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Abstract

This doctoral work focuses on bringing brain-computer interface technologies closer
to daily life by means of a metrological approach. In particular, applied metrology ap-
pears essential because these interfaces enable non-muscular communication through
the measurement of brain signals, and even because their components must be char-
acterized to fully understand system operation. Many challenges are associated with
daily-life applications, namely non-invasive measurement, wearability, portability,
user friendliness, and low cost. Thus, electroencephalography was a key choice for
designing the systems. The usage of few acquisition channels was also considered,
and proper processing had to be studied to detect the phenomena of interest. Finally,
consumer-grade equipment was taken into account in the implementation. Two
paradigms were investigated: a reactive interface relying on steady-state visually
evoked potentials, and an active paradigm relying on motor imagery.

A metrological characterization of the consumer-grade equipment was first pro-
posed. Characterization results show that a low-cost electroencephalograph can
be successfully employed due to its linearity and limited gain error. Also, for the
reactive paradigm, the characterization of flickering icons generated by smart glasses
demonstrated that the harmonic content of such stimuli can be meaningfully different
from the nominal one. This characterization pointed out that their harmonic content
should be carefully measured before addressing the brain response to flickering
lights, though exploiting commercial smart glasses in the operation of a reactive
brain-computer interface is feasible.

Next, a wearable system based on steady-state visually evoked potentials was
built by integrating commercial augmented reality glasses with the low-cost elec-
troencephalograph. The power spectral density associated with the evoked potentials
was measured to detect the neural phenomena of interest. An experimental campaign
conducted with 20 subjects pointed out that mean classification accuracy among
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subjects can be as high as 95 % at 10 s stimulation time, but it drops to about 75 %
when a 2 s stimulation is considered. Thus, the system can be accurate enough for
some industrial and healthcare applications, but further studies are needed to increase
the system speed.

Finally, a wearable system based on motor imagery was proposed. A filter bank
common spatial pattern algorithm was used for classification. The minimum number
of acquisition channels needed for the detection was investigated. Results demon-
strated that a single channel is not suitable for the detection of motor imagery, but
the number of channels can be as low as three. The exact channels to exploit do
depend on the involved tasks and subjects and they can vary from session to session.
Nonetheless, the locations of selected channels were compatible with the sensori-
motor area reported in the scientific literature. It was then noted that the wearability
and portability of such a system could be still achieved, but neurofeedback had to be
considered to improve motor imagery detection. The proposed system adopted an
extended reality multi-sensory feedback. Results of a further experimental campaign
conducted with eight subjects demonstrated that neurofeedback is effective in im-
proving the detection of motor imagery for most subjects. The mean classification
accuracy resulted about 70 %, which is an empirical threshold for an acceptable
performance of motor imagery brain-computer interfaces.

As a whole the work demonstrated that reactive brain-computer interfaces are
close to daily-life applications, though they still deserve an engineering phase, while
research and development is needed for an active interface relying on motor imagery,
and a deeper study of neurofeedback has been addressed for enhancing the detection
of motor-related neurophysiological phenomena.
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Introduction

Brain-computer interfaces are powerful systems enabling non-muscular communi-
cation and control. Such systems rely on the measurement of brain activity, from
signals acquisition to processing, thus aiming to associate a meaning to voluntarily
or involuntarily modulated brain waves. A main application of these interfaces is
the replacement of lost function for people with severe impairments. In addition to
that, they can also help in restoring lost natural outputs of the central nervous system,
as well as improve, enhance, or supplement the nervous system functions. Hence,
brain-computer interfaces can also be employed as assistive devices for people with
no impairment. Typical examples are gaming, entertainment, education, or novel
tools for workers. Whether these kinds of neural interfaces are sought for able-bodied
people or impaired ones, the need to move from laboratory environments to daily-life
has recently emerged.

The quest for daily-life brain-computer interfaces has thus led to new challenges
and requirements. Surely, the first requirement is to adopt non-invasive neuroimaging
techniques to acquire brain activity. This is trivially justified by the need to avoid
surgical risks and because of the poor social acceptance of an invasive implant
inside the skull. Nonetheless, from a strictly metrological point of view, a relevant
drawback is the unavoidable degradation of the signal quality if compared to invasive
neuroimaging techniques. Such a degradation is even more present when wearability
and portability constraints are considered. For instance, these typically imply that
the electroencephalography should be preferred to the magnetoencephalography,
although the magnetic field would not be affected by the presence of the skull as it
happens for the electric field associated with brain activity. Furthermore, wearability
is correlated with the usage of few acquisition channels, thus requiring to extract
the neurophysiological phenomena of interest by less available information. On the
other hand, portability implies that motion artifacts could greatly affect the acquired
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signals, and again this requires a proper processing to remove such artifacts without
diminishing the amount of available information about brain activity. Lastly, it is
worth mentioning that a user-friendly interface for daily-life applications requires
an ergonomic acquisition system and minimal calibration time for the system to
work. Overall, the challenges associated with this technological trend are related
either to the hardware and software part constituting a brain-computer interface.
Nowadays, it is still unclear to what extent BCIs can be ported to everyday life
given the degradation of their performance associated with the abovementioned
requirements and constraints.

On the road to daily-life brain-computer interfaces, the work reported in this the-
sis concerns the investigation of two different paradigms. Firstly, a reactive paradigm
was investigated, namely a brain-computer interface relying on external stimulation.
Steady-state visually evoked potentials were particularly considered as they have
been largely investigated in the scientific community with respect to more classical
architectures. Next, an active paradigm was considered, whose operation relies
on spontaneous and voluntarily modulated brain activity. Notably, motor imagery
was exploited, i.e. the act of imagining a movement without actually executing it.
Although more interesting because of the possibility to avoid external stimulation,
the detection of motor imagery is usually more critical than detecting evoked poten-
tials. A third paradigm could be possibly considered, namely passive brain-computer
interfaces relying on the measurement of involuntarily (spontaneously) modulated
brain activity. They are indeed very interesting for monitoring the mental state of a
user, but such a paradigm goes beyond the scope of the present thesis and it will not
be considered in the following.

The thesis has been structured as follows. Chapter 1 gives an essential back-
ground on brain-computer interface technology. Its history is briefly retraced from
electroencephalography invention to brain-races, then these systems are categorized
according to their different characteristics, and finally a general architecture is pre-
sented by highlighting the main blocks. The chapter ends by extensively discussing
the requirements and reporting some implementation examples pointing to daily-life
neural interfaces. Moreover, some perspectives are outlined as possible developments
addressed to a near future. Chapter 2 focuses on the design of daily-life interfaces
that, with an abuse of notation, are referred to as "wearable". This keyword stresses
the need to use little cumbersome hardware for both signal acquisition and actuation,
and this is even related to low cost and user-friendly equipment. The chapter aims to
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describe devices that can be employed in aiming to realize wearable brain-computer
interfaces, as well as the processing approaches that are more suitable for systems
with limited computing capability. Then, the chapter also considers metrological as-
pects, particularly focusing on the characterization and calibration of consumer-grade
electroencephalographs, as well as the characterization of smart glasses that have
been exclusively employed in the reactive paradigm. After these general chapters,
the discussion of Chapter 3 and Chapter 4 is devoted to the specific realization of
wearable interfaces based on visually evoked potentials or based on motor imagery,
respectively. Both chapters report some considerations on the neurophysiological
phenomena of interest, and then they present the design, prototyping, and experimen-
tal validation of such systems. Finally, applications are even discussed in order to
better justify the relevance of the work presented hereafter.



Chapter 1

Brain-computer interface technology

A brain-computer interface (BCI) is a system allowing direct communication between
the brain and the external world. It typically involves communication with or control
of electronic devices, and it does not depend on the normal brain output channels
[8]. Such a technology relies on measuring brain activity, induced or evoked both
involuntarily or voluntarily from the subject [9]. BCIs can exploit a single type of
physiological signals, or different types of physiological signals at once (hybrid
or multimodal BCIs) [10, 11]. Although most researchers have been focusing on
helping people with motor disabilities [12, 13], some companies now offer BCI-
based games for healthy users [14, 15], while other research groups are developing
applications in fields like human-machine interaction and robotics [16, 17]. It is
not rare to call such systems “brain-machine interfaces” (BMI) or even “brain-robot
interfaces” (BRI). Though they have different nuances, these terms will be used
interchangeably. The European “BNCI Horizon 2020” project [18] identified six
application scenarios for BCI systems in relation with the central nervous system
(CNS) natural output:

• replace lost natural CNS output;

• restore lost natural CNS output;

• improve natural CNS output;

• enhance natural CNS output;

• supplement natural CNS output;
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• research to investigate CNS functions.

Among the possible fields, this thesis mainly focuses on daily-life applications of
BCIs. A main objective is to improve wearability and portability of such systems with
respect to both signal acquisition and processing, as well as to guarantee relatively
low-cost implementations. As case studies, industry and healthcare will be mostly
considered.

The current chapter provides an essential background for the ensuing discussion,
thus an effort was made to point out the major aspects of this vast technological
field. Therefore, the history of BCI is briefly retraced in Section 1.1. A categoriza-
tion of BCI technologies is attempted in Section 1.2 by taking into account their
major attributes. Then, in Section 1.3, a general BCI architecture is introduced and
discussed. Finally, Section 1.4 presents some requirements for building daily-life
neural interfaces, reports some examples from the literature or from the market, and
outlines some future perspectives for BCIs. Then, novel designs are proposed in the
following Chapters. The interested reader is also addressed to Appendix A for more
details on measuring brain activity, while just the most relevant aspects for wearable
BCIs will be treated in the chapters.

1.1 Brief history

In 1924, the German psychiatrist Hans Berger (1873 - 1941) was able to record for the
first time the electrical activity of the human brain. After 1924, neurophysiologists
recorded a big amount of brain signals in several conditions. In 1929, Berger
published a report with data from 76 subjects obtained by introducing electrodes
in their skull [19] (Fig. 1.1). Moreover, some researchers focused on voluntarily
control of the brain rhythms [20, 21]. The expression “brain-computer interface”
(BCI) was first introduced in 1973, with the famous article by Jacques J. Vidal
Toward Direct Brain-Computer Communication [22]. In particular, his research at
University of California demonstrated the feasibility of a communication relying
on the information extracted from brain waves. In a further article, Real-Time
Detection of Brain Events in EEG [23], Vidal showed that, in some situations, it was
possible to detect and reliably classify in real-time evoked responses or event-related
potentials. The proposed system required a stimuli generator for the elicitation of
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Fig. 1.1 The German psychiatrist Hans Berger, inventor of electroencephalography [1].

brain potentials: an intermittent stimulus pattern shared the display with a fixed maze
in which the BCI user had to drive a mobile cursor. The electric potentials to classify
were related to four different fixation points, through which the user could move the
cursor.

The first international meeting on BCI research was organized by IEEE, the
Institute of Electrical and Electronic Engineers, more than 25 years later, in 1999 [12].
The need of a meeting arose from the rapid growth of BCI research groups. Its scope
was to review the state of the art of BCI technology at that time and establish common
definitions, methods, and procedures. Worldwide, the BCI research groups were
more than 20. Essentially, all BCI systems were based on electroencephalography
(EEG), and their performance was assessed with a parameter called “information
transfer rate” (ITR), whose maximum value was reported to be 5–25 bit/min. It
was also highlighted that the central element in each BCI system is the algorithm
translating electrophysiological input from the user into output that controls external
devices. These considerations were mostly confirmed in the second international
meeting, held in 2002 [24]. After 30 years from the first proposal of a brain-
computer interface, the results were already poor, though advancing technology and
more powerful computers were unlocking new horizons. The achievement of higher
speeds and greater classification accuracies, both implying greater ITRs, was led
back to the need for improvements in signal acquisition and processing, but also to
a better user training. It was clear that such improvements depended (and depend
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today) on a synergy between different disciplines and on the adoption of common
criteria and strategies among the ever-growing research groups.

As mentioned above, the BCI research field has always been related to medical
applications, promising solutions for people affected by amyotrophic lateral sclerosis
or by the locked-in syndrome [25], as well as new rehabilitation possibilities [26, 27],
e.g. in post-stroke recovery. At the same time, BCIs can be used by able-bodied peo-
ple in leisure activities, such as gaming and entertainment [28], or in other daily-life
applications like smartphone control [29]. In the last decade, BCI technologies have
seen considerable acceleration in their development, mainly because of the advances
in processing algorithms [30] but also because of the progress in neuroimaging tech-
niques [31]. Some BCI paradigms are currently reaching 100 bit/min, though there is
a trade-off between such a performance and ease-of-use [32]. For instance, high ITRs
are typically reached with a BCI relying on external stimulation, and this might not
always be desirable. Furthermore, the ITR is not necessarily an appropriate metric
to describe the performance of a BCI system, and the definition of ITR itself has
been questioned in some contexts [33]. As technological development goes on, BCI
communities are growing over the world, and many researchers involved in the field
belong to the “BCI society” founded in 2013. Several scientific disciplines cooperate
in research and development, and among them it is worth mentioning neuroscience,
psychology, engineering, and computer science. In addition, ethics is another impor-
tant concern that is accompanying the field. Thanks to conferences and other events,
the BCI culture is spreading around the scientific and non-scientific communities.
Notably the BCI international meeting is currently held every two years, and the Graz
BCI conferences are also held every two years in an alternative manner. It is also
worth mentioning that “BCI competitions” were held in the recent past (2000-2008)
as an occasion for different research groups to compete and interact, and today these
events have still an echo because the datasets originated by them are often considered
as benchmarks in the BCI literature [34]. Finally, starting from 2016, a BCI-related
contest is held as one of the disciplines of the Cybathlon (Fig. 1.2), an international
multi-sport event in which people with disabilities compete by exploiting assistive
technologies [35] (Fig. 1.2).
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Fig. 1.2 Francesco Bettella and the Italian team WHi won the BCI race at Cybathlon 2020.

1.2 Taxonomy of BCI systems

It is not easy to establish well-defined categories in sorting out systems or tech-
nologies, especially for a field like “brain-computer interfaces” that is complex and
continuously evolving. Most probably, such well-defined limits between different
things do not even exist. However, the attempt to set those boundaries is an essential
task for a better comprehension of the topic. Taxonomy allows to highlight the major
differences between various systems and technologies, and this leads to focus on the
better solution for a specific problem.

BCI systems can be divided into categories according to several aspects. The
first distinction concerns the invasiveness of the technique employed to acquire
brain activity (Fig. 1.3). When sensing elements are placed outside the skull, the
BCI is categorized as non-invasive. This guarantees an easy and safe utilization,
but detection reliability is affected by the tissues interposed between the actual
signal source and the acquisition system. On the other hand, invasive techniques
may produce highly reliable control signals with high-speed information transfer.
However, there are risks related to the need of surgery for implanting the sensors
inside the skull, they are difficult to use, and they potentially lead to infection and
long-term viability [11]. These invasive BCIs are often distinguished from partially
invasive BCIs. The difference is that neural probes are not placed inside the grey
matter of the brain, but outside the grey matter though inside the brain, e.g. on the
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(a) Representation of an inva-
sive intracortical sensing.

(b) ECoG as an example
of partially invasive measure-
ment.

(c) A classic non-invasive tech-
nique for measuring brain ac-
tivity, the EEG.

Fig. 1.3 Different degrees of invasiveness for a brain-computer interface, typically related to
the brain activity measurement technique.

cortical surface. It is important to highlight that the difference between these two does
not merely reside in the level of risk for the user, but also in different measurement
reliability. Indeed, long-term signal variability in invasive BCIs is induced as a result
of neuronal cell death, cicatrization, and increased tissue resistance [36]. For these
reason, a partially invasive technique like the electrocorticogram (ECoG) reduces the
risks and instabilities of an intracortical electrogram while preserving the advantages
of a more invasive approach with respect to a non-invasive EEG, such as greater
spatial resolution, temporal resolution, and immunity to noise.

BCIs can also be distinguished according to the nature of the signals they use as
input [12]. Notably, endogenous control modules respond to spontaneous control
signals from the user, e.g. a motor imagery task generating sensorimotor rhythms
(SMRs), while exogenous control modules respond to control signals evoked from
the user by a stimulus, e.g. event-related potentials such as the P300 response
potential, or visually-evoked potentials (VEPs) [36]. At this level, the distinction is
thus between stimulus-related paradigms (exogenous) versus non-stimulus-related
(endogenous). If a stimulus is needed, a further distinction can be done among
evoked and induced potential. Evoked potentials are oscillations that are phase-
locked to the stimulus, and they can be detected by analyzing the average among
different trials or with a spectral analysis. On the other side, induced potentials are
not phase-locked to the stimulus, and they are detected by first removing the average
component among trials and then analyzing trials in time-frequency [37]. In these
same regards, a similar distinction was proposed in [38] between reactive, active,
and passive BCIs. In a reactive BCI, the brainwaves are produced in response to
external stimuli, and this clearly coincides with the ‘exogenous BCI’ case. It is also
worth saying that the subject can consciously or unconsciously be exposed to the
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external stimuli, and this implies a further distinction between a reactive BCI for
control applications versus a monitoring application. Secondly, in an active BCI
the subject voluntarily produces a modulation of the brain waves for controlling an
application, independently of external events. Finally, in a passive BCI the user does
not directly and consciously control his/her electrical brainwaves. Such paradigms
are generally used for monitoring the user’s mental state. The last two BCI types can
be associated with the ‘endogenous BCI’ category, but of course some aspects of
their are better focused.

Another distinction is made between dependent and independent BCIs [8]. A
dependent BCI relies on other normal brain outputs, usually a muscular activity.
An example could be a BCI based on the steady-state visually evoked potential
(SSVEP). This evoked potential is generated in the occipital area of the brain when
the user stares at a flickering icon. In order to work, this usually requires that the user
moves his/her eyes to gaze at a specific icon. On the other side, an independent BCIs
provide a completely new communication channel, because it does not depend on
already existing pathways. As an example, P300 is again a visually evoked potential,
but it only requires that the user is concentrated on an icon without moving the eyes.
The potential is evoked in relation to the flashing of this icon [39]. To make things
more confusing, a study suggested that also SSVEP can be used without a gaze shift,
and in that case such a system would be considered as an independent BCI [40].

Finally, a last functional distinction is worthily mentioned. A BCI system is
synchronous if the interaction between the user and the system occurs over a specific
period of time, which has also a well-defined initial time (referred to as ‘cue’).
Therefore, only in that period the device can receive biomedical signals and process
them. Instead, if the user wants to interact at any time, there is the need of an
asynchronous BCI, which is able to react to the mental activities coming from the
patient at any time without any restrictions. The last aspect is quite important in daily-
life applications, but the asynchronous mode clearly introduces more difficulties
because the system must be not only capable of discriminating “a what” but also “a
when” [41].
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1.3 Measurement system

A general purpose BCI architecture is represented in Fig. 1.4. Signals are acquired
from the user’s head, and then they are processed to retrieve a command for the
application of interest. The signal processing can be divided in two stages: (i)
features extraction derives a meaningful synthetic description of the signals, and (ii)
features translation interprets them by giving back an output command. A feedback
is finally given to the user depending on the application.

signal 
acquisition

features 
extraction

features 
translation

BCI application

brain 
signals

control 
signals

feedback and/or stimuli

signal processing

Fig. 1.4 Measurement scheme of a brain-computer interface
.

In the following, the blocks introduced for the BCI architecture are discussed in
more detail. The purpose is to give a deeper understanding for the different elements
constituting such systems, with a particular emphasis on EEG-based systems. Mean-
while, further details are addressed to the specific implementations that are treated in
the next chapters.

