are still collisional invariants
because (Q(f, f), 1) = (Q(f, f), v) = 0 for all ε > 0. This indicates that in the hydrodynamic
limit ε → 0+ the local Maxwellian solving (6c) is still parametrised by ρ, u, i.e. M = Mρ,u(v).
The energy of the local Maxwellian can be found from

0 = (Q(Mρ,u,Mρ,u), v2) = 2γρ2(1− γλ(ρ))

(
q
ν2λ(ρ) + γν

(ν + γ2)2
+ (1− q)λ(ρ)

)
(u2 − E)

whence E = u2, i.e. T = 0, which yields finally Mρ,u(v) = ρδ(v − u).
Plugging this result in (6b) to obtain the macroscopic transport of the hydrodynamic para-

meters ρ, u we have

∂t(ρϕ(u)) + ∂x(ρuϕ(u)) =
H

2
(Q(Mρ,u, ∂xMρ,u), ϕ), (15)

with in particular (Q(Mρ,u, ∂xMρ,u), 1) = 0 and

(Q(Mρ,u, ∂xMρ,u), v) = γ

(
1 + qγ

1− γλ(ρ)

(ν + γ2)λ(ρ)

)
ρ2λ(ρ)∂xu.

On the whole, from (15) with ϕ(v) = 1, v we recover the second order hydrodynamic model{
∂tρ+ ∂x(ρu) = 0

∂t(u+ P (ρ)) + u∂x(u+ P (ρ)) = 0
(16)

with

P ′(ρ) :=
γH

2

(
1 + qγ

1− γλ(ρ)

(ν + γ2)λ(ρ)

)
λ(ρ).

Since γλ(ρ) < 1 we have P ′(ρ) > p′(ρ), where p(ρ) is the traffic pressure of the original (uncon-
trolled) ARZ model. In essence, with the binary variance control we recover the ARZ model with
a higher traffic pressure, the increase in the pressure being proportional to the penetration rate q.
From the results of Section 2 we deduce straightforwardly that model (16) complies with the AR
condition.

Notice that for either q = 0, i.e. if there are no driver-assist vehicles in the traffic stream, or
ν → +∞, i.e. if the cost of the control is so large that the control cannot be implemented in
practice, we consistently recover the uncontrolled ARZ model.
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4 Desired speed control and relaxation hydrodynamic equa-
tions

We consider now a different control strategy, which targets a desired speed vd(ρ) ∈ [0, 1] based
on the local traffic congestion. This control strategy shares some similarities with driver-assist
technologies based on a non-local communication among vehicles in the traffic stream. Indeed,
at the microscopic level of single vehicles the evaluation of the traffic density requires non-local
information. The function vd(ρ) may be further chosen so as to optimise macroscopic traffic
properties as recently proposed in [8]. The main difference with the binary variance control
strategy of Section 3 is that in this case the target speed is not linked to microscopic vehicle
dynamics but to aggregate traffic properties. Indeed vd(ρ) may be seen, on the whole, as an
external input compared to the characteristic scale at which driver-assist vehicles operate. For
this reason, it is convenient to distinguish two types of speed updates experienced parallelly by a
vehicle:

i) one due to regular interactions with other vehicles, which follows the basic (uncontrolled)
binary rules {

v′ = v + γλ(ρ)(v∗ − v)

v′∗ = v∗;
(17a)

ii) another one, which does not consist in an interaction with another vehicle but in the speed
modification by the driver-assist control u based on the knowledge of external information:

v′′ = v + γΘu. (17b)

In particular, we expect u = u(v, ρ).

