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Abstract. Stromboli volcano has experienced four sector collapses over the past 13,000 years, 

resulting in the formation of the Sciara del Fuoco (SDF); a horseshoe-shaped flank collapse 

scarp where episodes of instability are continuously observed and recorded. A NE / SW striking 

rift zone across the SDF and the western sector of the island is inferred to be a potential weakness 

zone for further instability episodes. This study reports new data of fracture density using remote 

sensing imagery, across within and outside the rift zone, to identify areas of damage that could 

reduce the edifice strength and promote fracturing. Pleiades satellite data of 0.5 m resolution 

was processed to highlight 23635 distinct linear features, determine fracture density across the 

island, and identify key areas of macro-scale weakness on the volcano. These data suggest that 

the SW sector of the island, including the summit area and the slopes of SDF, have an average 

fracture density between 1.18 – 2.73  x 10−5m−2 in contrast to the rest of the volcano that has 

an average fracture density of 4.56 x 10−6m−2 .  Analysis was also conducted on the orientation 

of fracture strikes across the volcanic edifice by analysing fracture data specifically associated 

with areas of intrusions and fissures: the NW / SE rift zone and the SDF. Preliminary results 

show that the average fracture strike ranged from between 030 – 047 NE/SW and thus broadly 

parallel to the inferred rift axis.      

1. Introduction 

 

Stromboli is the north easternmost island of the Aeolian archipelago in the Tyrrhenian Sea. The 
eruptive activity of this volcano is a consequence of tectonic activity between the Eurasian and 
African plates resulting in the subduction of the Ionian plate [1–3]. The volcano formed from a series 
of sheet and dike intrusions from a shallow magma chamber located 2-3 km below sea level and is 
characterised by a regular and short-duration explosive activity from active craters at the summit of 
the volcano, named Strombolian activity. From structural investigations conducted on the volcano a 
preferential NE – SW axis has been found to the various intrusions emplaced along the edifice (figure 
1), suggesting that the island has been affected by extensional activity in this orientation [4,5].  Over 
the last 13 ka the island has experienced multiple phases of eruptive activity and subsequent sector 
collapses. This has resulted in the formation of multiple steep depressions (flank collapse scarps) 
around the island such as the well-known Sciara del Fuoco (SDF) on the NW side of the volcano. 
Field investigation carried out by Tibaldi et al.,[4]  presents 109 sheet intrusions mapped around the 
Stromboli edifice, striking mostly NE and becoming more abundant toward the rift axis. They 
concluded that the presence of the rift zone controlled the NE/SW emplacement of sheets across the 
volcano. Using high resolution satellite data, this investigation aims to systematically investigate 
this hypothesis by quantifying the extent to which the rift zone and areas of intrusive events have 
influenced the location, direction and density of fractures across the volcano.  
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Figure 1. Geological map of Stromboli showing the main geological units and the NE / SW 
trending rift axis on the island. 

 
 

Rift Axis 
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2. Method  

 

A 0.5 m resolution digital elevation model (DEM) was generated from Pleiades satellite images to 
assess the distribution of fracture networks across the island (figure 2). Structural features associated 
with episodes of intrusions and tectonic lineaments were recorded and classified using both aerial 
and field photographs as well as previous structural surveys  [6,7] . Fracture maps of the island were 
subsequently processed using the fracture mapping MatLab toolbox FracPaQ [8]. This toolbox was 
used to quantify the fracture density and preferential orientations from the DEM allowing these to 
be linked to the rift processes that have taken place during the life span of the volcano. The code 
employs the Mauldon [9]  method to determine the length of fracture segments, their strike and 
density within a selected area. FracPaQ was used to create a comparative study of fracture segments 
from extrusive locations and overlay these onto the structural features in and around the SDF and 
NE / SW rift zone. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Fracture map of Stromboli using 0.5 m resolution Pleiades satellite images. Fractures 

have been separated between occurred near areas of intrusions and fissures (orange) using Tibaldi 
et al., (4) structural map that highlights areas of sheet intrusions and fissures surrounding the 

edifice. Fractures that are not related to eruptive events are primarily located near collapse scars 
such as the Rina Grande / Le Schicciole and Malo Passo. These fractures have an average length 

and strike of 21 m and 049.  
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Fractures related to intrusions and fissures

Rift Zone Area

Rina Grande / 
Le Schicciole 



Mechanics and Rock Engineering, from Theory to Practice
IOP Conf. Series: Earth and Environmental Science 833 (2021) 012086

IOP Publishing
doi:10.1088/1755-1315/833/1/012086

4

3. Results 

 

3.1. Fracture analysis 

 

A total of 23635 linear segments were processed through FracpaQ. Fracture density data generated 
using FracPaQ show that nearly 50 % of the total fracture density calculated across the island was 
concentrated around areas of intrusions and fissures (figure 3) with the remaining 50 % distributed 
along the coastline of the island and around the upper echelons of the edifice (Malo Passo & Rina 
Grande/Le Schicciole) where previous collapses have taken place. Fracture density was separately 
calculated along the rift zone (figure.4a) and for the SDF (figure.  4b). Higher concentrations of fracture 
density around intrusions and fissures (1.5 × 10−3 to 3 × 10−3 m−2) were located around the summit 
and slopes of the SDF, the rocks of the upper to middle Vancori collapse, and on the north western side 
of island along the Vallonazzo fissure. Similarly, fracture density concentrations within the rift zone (5 
× 10−4 m−2 − 9 × 10−4 m−2) were also concentrated around the upper to middle Vancori caldera 
collapse, the top of the SDF, and along extrusive fissures on the northern slopes of the volcano. The 
highest fracture density values around the SDF (3 × 10−3 m−2),  were measured around the western 
side of the scarp along the boundary between the Sciara and Neostromboli units as well as at the active 
caldera at the top of the slope. The average fracture strike direction for the whole of the island was 041 
(NE/SW). The mean strike of segments from areas studied in figures 3 & 4 ranged from 036-047 
(NE/SW). The fractures are broadly parallel to the strike of the NE /SW rift zone.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 