1.3.1 Signal acquisition

Different neuroimaging techniques can be used in BCI systems [42]. The electromag-
netic activity is typically measured, but there are also other physiological phenomena
that are related to brain activity, e.g. blood dynamics. The interested reader is
addressed to Appendix A for an extensive discussion of the major neuroimaging
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techniques. Concisely, the brain activity is described by means of signals in time
domain related to different neurophysiological phenomena. The probes for acquiring
these brain signals can be put inside or outside the user’s scalp, and they define the
degree of invasiveness of the BCI system. In the present thesis, the focus is on elec-
trodes placed outside the scalp to acquire the cortical electrical activity. Therefore, a
non-invasive electroencephalography (EEG) will be considered. Despite the enor-
mous advantages that EEG non-invasiveness has for practical applications, its spatial
resolution is limited (order of magnitude: 1 cm) because the signals measurable from
the scalp surface can only be related to populations of active neurons [43]. This
is indeed one of the major factors that are limiting neuronal activity decoding in
EEG-based systems. Furthermore, the electrical activity is attenuated by the layers
between the brain and the electrodes, thus it is more sensible to noise.

Electrode types can be distinguished between wet and dry, depending on whether
conductive gels are used or not at the electrode-scalp contact. Gels used in wet elec-
trodes have the advantage to enhance the contact with the skin and hence improve the
signal quality. They are used in conventional systems, notably in clinical application.
On the other side, dry electrodes guarantee higher comfort for the user and they are
more suitable for daily-life applications. A recent comparison between these two
technologies showed that signal quality complies with the needs of clinical applica-
tions even when dry electrodes are used [44]. However, particular attention must be
made since these electrodes have a poorly stable contact and hence they are more
affected by artifacts during recording. For both electrode types, pre-amplification
or simply buffering can be considered for impedance matching: such electrodes are
thus referred to as "active". In contrast, passive electrodes (no pre-amplification) are
simply conductor and they are usually employed for signal referencing. Electrodes
placing was standardized with the 10-20 system [2]. According to it, locations are
identified by considering inter-electrodes distances equal to the 10% or the 20% of
the nasion-inion distance. Therefore, the distances are relative to the dimensions of
the specific user’s scalp. The standard electrode locations of the 10-20 system are
shown in Fig. 1.5, where the positions Fpz and Oz are highlighted as an example.
These specific positions will be considered in Chapter 3 for the measurement of
visually evoked potentials. It is also worth mentioning that more electrode locations
can be identified with the 10-10 system, which defines a finer spatial grid for the
placement.
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Fig. 1.5 EEG electrodes locations according to the international standard framework 10-20
[2]; the positions Fpz and Oz are highlighted in black at the scalp frontal region and at the
occipital region, respectively.

With particular regards to EEG acquisition, signal amplitudes normally span
the 0.5 µV to 100 µV range [43]. Therefore, amplification is another crucial part
of the acquisition system. Together with filtering, it contributes to the signals
conditioning needed before voltage acquisition. Frequency bands of interest are
typically limited to about 100 Hz, but this higher limit can be lowered depending
on the actual case. Clearly, filtering should always consider the only frequencies
of interest in trying to maximize the signal-to-noise ratio, which is quite limited in
EEG measurements. Moreover, since the advent of digital electronics, the voltage
acquisition consists of an analog-to-digital converter, so that the digitized signal
can be better processed by following stages and stored in digital memories. In few
cases, analog EEG acquisitions are still taken into account. They consist of voltage-
controlled deflections of pens writing on a paper tape. Such analog EEG machines
are certainly a historical heritage that could be popular among clinicians, but they
are definitely not used in an engineering context. In either case, the vast majority of
EEG acquisition systems consider multi-channel devices with 64 or more electrodes.
Acquisitions are often triggered in order to synchronize measurand signals with an
external event. This is typically the case when event-related potentials (ERP) are
measured, while, generally speaking, there is the need to provide timing of data
points in most BCI applications. More details on the measurand signals are recalled
in the Appendix A with respect to classical frequency bands and common paradigms.
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Fig. 1.6 Feature extraction allows for a convenient representation of signals in trying to
maximize separability.

Nonetheless, other relevant aspects will be better treated in the following chapters
proposing specific BCI systems design.

1.3.2 Features extraction

Once the signals are acquired, the decoding of neural activity requires proper process-
ing. In the first processing step, peculiar features must be extracted from available
signals in order to synthetically describe the signals while trying to emphasize the
informative content. This is useful for the interpretation of the user intention or
mental state. An example of features extraction is represented in Fig. 1.6. When
the signal to analyze is represented in frequency domain (Fig. 1.6a), the plot shows
some harmonic components that could characterize the signal. However, in aiming
to distinguish this signal from another one, a suitable choice could be describing the
signal in terms of the power associated with the harmonics. Assuming that these
signals can be described with two power features, each one corresponds to a dot in a
plane. Such a features domain representation can highlight a separability between
two classes of signals (Fig. 1.6b).

Since digitized EEG signals are affected by noise, either electrical or biological
interferences, pre-processing is often considered before the features extraction. This
phase usually consists of spatial and/or frequency filtering and decomposition, so
to allow artifacts removal, or at least reduction. They mostly require multi-channel
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acquisitions, or even additional signals coming from electrooculography and/or
electromyography [45]. For instance, eyes and muscular movements affecting the
EEG signals can be identified with a proper decomposition in order to remove
the artifacts-related components. Indeed, in doing that, there is also the risk of
removing relevant information. After the pre-processing, commonly used features
in representing EEG signals are frequency band power features and time point
features [30]. Band powers represent the signals for a fixed frequency band and
a fixed channel with respect to its mean power or mean energy over time. The
time windows considered for this calculation are referred to as “epochs”. On the
other hand, time point features concatenate samples from available channels. Band
power features are mostly used when the amplitude of EEG rhythms are related
to the neurophysiological phenomenon of interest, while time point features aim
at describing temporal variations. Such considerations suggest knowledge-driven
processing approaches. Notably, exploiting the knowledge about neurophysiological
phenomena is desirable when there is a limited amount of available data to train
a model for feature extraction. This prevents the risk of overfitting the model on
training data, which would lead to poor performance on independent data. For
instance, a deep neural networks could be more prone to overfitting since it typically
involves many parameters to be determined, while available EEG data could be not
sufficient for that. In this context, an interesting research trend is also attempting to
explain artificial intelligence, so to validate the training of the features extraction
models while providing an interpretation of the measurand signals features. This
appears particularly relevant in medical and biomedical applications.

Another crucial step is features selection. This step allows to reduce the number
of predictors, which represent the signals under analysis, to a subset of mostly
informative features. The aim is again to reduce the risk of overfitting the signal
processing model on training data by excluding non-relevant features, thus enhancing
the predictive accuracy and the interpretability of the model. Three main selection
methods include subset selection, shrinkage, and dimension reduction [3]. Subset
selection can consider all possible subsets of features to find an optimal one by relying
on an objective function. However, since computational burden is often prohibitive,
stepwise selection is typically considered, since it allows to add or remove a single
best feature at time. In shrinkage methods, the selection is conducted by shrinking
coefficients associated with each feature toward zero: this method inevitably involves
the features translation step, in which a functional relationship between features and
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model response is attempted. Lastly, in dimension reduction methods, the directions
of maximum variance in the features space are typically derived, e.g. with a principal
components analysis. It is worth noting that the feature selection step is often
integrated within the feature extraction itself, or it can be carried out in conjunction
with the training of the features translation model (regression or classification).
Broadly speaking, there could be no clear distinction between the blocks of signal
processing: the current discussion considers separated blocks for simplicity, but
features extraction, selection, and translation can be conducted simultaneously, such
as in deep neural networks.

1.3.3 Features translation

In the general BCI architecture discussed here, the last part of signal processing
consists of translating the features describing brain signals into control signals for
an application. The goal is to derive a functional relationship between the features
(predictors) and the output control signals (response), usually by regression or
classification. In this thesis, classification is mostly considered, because in most
cases there is no logical order among the possible output values. In particular, the
measured brain signals can be associated to a specific class between 2 or more
choices. Modern classification methods mostly rely on machine learning. As a
first classification attempt, a simple approach is typically considered, such as linear
discriminant analysis (LDA) or k-nearest neighbors (KNN) [3]. Successively, a
more complex approach can be adopted to enhance the classification according to
the features statistical distribution. In this sense one can also speak of statistical
learning, and common approaches are decision trees, random forest, or support
vector machine with linear or non-linear kernels. Fig. 1.7 shows two different datasets
represented in bi-dimensional features domains to highlight that the most suitable
classification approach depends on the shape of the boundary between different
classes. Furthermore, in the last years, novel approaches have been developed starting
from the abovementioned classical methods [30]. Notably, adaptive classifiers
are used to deal with signal non-stationarity, tensor-based classifiers are used to
analyze data in a geometrical space allowing better manipulation, or transfer learning
techniques are explored in order to generalize a trained model to data with a different
statistical distribution. Deep learning has also attracted many researchers in the BCI
field, but it will not be considered hereafter since it typically requires more data.



1.3 Measurement system 17

Fig. 1.7 Two different datasets in which each element is represented with two features. First
row: due to a linear boundary, the best approach must assume linear separability. Second
row: the boundary is non-linear, thus a non-linear approach like random forest guarantees
better separation [3].

Classification performances can be assessed by different metrics depending on
the final application. A largely considered parameter is the classification accuracy,
which is calculated as the ratio between correctly classified signals divided by the
total number of classified ones. This accuracy is actually a success rate, and it
quantifies how many times the BCI system correctly recognizes the user’s intention.
Classification accuracy is also a common objective function in training the features
selection part of the model. Its calculation requires that test data, independent
of the training data set, are available. However, during the training procedure,
classification accuracy can be estimated with cross-validation. This procedure
consists of randomly splitting training data into training and validation subsets, so
to estimate the classification accuracy by averaging the accuracies on the validation
subsets across different iterations. Cross-validation is thus extensively used in model
selection during training and for estimating the model performance on independent
data [46].
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1.3.4 Applications

BCI technology has been exponentially growing over the current decade. Especially
in early researches, this was associated with clinical applications due to the possibility
to guarantee alternative communication paths for people with motor disabilities [12].
A direct interface with the brain is meant to help overcoming eventual functional
disabilities, and indeed common application examples are the control of a robotic
prosthesis or wheelchair [47, 48]. However, the usefulness of BCI has been explored
in further fields. In recent years, applications have been identified in gaming and
entertainment, in education and training, as well as in industrial contexts [49]. As
mentioned before, the European community has addressed the usefulness of BCI
systems as assistive devices, not only to replace or restore lost natural outputs of the
central nervous systems, but also to improve, enhance, ans supplement such natural
outputs in able-bodied people [18]. To this aim, many paradigms were developed
and they are still studied today, such as the possibility to exploit motor imagery in
spontaneous activity-based BCIs, or the possibility to provide an external stimulation
for the user and detect the potentials elicited by a voluntary exposure to these stimuli.

In the next chapters, some applications will be presented with respect to either the
SSVEP reactive paradigm, i.e. BCIs rely on steady-state visually evoked potentials,
and the motor imagery active paradigm, which instead relies on spontaneous brain
activity. Though the focus is on fundamental research regarding daily-life neural
interfaces, it will be useful to discuss the applications attempted for different case
studies. In all cases, the application itself will provide a feedback to the user. This
feedback may simply consist of the result of the control action, or it can be a
functional feedback that allows the user to better focus the mental task to carry out.

1.4 Daily-life neural interfaces

In the last section, application examples have been reported to better highlight the
power of brain-computer interfaces as assistive devices for impaired or able-bodied
people. Many efforts have been made to bring BCI technology out of the laboratory
[50], and many attempts are still ongoing to make this possible, but applications
in everyday life are nowadays limited due to technological and practical issues.
The work discussed in this thesis would like to contribute to the spreading of such
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neural interfaces in daily-life activities by providing a more accessible technology.
Therefore, the present section first discusses some requirements that a daily-life
brain-computer interface should have, and then reports some practical considerations
devoted to the implementation of such systems. The overall aim is to introduce
the reader to the proposal of the thesis, whose general aspects will be treated in
Chapter 2, while the details will be extensively discussed in Chapters 3 and Chapter 4
with specific regard to a BCI based on evoked potentials and based on motor imagery,
respectively. Some future perspectives are also mentioned at the end of the present
chapter.

1.4.1 Requirements

The first requirement for a daily-life neural interface is non-invasiveness. There
are two main reasons for such a design choice: the risk of surgical intervention for
an invasive device, and its poor acceptance by a large audience of users. Indeed,
despite the risks, an invasive BCIs could be essential for users with severe disabilities.
However, their employment does not comply with daily-life usage. Though such
considerations may sound trivial, it is worth stressing that the choice of non-invasive
neuroimaging techniques limits the brain activity measurement. Next, wearability
and portability are required. Often these two aspects are confused, and the only
keyword "wearable" is employed. Actually, also this thesis refers to the treated
systems as “wearable brain-computer interfaces” for the sake of brevity. However,
it is to remark that a device may be easy to wear but not portable, and still that a
portable device/system may be not wearable. For instance, an electronic device
acquiring biosignals may be worn on the head, but it could be not portable if it does
not have a battery supply independent from the main supply. The wearability and
portability requirements comply with the need to leave the user as free to move as
possible, and in general the aim is to provide high user-friendliness to avoid fatigue
in long-term usage. These constraints are right away translated into the need for
using a lightweight signal acquisition system, as well as into the usage of gel-free
electrodes. Notably, these constraints not only affect the hardware part, but they pose
some constraints on signal processing too. As an example, motion artifacts diminish
the signal-to-noise ratio of the acquired brain signals and proper processing is needed
for artifacts removal. Moreover, since wearability typically implies the usage of
few channels, classification algorithms can exploit less information than usual brain-
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computer interfaces. Another obvious requirement is low cost. Moreover, the BCI
system is supposed to exploit as few components as possible to also guarantee easy
reproducibility. The requirements stated above justify the large employment of
electroencephalography (EEG) as brain activity acquisition technique [42], since it is
non-invasive and relatively low-cost, as well as it can be wearable and portable. For
the same reasons, EEG was also considered as a main design choice for the systems
discussed hereafter.

As a last aspect considered here, there is the possibility to have minimal training
(or ideally no training), namely to avoid long periods in which the system must be
tuned before the user can use it. Unfortunately, this aspect is critical because of
(i) inter-subject variability, which would require the system to be tuned on each
specific user, and even more because of (ii) intra-subject variability, which would
require a re-tuning every time the user would like to use the device or even during
the usage itself. As discussed later on, such issues are harder to address for active
BCIs when compared to reactive BCI paradigms. Indeed, when the paradigm relies
on spontaneous brain activity, there is the need of a proper training protocol for the
user to learn how to voluntarily modulate his/her brain signals, while the detection
of evoked potentials is usually more robust. In brief, this thesis will suggest that
today’s reactive BCIs are far more suitable for daily-life applications since they are
performant enough even with little user training, while active BCIs require proper
user training protocols and further investigation in transfer learning techniques for
addressing algorithm pre-training and signals non-stationarity.

1.4.2 Implementations

The interest in wearable brain-computer interface as daily-life assistive devices has
been recently increasing. In a recent review on BCIs used in games [28], the pro-
gresses in EEG-based devices for video games were reported by showing that the
gaming field greatly contributes to orienting BCI issues and concerns. For instance,
since user motivation is crucial in BCI functionality, games are a good research tool
for testing daily-life usage. This review highlighted how BCI are far from applica-
tions for healthy people, and that, even though the interest in using commercially
available devices is increasing, widespread adoption of such a technology has not yet
been triggered. Notably, it was also remarked that motor imagery paradigms are not
usually implemented with commercial devices. Among commercial devices, indeed
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the Emotiv EPOC is one of the most exploited in BCI implementations. For instance,
a wearable BCI based on steady-state visually evoked potentials was implemented
to control a quadcopter [51]. In that work, the attempt was to integrate in a single
head mounted device both the EEG recording system and a virtual reality visor, by
following the idea that the “smart glasses” can replace the conventional displays of
visual stimuli. This concept will be also adopted in part of the work described below
[49].

Other commercial devices indeed exist as interesting solutions for daily-life
applications. Among them, it is worth mentioning EEG caps from g.tech, which are
more devoted to clinical applications, and EEG caps from Neurosky and Bitbrain,
whose designs are more prone to user-friendly implementations. Moreover, open
hardware solutions are also quite interesting due to the possibility to customize the
acquisition system [52]. In these regards, some ongoing studies are trying to assess
the quality of signals measured by such commercial devices, and their performance
is often compared to EEG systems with wet electrodes, which are de facto standards
[53, 44]. In following this trend, Chapter 2 will report the characterization of the
Olimex EEG acquisition system that has been mostly employed in the development
of our wearable BCIs.

1.4.3 Perspectives

Today’s society is data hungry. The possibility to have at our disposal a huge amount
of data has disclosed new possibilities in many technological fields, such as image
processing. Once the "big data" are properly stored, which is itself a challenge,
their analysis is not trivial, but deep learning has demonstrated an extraordinary
capability in identifying unimaginable patterns in data, thus giving new insights on
many phenomena. Therefore, the interest in adopting novel deep learning techniques
even in the BCI field is clearly justified. A model identified by means of deep
learning could give many new insights in the complex behaviour of brain activity,
thus opening up new possibilities both in terms of more powerful interfaces and more
understanding of the human brain. Nonetheless, the application of such techniques to
brain signals analysis is still struggling because of the limited amount of structured
brain data. Data augmentation and artificial data synthesis are also under study,
as well as transfer learning has been recently considered to enable the usage of
powerful processing techniques requiring big data. In this context, daily-life usage
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of brain-computer interfaces would allow to acquire much more real data related to
the brain.

Exiting the laboratory environment will indeed be a big change for the BCI field,
and its impact on society is still under discussion. Hence, such a contingency poses
both technological and ethical issues. From the technological point of view, the sci-
entific and technical communities already understand the need to have standardized
measurement procedures, both for acquisition and processing, without which the
mere availability of much brain data would not be enough [54]. Unfortunately, the
efforts in this direction are still at an early stage. Another interesting initiative has
risen in the last few years in trying to also standardize the processing of brain signals
and build a common platform to share and compare the results of different research
groups [55]. The standardization needs could indeed benefit from that, but today this
is still poorly diffused. Beyond that, the possibility to share standardized procedures
is still facing an intensive and hard discussion phase. Lastly, the tremendous potential
of brain-computer interfaces clearly poses ethical issues. Although BCI are still very
far from “mind reading”, privacy issues are already present in acquiring and storing
brain data [56], especially when applications like neuromarketing are sought. Hence,
ethics will probably follow and guide the development of BCI technologies even
more.



Chapter 2

Designing wearable brain-computer
interfaces

Research and development in the BCI field is an ever-growing topic, and it is recently
attracting more and more investment from the scientific community. The previous
chapter tried to depict a general overview of this technology, and it already underlined
the most relevant aspects in aiming to build devices for daily-life applications, which
is indeed the focus of this thesis. In particular, the current discussion looks at brain-
computer interfaces as a mean for control and communication with the external
world. The final scope is to propose BCI technology for daily-life assistive devices,
in targeting both able-bodied and impaired people. Therefore, the present chapter
will translate the requirements identified for daily-life BCIs into design choices,
and it will propose a possible implementation approach. As in every engineering
topic, there will be the need to find an optimal balance between the several trade-offs
that characterize the BCI technology. The work reported in this thesis has thus
attempted to keep the system as performing as possible while concentrating on
user-friendliness.

In the following, Section 2.1 will introduce acquisition approaches for recording
EEG signals by relying on components off the shelf. Section 2.2 will instead
propose processing approaches in trying to balance performances with computational
burden. Metrological aspects will be treated in Section 2.3, with particular regard
to the importance of properly recording brain signals before they can be processed.
The characterization of the employed off-the-shelf instrumentation is then treated
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in Section 2.4 and Section 2.5, concerning the electroencephalograph calibration
and smart glasses characterization, respectively. The aim is to stress the need for
calibration that especially arises when employing commercially available devices. In
contrast, laboratory setups typically guarantee higher metrological performances by
design. Basing on the results of this chapter, specific implementations will be treated
in the following chapters by considering steady-state visually evoked potentials and
motor imagery, respectively.