The instantaneous optimal control is then determined from the minimisation of a cost functional
similar to (13) with v′∗ replaced by vd(ρ):

J(v′′, u) =
1

2

[
(vd(ρ)− v′′)2 + νu2

]
constrained to (17b). In this case, the post-interaction speed v′′ is steered towards the density-
dependent desired speed. Via a Lagrange multiplier approach analogous to the one followed in
Section 3, we obtain the feedback optimal control

u∗ =
γΘ

ν + γ2Θ2
(vd(ρ)− v),

which specialises (17b) into

v′′ = v +
γ2Θ2

ν + γ2Θ2
(vd(ρ)− v). (17c)

It can be readily checked that v′′ ∈ [0, 1] for all v ∈ [0, 1], hence that u∗ is admissible, under the
natural assumptions vd(ρ) ∈ [0, 1] and γ, ν, Θ ≥ 0. No further constraints on the parameters are
needed in this case. We also observe that if the cost of the control is negligible, i.e. ν → 0+, the
updated speed relaxes immediately towards the desired speed vd(ρ).

We further assume that the microscopic process (17c) happens at a smaller rate than the
microscopic process (17a). In particular, we propose that the self-adaptation of a vehicle to
the desired speed, i.e. (17c), happens less frequently than the inevitable interactions with other
vehicles, i.e. (17a). Taking the rate of process (17a) as reference and setting it as O(1), we express
the rate of process (17c) by means of a small parameter 0 < ε� 1.
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The Boltzmann-Enskog kinetic equation corresponding to the particle dynamics (17a)-(17c)
includes now two integral terms on the right-hand side:

∂t

∫ 1

0

ϕ(v)f(x, v, t) dv + ∂x

∫ 1

0

vϕ(v)f(x, v, t) dv

=
1

4

∫ 1

0

∫ 1

0

(ϕ(v′)− ϕ(v))f(x, v, t)f(x+H, v∗, t) dv dv∗

+
ε

2
EΘ

[∫ 1

0

(ϕ(v′′)− ϕ(v))f(x, v, t) dv

]
. (18)

The first one, which reproduces the collision operator of Section 2 (without η), accounts for the
average effect of the interactions (17a). The second one describes instead the simultaneous average
contribution of process (17c) to the speed variations.

Performing the approximation (3) of the collision operator and using ε
2 as the Knudsen number

in the hydrodynamic scaling (4) of space and time1, we split (18) as

∂t

∫ 1

0

ϕ(v)f(x, v, t) dv =
1

ε
(Q(f, f), ϕ) (19a)

∂t

∫ 1

0

ϕ(v)f(x, v, t) dv + ∂x

∫ 1

0

vϕ(v)f(x, v, t) dv =
H

4
(Q(f, ∂xf), ϕ) + (R(f), ϕ), (19b)

where the operators Q, R are defined by

(Q(f, g), ϕ) :=

∫ 1

0

∫ 1

0

(ϕ(v′)− ϕ(v))f(x, v, t)g(x, v∗, t) dv dv∗

(R(f), ϕ) := 2EΘ

[∫ 1

0

(ϕ(v′′)− ϕ(v))f(x, v, t) dv

]
for every observable quantity ϕ.

Equation (19a) with the binary interactions (17a) is essentially the same as (6a) with the
binary interactions (2) (and η ≡ 0). Therefore from Section 2 we know that the local Maxwellian
resulting from the collision step (19a) is Mρ,u(v) = ρδ(v − u). Next, considering that

(Q(Mρ,u, ∂xMρ,u), ϕ) = γρ2λ(ρ)∂xϕ(u),

(R(Mρ,u), ϕ) = 2qρ

[
ϕ

(
u+

γ2

ν + γ2
(vd(ρ)− u)

)
− ϕ(u)

]
and taking ϕ(v) = 1, v together with f = Mρ,u in (19b) we obtain the hydrodynamic system∂tρ+ ∂x(ρu) = 0

∂t(u+ p(ρ)) + u∂x(u+ p(ρ)) =
2qγ2

ν + γ2
(vd(ρ)− u),

(20)

where p(ρ) is half the traffic pressure of the ARZ model defined by (11). Hence (20) is an ARZ-type
model with relaxation, the relaxation term on the right-hand side of the second equation expressing
the aggregate effect of driver-assist vehicles implementing a desired speed control strategy. The
coefficient

τ :=
ν + γ2

2qγ2
(21)

is the relaxation time, namely the characteristic time needed for the mean speed u to relax locally
towards the recommended speed vd(ρ).