 

Figure 3. (Right) Fracture density map of intrusions and fissures on Stromboli. (Left) Rose 
diagram showing the distribution of strike angles from intrusions and fissures.  
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Figure 4.  (A) Fracture density of the NE / SW rift zone across Stromboli.  (B) Fracture density of 
the SDF. 
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Figure 5. Stacked histogram of fracture lengths from areas of Intrusions and fissures around the 
island (blue), the rift zone (orange) and the SDF (yellow) as calculated from FracpaQ. 

 
 

In total 9503 fractures were related to areas of extrusive activity with an average fracture length of  
32 m. In contrast to the rift zone where 5547 fracture segments were recorded with the average length 
of fractures being 65 m. Similarly, 5551 fracture segments were recorded around the SDF with an 
average segment length of 20 m. In the 3 areas of specific interest in this investigation, Intrusions and 
fissures, the rift zone and the SDF, the frequency in fracture segment lengths from 0 – 50 m was 1504, 
2592 and 369. 
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4. Discussion and conclusion 

A fracture density analysis has been performed on the island of Stromboli using remote sensing  
(Pleiades 0.5m resolution satellite data) to assess the nature and localisation of fracturing processes 
related to regional tectonics and the continuous eruptive activity. Data was processed via the FraqPaQ 
model that applied a quantitative approach to the images and derived both a degree of localisation 
(density) and orientation of numerous widespread fracture networks across the volcano. These volcanic 
processes have likely resulted in fracture segments around areas of known extrusive activity and 
collapse and to tectonic lineaments. A preferential orientation for structural instability is inferred to be 
linked to a potential weakness zone, the NE/SW trending rift zone, resulting from the NW / SE direction 
of regional extensional around Stromboli, that has enhanced the NE trending  intrusions emplacement 
[4]. Fracture density around the SDF, Vallonazzo Fissure and Upper-Middle Vancori caldera collapse 
was 3 to 5 times greater than areas that were not a clear morphological result of volcanic activity such 
as around Malo Passo and coast of the northern sector where fracture density is typically less than 
1 × 10−3 m2. Fracture density assessment around the SDF is a useful method to determine the main 
points of weakness where sheet intrusions, previously mapped by Tibaldi et al., [4], have influenced 
the stability of the slope subsequently leading to flank collapse events.  

Orientation analysis also reveals that the average strike calculated from the areas studied in this  
investigation was close to parallel with the inferred NE/SW rift axis indicating a common trend in the 
direction of fractures from around the edifice [4–6,10,11]. Further evidence of a developing rift axis 
across the volcano can be observed by assessing the frequency of strike direction in the rift zone (figure 
4a). Most fractures within the rift margin were close to parallel to the rift axis with  < 1 % of total 
fractures not aligned to the rift. The main trend of fracturing is likely to be the product of volcano-
tectonic forces such as high pressure and thermal erosion from the influx of magma acting upon pre-
existing linear features or morphological features within host rocks that do not align with the stress 
field. When assessing fracture strike directions in the SDF and around areas of caldera collapse near 
intrusive emplacements, we see evidence for volcano-tectonic interactions influencing a preferential 
trend in the strike and propagation of fractures from their intrusive source. Fracture strikes around the 
SDF ranged from 0 - 359 which can be evidence for how dykes exploit and occupy pre-existing 
weaknesses to initiate flank collapses thus mould the slope into a horseshoe toe [12–14]. 

The range of fracture segment lengths from 0 - 579 m along the rift margin can be considered an  
expression of the dynamic nature of volcano-tectonic processes occurring along the rift zone. The 
frequency of larger fracture segments (over 50 m) was higher along the rift zone in comparison to areas 
subject to intrusions and fissures and the SDF where there was a higher frequency of fractures of less 
than 20 m. Higher fracture lengths within the rift zone can be interpreted as evidence for development 
of faulting at the regional scale along a rift axis, involving larger crustal volumes, as proposed by several 
authors [15–17] . Whereas the higher frequency of smaller fractures, such as those found in the vicinity 
of the SDF, may be credited to stress rotation in response to flank instability and subsidence associated 
with volcanic rifting acting at local scale [18-19].  

The data gathered through satellite analysis supports evidence of a rift zone cutting through the  
edifice and the formation of volcano-tectonic features across Stromboli. Additional rock physics studies 
will be conducted to assess the internal mechanical characteristics of lavas on Stromboli at the block 
scale. Friction angles, P-wave velocity, and electrical resistivity measurements will be taken to integrate 
field scale seismic tomographies and to determine any pre-existing microstructure feature that could 
control the deformation and faulting and influence the development of slip surfaces. 
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