2.1 Acquisition hardware

In designing the signal acquisition for neural activity, the hardware part is mainly
concerned. Key aspects for the proposed architectures are indeed high wearability
and portability of the head mounted device, and this is especially feasible by choosing
electroencephalography (EEG) as acquisition technique (see Appendix A). As a
further aspects, also EEG non-invasiveness has already been indicated as essential
for everyday-life usability. In addition, user-friendliness is enhanced by adopting a
limited number of dry electrodes to place on the scalp. This is in contrast with more
classical approaches, where many EEG electrodes are exploited and conductive gels
are used to provide a good skin-electrode contact. To translate these design choices
into an actual implementation, a low-cost acquisition system relying on components
by Olimex Ltd was firstly adopted. In detail, the Olimex EEG-SMT is an acquisition
board with up to two differential channels [57] providing signals conditioning for the
signals recorded by electrodes. For each channel, two active electrodes are connected
to the positive and to the negative input terminal, respectively. These electrodes
are active since a buffering circuit is integrated onto the electrode, so to enhance
impedance matching between electrode and skin (scalp). Meanwhile, a passive
electrode without buffer must be connected to the reference input, which is shared
by both channels and serves for common mode noise rejection. Fig. 2.1 shows this
acquisition channel in single-channel configuration.

The signals acquired through the electrodes are amplified and filtered before being
digitized. According to the circuit schematic by Olimex Ltd, the nominal bandwidth
is 0.16 Hz to 59 Hz, while the nominal gain equals 6427.2 V/V assuming that the
gain of the second stage is set at 40 V/V through the trimmer (see [57]). After
signal conditioning, the ATMega16 microcontroller provides the analog-to-digital
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Fig. 2.1 The Olimex EEG-SMT acquisition board with two active dry electrodes connected to
channel 1 for a single-channel differential acquisition and a passive dry electrode connected
to “drive right leg” (DRL) reference terminal.

conversion. The resulting 10-bit codes are finally sent through UART (USB con-
nector) to an external device, for example a personal computer. Note that when
only one differential channel is considered (e.g. CH1), the other channel should be
short-circuited. Also note that silver pins were added to one of the active electrodes
(noticeable in Fig. 2.1). This helps to overcome the hair and reach the scalp during
EEG acquisition, while pins are not necessary for the other electrodes placed on hair-
less parts of the scalp/body. It is worth remarking that the Olimex EEG acquisition
system is open hardware. This makes such a solution very attractive for designers,
since they have full control of hardware, firmware, and software. Further details
about the internal structure of the Olimex acquisition board will be given in the
context of its metrological characterization. In that framework, there will also be
the opportunity to better understand the working principles of this EEG amplifier
as a representative example of the main principles shared with more sophisticated
amplifiers.

The acquisition system has been here introduced in a single-channel configuration
for the sake of simplicity, and this configuration was indeed used in recording brain
activity related to steady-state visually evoked potentials. Nonetheless, the double-
channel configuration was also exploited in some preliminary attempts with motor
imagery signals acquisition. Despite that, in motor imagery applications two channels
are generally too few. Therefore, using the Helmate by ab-medica [58] was also
attempted. This is a wireless device conceived for higher quality EEG (Fig. 2.2)
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and it exploits ten dry electrodes to provide up to eight single-ended channels. The
electrodes are dry, made of conductive rubber, and they have Ag/AgCl coating.
Three different electrode shapes can be installed for an optimal contact with the
scalp, and a skin-electrode impedance check is also implemented. Acquired signals
are transferred through Bluetooth communication to a personal computer with the
proprietary software “Helm8 Software Manager”.

(a) front view (b) side view (c) electrodes

Fig. 2.2 The EEG cap Helmate by ab-medica with ten dry electrodes in different shapes and
bluetooth connection to ensure high wearability and portability.

Hence, for the Helmate EEG cap, the hardware implementation details are not
available because of IP protection. In a similar vein, also the software is proprietary.
During the thesis work, some experiments were conducted with this device, though
no significant results are reported hereafter. However, this kind of solution appeared
very interesting for future developments of wearable and portable BCIs.

Lastly, the FlexEEG system from Neuroconcise is here introduced [59]. This
wireless device uses Bluetooth communication to guarantee portability other than
wearability. It consists of a flexible electronic board for signal conditioning and
transmission (Fig. 2.3a), and two possible electrodes configurations can be exploited,
for visually evoked potentials and motor imagery, respectively. The sensorimotor
electrode array shown in Fig. 2.3b has been considered hereafter for experiments
with motor imagery. It comprises seven star-shaped electrodes (Fig. 2.3c) for a
configuration with three bipolar channels, i.e. CP3-FC3 and CPz-FCz and CP4-FC4,
as well as a reference electrode at the AFz standard location. These placing allows
to map the sensorimotor area of the scalp. The usage of conductive gel is suggested
to ensure a proper skin-electrode contact during EEG measurement. In standard
settings, electrical brain activity is sampled at 512 Sa/s with 16-bit resolution. Data
are received in Simulink and online processing is also possible. In terms of user
comfort, the only disadvantage is the need of conductive gel, though this solution
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was successfully employed in neurofeedback experiments with motor imagery, as
discussed in Chapter 4.

(a) flexible board and elec-
trode array

(b) sensorimotor electrode ar-
ray (c) star-shaped electrodes

Fig. 2.3 The FlexEEG system by Neuroconcise Ltd with seven electrodes needing conductive
gel. Bluetooth connectivity ensures portability other than wearability.

2.2 Processing approaches

Processing acquired signals is unquestionably a crucial step in the measurement
of neural activity. The specific approach to adopt strongly depends on the kind of
activity to decode. Therefore, in this section the attempt is to discuss some general
aspects for the investigated processing approaches, so to give a general overview
of them before addressing the details to further sections of this thesis. Especially
for motor imagery, processing approaches were first tested on benchmark datasets
available online. Then, the more promising ones were adopted to process the data
acquired in dedicated experiments.

In describing the processing approaches, features extraction is distinguished
from classification as discussed in Chapter 1. In accordance with the taxonomy of
a recent review [30], the techniques explored for features extraction fall into the
band power-based category. As the definition suggests, the basic idea is to retrieve
the signals power associated with the frequency bands of interest. In preliminary
studies preceding this thesis, algorithms based on the “fast Fourier transform” (FFT)
were compared to assess the amplitude of specific harmonic components, notably
in measuring evoked potentials [60]. However, as it will be clarified later, a more
suitable choice for features extraction was the assessment of power spectral density
(PSD). For instance, when the user is stimulated with a flickering icon at 10 Hz, it is
well known that a visually evoked potential is elicited in the brain at corresponding
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harmonics [61] (see Fig. 1.6a). A band-power based features extraction consists of
calculating the PSD in the neighbourhood of 10 Hz and eventually higher harmonics.

Broadly speaking, the band-power features are not only restricted to evoked
potentials, but they are also used in other BCI paradigms, such as in motor imagery.
Obviously, the frequency bands to consider do depend on the specific case. Differ-
ently from the evoked potentials case mentioned above, the harmonics or bands to
consider can be hard to determine a-priori for motor imagery. Therefore, machine
learning techniques were exploited to identify the functional relation between signals
features and signals class. It is also worth noting that, in multi-channel acquisitions,
the relation of band-power features across different channels must be considered.
Hence, the machine learning approaches adopted in this work process both frequency
and spatial information. Notably, by relying on training data, an optimal model is
identified in separating different EEG patterns. In the present study, this operation
can be decomposed in (i) identifying an optimal projection for spatial information,
and (ii) select the best features for the ensuing classification step. Again, the details
are addressed to specific system implementations. However, it is to remark that,
in order to cope with the minimal training requirement introduced at the end of
Chapter 1, the processing approaches described here are mainly knowledge-based.
This means that the machine learning-based models were built by also integrating
neurophysiology notions. On the contrary, a deep learning-like approach would
have required much more training data since it is not based on previous knowledge.
Such an issue could be mitigated by means of transfer learning, which has been
also investigated in this thesis work. Ultimately, these processing approaches were
also chosen by taking into account their computational burden, which had to be
minimized especially when online processing was required.

Clearly, classification was also considered after features extraction as a crucial
part of model identification. Nevertheless, it should be noted that the classification
itself is useless if features are poorly separable. For this reason, the main focus
was on features extraction. Then, the best classification approach could be selected
depending on the boundary between different classes in the features space. Consid-
ered classifiers were chosen among supervised machine learning approaches. Firstly,
“support vector machine” (SVM) [3] was exploited for two-classes discrimination.
In the SVM approach, a boundary is identified for optimal separation of training
data in the features space. For instance, data in the features space could be separated
by a hyperplane (SVM with linear kernel), or the boundary could have a more
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complicated shape (SVM with non-linear kernel, e.g. Gaussian or polynomial). The
SVM was chosen since it is a very versatile approach: other then a proper kernel, the
optimal separation allows for some misclassification in training data (soft margin)
to avoid overfitting (Fig. 2.4). In addition to the class, a score can be also assigned
to the signals to classify. That class score corresponds to the probability that the
assigned class is correct. On an intuitive level, if each measure is represented as a
dot in the features space, the farther the dot is from the margin (on the correct side),
the higher is the score. This concept is important from a metrological perspective,
because it means that an uncertainty can be associated with the assigned class. In
this context, it was also interesting to consider another kind of classifier, namely
a Bayesian classifier. Indeed, for such a case, the concept of class probability is
more natural because a Bayesian classifier calculates the probability for a measure
to belong to a class and then assigns the most probable class. Among the possi-
ble implementations, the “naive bayesian parzen window” (NBPW) classifier was
considered [62]. This approach will be better described in discussing the motor
imagery-based BCI implementation in Chapter 4. For both classifiers, multi-class
extensions are possible when more than two classes are of interest.

Fig. 2.4 Example of a support vector machine with linear kernel. Note that some training
data are misclassified, but this is permitted in finding an optimal separation with soft margin
[3].
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Other classification approaches considered in developing BCI systems were the
“k-nearest neighbors” classifier, “linear discriminant analysis“, or “random forests”
[3]. These classifiers usually led to performances compatible with SVM and NBPW,
thus they are not explicitly considered later on. However, attempting different
approaches confirmed the idea that features extraction plays a major role before the
best classifier can be selected and trained.

The performance of a classifier can be assessed by different metrics, and indeed
the most common one is classification accuracy. The concept of accuracy in this
context refers to the number of successfully classified trials related to the total
number of trials to classify. Such a metric is not always the optimal one for assessing
the performance of a system, but this is largely considered in the current thesis in
order to easily compare the presented results with literature results. In addition to
that, Cohen’s kappa has been also considered as it normalizes the accuracy value
by the number of classes to discriminate. Finally, the "information transfer rate"
(ITR) is another common metric that also involves information about the time needed
to classify, and thus it can be useful in assessing the system speed and accuracy
simultaneously.

2.3 Metrological considerations

In designing a BCI that is wearable, portable, and relatively, low-cost off-the-shelf
components are a suitable choice. In a reactive BCI, such a choice is not exclusively
limited to the EEG acquisition, but it is also extended to the stimuli generator.
For instance, in the BCI based on steady-state visually evoked potentials (SSVEP)
treated in Chapter 3, smart glasses are exploited to generate the flickering lights
needed to elicit SSVEP signals. Though many literature studies have been based on
commercially available components, the possibility to employ such instruments was
not properly justified. Indeed, several studies proved that employing smart glasses for
generating visual stimuli and commercial or custom EEG for measuring brain activity
is feasible, at least from an operational point of view [49, 51, 63]. Nonetheless, off-
the-shelf components are much different from laboratory instrumentation, and they
could affect the BCI system performance in an uncontrolled manner if a proper
characterization is not carried out.
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In better understanding the limiting factors deriving from the usage of off-the-
shelf components in a BCI system, a metrological analysis of its building blocks was
conducted. The SSVEP-based BCI is here taken into account as case study. This is
particularly useful for highlighting the aspects of interest for the characterization.
Nevertheless, the electroencephalograph calibration discussed in §2.4 is useful for
EEG-based BCIs in general, and hence for an active paradigm too, such as the
motor imagery (MI) BCI treated in Chapter 4. Instead, the characterization of smart
glasses applies only to systems requiring external stimuli. Note that characterizing
EEG devices by exploiting evoked potentials has been already proposed in literature
studies [64, 65]. However, in those approaches, the characterization depends on
the subjects’ response to the external stimuli because the experiments consist of
measuring the brain activity during a user task. In our discussion, instead, each
components is characterized separately and independently from the BCI user. Then,
the functionality validation for the whole systems will be reported in Chapter 3 and
Chapter 4.

The building blocks of the SSVEP-BCI are represented in Fig. 2.5: smart glasses
are used for generating flickering icons, the human user transduces this visual
stimulation into a SSVEP oscillation, and the EEG device measures the brain activity
containing the SSVEP. Meanwhile, the smart glasses will not be considered for
the MI-BCI. The need for a characterization of the components arose from BCI
experiments pointing out discrepancies between the expected system response and the
measured response. In details, in experiments with SSVEP, the user was stimulated
with a flickering light that should have followed a square-wave path (Fig. 2.6a),
but the resulting EEG spectra showed some unexpected harmonic components with
unexplained amplitudes (Fig. 2.6b).

Fig. 2.5 Wearable BCI system based on SSVEP. From left to right: the BT200 AR glasses
for stimuli generation, the human user, the Olimex EEG-SMT data acquisition board with
dry electrodes.
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Fig. 2.6 Comparison between simulated nominal amplitude spectrum of the visual stimuli
and measured EEG spectrum corresponding to visual stimulation.

Indeed, the major limitation to the system performance comes from the human
user because of the poor signal-to-noise ratio, non-linearity, and non-stationarity of
the measurand [66]. In metrological terms, the human vision system could be seen
as a transducer with high intrinsic uncertainty and, in analysing the whole system,
the uncertainty associated with the other two blocks should be negligible. This is
particularly true in laboratory or clinical applications, where it is possible to choose
the stimuli generator and in the signal acquisition system, without caring much about
wearability, portability, and/or cost. On the other side, such considerations do not
necessarily hold in the consumer-grade context. Therefore, the following sections
report the studies conducted for each block separately to quantify uncertainties
and errors introduced by the the EEG acquisition device and the smart glasses.
This metrological analysis appears essential in justifying the approach adopted in
designing wearable interfaces and address future improvements. It is to remark
that the proposed system focuses on user-friendliness with the aim to spread BCI
technology. This should imply a better understanding of brain mechanisms thanks to
the possibility of acquiring a large amount of data. Precisely for this scope, studying
the metrological performance of such systems cannot be avoided in guaranteeing
the reliability of the acquired data. Before entering into the details of the equipment
characterization, further general considerations are needed about signal quality.
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2.3.1 Signal quality

The quality of the recorded EEG signal is indeed a crucial factor for the BCI operation
and the possibility of evaluating the acquisition quality is typically related to the
detection of artifacts. Such artifacts can be divided into internal, such as eye blinks,
muscular contraction, or heart beat noise, and external, such as electromagnetic
interferences, or power line noise. Indeed, proper EEG electrodes are critical for
measuring artifacts-free brain activity. Unstable positioning and deterioration are
two important aspects related to that, and these issues are worsened in case of dry
electrodes, i.e. when conductive gels are avoided in contacting the user’s scalp.
In this regard, some studies have been conducted to compare different electrodes
applications, namely wet, semi-wet, and dry. Main findings are well resumed in
[67]. In there, the magnitude and stability of the electrode-skin impedance was
investigated. Reasonably, the contact impedance associated with dry electrodes
resulted the highest and most unstable one. This can clearly lead to a distortions of
the actual brain signals and, in some cases, no satisfactory EEG can be obtained.
Nonetheless, the results of the review suggest how to lower the electrode-skin contact
impedance. First of all, the usage of active electrodes is recommended to improve
the measure quality by pre-amplifying the brain signals as soon as they are picked
up. Then, the forearm resulted the worst skin location in comparison with hairy
scalp and forehead, so it should be avoided. For instance, one can place the reference
electrode on the ear instead of the forearm. As already mentioned above, silver pins
were added to the active electrode of the Olimex EEG-SMT when contacting the
skin in hairy scalp areas. A dense set of pins is also suggested since increasing the
contact area is beneficial for reducing the contact impedance. Also recall that, if an
Helmate-like EEG cap is used, the electrodes shape is also optimized to overcome
the hair and reach the scalp. Finally, the contact impedance is lowered by applying
pressure to the electrodes. The values reported in [67] for the impedance are also
compatible with the case of skin abrasion, thus indicating no need to scrub the scalp
surface. In our work, tight headbands were used in aiming to apply a sufficient
pressure to the electrodes while avoiding discomfort for the user.

The above-mentioned precautions are indeed useful in daily-life EEG appli-
cations because they would require gel-free electrodes. In addition, monitoring
the electrodes contact impedance during EEG measurement would be desirable.
Impedance check is typically implemented with an active measurement method,
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in which a small current is injected and the resulting voltage is measured [68, 69].
Unfortunately, this is not always possible. For example, the commercial EEG setup
from Olimex does not include an impedance check circuitry, and this should be pur-
posely added. Given that, the possibility of different quality checks on the measured
signal was considered during our work. In [44] it is suggested that the line noise
(50 Hz in Europe) is not properly rejected if there is a difference between the contact
impedances associated with the reference electrode and the measuring electrodes. In
particular, in experiments with the Olimex EEG-SMT, it was observed that the 50 Hz
harmonic was emphasized when the two electrodes of a differential channels were
applied with different pressures. By noting that one of the electrodes was placed
on the forehead (no hair), this eventuality suggested to adjust the electrode in the
hairy scalp area, usually by tightening the headband. Actually, even if this was done
during the user preparation, the electrodes placement slightly changed during the
experiments due to their long term instability. This was also detected by the appear-
ance of a higher 50 Hz harmonic in the recorded signals, but at least in experiments
with SSVEP, such an event rarely compromised the brain signals classification. In
accordance with such experimental experiences, it appears that contact impedance
constraints are not always tight, since the system functionality remained despite
some instabilities. Nonetheless, this can be true for the SSVEP detection, while it
was not possible to observe a similar phenomenon in the experiments with motor
imagery.

As a further check for signal quality relying on the measured EEG signals, ar-
tifacts were visually inspected. Indeed, it is generally accepted that a normal EEG
is characterized by the absence of identifiable abnormalities. Hence, a statistical
definition of a “clean EEG” signal can help to set threshold values so to determine ar-
tifact levels in an EEG recording. These thresholds are generally based on amplitude,
skewness, and kurtosis of the EEG signal. Threshold-based approaches are com-
monly used to reject EEG segments, they require to manually define the thresholds,
and distinguishing between high and low level of contamination is not trivial. In such
a framework, classifier-based methods have also been proposed to this aim. As an
example, some authors chose to divide the quality of the EEG in three classes [70],
i.e. low quality, medium quality, and high quality, and then they employed more
than a hundred features to classify the EEG quality of the segments. The considered
features were generally extracted from EEG signals filtered in different frequency
bands. Meanwhile, only three signal quality indicators were used in [71]: the ratio of
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alpha power to the total EEG power, the variance of each EEG signal, and the power
at the line frequency (50 Hz or 60 Hz). These parameters were motivated by the fact
that, when the eyes are closed, the power of alpha rhythm becomes dominant and it
can occupy a large part of the frequencies of interest. Moreover, it appears useful to
check line noise because in daily-life settings this is the most prevalent noise source.
Overall, there is no unambiguous standard for evaluating the quality of EEG signals,
and detecting artifacts typically relies on empirical experience. In the case of dry
electrodes, this is even more challenging since the recording is more sensitive to
artifacts and the acquired signals would be typically discarded by a clinician used
to EEG recording with wet electrodes. As a representative example, Fig. 2.7 shows
a 4 s-long EEG signal recorded during experiments with SSVEP. The pronounced
valleys in the recording correspond to the movement of the electrodes due to eye
blinking, and such artifacts would lead to discarding this trial. However, such signal
can be easily classified as corresponding to a 12 Hz stimulation and it should be not
discarded at all. In this sense, the empirical experience conducted with dry electrodes
differs from the one associated with classical recording methodologies.
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Fig. 2.7 A typical electroencephalographic signal recorded through dry electrodes during
experiments with SSVEP. Artifacts related to eye-blinks are clearly visible.