1This is consistent with the fact that the hydrodynamic regime appears naturally on a slow time scale, which is
directly suggested by (18) through the rate ε.
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Remark 4.1. From (21) we observe that τ diminishes, i.e. the relaxation is quicker, if either q
is large, i.e. there is a high percentage of driver-assist vehicles in the traffic stream, or ν is small,
i.e. the control is cheap (viz. stronger). Nevertheless we also observe that τ is bounded away from
zero, indeed τ ≥ 1

2 for all γ, ν, q ≥ 0. The minimum value τ = 1
2 is attained for ν = 0 and q = 1

with γ > 0. This means that, unlike the microscopic dynamics (17c), even a zero-cost control
implemented on all vehicles cannot produce macroscopically an instantaneous local relaxation of u
towards vd(ρ), which would require instead τ → 0+ in (20).

The mathematical reason behind this difference between the microscopic and the macroscopic
relaxation processes relies on the assumption, in the kinetic equation (18), that the driver-assist
control acts on a much slower time scale than the vehicle interactions. This relegates the relaxation
operator R to the splitting step (19b), i.e. to the hydrodynamic scale, with no possibility to affect
the local Maxwellian resulting from the splitting step (19a).

From the results of Section 2 we deduce immediately that model (20) is hyperbolic and fulfils
the AR condition in the whole state space {(ρ, u) ∈ R+ × [0, 1]}. A model similar to (20) was
proposed in [22, 37] as a heuristic extension of the ARZ model to incorporate the tendency of
vehicles to travel locally at the maximum possible speed. The latter was in turn understood
as a function of the local traffic density. The same model [22, 37] was also applied in [29] to
traffic problems on road networks with ramps. Interestingly, here we have recovered a class of
macroscopic models with the same features as [22, 37] as the result of a consistent derivation from
first principles. Our derivation highlights in particular the fundamental microscopic processes at
the basis of this hydrodynamic model and their unobvious relationships (see Remarks 4.1 above
and 4.2 below). Moreover, it justifies the use of relaxation terms in second order macroscopic
traffic models to reproduce certain actions of driver-assist vehicles. In this respect, it is worth
mentioning that such terms have been heuristically included in other second order macroscopic
traffic models, which however do not fulfil the AR condition, see e.g. [13].

Remark 4.2. Implementing the desired speed control into binary interactions of the form (12)
would yield in turn a first order hydrodynamic traffic model for physically different but mathem-
atically analogous reasons to those discussed in Remark 4.1. The crucial point is that also in this
case the microscopic dynamics entering the splitting step (19a) would not conserve the local mean
speed, which would be then locally a function of the traffic density at equilibrium, cf. [34, 43].
The different structure of rules (17a)-(17b), along with the assumption that the two processes take
place at different rates, are the microscopic origin of the conservation of the mean speed in the
local interactions, which finally produces a second order hydrodynamic model.

4.1 Mixed control strategies

As a by-product of the results of Sections 3, 4, we can finally and easily address the case of a
traffic stream incorporating both vehicles implementing a binary variance control strategy and
vehicles implementing a desired speed control strategy. To this purpose, we consider the following
interaction rules: {

v′ = v + γ
(
λ(ρ)(v∗ − v) + Θ1u1

)
v′∗ = v∗,

(22a)

v′′ = v + γΘ2u2, (22b)

where Θ1 ∼ Bernoulli(q1) and Θ2 ∼ Bernoulli(q2) discriminate whether a vehicle is or is not
equipped with a binary variance control device and a desired speed control device, respectively.
The parameters q1, q2 ∈ [0, 1] are the corresponding probabilities. Assuming Θ1, Θ2 independent,
the probability that a vehicle is equipped with both control systems is q1q2 while the probability
that a vehicle is equipped with only one control system is q1(1 − q2) + (1 − q1)q2. Finally, the
probability that a vehicle is not equipped with any driver-assist system is (1−q1)(1−q2). Clearly,
with q1 = 0 or q2 = 0 we recover the cases discussed in the previous sections.
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Using the same cost functionals as in Sections 3, 4, the optimal feedback controls u∗1, u∗2 are
given by

u∗1 =
γΘ1(1− γλ(ρ))