Apart from artifacts detection and eventual rejection of a whole trial, artifacts
could be also removed from a trial. In [72], a comparison between the most common
techniques of artifact detection and removal have been presented, e.g. regression,
filtering, and independent component analysis (ICA). Regression requires the record-
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ing of electrooculographic (eyes) and/or electromyographic (muscles) activity in
addition to the brain signals recording, thus this is typically undesirable in enhancing
wearability and portability of the system. Analog and digital filtering is instead quite
simple and effective, and it only requires that the identifiable artifact-related bands
do not overlap with the signal-related band. Finally, ICA is a typical technique for
separating signal sources from noise sources in trying to remove the noisy part, but
it requires multi-channel acquisition. Also, a similar technique is based on "artifact
subspace reconstruction" (ASR) and it also typically involve multiple channels [73].
Hence, in the BCI systems with a single or few channels, filtering or ICA extensions
are typically considered. As it will be detailed in the respective chapters, filtering
was sufficient in the SSVEP-BCI, while and extension of ICA was investigated for
motor imagery. However, artifact removal techniques should be better investigate
for the few channels cases. As a general consideration, artifact removal did not
appear essential in the case of SSVEP, given that precautions were taken in properly
measuring the EEG. Instead, evaluating the signal quality in motor imagery was
more challenging due to concomitant unexplained phenomena.

2.4 Electroencephalograph calibration

An electroencephalograph is a specialized voltmeter measuring the electrical activity
of the brain. Peak-to-peak amplitudes in normal EEG typically range from 0.5 µV to
100 µV and the frequency band of interest is 0.5 Hz to 100 Hz [43], though the exact
band depends on the considered application. Especially for off-the-shelf components,
there is the need to calibrate the gain of an EEG acquisition system at different
nominal frequencies. Nowadays, in clinical applications, some guidelines exist for
EEG calibration prior to the measurement of brain-activity [74]. However, there
is a lack of standardization in assessing the metrological performances of EEG
instruments. These are often validated by acquiring the brain activity of a user with
eyes open, or closed, or even by evoking brain potentials [64, 65]. Nonetheless,
merely validating by means of evoked potentials could be not appropriate since the
human response to stimulation is not yet fully understood (e.g. see [75] for SSVEP).
It is worth noting that, in this context, the IEEE Standards Association has indicated
a roadmap for neurotechnologies by considering standardized calibration procedures
in addition to validation based on user tasks [76]. The work reported hereafter aimed
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to give a small contribution to the topic. An EEG calibration procedure has been
proposed to assess errors and uncertainties related to the instrument, and also to give
basic traceability to the international system of units. In doing that, one can exclude
or take under control errors in the EEG measurement, so as to achieve valuable
results with the acquired data.

The device under test, which was taken into account as a case study in this section,
consists of the Olimex EEG-SMT plus dry electrodes [57] (Fig. 2.1). This instrument
has been employed during the thesis work to acquire electroencephalographic signals
from a single differential channel in the SSVEP-BCI case and its usage was also
attempted with two bipolar channels for the MI-BCI case. Particularly for the
SSVEP detection, the band of interest spanned from 1.0 Hz to 60.0 Hz. In processing
EEG data, the focus was on amplitude spectra, while the phase response was not
considered. Therefore, only asynchronous measurements were carried out for the
calibration, while synchronous measurements are eventually addressed to future
works.

Fig. 2.8 Signal conditioning circuit being part of the Olimex EEG-SMT acquisition board.
The connections to the CH1 pins and the DRL are shown, as well as the input ADC line.

2.4.1 Experimental setup

The internal structure of the electroencephalograph under test is similar to a typical
EEG amplifier, but it was simplified by the manufacturer to be less cumbersome and
low-cost. It consists of an instrumentation amplifier with two differential channels
followed by further filtering and amplifying stages. Active electrodes are connected
to the positive and negative terminals of each channel. Meanwhile, a passive electrode
must be connected to the "drive right leg" (DRL) input to act as a reference potential
for common mode rejection. The distinction between active electrodes and passive
electrodes is that the former have an operational amplifier-based buffer to improve
the electrode-skin contact impedance, while the latter are simply conductors. Passive
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electrodes could also be employed as input to the differential channels, but this is
not recommended for the sake of signal quality. After amplification and filtering, the
signals are digitized with an ATMega16 microcontroller: this provides the timing
for the analog-to-digital conversion (ADC), and the resulting 10-bit codes are sent
through USB to an external device, such as a personal computer. The sampling
rate was set at 256 Sa/s. In the present case, only one differential channel (CH1)
was considered, while the other (CH2) was internally short-circuited to avoid cross-
talk noise. Fig. 2.8 shows a part of the EEG acquisition board devoted to signal
conditioning before the ADC. Note that a trimmer can be used to adjust the variable
gain of the second amplifying stage. In the present calibration, the trimmer was set to
1.66 kΩ to achieve a gain G2 = 38.6 V/V. According to nominal specifications, the
bandwidth should go from 0.16 Hz to 59 Hz, while the nominal gain should equal
6202.25 V/V (given the value set for G2). Nonetheless, calculations conducted
thanks to the circuit schematic already highlighted a gain that was 20 % higher
(about 7510 V/V).

Ext Trig In

CH1+

DUT

AMP

VS

Fig. 2.9 Coaxial schematic diagram of the EEG calibration setup realized at the “Instituto
Nazionale di Ricerca Metrologica” (INRIM).

In order to calibrate the gain of the EEG-SMT, a calibration setup was adapted
from a setup for calibrating lock-in amplifiers [77], designed and realized at the
Italian national institute for research in metrology (“Instituto Nazionale di Ricerca
Metrologica” , or INRIM). This is represented in Fig. 2.9. The signal generator
SG provides both (i) a large-amplitude, low-distortion sine wave VS and (ii) an
isofrequential reference square wave VREF for triggering a calibrated voltmeter. Two
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output channels are employed. This generator is based on the PCI-6733 board
from National Instruments. The signal VS is buffered by a unity-gain amplifier
(based on INA111) with differential input, thus providing electrical decoupling from
SG as well as the drive current for the following stages. The buffered voltage is
fed to a calibrated voltmeter, the Hewlett-Packard 3458A (used in synchronous
sub-sampling mode), which is externally triggered by VREF in order to provide an
accurate measurement of VS. Meanwhile, VS is also scaled by means of cascaded
inductive voltage divider (IVD) and resistive voltage divider (RVD) stages. The
measured scaling factor for IVD (kIV D) goes from 0.0 to 1.0 with 50 ppm relative
uncertainty, while for the RVD the measured scaling factor is

kRV D =
R2

R1 +R2
= 9.999317 ·10−5 (2.1)

with relative uncertainty equal to 13 ppm. The calibration voltage in input to the
EEG-SMT, applied between CH1+ and CH1-, results

VCAL = kIV DkRV DVS. (2.2)

The instrumentation employed in realizing the calibration setup is reported in
Fig. 2.10, together with a detail of the connection to the EEG electrodes. The
input voltages are digitized and the output codes are sent through USB to a PC with
MATLAB®, which acquires the data in order to process them. The connections to the
electrodes are realized with a copper plate and conductive carbon tape. In this way,
CH1 is connected to the terminals of the resistance R2, while the DRL electrode is
connected to the generator common, which is also equipotential to the shield of the
coaxial cable connected to the generator itself, as shown in Fig. 2.9.

2.4.2 Data analysis

The acquired codes were scaled according to

VEEG(K) =
KQ−SH

GA
, (2.3)

where K is an acquired code, SH = 2 V is the internal level shifting, GA = 7509.7 V/V
is the conditioning circuit nominal gain calculated from the Olimex Ltd schematic,
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(a) instruments connected according to the coaxial scheme
of Fig. 2.9

(b) detail of the connection to the
electrodes

Fig. 2.10 Physical realization of the measurement setup for the EEG calibration.

and the ADC resolution Q is calculated with the nominal full scale range value FS =
4 V and the nominal bit resolution N = 10:

Q =
FS
2N (2.4)

According to the IEEE-1057 standard (see Sec. 4.6 in [78]), the sinefit algorithm
was applied to fit the acquired waveforms. In particular, the four-parameter method
was exploited: this calculates the values of amplitude (A), offset (O), phase (ϕ)
and frequency ( f ) of a sinus that give the best fit, in the least squares sense, to the
recorded signal. Hence, the sinefit algorithm fits a function of the form

V (tn) = Acos(2π f tn +ϕ)+O. (2.5)

The 4-parameter sinefit is actually an iterative procedure in which an initial guess
is needed for the signal frequency. Per each signal to fit, the frequency guess was
set equal to the respective nominal frequency set on the generator. The MATLAB
function employed for the fit is available online [79] and it was implemented accord-
ing to the IEEE-1057 standard referenced. The root means square (rms) values were
calculated for both the VEEG and the calibration signal. In particular

VEEG,rms =

√
A2

EEG
2

+O2
EEG, (2.6)
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while the rms of VCAL was calculated by scaling the rms of VS, namely

VCAL,rms = kIV DkRV D

√
A2

S
2

+O2
S. (2.7)

Indeed, the concept behind the present calibration method is to generate a large and
highly accurate signal and then scale it down to the measurement range of interest.
Such an approach is reflected into the (2.7) employed for data analysis, and this
allows to obtain a great accuracy and a well-defined traceability, in contrast with a
case in which one would directly generate a small calibration signal [77].

The uncertainties associated with VEEG,rms and VCAL,rms were also calculated.
To this aim, uncertainties had to be estimated for the four parameters of the sinefit.
Firstly, the uncertainty associated with the frequency was estimated by considering
that the 4-parameter sinefit iteratively employs a 3-parameter sinefit to find A, O, and
ϕ while progressively adjusting f . Starting from the guess value, the frequency is
increased or decreased by a fixed amount in each iteration, so as to reduce the error
between measured samples and the fitted sine. The iterative procedure stops when the
frequency difference between two adjacent iterations is small enough. In the present
case, the stopping criterion was set so that the frequency difference was less than
100 ppm. Reasonably, the relative frequency uncertainty is assumed equal precisely
to 100 ppm. After that, the uncertainty of the other parameters can be estimated with
the variance of the respective estimators as discussed in [80]. In that work, the author
analyses the statistical distribution, bias and variance of the coefficient estimators for
a 3-parameter fit. Under the assumption of Gaussian distribution for the parameters,
the variances associated with A and O were estimated to be equal to

σ
2
A = 4

σ2

N
and σ

2
O =

σ2

N
,

respectively, with σ2 equal to the sample variance associated with fit residuals.
Hence, at the end of the fit, the sample-by-sample difference between the measured
data and the fit sine of (2.5) can be used to estimate amplitude uncertainties. Given
that, the law of propagation of uncertainties is applied [81] to achieve the type A
uncertainty

uVEEG,rms =
1

VEEG,rms

√
A2

EEG
2

σ2
AEEG

+O2
EEGσ2

OEEG
. (2.8)
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An analogous expression is obtained for the type A uncertainty of VS. Then, the type
B uncertainty derived from the specifications of the voltmeter is combined to achieve

uVS,rmsC =

√
u2

VS,rms
+

t2
VS

3
, (2.9)

where tVS = 110 µV is the tolerance resulting from the datasheet for the voltage
measurement; by assuming a uniform distribution associated with the tolerance
value, it must be divided by

√
3 to achieve a standard deviation associated with a

Gaussian distribution. Note that this normalization is mandatory before combining
the two uncertainty contributions. Finally, the uncertainty of VCAL,rms is obtained by
propagating the uncertainties in (2.7), i.e.

uVCAL,rms =VCAL,rms

√(
uVS,rmsC

VS,rms

)2

+

(
ukRV D

kRV D

)2

+

(
ukIV D

kIV D

)2

, (2.10)

where the relative uncertainties of RVD and IVD have been also taken into account.

2.4.3 Results

The characterization of the EEG device was performed at frequency up to 100 Hz
with the described setup. Both the linearity and the magnitude error were measured.
In addition, frequency errors were also detected. Linearity was first assessed through
measures conducted with VCAL,rms at 20 Hz and seven different amplitudes: 10 µV,
20 µV, 30 µV, 40 µV, 60 µV, 80 µV and 100 µV. Fig. 2.11 shows the result ob-
tained by plotting VEEG,rms as a function of VCAL,rms. Clearly, linear behavior is
visible. This was confirmed by executing a linear fit and then a Fisher test for the
goodness of fitting (p-value < 1×10−13). The ideal response with unitary gain and
zero offset is also reported with a dashed line to better highlight linear errors. No-
tably, the sought magnitude error is actually a gain error, and from these measures it
resulted in about 9.5 %. Meanwhile, the offset error resulted in less than −0.08 µV.

The magnitude error as a function of the frequency was calculated according to
the expression

ε =
VEEG,rms −VCAL,rms

VCAL,rms
, (2.11)
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Fig. 2.11 Linearity of the EEG-SMT electroencephalograph measured at 20 Hz (inset: sine
wave acquired with for VCAL,rms = 100 µV).

and the associated uncertainty was calculated by propagating the uncertainty of the
two rms voltages according to the law of propagation of uncertainties [81]. By doing
that, the obtained curve is reported in Fig. 2.12. The error bars associated with each
measuring point represent the propagated uncertainty, expanded with coverage factor
k = 4. The largest uncertainty on this gain error is 0.3 % and it is associated with
100 Hz.

In explaining the measured gain error, circuit simulations were performed thanks
to the possibility to replicate the EEG schematic [57], which is open source. The
software LTspice® by Analog Devices was then used to set a Monte Carlo analysis.
In doing that, nominal values were assigned to the passive components constituting
the conditioning circuitry, and then their declared tolerances were also taken into
account. The circuit implemented in LTspice, together with the analysis setting,
is represented in Fig. 2.13. The circuit simulation was executed by repeating an
AC sweep analysis more than 32000 times. In each repetition, a pseudo-random
value was selected for each component by considering the set of possible values
defined by the respective tolerance. The AC sweep instead consisted of calculating
the amplitude of the output voltage for different frequency values in the range 1 Hz
to 100 Hz. Then, the circuit gain was obtained by the ratio of these voltage values
and the input voltage, here set at 1 V. The gain error was finally obtained in relative
terms to the nominal gain declared by the manufacturer (7510 V/V). The results are
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Fig. 2.12 Magnitude (gain) error of the EEG-SMT electroencephalograph measured at
frequencies up to 100 Hz.

Fig. 2.13 Analog conditioning circuitry of the Olimex EEG-SMT board replicated in LTspice
for executing a Monte Carlo analysis.

reported in Fig. 2.14 and compared with the measured gain error. The thick grey line
corresponds to the simulated gain error when all components assume their nominal
value. The gray levels are related to different probabilities of having a certain gain
error. In particular, these were arranged in three levels:

• the inner 50% range, or mid-range, refers to the interval from the 25th to the
75th percentile and it is represented in dark gray;

• the inner 90% range, which refers to the interval from the 5th to 95th percentile,
is represented in gray;

• the range of all possible values is instead represented in light gray.
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Interestingly, the measured gain error lies at the limit of the mid-range and it is in
principle explained by tolerances associated with circuit components. Nonetheless,
the measured curve is almost constantly shifted with respect to the simulated gain
error corresponding to nominal values. Therefore, the most probable reason for
the 10 % gain error is a drift in the variable gain stage (second stage, i.e. G2), and
calibrating the EEG may be as simple as adjusting the trimmer for setting a different
G2 value.

Fig. 2.14 Simulated gain error obtained with a Monte Carlo analysis (gray line and shaded
areas) and compared to the measured gain error (black line with bars). The different gray
levels correspond to three different probability of occurrence for simulated values.

During experiments with brain-computer interfaces, the uncertainty associated
with the brain signals themselves (intrinsic uncertainty) and the electrodes-scalp
contact impedance are usually higher than the measured gain error. However, the
gain error can be corrected by calibrating the EEG with the results reported above.
The uncertainty associated with this correction is negligible in typical electroen-
cephalographic measures. This implies that even a low-cost device like the Olimex
EEG-SMT can properly measure electrical brain activity. Nonetheless, it is worth
remarking that a highly relevant aspect in EEG measurement is the skin-electrode
contact, which must be stable enough during the measurement. Unfortunately, the
procedure introduced in this section was not appropriate to investigate this issue, and
further measures are needed.
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To conclude, the frequency errors detected in calibrating the EEG device under
test can be addressed. Recall that the nominal sampling frequency of the EEG-
SMT is 256 Sa/s. However, as a result of the sinefit algorithm, all frequencies
resulted slightly less than the respective set ones when the nominal sampling rate
was considered. The relative frequency error was thus assessed by defining

ε f =
fEEG − fCAL

fCAL
, (2.12)

where fEEG are the frequencies measured with the EEG device under test, while
fCAL are the nominal generator frequencies. Since the frequency stability of the
generator is in the order of ppm, the whole frequency error should be led back to the
EEG-SMT. This error is plotted in Fig. 2.15 as a function of the fCAL values. These
errors were reasonably explained with a sampling frequency of the EEG different
from the nominal one. In particular, it was derived that the actual sampling frequency
equals 257 Sa/s with 1 Sa/s uncertainty. Moreover, instabilities of the internal clock
also affect the actual value of the sampling frequency.
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Fig. 2.15 Relative error between the measured frequencies and the generator ones in percent-
age.
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2.5 Smart glasses characterization

In this paragraph, the discussion copes with the possibility to provide visual stimuli
through smart glasses. Especially because of their wearability and portability [82],
these devices are increasingly exploited in extended reality (XR), which is typically
declined into virtual reality (VR), augmented reality (AR), and mixed reality (MR).
For a wearable SSVEP-BCI, the user can interact with the AR glasses by merely
staring at icons appearing on the display. Previous research has already proved the
functionality of wearable XR-BCI systems. However, errors and uncertainties of
such a stimuli generator were not quantified. Currently, calibrating smart glasses
regards the accurate measurement of both the device physical position and the user’s
eyes position for properly rendering virtual objects [83]. Even in dealing with
display calibration, pixel-wise calibration is needed for spatial objects positioning
[84]. Clearly, generating flickering icons with smart glasses is strictly related to the
BCI framework, and, even in SSVEP-BCI research, previous works only dealt with
the optimal layouts for the stimuli [85]. The current discussion, instead, deals with
the display characterization from the view of flickering icons generation.

Commercially available smart glasses exploit different display technologies. A
basic distinction is between video see-through and optical see-through [82]. The
former relies on an embedded camera to record the surrounding environment and then
display virtual objects overlapped to the recorded video. The latter, instead, uses a
semi-transparent display that does not hide the real scene while superimposing virtual
objects to it. Although the two technologies have many common features, optical
see-through devices are mostly considered in this work because they are better suited
for augmented reality applications. A first example of optical-see-through device
is the Microsoft HoloLens. The HoloLens display consists of a set of transparent
screens, each one showing a different image to create a stereoscopic illusion. The
displays are planar waveguides: a source transmits image data along the length of
the transparent displays, and then the light rays get eventually extracted to reach
the user’s eyes. To generate a flickering icon, the HoloLens can be programmed
by considering that the declared refresh rate is 60 Hz. Therefore, these icons are
obtained by switching on and off display pixels. Another family of smart glasses is
the Epson Moverio one. Two representative devices are the BT200 and the BT-350.
The first has an LCD display with an active matrix of polysilicon thin-film-transistor.
The second one, instead, exploits a silicon-based organic LED matrix. Both devices
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can be programmed in Android with a dedicated graphic library. The screen refresh
rates are 60 Hz and 30 Hz, respectively.

In a straightforward approach, the flickering frequencies are obtained by switch-
ing pixels on or off after a fixed number of refresh periods. Thus, the achievable
flickering frequencies equal the refresh rate divided by an integer number. More
sophisticated approaches could be also adopted to achieve more frequencies, but this
would go beyond the scope of this work. In SSVEP applications, higher refresh rates
are usually preferred to enable more flickering frequencies. This was a main reason
for employing the BT200 in the BCI implementation, and, as a consequence, the
stimuli characterization primarily concerns this device. However, further information
about the flickering generated with other display technologies is also reported in the
following.

2.5.1 Experimental setup

For measuring luminous intensity, a transducer was implemented as shown in
Fig. 2.16. It is based on a commercial photodiode integrated with a transimpedance
amplifier, the OPT101. An external resistor was used to increase the gain while
reducing the bandwidth. In measures with Epson Moverio BT200, the external
resistance was 10 MΩ, resulting in a 11 V/µA gain and about 1.3 kHz. In order
to avoid noise from the mains supply, a 5 V battery was used for supplying the
circuit. The output was sampled at 1 kSa/s with the ADC of an STM32F401RE
microcontroller and then the data were sent to a PC with MATLAB, thus allowing
further elaboration.

Measuring the luminous intensity of light waves emitted by smart glasses aimed
to highlight eventual differences between the nominal wave shape and the actual
one. Hence, Fourier spectra were calculated to analyse the harmonic content of the
flickering icons up to 100 Hz. Harmonic amplitudes were investigated relatively to
the first harmonic. Meanwhile, accurate absolute values were not of much interest
for the visual stimuli.

A picture of the measurement setup, realized according to the scheme of Fig. 2.16,
is shown in Fig. 2.17. The transducer circuit was integrated on a green matrix board,
and then the battery supply and the board for signal acquisition were attached. Even-
tually, the acquisition board could be shielded to avoid electromagnetic interference,
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Fig. 2.16 Schematic diagram of the setup for characterizing the BT-200 optical output, based
on an OPT101 amplified photodiode with increased gain [4].

while the matrix board was not shielded. In measuring the luminous intensity, the
OPT101 sensing element was attached to the display of the BT200 smart glasses (one
lens at time). Each acquisition lasted 10 s to offer enough spectral resolution (0.1 Hz)
in analysing stimuli spectra. The 10 s-long records were mainly analysed in the
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Fig. 2.17 Picture of OPT101-based circuit implemented on a matrix board; note that PD is
the OPT101 photodiode.

frequency domain. Hanning windowing was applied before executing a "fast Fourier
transform" (FFT) algorithm, thus reducing spectral leakage without greatly affecting
harmonic amplitudes. From the FFT results, only the amplitude spectra were derived,
while phase response was not of interest. Then, each spectrum was normalized
with respect to the amplitude of the first harmonic. Therefore, by scaling the first
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harmonic to unitary amplitude, it was easier to evaluate the relative amplitudes of
higher harmonics. Despite these considerations on calculated spectra, some hints
about the absolute luminous intensity could be derived according to the OPT101
datasheet. In details, the OPT101 datasheet reports scaling factors to apply when the
measured light wave has wavelength λ = 650 nm and the ambient temperature is TA

= 25 °C [4]. Note that, because of the external resistor for setting a higher gain, the
steps for scaling the ADC voltage to luminous intensity are

1. divide the OPT101 output voltage by the DC gain equal to 11 V/µA to obtain
the photodiode current;

2. divide the photodiode current by 0.45 µA/µW to obtain input power;

3. divide the resulting power by the photodiode area, i.e. 5.2×10−2 cm2;

4. by considering that 1 lx = 1.4641×10−7 µW/cm2, convert power density to
luminous intensity.

Although a white light should actually take into account multiple wavelengths, and
also other corrections should be applied to achieve accurate measures, these calcula-
tions were exploited to give the first estimate of the incident luminous intensity.

The Epson Moverio BT200 and BT350 were programmed in Android. The
application simply switches on and off pixels according to the refresh rate. Notably,
achievable flickering frequencies equal

f f lick =
fre f resh

n
, (2.13)

where fre f resh is the refresh rate of the smart glasses, nominally equal to 60 Hz
and 30 Hz respectively, while n is an integer number. White square icons were
considered for both devices. This kind of application was purposely designed for
stimuli characterization. Therefore, the icon was centered and enlarged to cover about
80 % of the display. The experimenter could set the desired flickering frequency to
test. In case the frequency did not match (2.13), the application automatically set the
nearest higher frequency satisfying the conditions of that formula. On the other side,
the Microsoft HoloLens 1st gen smart glasses were also tested by programming them
with Unity. Similar considerations hold about the adjustable flickering frequency
and the size of the squared white icons.
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2.5.2 Results

Fig. 2.18 shows the measured luminous intensity for an icon generated by BT200
set at 10 Hz. Both time and frequency domain are shown. Note that the curve
in the time domain appears smoother than an ideal square wave. The spectrum,
shown in Fig. 2.18b with amplitude in logarithmic scale, shows some spurious even
harmonics in addition to the expected odd harmonics. Recall that the spectrum is
normalized to the first harmonics in order to focus on harmonic ratios more than
absolute amplitudes. By localizing the harmonic peaks, it also emerges that the first
harmonic is actually lower than the nominal value, namely it equals 9.9 Hz. This
suggests that the refresh rate is actually lower than the nominal value. Fig. 2.19,
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Fig. 2.18 Measuring the luminous intensity of Epson Moverio BT200 smart glasses nominally
flickering at about 10 Hz.

instead, shows the measured luminous intensity for an icon generated by BT200 set
at 12 Hz. The curve in the time domain appears even more smoothed than before,
especially at off-to-on transitions. Asymmetric transitions are typically associated
with even harmonics, and these are indeed visible in the spectrum (Fig. 2.19b). In
addition, it must be also noted that, by design, a 50 % duty cycle cannot be obtained
neither in the square wave case because 12 Hz = 60 Hz/5. Henceforth, a period of the
ideal flickering lasts for 5 periods of the refresh rate and cannot be split in two equal
halves. As a matter of fact, the lower luminous intensity for the measured curve in
time the domain lasts for more time than the higher intensity, thus proving that the
duty cycle is closer to 40 % = 2/5. This is another reason for the presence of even
harmonics in the signal spectrum. Again, the first harmonic is localized at 11.9 Hz,
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thus giving another hint in believing that the actual refresh rate is close to 59 Hz.
The previous considerations are consolidated by comparing the spectra associated
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Fig. 2.19 Measuring the luminous intensity of Epson Moverio BT200 smart glasses nominally
flickering at about 12 Hz.

with the two flickering icons with a linear scale for amplitudes and by highlighting
harmonic ratios. Such comparison is done by means of Fig. 2.20. This shows that
even harmonics are more evident in the 12 Hz case, which also suffers from the
duty cycle problem. Furthermore, for an ideal square wave, the ratios should follow
the scaling low 1/k with k odd integer equal to the harmonic order. The plot of
Fig. 2.20a is closer to this mathematical law, but in both cases one can say that the
spectrum is quite different from the ideal square wave one.
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Fig. 2.20 Comparing the harmonic amplitudes normalized at the first harmonic for two
representative flickering frequencies.
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Similar arguments can be made for the results associated with the BT350. In
this case, Fig. 2.21 shows the measured luminous intensity for an icon nominally
flickering at 10 Hz. Recalling that the declared refresh rate for this device equals
30 Hz, the flickering frequency should be a third of it. Reasonably, the curve in the
time domain appears even smoother than before and the "totally-on time" for the
flickering icon is almost null. Again the associated spectrum highlights spurious even
harmonics and, by localizing the harmonic peaks, it results that the first harmonic
is higher than the expected nominal value (about 10.7 Hz). Hence, this suggests
that the refresh rate is higher than the nominal one. This is even more evident in
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Fig. 2.21 Measuring the luminous intensity of Epson Moverio BT350 smart glasses nominally
flickering at 10.7 Hz.

the 12 Hz case reported in Fig. 2.22: the flickering frequency is actually 16.0 Hz
= 32 Hz/2. Also note that the curve in the time domain tends to be sinusoidal,
and even harmonics appear though they are lower than the 10.7 Hz case. Finally,
the plots in Fig. 2.23 better represent the actual harmonic ratios: for the 10.7 Hz
case, only the first and second harmonic have meaningful amplitudes, while in the
16.0 Hz case the only first harmonic dominates the other, thus furtherly proving that
the wave tends to be a sine wave. In conclusion, these measures reveal that the
harmonic content is different from the expected one mainly in terms of spurious
even harmonics or attenuation of higher harmonics. Moreover, the actual refresh
rates are different from the declared one. From the point of view of SSVEP-BCI
functionality, the most relevant issue is the location of the harmonics due to the exact
refresh rates. Nonetheless, this aspect can be taken into account and it is suggested to
also consider a 0.1 Hz uncertainty associated with the flickering frequencies. Further
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Fig. 2.22 Measuring the luminous intensity of Epson Moverio BT350 smart glasses nominally
flickering at 16 Hz.
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(b) harmonic ratios at 16.0 Hz

Fig. 2.23 Comparing the harmonic amplitudes normalized at the first harmonic for two
representative flickering frequencies.

considerations concerning the harmonics to be detected in the EEG spectra are
conducted in the following, and this is another relevant aspect for the SSVEP-BCI
functionality.

In addition to the measurements conducted on the Epson Moverio devices,
which are representative kinds of smart glasses for augmented reality, the Microsoft
Hololens (1st Gen) were also considered as an example of a mixed reality device. The
emitted luminous intensity was still measured with the photodiode-based transducer,
but measures revealed a different working principle. To highlight that, Fig. 2.24 rep-
resents the measures corresponding to a 3 Hz flickering and a 10 Hz flickering. Note
that the Hololens were programmed in Unity by replicating the Android application
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already used for the Epson Moverio. Measures thus reveal that there is no definite
"on period" or "off period". Instead, there are light pulses with different frequencies:
when the icon is off, there are less pulses in the unit time, while the number of
pulses is greater when the icon must be on. Such a behavior is evident from the time
domain, while it is not possible to analyse these measures in the frequency domain
as done before. Although light modulation is different from the Epson Moverio case,
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(a) 3 Hz flicker
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(b) 10 Hz flicker

Fig. 2.24 Measures associated with Hololens white flickering icon represented in the time
domain.

the human eye does not see any difference. Then, it will be interesting to point out
eventual differences in the corresponding electroencephalographic signals. This is
briefly discussed in the next section.

2.5.3 The human brain as a transducer

Characterizing the components of a brain-computer interface is an essential step
in willing to understand how the human brain works. Indeed, once instrumental
errors are excluded or corrected, one can isolate the user’s contribution to the BCI
measurement chain in terms of generated or transduced signals. Surely, many differ-
ent brain activities could be investigated, and they actually are in many laboratory
settings. In this section some considerations are specifically reported for SSVEP as
a representative case of reactive paradigms. Indeed, evoked potentials have been
widely studied and the response of the brain to external stimulation is understood,
though not completely explained. For instance, in literature the non-linear origin of
SSVEP spectra has been investigated in trying to explain the harmonics associated
with the measured electroencephalographic signals in relation to visual stimulation
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[75]. Moreover, in [86] it was shown that stimulating a user with a square wave,
the SSVEP response in the frequency domain will have 2nd , 3rd and 4th harmonic.
There, usually the first one and second one are with the highest amplitude, so that
these two are mostly considered in signal classification. Nevertheless, in their work,
the authors focused more on interpreting the brain signals than classification, and
they already noted that, due to the limited frequency of the displays, some issues
arise in the design of stimulus applications.

As a matter of fact, previous results of the present thesis have shown that novel
technologies and off-the-shelf components for wearable BCIs can introduce some
errors. Therefore, it is interesting to analyse the results of some preliminary experi-
ments with the SSVEP-BCI after correcting the instrumental errors. It is to remark
that such corrections are not mandatory in the SSVEP-BCI operation, where the
focus is on classifying the brain signals to understand which icon must be activated.
Instead, they are needed in investigating how the visual system of a human trans-
duces light into electrical signals. Preliminary EEG data from BCI experiments
with SSVEP has been thus used in comparing the spectra of the flickering icons
discussed above and the EEG spectra. Fig. 2.25 compares the results of repeated
measurements with the BT-200 smart glasses and the EEG spectra of a trained subject
using the SSVEP-BCI. In details, Fig. 2.25a and Fig. 2.25c report the mean spectra
across repeated measurements with the 10 Hz and 12 Hz flickering, respectively. The
standard deviation of the peaks is reported as well. Thanks to that, it is clear that
the optical output of the BT-200 has a quite stable behavior. Meanwhile, Fig. 2.25b
and Fig. 2.25d report the mean EEG spectra obtained with 12 measures each, along
with the standard deviation of the peaks. There, the amplitudes were corrected by
considering the measured gain for the Olimex EEG-SMT. In this case, the error bars
representing standard deviations are relatively high, thus proving an intrinsic uncer-
tainty arising from the brain transduction effect. It can be also seen that there is not a
clear correspondence between the peaks observed in the flickering icons and the ones
observed in the EEGs. However, an exhaustive analysis of the neurophysiological
response to flickering lights goes beyond the scope of this thesis. Indeed, this brief
discussion was used to better tune the classification strategy for the SSVEP-BCI,
and it appears also useful to point out the presence of instrumental error that must be
taken into account when studying the brain as a system. Nonetheless, this interesting
and non-trivial analysis is addressed to the specialized literature.
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with standard deviation of the peaks
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Fig. 2.25 Repeated measures for the flickering icons and corresponding EEG spectra. Mean
spectra are compared as well as the standard deviation of the peaks.



Chapter 3

A wearable BCI based on evoked
potentials

Reactive brain-computer interfaces are the most performant in terms of brain pattern
recognition. At the current technological state, training and detection time are
generally low, though they can be still unsuitable for many practical applications.
The performance achievable by a reactive BCI is due to the presence of an external
stimulation, which generates a neurophysiological response to detect and classify.
By classifying such brain patterns, the system understands the user’s intention
and generates a command for the desired application. Nonetheless, the need for
external stimuli is probably the main drawback of reactive BCIs. The current chapter
discussed the possibility to realize a highly wearable BCI by relying on steady-state
visually evoked potentials, or SSVEPs for short. Such an interface requires flickering
lights as external visual stimuli, which can lead to eye fatigue and affect long term
performance. Nonetheless, SSVEP-based BCIs are trainingless or require minimal
training, and their classification accuracies are above 90% even with 1 s to 2 s visual
stimulation.

The remainder of the chapter is organized as follows. Section 3.1 resumes the
notions required in building a BCI based on steady-state visually evoked potentials.
Section 3.2 proposes a SSVEP-based BCI realized by integrating the already intro-
duced electroencephalograph with augmented reality glasses. Section 3.3 presents
the results of an experimental campaign conducted with such a system to assess
its performance. This discussion comprises the statistical analysis of the acquired
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EEG measures in order to highlight both intra-subject and inter-subject variability.
Evidently, this variability affects the system performance, and it is traced back either
to physiological phenomena and instrumentation uncertainties. Finally, application
examples are reported in Section 3.4 with respect to the industrial framework and
healthcare. Those solutions were investigated as a consequence of the reactive BCI
realization discussed hereafter.

3.1 Steady-state visually evoked potentials

Evoked potentials are electrical brain signals caused by sensory stimulation. The
related brain patterns reflect brain mechanisms and measuring them can either
provide further understanding of such mechanisms or an alternative communication
way for the user. Visually evoked potentials (VEPs) have been largely exploited in
developing EEG-based BCIs [40, 87, 88]. Certainly, investigated paradigms also
involve acoustic [89] or tactile stimulation [90], especially when dealing with people
with vision impairment. Nonetheless, the visual channel is the most intuitive one
and hence the most studied. Different types of VEPs can be distinguished [91].
Notably, steady-state visually evoked potentials are elicited by lights flickering so
that the effects of consecutive flashes overlap, thus giving rise to a steady state. The
minimum flickering frequency for eliciting SSVEPs is about 6 Hz. Meanwhile, an
upper limit is not explicitly determined: human response to flickering was studied
up to 100 Hz, but most studies do not overcome 60 Hz [88, 92].

The operating principle of SSVEP-based BCIs is rather simple. If the user gazes
at a flickering light with frequency f , the evoked potential has fundamental frequency
equal to f . Therefore, if multiple lights are flickering at different frequencies, the
SSVEP frequency detected from the measured EEG is associated with what the
user is gazing at. Actually, different flickering lights could also be distinguished
by means of their phase other than their frequency. Though this principle is quite
interesting, such a possibility was not considered in the present work. Ultimately,
SSVEP allows a user to communicate by merely staring at a light or an icon on a
display. The advantage is that, at least in principle, no training is required neither for
the system operation nor for the BCI user [93]. Despite that, the system can be tuned
on a specific subject to enhance detection performances with minimal adjustments.
For instance, the processing algorithm can be trained for a specific user with little
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training, or the electrodes position could be personalized for each user. These aspects
will be better discussed next with specific regard to our SSVEP-BCI.

As mentioned above, the main drawback of reactive BCIs is the need for external
stimuli. In the SSVEP case, the previously underlined advantages are thus counter-
balanced by the need for the user to stare at a screen and keep his/her eyes fixed for
a certain time. Nevertheless, many studies showed that SSVEPs are very reliable
owing to good reproducibility and superior classification accuracy if compared to
other BCI paradigms [94–96]. One could also argue that, since the working principle
involves shifting the eye gaze, a SSVEP-based BCI could be replaced by an eye
tracker, which has higher performance in recognizing eye position. This appears true
when considering that most BCI studies concede eye movements. However, it was
shown that in a SSVEP-BCI user can shift attention rather than gaze [97], so that it
is not necessary nor sufficient to move eyes, but the user must focus his/her attention
on the flickering light. Given that, SSVEP-BCIs can solve a major issue in eye
tracking technology, where the system cannot distinguish an unintentional fixation
from intentional ones. Also, SSVEP applications can be addressed to both healthy
people and to people with no oculomotor control, such as patients in advanced stages
of amyotrophic lateral sclerosis (ALS) [98].

In this thesis, smart glasses are exploited for visual stimuli generation. Relevant
research solutions were resumed in [99] by reporting that the main application
field for VEP-based BCIs is robotics, and that video see-through glasses are mostly
considered. However, many limitations still prevent the usage of these systems in
daily life, especially artifacts [100, 101] and the trade-off between SSVEP detection
speed and classification accuracy [87]. These issues are exacerbated when dry
electrodes are employed to increase user comfort. Hence, even recent works turn out
to be feasibility studies [51, 63]. As a first example of competing SSVEP-BCIs, in
2018 a single-channel BCI was proposed [92] as a speller relying on high-frequency
stimuli. Only five subjects participated in the experimental campaign. Each user
had to stare at the icon for 10 s and they reached a mean classification accuracy
equal to 99.2 %. However, the reproducibility of the results is not assured given the
limited number of subjects. As a further example, another speller was proposed in
2019 [102] by exploiting a single acquisition channel, dry electrodes, and a deep
neural network for signal processing. The mean classification accuracy among
eight subjects was 97.4 % when each subject starred at the flickering lights for 2 s.
Despite the good performance, still a few subjects were involved in the campaign
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and many trials (about 500) were needed to train the deep network. Finally, it is
worth reporting that [51] proposed a BCI integrated with AR glasses for controlling a
quadcopter. In this solution, 16 dry electrodes were used, and the mean classification
accuracy on five subjects resulted in 85 % while executing a flight task. It should be
noted that this accuracy is lower than the previously reported ones, although more
electrodes were used. This probably happens because of the flight task that lowers
users’ attention. Hence, this is a representative example of how leaving controlled
laboratory conditions can affect the BCI performance.