ν1 + γ2Θ2
1

(v∗ − v), u∗2 =
γΘ2

ν2 + γ2Θ2
2

(vd(ρ)− v),

ν1, ν2 > 0 being the respective control penalizations.
The Boltzmann-Enskog kinetic equation corresponding to the particle dynamics (22a)-(22b) is

now

∂t

∫ 1

0

ϕ(v)f(x, v, t) dv + ∂x

∫ 1

0

vϕ(v)f(x, v, t) dv

=
1

4
EΘ1

[∫ 1

0

∫ 1

0

(ϕ(v′)− ϕ(v))f(x, v, t)f(x+H, v∗, t) dv dv∗

]
+
ε

2
EΘ2

[∫ 1

0

(ϕ(v′′)− ϕ(v))f(x, v, t) dv

]
,

still assuming that (22b) takes place at a smaller rate 0 < ε � 1 than (22a). From this, by the
hydrodynamic scaling of space and time and the subsequent splitting in the hydrodynamic limit
ε→ 0+ we recover the macroscopic ARZ-type model∂tρ+ ∂x(ρu) = 0

∂t(u+ P (ρ)) + u∂x(u+ P (ρ)) =
2q2γ

2

ν2 + γ2
(vd(ρ)− u)

(23)

with

P ′(ρ) :=
γH

4

(
1 + q1γ

1− γλ(ρ)

(ν1 + γ2)λ(ρ)

)
λ(ρ).

Writing the second equation of system (23) as

∂t(ρu) + ∂x(ρu2) =
γH

4

(
1 + q1γ

1− γλ(ρ)

(ν1 + γ2)λ(ρ)

)
ρ2λ(ρ)∂xu+

2q2γ
2

ν2 + γ2
(vd(ρ)− u)

we observe that it features interesting analogies with the second order macroscopic traffic model
with driver-assist vehicles proposed in [13]. Specifically, on the right-hand side the first term
proportional to ∂xu reminds of ACC vehicles while the second term proportional to vd(ρ) − u
reminds of CACC vehicles as they have been heuristically modelled in [13] and discussed in the
previous sections.

5 Numerical experiments

In this section, we focus on the numerical description of the models introduced so far. We start
from an analysis of the system (10) with pressure field satisfying the relation p′(ρ) = γHλ(ρ)/2.
In the following, we refer to it as the kinetic ARZ model. For this model, we study the role
of the headway H and that of the sensitivity/reactiveness of the drivers λ(ρ). A conservative
numerical discretisation, based on a suitable change of variables coupling a Runge-Kutta time
discretisation with a WENO reconstruction of the numerical fluxes, is proposed while different
Riemann problems are studied. Once the kinetic ARZ model is validated, we explore the two
proposed control strategies and their impact on the solution. Namely the binary variance approach
detailed in Section 3 and the desired speed control explained in Section 4. For these two situations,
we explore the role played by the different macroscopic parameters originating from our kinetic
derivation and the capability of the model to drive the solution towards some desired states.
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5.1 Test 1: A finite volume method for the kinetic ARZ model

Let us first give some insights into the necessary methods for numerical investigations of the
derived controlled models.

We focus first on the classical ARZ model (10) which can be rewritten in a conservative form
as follows {

∂tρ+ ∂x(ρu) = 0

∂ty + ∂x(yu) = 0,
(24)

where the new variable y is defined as y := ρu + ρp(ρ) and where p(ρ) is a primitive of p′(ρ) =
γHλ(ρ)/2. We then use a fifth order WENO method combined with a Rusanov flux for treating the
hyperbolic derivatives [39]. Thus, given the flux function F (U) = (ρu, yu)T with U = (ρ, y)T , we
first reconstruct the unknown values U−, U+ at the interfaces and then we employ the numerical
Rusanov flux defined as:

F(U−, U+) :=
1

2

[
F (U+) + F (U−)−Θ(A)(U+ − U−)

]
,

Θ(A) := max
U∈[U−, U+]

|λ(A(U))| ,

where maxU∈[U−, U+] |λ(A(U))| is the maximum modulus of the eigenvalues of the Jacobian matrix

A(U) :=

(
u ρ

0 −u− γH
2 ρλ(ρ)

)
.