3.2 System design and prototyping

The SSVEP-BCI discussed in this thesis has been already introduced in the previous
chapter to conduct a metrological characterization of representative building blocks
for a wearable neural interface. In that context, the overall working principle was
anticipated to justify the investigation of specific phenomena concerning such com-
ponents off-the-shelf. Conversely, the present discussion deals with the realization
of the SSVEP-BCI system, given that the performance of the building blocks are
already individually assessed. The architecture of the proposed SSVEP-BCI is shown
in Fig. 3.1. Its building blocks are

• AR glasses employed as a visual stimuli generator;

• EEG transducer acquiring the brain signals;

• computing unit to process brain signals and achieve a control command.

Note that the input interface for the system is made of either the EEG transducer,
the computing unit for processing, and also the visual stimulation. Moreover, the
computing unit and output interface of the AR glasses manage the BCI application
also in terms of the visual information resulting from the user’s control. Another
picture of this SSVEP-BCI system was already presented in Fig. 2.5, while the
system worn by a user will be shown next. The implementation of each system block
is instead discussed hereafter.

The proposed system allows the user to control augmented reality glasses with
his/her brain activity. As already discussed, SSVEP-based BCIs require visual stimu-
lation with flickering icons. The display of AR glasses can provide this stimulation
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Fig. 3.1 Architecture of the AR-BCI system based on steady-state visually evoked potentials.

while being wearable, in contrast with mostly adopted solutions based on LEDs. The
flickering icons on AR glasses display correspond to choices for the user during the
usage of an application, and thus they substitute a more traditional interface based
on a touch-pad. The potentials evoked by the flickering are then measured with an
electroencephalography.

In signal acquisition, different aspects were taken into account. Firstly, brain
activity had to be measured with a single-channel non-invasive EEG, due to the
practical reasons discussed at the end of Chapter 1, notably user-friendliness and
low cost. Secondly, dry electrodes were chosen because electrolytic gels would pose
some issues in long-term usage, for instance the need to repeatedly apply the gel that
dries out. Dry electrodes are easier to be worn and they might still provide proper
EEG measures. On the other hand, avoiding conductive gels poses a severe issue on
electrode-skin contact: if the contact impedance is too poor, the EEG activity is not
present in the recorded signals. To this aim, tight bands were used to ensure a good
electrode-skin contact.

Finally, in order to recognize the user’s intention, EEG signals must be processed.
The final aim is to assign a class to each signal recorded for a certain time, and that
class should be associated with the user’s intention, i.e. the control command for the
application. Two main parameters will be used to characterize the performance of
the system: the classification accuracy, namely the success rate in classifying the
brain signals, and the latency for the system to react, consisting of acquisition time
plus elaboration time required to make a choice. One may guess that there will be a
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trade-off between classification accuracy and latency. The details of the proposed
system are discussed in the next subsections.

3.2.1 Augmented reality glasses

As a reactive paradigm, the SSVEP-BCI requires flickering icons on the AR glasses
display for visual stimulation. In particular, the specific VEP exploited in this
work regards the generation of an oscillation at the same frequency of the flickering
stimulus. Hence, when staring at a specific icon, the user’s intention is easily retrieved
from the frequency domain. Each icon flickers at a specific frequency, and these
frequencies must be carefully chosen. Also note that an amplitude modulation could
not be considered to encode the information of each possible choice. The reason
for that lies in the inter-subject and intra-subject variability of SSVEP signals, but
also because of the poor amplitude accuracy of the off-the-shelf components adopted
in the system implementation. A phase modulation, instead, would have required
a higher stability of the flickering stimuli, but the AR glasses characterization
suggested that this is not the case for a typical commercial device. In conclusion,
these techniques would have required further investigations, which were beyond the
scope of this work.

In its original implementation, the SSVEP-based BCI exploited only two icons.
A custom Android application was developed so that these icons could be placed
on the opposite corners of the AR glasses display. Moreover, referring to literature
studies, white squared icons were implemented to optimize the stimulation. The
flicker frequencies were chosen in the alpha band (8 Hz to 13 Hz) according to a
study indicating this range as the one associated with maximum amplitude of elicited
oscillations [95]. Specifically, the nominal flickering frequencies were set at 10.0 Hz
and 12.0 Hz. By exploiting the results of Section 2.5, the related uncertainty was
estimated to be in the order of 0.1 Hz. The Android "open graphic library" (openGL)
was used in implementing the icons so that the GPU could manage the flickering.
Indeed, avoiding the use of CPU in this thread aims to maximize flickering stability,
which could be affected by operating system interruptions.

To make a choice through a flickering icon, the user has to stare at (or simply
focus on) the desired icon for some seconds. This interval corresponds to the EEG
acquisition time. As a first implementation, such a time was fixed a-priori, while
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a variable time window can be also used by exploiting a stopping criterion for the
flickering. Such a possibility will be recalled later on as a possible variant of the
basic system functionality. It was already anticipated that the Epson Moverio BT-200
was used as an output interface, namely the AR devices for both visual stimulation
and visual interface with the application. The Android application running on
such glasses acquires the EEG signals in parallel to visual stimulation, while the
processing of those signals is conducted at the end of the acquisition window. An
attentive reader could guess that the processing should be instead conducted in
real-time when the acquisition time is not fixed a-priori. Acquisition and processing
are detailed next. At the end of those steps, the user’s intention is retrieved, short of
misclassification errors. The control command triggers an action in the application,
e.g. one could request to read data from a sensor. The chosen AR device is capable
of communicating with external devices through Bluetooth or WiFi. Hence, the
information of interest for the user can be requested without using hands thanks to
the EEG transduction, and wireless communication and control is possible.

3.2.2 Single-channel electroencephalography

In the architecture presented in Fig. 3.1, the input interface of the AR-BCI system is a
non-invasive single-channel EEG transducer. Only two dry electrodes are employed
for a differential acquisition of brain signals. This allows one to have an utmost
wearable system. The electrodes are placed on the scalp, according to the 10-20
system [2] at the points "Fpz" and "Oz", as it was already highlighted in black in
Fig. 1.5. This choice was done by considering that "Oz" is located at the occipital
region of the brain, the one associated with visual activity, while "Fpz" is at the
frontal region, where it is reasonable to assume limited visual activity. Therefore,
a differential acquisition aims to emphasize the only visual activity by subtracting
part of the ongoing brain activity. To mitigate the contact impedance issues, silver
pins were soldered on the occipital electrode, which needs to overcome the hair
to reach the scalp. Furthermore, the use of active dry electrodes eases impedance
matching by buffering recorded signals on the electrode itself. In particular, the
active electrodes include a circuitry based on an operational amplifier for impedance
matching. A third passive electrode, i.e. without active buffering, acts as a ground
for the measurement. This ground electrode is usually placed on the forehead, the
ear, or even on a wrist or a leg [43]. In this work two positions were exploited: the
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left wrist and the left ear. No meaningful difference was found between these two
placements, at least in terms of system functionality. Meanwhile, placing the passive
electrode with a clip on the ear guarantees better mechanical stability of the passive
electrode, which surely results in a more reproducible measurement.

The Olimex EEG-SMT with dry electrodes was chosen for the implementation of
the EEG transducer. One of the main reasons for this choice was the very low-cost if
compared to more classical EEG amplifiers. It is worth remarking that the discussion
of Section 2.4 assessed the metrological properties of this device, which proved
adequate for wearable BCI applications. Nonetheless, the skin-electrode impedance
could not be studied with a mere electrical characterization of the device. This had
to be proven by experimenting with human users, and such contact impedance issues
resulted in the most challenging aspect in EEG acquisition. In the prototyping phase,
a good electrode contact was ensured with a tight headband for the active electrodes
on the user’s scalp.

The electrical brain activity measured with the electrodes is transmitted to the
EEG transducer board. The two active electrodes are connected to the differential
input of an instrumentation amplifier at channel 1 (CH1). A twin channel (CH2)
is available in the Olimex EEG-SMT board, but it was not used in the SSVEP-
BCI, so it had to be internally short-circuited. Meanwhile, the passive electrode
provides feedback for instrumentation amplifiers to reduce common mode noise.
In the Olimex EEG-SMT, this is connected to the input “drive right leg” (DRL)
input. Signal conditioning is done with several stages providing amplification and/or
filtering. The overall gain from the signal pick-up to an analog-to-digital converter
(ADC) was set to 6427 V/V thanks to the second amplifying stage, which grants an
adjustable gain. The input signal is analogically filtered with a 3rd order Butterworth
filter, whose nominal pass-band is 0.16 Hz to 59 Hz. At the end of the amplification
and filtering chain, an ADC with 10-bit resolution provides the conversion to a digital
signal with a nominal sampling frequency equal to 256.0 Sa/s. The digital signal
can thus be transferred to the computing unit of the AR device to be processed. Note
that the Olimex EEG-SMT continuously acquired and sent the digitized signals over
UART connection (with an USB cable for instance), so that the Android application
can save only the EEG epochs of interest.
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3.2.3 Detection of evoked potentials

In the previous discussion, it was largely anticipated that the frequency domain
enables an easy and intuitive detection of the SSVEP oscillations. In detail, a power
spectral density analysis was considered in this work for brain signal processing. A
further reason for that was to guarantee low computational burden in implementing
a wearable system. Moreover, the good knowledge on the SSVEP phenomena make
it useless to adopt computationally challenging approaches, such as deep neural
networks, which would also require much EEG data. To present the processing steps
of interest, it is useful to distinguish the feature extraction and classification steps.

In feature extraction, the digitized signal is pre-processed with a digital pass-band
filter based on a FIR (finite impulse response) filter. After some preliminary trials,
an optimal band was identified, the 6 Hz to 28 Hz range and order 100 was set to
have at least 50 dB attenuation in the stop band. The pass-band was also chosen
by considering the need to reduce eye-blinking and muscle artifacts [45]. Indeed,
linear filtering could be used to reduce noise introduced by artifacts, while methods
like regression would need a higher number of electrodes. After that, zero-padding
is applied prior to executing a fast Fourier transform algorithm, the well-known
FFT. Zeros are thus added at the end of the signal samples to reach the nearest
power of 2, so to speed up the FFT execution and possibly provide better frequency
domain resolution. Note that zero-padding can fictitiously enhance resolution only
because of interpolation, while the actual spectral resolution depends on the length
of the EEG epoch, i.e. the acquisition time window. This step makes it clear the
trade-off between system latency and classification accuracy: a longer acquisition
time enables better frequency resolution and hence better SSVEP detection, since
frequency resolution is the inverse of time window. On the contrary, lower latencies
are desirable to avoid long selection times for the icons, but this limits the resolution
in detecting SSVEP peaks. Furthermore, the Hamming windowing is applied to
reduce spectral leakage, while slightly losing in spectral resolution.

Once the signal under analysis is properly represented in the frequency domain,
power spectral density (PSD) analysis is carried out on the discrete amplitude
spectrum. For each frequency fi, the corresponding PSD is calculated as the sum of



3.2 System design and prototyping 67

the squared amplitudes associated to the ki-th bin and some nearest bins:

P( fi) =
1

2k+1

ki+k

∑
n=ki−k

A2(n), (3.1)

where ki is the bin associated with the frequency fi, k is the number of bins considered
on the right and on the left of the bin ki, and A(n) the amplitude associated to the
n-th bin. The bin number ki is retrieved from fi by means of the spectral resolution
∆ f of the FFT, at least in principle, since fi = ki∆ f . The frequency fi can be equal
to the nominal stimulation frequency or a higher harmonic of it (an integer multiple).
However, the SSVEP peak could not be exactly located at fi, and hence there is a
preliminary step in which the maximum in the neighbourhood of ki is found. The
considered neighborhood was 0.4 Hz. For the sake of clarity, this bin is referred to as
k′i. Extracting the PSD leads to a new representation of an EEG signal in a features
domain. Two possible representations were thus investigated: the first considers
the PSD at 10 Hz and 12 Hz, while the second also considers the respective second
harmonics, i.e. 20 Hz and 24 Hz. In the former case, each signal is represented as a
point in a plane, while in the latter one it is represented as a point in the 4D space.
Typically, higher order harmonics were not considered because of the poorer signal
to noise ratio, but they could also contribute to signal classification in some cases.

In the features domain representation, a hyperplane was adopted to separate
the two classes of signals. Specifically, a support vector machine was used by
investigating the linear and the Gaussian kernel. After some preliminary trials on
EEG signals, the linear kernel resulted in the optimal solution. Hence, the actually
adopted classifier is a support vector classifier (SVC) [3]. The analysis of EEG
signals and the training of the classifier was done in Matlab. The training must be
conducted with labeled EEG signals, i.e. signals for which one knows the belonging
class (in the present case, 10 Hz stimulation or 12 Hz stimulation). Notably, Matlab
is really useful in deriving the SVC hyperplane parameter that can be then used to
classify new unlabeled signals. However, either the PSD features extraction and the
classifier usage after training was then translated in Java per Android. This step was
necessary in building a wearable system. For the classification step, implementing the
SVC in Android simply consisted in solving an inequality considering the hyperplane
parameters and the dot associated with the signal to classify.
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3.3 System performance

After the design of the BCI system based on SSVEP, and its prototyping by means of
the commercially available components mentioned above, validation was necessary.
Indeed, a metrological characterization of each system component was carried
out as detailed in Section 2.3, Section 2.4, and Section 2.5, but experiments with
human users were of course needed to prove the system functionality and assess
its performance. In the following, some details about the experimental campaign
are reported with specific regard to the setup, the experimental conditions, the
assumptions, and the involved subjects. Then, the results in terms of classification
accuracy are discussed, and a particular focus is given to the trade-off between
the stimulation time (greatly affecting the system latency) and this classification
accuracy.

3.3.1 Experimental campaign

Twenty subjects took part in the experiments, of which 13 males and 7 females with
age between 22 and 47 years old. Experiments were conducted in a laboratory with
closed blinds, so that luminance could be controlled with neon lights. Illumination
was hence monitored during the experiments and it resulted in the 95 lx to 99 lx
range. All the electrical and electronic instruments that were present in the room
were switched off to avoid interferences with the EEG. Surely a laptop was running
to acquire from the EEG transducer during the first experimental phase. However it
was unplugged from the mains supply during signal acquisitions. Another electronic
device in the room was indeed the AR device, which was also battery-supplied during
experiments. Finally, smartphones were present in the room, but their interference
did not appear on the recorded signals.

Although the final aim is to build a portable system, each subject under test was
asked to sit on a comfortable chair with armrests and limit unnecessary movements.
Unfortunately, moving the head or the arm greatly affects the contact of the electrodes
with the skin since no conductive gels were used. Therefore, these constraints were
necessary in the first experimental phase to exclude motion artifacts and in general
to ensure the correct electrodes positioning. Once seated, the user could wear the
system. The AR glasses had to be worn first, and then a tight headband could be used
to fix the electrodes at the occipital and frontal region of the scalp. Also note that
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in these experiments a tight armband was used to fix the ground passive electrode
on the left wrist of the user. In connecting the electrodes, the same sequence was
adopted for every user while checking in real-time the acquired signal with a proper
Matlab script:

1. the passive electrode was connected to the DRL input of the EEG transducer
and applied on the subject’s left wrist with the armband; the acquired signal
had to be null due to the absence of signal at CH1 (or CH2);

2. the first active electrode (without silver pins) was connected to the negative
terminal of CH1 and placed on the scalp at "Fpz" (frontal region) with the help
of the headband;

3. after a transient (lasting a few seconds), the acquired signal had to return to
zero again, since CH1 is still an open circuit at this stage; indeed, the internal
circuitry reaches a stationary condition with a null output;

4. lastly, the second active electrode (with silver pins) was connected to the
positive terminal of CH1 and placed on the scalp at "Oz" (occipital region
of) with the help of the headband; after another transient of a few seconds, a
stationary condition is reached in which the mean signal amplitude is null;

The EEG acquisition board was connected to the laptop to acquire signals with
a Matlab script. At the beginning of each test, the EEG signal amplitudes had to
be checked: it was empirically determined that proper electrodes placement was
associate with signal oscillations with a peak-to-peak amplitude below 100 µV.
However, because of dry electrodes, some artifacts could be occasionally present,
notably the ones associated with subject’s eyes blinking. Unfortunately those artifacts
could not be avoided, and in case of badly placed electrodes they led to amplifier
saturation. At least 1 s is typically needed to recover from saturation, and hence such
a condition had to be avoided. On the other hand, when an artifact related to eye-blink
was present but no saturation occurred, signal disruption appeared not meaningful,
as already shown in Section 2.3. A typical signal measured with the worn EEG
transducer is represented in Fig. 3.2. The artifact related to eye-blinks is revealed
with the presence of negative valleys. Note that this phenomenon is not present in
EEG systems employing wet electrodes. Given that, the presence of such valleys was
reasonably led back to electrodes movement, while it seems unreasonable to read
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those valleys as neural activity associated with eye movements. As a further proof of
that, similar artifacts appear on the recorded signal when moving the electrodes in
other ways. Nonetheless, this particular aspect would require more investigation and
a quantitative assessment that was not conducted during the present work.
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Fig. 3.2 An example of a signal measured with the Olimex EEG-SMT after placing all the dry
electrodes for SSVEP detection. Note that some artifacts related to eye-blinks are present.

For each subject, first 24 trials with a single flickering icon were carried out, and
then other 24 trials with two flickering icons were conducted. In the first set of trials,
the flickering frequency was randomly chosen between 10 Hz and 12 Hz in order
to avoid user biases. According to the design, the 10 Hz flickering icon appeared
on the bottom-right corner of the AR glasses display, while the 12 Hz appeared on
the up-left corner. In each trial, the brain signal was acquired for 10.0 s, and a few
seconds passed between consecutive trials. Note that 10.0 s was chosen as an upper
limit for user stimulation, which could be already unacceptable in several practical
applications. However, smaller time windows can be analysed too by properly
cutting the recorded signals and retrieving smaller epochs. The set of trials with
two simultaneously flickering icons followed the same principles, but the user had
to randomly choose the icon to stare at. In both cases, the only constraint was that
the subject had to stare at both icons for 12 times each. At the end of a trial the
subject had to declare the choice he/she made, so as to have a class label for each
trial. In doing this, there is no guarantee that the user was effectively able to focus
the attention on the declared icon for the whole acquisition time. It is also worth
noting that the phase of the flickering icon was not synchronized with the acquisition
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starting. For this reason, the phase information of the signals is not exploitable for
these EEG data.

The data acquired in the described conditions served to train and test the process-
ing of SSVEP signals. This allowed to validate the system design and also to make
adjustments where needed. Then, in a later phase, experiments were conducted with
the signal processing directly implemented on the AR glasses computing unit, thus
avoiding the usage of the laptop with Matlab. In this way, the BCI system is really
wearable and portable and it could be exploited in different applications. These
applications are described at the end of this Chapter.

3.3.2 Classification results

The EEG data acquired from each subject during the visual stimulation was analysed
as described in paragraph 3.2.3, namely by representing each signal in terms of
PSD at the stimulation frequencies or their multiple harmonics. Different aspects
can be considered in discussing the classification of such signals. First, it is useful
to compare the class separability between EEG signals corresponding to 10 Hz
stimulation and 12 Hz stimulation. Fig. 3.3 shows the signals of all subjects in the
PSD features domain. In particular, each signal is a point in the 2D plane identified
with the respective PSD at 10 Hz (x-axis) and 12 Hz (y-axis). A 10 s-long stimulation
is currently considered, and the case of a single stimulus is compared with the case of
two simultaneous stimuli. The signals corresponding to the two different stimulation
frequencies are distinguished by their color. As a general trend, the two classes are
quite separated in the features domain. However, there is an overlap between the two
classes and some of the signals fall into the “wrong region”: for instance, one of the
signals labeled as class 12 Hz in Fig. 3.3a is very far from other signals of the same
class and much closer to the class 10 Hz. Note that better class separability could
be expected for the “1 stimulus”, while in the “2 stimuli” case one could foresee
an interference of the other stimulus while the user is trying to stare at one of them.
Nonetheless, qualitatively speaking, there is no such evidence in comparing Fig. 3.3a
and Fig. 3.3b. On the contrary, the classes may seem better separated in the “2
stimuli” case. This will be better assessed in a while by quantifying class separability
with classification accuracy.
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Fig. 3.3 Scatter plot of EEG signals in the PSD features domain, associated with 10 s-long
stimulation and for a different number of simultaneous stimuli. Both axis are in logarithmic
scale.

It is also interesting to consider a shorter stimulation time: this can be done in
post-processing by considering fewer samples of the acquired signals. In doing so,
a 2 s-long stimulation time is taken into account. Surely, a shorter stimulation is
desirable to speed up communication and/or control with the SSVEP-based BCI, and
the trade-off between system latency and classification accuracy will be extensively
discussed in the following paragraph. Either way, Fig. 3.4 anticipates that SSVEP
classification is less accurate in such a case because, as expected, classes are less
separable. It would be also interesting to distinguish between different subjects,
so to graphically highlight if there exist "good" and "bad" subjects. Nevertheless,
analysing 20 subjects with scatter plots is not manageable and assessing the classifi-
cation accuracies was needed before further considerations. Finally, as mentioned
above, further PSD features can be considered, but a geometrical representation is
challenging for a 3D space and impossible for a 4D or higher-dimensional space.
Also in this aspect, a metric like classification accuracy is essential.

Several metrics could be used to quantify the separation between classes. As
an example, for each class a center could be identified and the Euclidean distance
between these centers is a measure of separability. However, hereafter the classifica-
tion accuracy is considered since it is well related to the BCI system performance.
As discussed previously, this metric is obtained as the ratio between the number
of correctly classified signals (according to their known class label) over the total
number of signals to classify. Therefore, such a metric is directly related to the
success rate with which the SSVEP is correctly detected by the BCI system. It is
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Fig. 3.4 Scatter plot of EEG signals in the PSD features domain, associated with 2 s-long
stimulation and for a different number of simultaneous stimuli. Both axis are in logarithmic
scale.

even clear that knowing the true labels for all the signals is crucial in assessing the
classification accuracy. In the present case, the subject had to declare at the end of
each trial the chosen stimulus, so that the probability of a wrongly assigned label is
non-null. This is also true for the "1 stimulus" case, where the user could manually
select the unique stimulus appearing for each trial and declare the choice at the end
of it. Although these errors are possible, it was reasonably assumed that the number
of wrong labels is actually very low. Therefore, the main causes for a classification
accuracy lower than 100% are poor concentration during some experimental trials,
low SSVEP activity, EEG measurement errors, such as temporary electrode discon-
nection and eye-blink artifacts, or the classification model itself. When identifying
the classification model, some trials are needed together with their true labels to tune
model parameters: in machine learning, these are referred to as the training set. Then,
a test set is needed to validate the identified model. In the current analysis, cross-
validation was used to iteratively split the available data into training and test, so to
achieve for each split a classification accuracy on the test set. The mean accuracy
between different splits gives an estimate of the model accuracy on unseen data. In
particular, a 4-folds cross-validation was considered, thus splitting the data in 75 %
for training and 25 % for testing four times. Together with the mean classification
accuracy, the standard deviation can be obtained too, so to quantify the precision of
this mean. Table 3.1 report the cross-validation accuracy (with associated standard
deviation) for the 20 subjects considered as a whole and one-by-one, for either the
"1 stimulus" and "2 stimuli" cases, as well as for a 10 s-long and 2 s-long visual
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stimulation. Note that the subject "DeLAnn" had no trials for the "1 stimulus" case
due to measurement issues, so there is no accuracy to be calculated. It can be seen
that, as anticipated, a longer stimulation outperforms a shorter one, while there is
no meaningful difference between the "1 stimulus" and the "2 stimuli" case. Hence,
in this setup, the non-gazed stimulus is not generally disturbing the focus on the
other one. It is worth remarking that in both cases the classification happens among
two classes, while increasing the number of total stimuli would indeed reduce the
classification performance.

10 s-long stimulation 2 s-long stimulation
1 stimulus 2 stimuli 1 stimulus 2 stimuli

subject acc/% std/% acc/% std/% acc/% std/% acc/% std/%
all 91.2 3.1 94.2 1.8 74.8 4.8 77.5 1.2
EspAnt 100.0 0.0 100.0 0.0 75 12 100.0 0.0
CioAnt 100.0 0.0 100.0 0.0 80 15 98.8 4.4
DasCre 100.0 0.0 100.0 0.0 95.8 7.3 92 10
PasLor 100.0 0.0 100.0 0.0 81 15 92 10
CraFed 100.0 0.0 100.0 0.0 78 16 88 12
ErrErn 100.0 0.0 100.0 0.0 94.6 8.8 87 15
FalGia 100.0 0.0 100.0 0.0 67 19 87 12
CraSim 91.7 8.4 100.0 0.0 58 15 64 17
PetPas 88 10 97.9 7.7 72 16 57 12
DeLAnn 96.7 6.8 88.8 8.8
VasBen 80 15 96 10 68 17 64 17
TeoAle 97.1 6.4 95.8 7.3 74 13 78 13
CapFra 81 14 95.4 8.4 63 15 83 12
SpeMar 75 15 95.4 7.5 48 18 53 18
PesMar 100.0 0.0 94 11 80 15 80 12
FroMir 90 12 92.9 8.3 70 16 61 14
MocNic 97.9 5.6 91 11 78 14 78 14
CanAle 80 14 89.6 9.8 80 15 61 16
DeAGio 65 12 81 17 51 17 52 15
CicMel 88 11 71 15 80 16 49 16
MEAN 91 94.9 73 76
STD 11 7.4 12 16

Table 3.1 Classification performance of SSVEP-related EEG signals. For each subject,
the "1 stimulus" case is compared with the "2 stimuli" case, and the results of a 10 s-long
stimulation are compared with a 2 s-long one. Performance is assessed with cross-validation
accuracy and its associated standard deviation over 4-folds. The mean accuracy among all
subjects is reported too, as well as the accuracy obtained by considering all subjects together
(row "all"). The SVM classifier considers two PSD features.
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The results in Tab. 3.1 show that for the 10 s-long stimulation 8 subjects out of 20
reach 100 % accuracy, while only one subject reaches 100 % in 2 s for the "2 stimuli"
case. The worst accuracies are about 65 % to 70 % in 10 s, while for 2 s they drop
down to about 50 %. Also note that the row "all" corresponds to the case in which
the data from all subjects is considered as a whole. Interestingly, the associated
accuracies are very close to the mean accuracies, thus indicating that there is no need
to train the algorithm subject-by-subject. This aspect is indeed very important in
wanting to build a BCI system for daily-life applications, because it indicates that a
new subject should not lose time in a training session. Instead, the BCI algorithm
can be trained on data from previous subjects. These results can be even enhanced
by considering two more features: the PSD at 20 Hz and the PSD at 24 Hz. In doing
that, results similar to the ones of Tab. 3.1 can be obtained. It is then interesting
to compare the mean accuracies in the four cases, as reported in Tab. 3.2. These
accuracies increase (or remain constant in one case), and at least in the 10 s-long
stimulation case the associated standard deviation diminishes, thus indicating less
variation among classification performance for different subjects. A statistical test
(matched paired t-test) reveals that these increases are not statistically significant.
However, the improvement is substantial at least for the 10 s case since the minimum
accuracy rises from 65 %-70 % to 77 %-85 %. Further considerations about the 2 s
case are instead reported in the following discussion about the latency/accuracy
trade-off. Finally, note that the accuracy is recalculated for the row "all" in this 4D
SVM case, again one finds that they are really close to the mean accuracies already
reported in Tab. 3.2.

10 s-long stimulation 2 s-long stimulation
1 stimulus 2 stimuli 1 stimulus 2 stimuli

classifier MEAN STD MEAN STD MEAN STD MEAN STD
2D SVM 91 11 94.9 7.4 73 12 76 16
4D SVM 94.4 7.1 97.2 4.3 75 13 76 15

Table 3.2 Comparison of classification performance for an SVM classifier considering two
PSD features (2D SVM) and one considering four PSD features (4D SVM) of SSVEP-related
EEG data. The mean cross-validation accuracies and their associated standard deviations
are reported for the "1 stimulus" and the "2 stimuli" case, and a 10 s-long stimulation is
compared with a 2 s-long one.
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3.3.3 Latency versus accuracy

In a SSVEP-based system, performance is typically quantified by simultaneously
considering classification accuracy and the stimulation time needed to reach it. The
reason is that, as a general trend, the longer the stimulation time is, the better the
SSVEP oscillation can be detected. Indeed, a longer stimulation allows to improve
the signal-to-noise ratio when considering SSVEP oscillations with respect to the
ongoing EEG activity. Nevertheless, a too long stimulation tires the user out, and it
would be deleterious for classification accuracy. It is also clear that a short stimulation
is desirable to speed up the system. In this context, the system latency corresponds
to the time needed to acquire and classify the SSVEP oscillation corresponding to
a single icon. If gazing a flickering icon corresponds to selecting it, the shorter
the stimulation is and the more commands can be sent in a unit time to the BCI
application. In a practical system, system latency and classification accuracy must
be balanced to obtain optimal performance, which means a proper success rate in
recognizing the user’s intention without taking too much time. In order to take into
account both aspects simultaneously, a useful metric is the information transfer rate
(ITR) [8, 103], whom expression is

IT R =
1
L

[
log2 N +A log2 (A)+(1−A) log2

(
1−A
N −1

)]
. (3.2)

In there, A is the classification accuracy, L is the system latency, and N is the number
of possible choices (N = 2 in the present case). This quantity is usually expressed in
bit/min.

As said above, the system latency should be calculated by summing stimulation
time and EEG processing time. In the present setup, while stimulation is at least
1 s-long, processing requires less than 50 ms once the algorithm is already trained.
Therefore, it is reasonable to consider system latency practically identical to stim-
ulation time. In doing this, Fig. 3.5 represents the trade-off under discussion. The
two curves represent the "1 stimulus" (blue) and "2 stimuli" (red) case. However,
it was already highlighted that there is no statistically relevant difference among
them. Hence, the two were mostly represented to have some clues about short-term
repeatability of such measures. It can be seen that the two sets of measures are
compatible, and that the mean classification accuracy generally increases with stimu-
lation time. The trade-off can be better investigated by first considering the median
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Fig. 3.5 Mean classification versus SSVEP stimulation time (almost coincident with system
latency). The standard deviation of the mean is also reported as a shaded area. The "1
stimulus" case is compared with the "2 stimuli" one.

accuracy instead of the mean. The reason relies on the fact that the SSVEP detection
performances are diversified among subjects, and the sample mean could be affected
by a single poorly performing subject. Along with the median, it seems useful to
represent the interquartile range (IQR) as a statistically robust estimate of dispersion.
Such quantities are represented in Fig. 3.6 by considering the IQR between the 75th

and the 25th percentiles. It can be seen that there is much dispersion around the
median classification performance, but in the best cases the accuracy reaches 100 %
in a few seconds. Also note that, while the mean and the median accuracies are
almost identical at 1 s, the median is typically higher for longer stimulations. This
indicates that the accuracy enhancement is actually higher for most subjects, while
the performance remains poor for a few subjects. This was somehow anticipated by
the results of Tab. 3.1 and Tab. 3.2.

This reasoning was repeated in the case of four PSD features and the results
are resumed in Fig. 3.7. These plots confirm that the classification performance
is slightly better, but this enhancement is not statistically relevant. Nonetheless,
more homogeneous performances can be obtained in some cases, notably increasing
the accuracies for the worst subjects. As a prove of that, one can refer to the
blue shaded are in Fig. 3.7b, which is noticeable narrower than the one in Fig. 3.6.
Finally, it is useful to express the SSVEP-BCI performance in terms of the ITR
from eq. (3.2). Note that with N = 2 possible choices, the maximum theoretical ITR
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Fig. 3.6 Median classification versus SSVEP stimulation time (almost coincident with system
latency). The interquartile range is also reported with a shaded area as a measure of dispersion
around the median. The "1 stimulus" case is compared with the "2 stimuli" one.

equals 60 bit/min if at least a 1 s-long stimulation is considered. Then, indeed higher
ITRs can be reached for smaller system latencies, but this seems quite unfeasible in
the current setting. The ITRs distribution among the 20 subjects is shown in Fig. 3.8
for the "2 stimuli" case as a function of stimulation time. The box-plots show that
some subjects overcome 30 bit/min also at short stimulation times, and the same
subjects go really close to the maximum possible ITR for longer stimulation times.
In general, however, the optimal situation largely depends on the subject: though
the median ITR increases almost monotonically with time (red line in the boxs), the
ITRs are not always increasing for all subjects and an optimal situation is hard to
identify when considering all subjects.

3.3.4 Comparison with literature

The SSVEP-based BCI discussed in this Chapter was designed in order to be low-cost,
wearable, and possibly trainingless in order to be closer to daily-life applications. The
performance of the system was assessed by means of the experimental results shown
above. However, to highlight the contribution of the present work to the ongoing
development in this field, it is essential to compare our results with the other ones
published in literature. To this aim, some representative examples are here reported
by mainly taking into account the last five years of research and development on
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(a) mean and standard deviation (b) median and interquartile range

Fig. 3.7 Classification accuracy versus stimulation time in the four PSD features case.

non-invasive SSVEP-BCI. Moreover, another key point is the use of dry electrodes,
which are receiving more interest in recent works but they pose some metrological
challenges. In this regard, a useful summary is reported in [104]. Focusing on
SSVEP literature, it is highlighted that detection algorithms are based on FFT, PSD,
or canonical correlation analysis (CCA). System calibration is not typically needed
but it can be exploited to increase performance. As an example, the authors of [104]
propose a variant of CCA that requires task-related calibration. The classification
accuracies of those works are in the 83 % to 93 % range, while the ITR goes from
14 bit/min to 92 bit/min. It is worth noting that the highest ITR is obtained with the
task-related CCA and by exploiting 8 dry electrodes. Meanwhile, the ITR reported
for the SSVEP-BCI with 1 electrode are about 38 bit/min [105, 106].

SSVEP has been largely exploited in building "mental spellers". In [92], a BCI
employing three stimuli and single-channel EEG was proposed. As a performance
indicator, a classification accuracy equal to 99.2 % was reported for a 10 s-long stim-
ulation, and the calculated ITR was about 67 bitmin. However, the reproducibility of
this result is not foreseeable since only 5 subjects participated in the experiments.
Moreover, the system was not completely trainingless since there was the need to
optimize the stimulation per each subject. A further speller based on single-channel
EEG acquisition and dry electrodes was proposed in [102]. In this case, a deep neural
network was used and the classification accuracy reached 97.4 % with a 2 s-long
visual stimulation. The assessed information transfer rate was 49.0 ± 7.7 bit/min,
but only 8 subjects were considered in the experiments and there is no indication
about the cost of the setup. It is also clear that much data are required for the training
of the deep net.
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Fig. 3.8 Median classification versus SSVEP stimulation time (almost coincident with system
latency). The interquartile range is also reported with a shaded area as a measure of dispersion
around the median. The "1 stimulus" case is compared with the "2 stimuli" one.

With specific regard to the combination of BCI with AR glasses, researches on
VEP-based paradigms were recently surveyed [99]. By focusing on SSVEP-based
works, it was reported that video see-through technology is mostly exploited instead
of optical see-through such as in our case. Moreover, the main applications are in
the robotic field. A system integrating smart glasses and SSVEP-BCI is reported in
[51]. The system was proposed for quadcopter control. However, in this system a
total of 16 electrodes were employed, and the accuracy achieved while executing a
flight task was 85 % (on only five subjects). The quite low accuracy points out that
there are still many issues to face before the exploitation of such technology outside
laboratories. Indeed, motion artifacts [101], which are probably caused by the flight
task, affect the SSVEP detection. Furthermore, proper focusing on the flickering
icon is important for eliciting SSVEP. In comparison with these literature works, our
system optimizes wearability and low-cost while reaching compatible classification
performance. However, it is to note that even our SSVEP system was tested in a
laboratory environment: though the setup is optimized for real-life applications,
issues like motion artifacts were avoided by asking the subject to limit movements.

Many improvements are thus possible for our SSVEP-based BCI. The ITR
should be increased while continuing to exploit the user-friendliness of a single-
channel setup. Moreover, the EEG electrodes placement must be stabilized in
order to use the system even during movements (portability). Especially for the
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present system, the EEG quality is essential for the system performance, while the
processing algorithm can be based on a relatively simple approach. Finally, following
an interesting suggestion from [87], the algorithm could exploit a dynamic stop to
furtherly optimize the latency/accuracy trade-off: such an algorithm would classify
the EEG in real-time and stop when a certain degree of confidence is reached on the
assigned class; in doing so, the time window would be variable, and possibly it would
be the shorter possible per each task. Indeed, a critical part of such an approach would
be the stopping criterion, which must limit the possible misclassifications. Some
applications for the SSVEP system at the current development state are reported in
the paragraph 3.4.

3.4 Applications

Many possible applications for a SSVEP-based BCI have been already recalled in
discussing inherent literature. In this paragraph, the applications tested with our
wearable system are described in order to show its possibilities in fields such as
industry 4.0 [107] and healthcare.

Industrial maintenance

The possibility of successfully employing the wearable SSVEP-BCI was first in-
vestigated for a hands-free inspection task in an industrial context [49]. This case
study was exploited to test the system prototype on the field. The scenario con-
sisted of a technician conducting inspection and maintenance of a complex industrial
plant. In checking its parts, the technician can fix cables, electrical machines, or
power drives while simultaneously visualizing useful information on smart glasses.
Hands-free operation can thus provide an interesting feature: for instance, the user
can scroll textual information without interrupting the task, or he/she can access
sensor data if the industrial plant is equipped with transducers. Fig. 3.9 shows the
SSVEP-BCI system communicating with a wireless sensor network for advanced
diagnostics and real-time monitoring of an industrial plant. Bluetooth was exploited
for communication between the smart glasses and the sensor network.

An Android application was purposely developed to scan available smart trans-
ducers and then connect to the one of interest. Therefore, the user was prompted to a
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Fig. 3.9 AR-BCI system based on SSVEP proposed for accessing data from a wireless sensor
network.

transducer selection window. Once connected, available data was made accessible
and the user could ask for specific measures, such as temperature or hydraulic pres-
sure. The Android application diagram is depicted in Fig. 3.10. The commands were
sent to the transducer by merely staring at the corresponding icon, without the use of
hands.

Fig. 3.11a shows a user wearing the SSVEP-BCI prototype during an emulated
inspection task. As an example, temperature and humidity of an industrial oven
could be selected by the icons appearing on the smart glasses display: the user stares
at the desired flickering icon and, after a few seconds, the corresponding command
is sent. Fig. 3.11b is a representation of the user’s view through the smart glasses.
Note that, while focusing on the icon to select, the background naturally appears
blurred. This was even replicated in Fig. 3.11b, which was obtained by simulating a
real situation. Nonetheless, the user can inspect the real environment while having
superimposed textual information by means of the augmented reality glasses.