The reconstruction of ρ, y at the grid interfaces is performed as in the usual WENO frame-
work [39]. Finally, for the time derivative we use a second order Runge-Kutta explicit time
discretisation. In particular, the time step ∆t is chosen according to the stability condition
∆t = 0.5∆x/maxx∈Ω{µ+, µ−}, where µ± are the eigenvalues of the Jacobian matrix A(U) of
the flux. In the following we will refer to this scheme as the FV scheme for the ARZ model.

Let us now consider four different Riemann problems. These have been inspired by the analysis
performed in the seminal paper [4] by Aw and Rascle. There, the authors discuss the possible
analytical solutions which their model can furnish in terms of elementary waves: shock, rarefaction
or combinations of these two waves. For these four different problems, we compare the cases H > 0
and H = 0. Moreover, we consider the case in which the sensitivity function λ(ρ) in (2) is either
constant, i.e. independent of ρ, or defined as λ(ρ) = ρ. As shown by (11), this determines different
expressions of the traffic pressure and consequently of the simulation results. The number of cells
is fixed to 2000, the final time is T = 10, Dirichlet boundary conditions are taken. We prescribe
the following initial conditions:

RP1: ρ0(x) = 0.9, −5 ≤ x ≤ 5, u0(x) =

{
0.5 if x < 0

0.25 if x ≥ 0,

RP2: ρ0(x) = 0.9, −5 ≤ x ≤ 5, u0(x) =

{
0.9 if x < −2.5

0.59 if x ≥ −2.5,

RP3: ρ0(x) = 0.5, −5 ≤ x ≤ 5, u0(x) =

{
0.5 if x < −2.5

0.3125 if x ≥ −2.5,

RP4: ρ0(x) =

{
0.5 if x < −2.5

10−5 if x ≥ −2.5,
u0(x) =

{
0.25 if x < −2.5

0 if x ≥ −2.5.

These initial conditions have been chosen in such a way that, defining with uL the left initial speed
of the vehicles and with uR the right initial one, for problem RP1 one has uL > uR, for problem
RP2 one has uL < uR < uL + p(ρ) while for problem RP3 one has uR > uL + p(ρ). Finally, in
problem RP4 the right density is set to a value close to zero while the right speed is set to zero.
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Figure 1: Test 1. Four Riemann problems for the kinetic ARZ model. Initial and final states for
density and speed of the vehicles with λ(ρ) = ρ.

In Figure 1, the initial and final density and speed of the vehicles are shown for the four
Riemann problems in the case H > 0 and λ(ρ) = ρ. In Figure 2, the same quantities are shown
for the first and fourth Riemann problems in the case H = 0. For this second case, we only show
the results for problems RP1 and RP4 since for problems RP2 and RP3 the density and speed are
constant in time and then they coincide with their respective initial data. This is due to the fact
that H = 0 implies uL = uR.

In the case H > 0, for RP1 the solution is a shock wave moving to the left for both density and
speed combined with a rarefaction wave moving to the right for the sole density of vehicles. For RP2
we have a first rarefaction wave for both macroscopic quantities followed by a second rarefaction
for the density. For RP3 we have first a rarefaction followed by a shock for both density and speed.
Finally, RP4 presents a smooth decrease in the density accompanied by a vehicles acceleration.
To that situation, it follows a sudden jump to zero when the vacuum condition is reached. If one
observes the trend of the same simulations when H = 0 in Figure 2 the differences are evident.
For RP1 the shock moves to the right and it leads to a delta whereas when H > 0 the traffic jam
has lower intensity and realistically it moves backwards. The case H = 0 gives for this problem
unrealistic results. The cases RP2 and RP3 cannot be reproduced when H = 0, highlighting the
fact that a non-zero headway leads to a much richer set of possible solutions. Finally, the case
RP4 is also different, indeed for H = 0 vehicles do not accelerate in presence of vacuum. On the
other hand, this is the typical observed driver reaction in these situations if the maximum allowed
speed is not yet reached. We show now the last result of this section in Figure 3. These pictures
refer to the case in which the sensitivity λ is independent of the vehicle density. In this case,
the solutions suggest that vehicles move rightwards at higher pace, being all waves shifted in that
direction compared to the case λ(ρ) = ρ. This is natural since the effects of the headway H are
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Figure 2: Test 1. Riemann problems RP1 and RP4 for the kinetic ARZ model with H = 0.
Initial and final states for density and speed of the vehicles with λ(ρ) = ρ.

less significant due to the fact that ρ < 1 at least for problems RP2, RP3 and RP4. Problem RP1
is different and one can observe that the extension of the traffic jam is smaller when the sensitivity
function is λ(ρ) = 1. This is due to the fact that the pressure wave is slowing down the shock
wave appearing on the right for the density of vehicles.

5.2 Test 2: Controlled ARZ model with binary control strategies

In this section, we discuss the kinetic ARZ model with binary control introduced in Section 3.
The hydrodynamic model is the one given in equation (16), which is first rewritten in conservative
form like in (24). The variable y still expresses the sum of the momentum and of the pressure
field:

y = ρu+ ρP, P ′(ρ) :=
γH

2

(
1 + qγ

1− γλ(ρ)

(ν + γ2)λ(ρ)

)
λ(ρ),

where λ(ρ) = ρ and now the pressure field is the sum of the traffic pressure and the control
pressure. The numerical method then follows the lines of the one described in Test 5.1, i.e. it is a
combination of WENO reconstruction with Rusanov fluxes for the space derivative with a second
order explicit Runge-Kutta method in time. The initial data are given by

ρ0(x) = 0.9, −20 ≤ x ≤ 20, u0(x) =

{
0.25 if x < −2.5 or x > 2.5

0.1 if − 2.5 ≤ x ≤ 2.5.

The domain x ∈ [−20, 20] is paved with 1000 cells and the final time is fixed to T = 75. The
boundary conditions are of Neumann type.

In Figure 4 we show the evolution in the space-time domain of the density of vehicles together
with their speed. Left pictures show the case q = 1, right pictures the case q = 0. The initial data
are such that for the density of cars a steady shock wave forms in correspondence of x = 2.5 while
a shock followed by a leftwards moving rarefaction wave forms at x = −2.5. On the other hand,
the mean speed consists only of a rarefaction followed by a shock moving leftwards at the same
speed as the waves in the density field. At the end of the simulation, the waves have reached the
left boundary and as expected the mean speed of the vehicles is constant. This has been obtained
thanks to the pressure field generated by the microscopic binary control term, which determines
a modification of the eigenvalues of the hydrodynamic model. At the end of the simulation, the
steady shock wave in the density is instead still present. In more details, even for the case of q = 0,
i.e. the non-controlled case (right pictures), the system reaches an equilibrium mean speed. This
is due to the presence of a pressure field which causes information to travel backwards like for the
controlled case. The main difference between the controlled and the non-controlled cases is that
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Figure 3: Test 1. Four Riemann problems for the kinetic ARZ model. Initial and final states for
density and speed of the vehicles with λ(ρ) = 1.

in the case q = 1 the constant mean speed is reached faster than in the case q = 0 thanks to the
control mechanism.

In Figure 5, we report instead the case H = 0. Here, the situation looks completely different.
A delta shock in the density forms and moves rightwards, i.e. in the opposite direction with
respect to the previous case. This is an unphysical and unobserved behaviour in real situations.
Concerning the mean speed of the vehicles, we have that a rarefaction is followed by a shock both
moving rightwards. In other words, there is no backward propagation of the information and
vehicles move independently of what happens ahead. We stress that this does not represent the
empirically observed evidences.

Finally, in Figures 6 and 7 we report the results of a different Riemann problem with initial
data

ρ0(x) = 0.5, −20 ≤ x ≤ 20, u0(x) =

{
0.25 if x < −10

0.32 if x ≥ −10.

Figure 6 shows the time evolution of the density and mean speed while Figure 7 shows a compar-
isons between the controlled and the non-controlled cases at final time. The numerical parameters
are the same as the previous test. The final time is now T = 80. In this case, the solution looks
like a rarefaction for both density and mean speed followed by a shock. In the non-controlled case
q = 0 we observe a large variation of the density of vehicles due to the fact that the backward
propagation of information goes at a lower pace. Conversely, in the controlled case vehicles adapt
faster to the larger mean speed assigned as right state, which produces a smaller rarefaction and
a stationary density at the end of the rarefaction wave.
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Figure 4: Test 2A. Time evolution of the controlled ARZ model with binary control strategy.
Top pictures: density, bottom pictures: mean speed with λ(ρ) = ρ. Left pictures show the case
q = 1, right pictures the case q = 0.

Figure 5: Test 2A. Time evolution of the controlled ARZ model with the binary control strategy.
Left picture: density, right picture: mean speed with λ(ρ) = ρ. Case H = 0.

5.3 Test 3: Controlled ARZ model with desired speed control strategies

In this last section, we discuss the trend of the kinetic ARZ model when a desired speed control
mechanism is activated. This causes a reaction term to appear into the momentum equation,
which induces the mean speed u of the vehicles to relax towards the externally prescribed vd(ρ) at
rate 2qγ2/(ν + γ2). The goal is to drive the system towards a desired, in principal optimal, mean
speed. We point out that the desired speed vd(ρ) may be prescribed in many different ways in
order to optimise different aggregate aspects of traffic. For instance, one may aim to maximise the
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Figure 6: Test 2B. Time evolution of the controlled ARZ model with binary control strategy.
Top pictures: density, bottom pictures: mean speed. Left pictures show the case q = 0, right
pictures the case q = 1 with λ(ρ) = ρ.

Figure 7: Test 2B. Initial and final profile of density and mean speed for the controlled versus
the non-controlled ARZ model with binary control strategy. Density (left) and speed (right) with
λ(ρ) = ρ.

net flow through a portion of the road or avoid the onset of congestions. Here we do not consider
this further optimisation aspect, which would require the resolution of an additional optimal
control problem at the macroscopic scale constrained by the hydrodynamic traffic equations. For
a contribution in this direction, we refer instead the reader to [8].

For the numerical tests of this section we consider now following initial data, mimicking a
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traffic jam in a portion of the road:

ρ0(x) =

{
0.5 if x < 0

0.9 if x ≥ 0,
u0(x) =

{
1 if x < 0

0 if x ≥ 0.

Vehicles in x ≥ 0 are stuck, i.e. their speed is zero. Conversely, vehicles in x < 0 move with
unit mean speed. In the non-controlled case, we expect that vehicles tend initially to accumulate
at x = 0 and that subsequently a queue propagates backwards inducing vehicles in x < 0 to
progressively stop.

We consider three different scenarios: i) we fix the penetration rate to q = 10−3, namely we
assume a very small number of driver-assist vehicles in the traffic stream; ii) we slightly increase
the penetration rate to q = 7.5 · 10−2; iii) we fix the penetration rate to q = 1, i.e. we assume
that all vehicles in the traffic stream are equipped with driver-assist technologies. In all cases, the
desired speed is fixed to

vd(ρ) := min

{∫ x+∆x

x−10∆x

ρ(x, t) dx, 1

}
, (25)

which is conceived in such a way that vehicles trapped in high density portions of the road move
faster to reduce the congestion. A maximum dimensionless unit speed is assumed.

Figure 8 shows the results of the three simulated scenarios in terms of density and mean
speed of the vehicles. These results have been computed using 1000 computational cells over a
domain x ∈ [−30, 30] by means of the numerical scheme detailed in Section 5.1. Left pictures
represent the density profiles in time and space while right pictures represent the corresponding
mean speed profiles. The tests show that a too small percentage of driver-assist vehicles in the
traffic stream is unable to prevent the onset and backward propagation of a traffic congestion. In
particular, vehicles in x < 0 slow down in time up to a complete stop. This is indeed the expected
outcome also when a completely non-controlled traffic stream is considered. Conversely, in the
case q = 1 we observe that the mean speed of the vehicles in x ≥ 0 grows more quickly while
their density diminishes. In the intermediate case q = 7.5 · 10−2 we notice that, at first, the shock
wave in the density starts moving leftwards as for q = 10−3, which indicates that the traffic jam
initially increases in size. Nevertheless, after a while the action of the driver-assist vehicles reverses
the dynamics and vehicles start collectively to flow rightwards, thereby preventing the onset and
backward propagation of a congestion. However the density peak is only slowly reduced with
respect to the case q = 1. This test suggests that driver-assist vehicles implementing a desired
speed control might avoid the formation of congestions. Of course, a non-negligible part of this
result is due to the choice of the desired speed and, in particular, to its specific dependence on
the traffic density ρ. The chosen expression (25) is a particularly effective one in this respect.
However, as already mentioned, in order to establish formally which desired speeds are able to
produce consciously such a congestion reduction effect one should solve additional optimisation
problems at the macroscopic level, in which the quantity to be optimised is precisely vd(ρ), see
e.g., [8].

6 Conclusions

In this paper, we have derived second order hydrodynamic models of ARZ-type describing traffic
dynamics in presence of driver-assist controls. Our derivation is formally obtained from the hydro-
dynamic limit of a combination of local Boltzmann-type and non-local Boltzmann-Enskog-type
kinetic descriptions of vehicle interactions. We have considered two different controls motivated
by the engineering literature. A first control mimics Adaptive Cruise Control (ACC) devices. A
second control is instead inspired by Cooperative Adaptive Cruise Control (CACC) devices, which
transmit aggregate information to the vehicles. In the ACC case we have obtained an ARZ-type
model with a pressure term modified by the control, whose effect is to make the mean speed of
the vehicles more uniform. Instead, in the CACC case we have obtained an ARZ-type model with
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Figure 8: Test 3. Profiles of density and mean speed in space and time for the kinetic ARZ model
with desired speed control. From top to bottom, different penetration rates are considered. Top:
q = 10−3, middle: q = 7.5 · 10−2, bottom: q = 1. Left pictures: density, right pictures: mean
speed with λ(ρ) = ρ.

relaxation towards a prescribed desired speed. Thanks to our approach based on kinetic theory,
we have been able to link precisely the key features of these new hydrodynamic models, such as
e.g., the form of the modified traffic pressure or of the relaxation term, to structural properties
of the interactions among the vehicles and of the feedback vehicle-wise action of the controls.
Through targeted numerical experiments we have shown that the obtained hydrodynamic models
are able to provide insights into the large-scale dynamics of intelligent traffic streams with no
additional analytical and computational costs with respect to the standard fluid dynamics models
of non-controlled road traffic. Future research perspectives include the extension of the present
models to multilane flows and their use for large-scale traffic optimisation by means of microscopic
binary control algorithms.
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en théorie cinétique des gaz et des plasmas. PhD thesis, Paris 9, 1998.

[46] C. Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and
Landau equations. Arch. Ration. Mech. Anal., 143(3):273–307, 1998.

[47] H. M. Zhang. A non-equilibrium traffic model devoid of gas-like behavior. Transportation
Res. Part B, 36(3):275–290, 2002.

24


	Introduction
	The Aw-Rascle-Zhang model from a Boltzmann-Enskog-type kinetic description
	Binary variance control and modified Aw-Rascle-Zhang model
	Desired speed control and relaxation hydrodynamic equations
	Mixed control strategies

	Numerical experiments
	Test 1: A finite volume method for the kinetic ARZ model
	Test 2: Controlled ARZ model with binary control strategies
	Test 3: Controlled ARZ model with desired speed control strategies

	Conclusions