Civil engineering

A further noteworthy application for the wearable SSVEP-BCI is in inspecting
bridges and viaducts. This application was developed during a university course
on instrumentation and measurement for smart industry, and it clearly belongs to
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Fig. 3.10 Android application diagram for an inspection task in industrial framework: smart
transducers and related measures are selected by staring at corresponding flickering icons.

the industry 4.0 framework. Nevertheless, despite the similarities with the previous
case study, it seems useful to discuss the peculiar aspects associated with practical
applications in civil engineering. In this field, optical-see-through devices appear
useful for visual inspection, which is a crucial task when checking the integrity of a
bridge or a viaduct. Hence, visualizing additional information about an infrastructure
must not obstruct the visualization of the structure itself. The exploitation of AR
technologies in civil engineering is still at an early stage, but it is indeed appealing. In
addition, the hands-free feature, provided in the present case by the BCI, guarantees
easier navigation into the available information. Indeed the need to check the state
of architectural works has always been an important and challenging issue, and the
efforts in this direction have increased in recent years. With the wearable SSVEP-
BCI, the attempt was to aid in this task. For the civil engineering case study, the
information consisted of static and dynamic measures. In detail, accelerometers,
gyroscopes, magnetometers, and strain gauges, as well as temperature and humidity
sensors were installed on a beam to emulate measurements on a bridge within a
laboratory setup. The technician is interested in monitoring these quantities during
a load test in which deformations and vibrations must be measured. Fig. 3.12
represents the basic idea for the bridge inspection: wireless transducers are installed
on the bridge, smart glasses communicating with them to retrieve useful information,
and the BCI aims to replace the default touch-pad interface of the glasses.
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Fig. 3.11 Example of inspection with the wearable SSVEP-BCI: measure selection menu,
with flickering white squares for options (as usual in AR glasses, background image is
blurred to focus on the selection).

A sketch of the SSVEP-based system communicating with a sensor stack is
instead reported in Fig. 3.13. This clearly represents a novel possibility of interaction
that also exploits the internet of things (IoT) for advanced monitoring systems. From
a general point of view, the system followed the same implementation described
throughout this Chapter. Nonetheless, the need to continuously acquire and process
the EEG arose since, differently from the previous case study, the application re-
quired the possibility to asynchronously choose an icon/the measures to visualize.
In doing that, the implementation of a variable acquisition window was attempted
by considering the confidence associated with a class. Remarkably, this possibility
was already mentioned at the end of paragraph 3.3.4 as a future development. Un-
fortunately, a proper study on the acquisition stopping criterion is still missing and
a rigorous analysis of such an implementation is addressed to future developments.
Nonetheless, despite being in a very early stage of development, this principle was
exploited in developing an Android application through which the BCI user can
access the measures of interest.

The Android application for inspection tasks was customized to the civil engineer-
ing case study. The different activities are synthetically reported in Fig. 3.14. In there,
the smart glasses simultaneously connect to the installed transducers, and then the
user visualizes environmental measures and has the possibility to choose other data to
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Fig. 3.12 Example of a bridge inspection with smart glasses and a distributed wireless sensor
network for measuring static and dynamic mechanical quantities.

visualize, either static measured or dynamic ones. The choice is conducted by means
of flickering icons. In the current example, the static data consist of a deformation
curve derived by merging strain gauges’ measures and angle measures. Meanwhile,
the dynamic data consist of vibration measures derived with 3D accelerometers.

Healthcare

The proposed SSVEP-BCI has also found applications in healthcare with particular
regards to the rehabilitation of children with attention-deficit/hyperactivity disorder
(ADHD). Such an investigation was conducted in parallel to the present thesis
work and the author of this thesis did not work directly on the topic. However, the
main finding are briefly reported hereafter to give a comprehensive overview of the
potential applications for the SSVEP-BCI. The experiments were conducted by our
research group in collaboration with an accredited rehabilitation center (Villa delle
Ginestre). The system guarantees the interaction with a robot through the wearable
BCI to implement a behavioural therapy protocol. In this context, the smart glasses
were still used to display the possible commands for the robot, while in future it
is foreseen to also mix virtual objects with reality so as to achieve different levels
of complexity in the interaction (mixed reality). At the current development state,
the usefulness of the SSVEP-BCI relies on the fact that the children must focus on
a flickering icon in order to interact with the robot. Therefore, the task cannot be
conducted without paying attention, and this should enhance children’s engagement
in the therapy. Fig. 3.15a depicts the robot to control during the interaction and
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Fig. 3.13 AR-BCI system based on SSVEP communicating with a sensor stack through
Bluetooth low-energy.

the possible choices appearing on the smart glasses display. Details about this
application are described in [5].

An interesting feature was added to the system, i.e. the possibility to have a third
control command through the detection of voluntary eye-blinks. Therefore, such
a system can be defined as a hybrid BCI, since it integrates SSVEP with another
type of control paradigm. Note that the eye-blink is typically an artifact from the
point of view of EEG measurement, and involuntary eye-blinks were often present
in measuring the brain signals with our low-cost acquisition system. Nonetheless, in
this case the artifact is exploited by implementing a finite state machine as follows
(see Fig. 3.15b):

• idle state: at the beginning of the interaction, no flickering icon is appearing
and the robot is not moving; if a voluntary eye-blink is detected, the state is
changed to select the direction;

• selection direction: through the SSVEP the user can choose left or right
movement, and then confirm the choice with a voluntary eye-blink, which
starts the movement;

• move forward: in this state the robot is moving as decided in the previous state
and it can be stopped with a voluntary eye-blink to return to the idle state.
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Fig. 3.14 User interface realized in Android for bridge inspection during a load test. In the
first activity (up) the smart glasses automatically connect to multiple wireless transducers.
In the second activity (middle) the user visualizes environmental data. The third and fourth
activities (down left and down right) can be accessed by selecting the data to visualize. The
black background is equivalent to transparency when the application is running on smart
glasses.

The exploitation of the eye-related artifact is based on the possibility to distinguish
voluntary eye-blinks from involuntary ones. This was actually done by choosing
a proper threshold in analyzing the peaks related to eye-blinks in the time domain
as shown in Fig. 3.16. The threshold was empirically determined. Clearly, errors
are possible in the detection of the voluntary eye-blink and this further feature
contributed to inaccuracy of the user’s intention detection. However, such a feature
allows to avoid continuous flickering of the icons, which can be activated with a
purposely-designed command.
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(a) possible control commands in interacting
with the robot

(b) finite state machine implemented for robot
control

Fig. 3.15 Application of the wearable SSVEP-BCI in the rehabilitation of children with
ADHD through a behavioural therapy, as documented in [5].
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Chapter 4

A wearable BCI based on
spontaneous brain activity

Active brain-computer interfaces are attractive because they rely on spontaneous
brain activity that is voluntarily modulated by the subject, without the need of any
external stimulation. However, they typically require long training for both the user
and the algorithm before brain patterns can be correctly recognized, especially when
non-invasive techniques are adopted to record neural activity. Motor imagery (MI)
is the most known paradigm for active BCIs. It relies on mental tasks in which the
user envisions a movement without actually executing it. Understandably, this is
largely studied in rehabilitation protocols, e.g. in presence of a post-stroke brain
damage. On the other hand, MI can be used as an alternative way of communication
and control. Therefore, the current chapter discussed the possibility to realize a
wearable BCI relying on MI. In this case, setups with at least 8-10 electrodes are
usually considered. Hence, first analyses were conducted regarding the possibility
to reduce the number of acquisition channels and optimize system wearability and
portability. Then, neurofeedback was investigated in order to improve the training of
the user and hence the performance.

The current chapter is organized as follows. Section 4.1 briefly recalls the
background knowledge on MI, while Section 4.2 presents a well-known and effective
approach adopted for the classification of imagery tasks. Next, Section 4.3 deals with
the number of channels required for the acquisition of MI-associated brain activity,
and notably it reports the results of analyses conducted on benchmark datasets
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to highlight the trade-off between number of channels and classification accuracy.
Then, the possibility to exploit neurofeedback is discussed in Section 4.4 with the
aim to improve the detectability of such phenomena. Particular attention has been
paid to the analyses of MI-related EEG signals with the attempt to highlight the
neurophysiological phenomena of interest and thus explain the classification results.

4.1 Motor imagery

Sensorimotor rhythms are brain signals associated with motor activities, e.g. limb
movements. They consist of EEG oscillations measurable in the µ and β bands,
typically corresponding to the 8 Hz to 13 Hz and 13 Hz to 30 Hz ranges, respectively.
The brain area of concern is located near the central brain sulcus. Hence, these
signals are naturally linked to movement-related brain areas, and the information
contained in µ and β rhythms is suitable for communication and control in BCI
applications. Interestingly, they are not merely generated in correspondence of an
action, but they also subsist when the action is imagined [108]. This phenomenon
implies that people with lost motor functions might use motor imagery (MI) as
a surrogate for physical practice [109, 110]. Indeed, the aim of a MI-based BCI
is to measure and classify brain signals related to movement imagination without
requiring to actually perform a movement. Typical mental tasks are the imagery of
left hand or right hand movement, but also imaging the movement of feet or tongue
can be considered. In this sense, MI is an endogenous paradigm for EEG-based BCIs,
namely it relies on spontaneous and voluntarily modulated brain activity. Application
examples involve motor rehabilitation or the driving of robotic prostheses, but MI-
BCIs are also addressed to able-bodied people for communication and control tasks
in everyday life.

The cortex, the basal ganglia, and the lateral portion of the cerebellar hemisphere
are generally involved in planning the movement, and the electrical activity in this
region changes according to the motor intention. Without entering into neurological
details, the operating principle of an MI-based BCI is to measure both the frequency
content and the spatial distribution of the brain activity. Figure 4.1 illustrates how
the different parts of the body are mapped to the primary motor cortex. This shows
the disproportion among the different body parts, and it also gives hints on the most
suitable movements to imagine. It is also worth mentioning that each side of the body
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Fig. 4.1 Map of the primary motor cortex associated with different motor processes according
to the anatomical divisions of the body.

is controlled by the contra-lateral hemisphere of the brain. As shown in Fig. 4.1, left
hand, right hand, and feet movements should be relatively simple to discriminate
through brain signals recording, because the associated body parts entail a large area
of the sensory motor cortex and they are well-separated in space. Notably, right
hand motor imagery produces relevant brain activity changes in the sensorimotor
cortex around the electrode position C3 (see standard locations in Fig. 1.5), while the
left hand is associated with the area around electrode C4. Foot movement, instead,
produces signals on the medial surface of the cortex, around electrode location Cz.
For a better understanding, the Fig. 4.2 recalled from [6] depicts patterns in time-
frequency domain according to EEG signals acquisition during left hand, right hand,
or feet motor imagery. In particular, the activity at the standard locations C3, Cz, and
C4 are highlighted. As mentioned above, patterns for these imagined movements
were expected to be spatially distinct.

The patterns shown in the Fig. 4.2 are examples of event-related desynchro-
nization (ERD) and event-related synchronization (ERS), two linked phenomena
that the literature has pointed out as responses of neuronal structures in the brain
during movement execution or imagination [111, 112]. Such phenomena are typi-
cally evaluated in MI-BCI studies to better understand the informative content of
the EEG signals under analysis. In this work, this has been done in association with
classification results. Therefore, the next section introduces a well-known processing
approach adopted for the classification of motor imagery tasks. This processing
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Fig. 4.2 Time-frequency representation of EEG patterns associated with three motor imagery
tasks and their spatial distribution [6].

approach has been adapted and exploited throughout the MI-BCI development for
both channel reduction and online feedback.

4.2 Filter bank common spatial pattern

In detecting MI, classification is broadly considered to distinguish among different
mental tasks and associate each of them to a control action. The processing is
conducted by means of artificial intelligence, and in particular machine learning
dominates the field. In doing that, two general approaches can be distinguished:
traditional machine learning based on the design of features extraction, or deep neural
networks that are totally data-driven. The latter approach has recently attracted much
investment by the BCI community. Nonetheless, it was already mentioned in the
introduction that the amount of data required to identify a deep neural network
model appears too big with respect to actually available data, and literature results
are not yet well-defined. Given that, the approach considered for this work was
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the former one, in which the choice of signal features to extract and classify was
partially guided by neurophysiological knowledge, though the algorithm must still
be trained by means of available measures. It is worth noticing that, in discussing a
wearable MI-based BCI, signal processing is here introduced before the description
of signal acquisition, in contrast with what was done in the previous chapter for
the SSVEP-based BCI. This is justified by the fact that the choice of acquisition
channels for MI detection is usually more data-driven than for the SSVEP case.
Indeed, the processing introduced in this section has been exploited for a channel
selection method proposed in the context of the present thesis.

A well-known machine learning approach proposed in literature for the classifi-
cation of MI is the filter bank common spatial pattern (FBCSP) [62]. This approach
was developed and it won two contests during the BCI competition IV (2008). Since
then, many variants have been proposed due to its effectiveness. Therefore, the
FBCSP approach has been taken into account during the current work, and possible
variants have been explored. As represented in Fig. 4.3, the basic structure of the
FBCSP can be divided into four blocks:

1. a filter bank, extracting the frequency content of EEG signals in different
bands;

2. the common spatial pattern algorithm, a widely used features extractor consid-
ering EEG spatial information;

3. a mutual information-based best individual feature selector of features account-
ing for class-related information;

4. an optimal classifier.

Each block is here better discussed in describing the particular implementation of
the FBCSP processing, along with the training and evaluation phases needed for
identifying and testing the algorithm model.

4.2.1 Filter bank

The first step of FBCSP is the filter bank, which separates the frequency content of
each EEG signal with multiple pass-band filters. Chebyshev filters were employed,
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Fig. 4.3 Architecture of the filter bank common spatial pattern algorithm for both the train
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each one with 4 Hz-wide band and with 2 Hz overlap between consecutive filters. The
overall band considered in this implementation was 4 Hz to 40 Hz, thus resulting in
17 bands (4 Hz to 8 Hz, 6 Hz to 10 Hz, 8 Hz to 12 Hz, . . . , 36 Hz to 40 Hz). Despite
the original proposal [62], overlapping bands were chosen to avoid losing information
in correspondence of band edges, as it may happen in the non-overlapping case. For
instance, in the original FBCSP implementation, 8 Hz was the high cut-off frequency
and the low cut-off frequency for two adjacent bands, 4 Hz to 8 Hz and 8 Hz to 12 Hz,
respectively. To achieve a −200 dB/decade slope of the filter frequency response,
the stop-band attenuation was set to −40 dB and the order was set to 10. The high
slope here is needed to have a sharp cut between pass band and stop band, but this
also implies a significant computational burden for filter application to many EEG
data. Since the filter bank is applied to each EEG signal, different channels are
treated separately. At the end of this step, the number of signals is 17 times the
number of the original signals.

4.2.2 Spatial filtering

The common spatial pattern (CSP) extracts features relying on the covariance matrix
of measured EEG signals. Within this procedure, the spatial content associated with
EEG signals is projected in a new space, so that features are sorted according to
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the class-related variance [113]. For instance, if data are available for left hand
and right hand motor imagery, two matrices for spatial projection can be derived:
the first leads to features with left-related variance in descending order, while the
second leads to features with right-related variance in descending order. Note that,
in this binary case, maximizing the variance associated with a class automatically
minimizes the variance associated with the other class. Therefore, the two matrices
are linked. After the spatial projection, only most relevant features are taken into
account. In this sense, the CSP is a spatial filter.

Since the CSP computes projection matrices from available data, two phases
must be distinguished: the matrices are calculated from data during the training
phase, while they are applied to data in the evaluation phase. The projection matrix
computation is as follows. Given a nch ×nsamp matrix E j of EEG signals per each
experimental trial, where nch is the number of channels while nsamp is the number of
samples, the covariance matrix associated to the class c is calculated as

Kc =
1

ntr,c

ntr,c

∑
j=1

E j,cE j,c
′

trace
(
E j,cE j,c

′) , (4.1)

where ntr,c is the number of trials available for class c and the apostrophe (′) indicates
the transposition of a matrix. Note that matrix Kc is actually obtained as a mean of
the covariance matrix associated with the trials j = 1,2, ...,ntr,c, each of which is
normalized by the respective matrix trace. Summing the Kc matrices of the classes,
the composite covariance matrix

K = ∑
c

Kc (4.2)

is then obtained. Note that c = 1,2 in the simple binary case, but (4.1) and (4.2) still
hold in the multi-class case.

A complete projection matrix Wc is computed per each class by solving the
eigenvalue decomposition problem

KcWc = KWcΛc, (4.3)

where eigenvalues are the non-zero values of the diagonal matrix Λc, while Wc is
made of eigenvectors. If eigenvalues are sorted in descending order, the eigenvectors
are sorted accordingly. In the final step, the actual projection matrix W r

c is retrieved
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from Wc by considering only the first and last m columns. The former have maximum
variance with respect to class c, while the latter have minimum variance with respect
to class c. Ultimately, the CSP training phase consists of calculating the W r

c for all
the classes of interest.

In the evaluation phase, instead, the CSP projection is applied. The matrices W r
c

transform the nch ×nsamp data associated to each trial following the equation

C j,c =Wc
′E jE j

′Wc, (4.4)

and then features are obtained as

f j,c = log
[

diag(C j,c)

trace(C j,c)

]
. (4.5)

In there, the C j,c matrix is diagonalized, and 2m features are obtained per trial.
Spatial content of EEG data is thus filtered because 2m < nch. Hence, the array
f j,c synthetically describes the j− th trial with respect to the class c. If the CSP is
exploited after the filter bank, this reasoning must be repeated for each band. By
merging the features of all bands, each trial is described with 2m f features (with
regard to class c).

Literature works demonstrate that the CSP is effective in extracting discriminatory
information from two populations of motor imagery data [114], but multi-class
extensions are feasible as well [113]. With the CSP trained and applied according
to (4.1)-(4.5), a possible approach is the one-versus-rest (OVR). In there, the binary
discrimination is extended by considering each class against the remaining ones.

4.2.3 Features selection

Other than feature extraction, the CSP naturally encompasses feature selection.
However, since multiple bands are derived from the filter bank, a further selection
step is needed in choosing only the best features combining spatial and frequency
content. The selection approach considered in this work is the mutual information-
based best individual feature (MIBIF), which relies on class-related information
associated with each feature. This reduces the 2m f features representing each trial
to nM,c features. Note that the subset of selected features depends on the class c.
Also in this algorithm step, data-driven training is needed before the actual selection.
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Notably, the mutual information between a class and a feature is calculated in the
binary case as

Ic( fi) = Hc −Hc| fi =−
2

∑
c=1

P(c) log2 P(c)−
2

∑
c=1

ntr

∑
j=1

p(c| f j,i) log2 p(c| f j,i), (4.6)

which is the information related to a feature i = 1,2, ...,2m f with respect to class c
is obtained by subtracting from the class entropy Hc the feature-related entropy Hc| fi .
The latter is derived with the conditional probability between a feature and a class
summed over trials, which must be estimated with the Bayes rule

p(c| f j,i) =
p( f j,i|c)P(c)

∑
2
c=1 p( f j,i|c)P(c)

. (4.7)

In there, the a-priori probability P(c) of a class is estimated with the frequentist
approach as the ratio between the ntr,c trials available for the class and the total
number of available trials ntr. Meanwhile, the conditional probability p( f j,i|c) is
estimated, in the present work, with the Parzen Window [62]:

p̂( f j,i|c) =
1

ntr,c

ntr,c

∑
k=1

1√
2π

e−
( f j,i− fk,i)

2

2h2 (4.8)

Remarkably, in the sum, a feature f j,i associated with the j − th trial appears in
the difference with each features fk,i from the same class, and it is weighted by the
smoothing parameter

h =

(
4

3ntr

)1/5

σ , (4.9)

with σ equal to the standard deviation of f j,i − fk,i.

By these calculations, the Ic values associated with each of the 2m f features are
obtained. They are then sorted in descending order so as to select the first kMIBIF

= 5 ones, i.e. the most informative ones. The number of features was empirically
chosen after some preliminary trials and then fixed for next elaborations. Actually,
since the CSP features are paired (first m ones versus last m ones), when one feature
is selected, one must also select the paired one. For this reason, the effectively
selected features nM,c can be 6 to 10. Overall, the MIBIF chooses the best features
according to the data-driven training, while in the evaluation phase these same
features are selected. Incidentally, this implies that the band choice is subject-related
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if a subject-by-subject training is carried out. Finally, the MIBIF algorithm here
presented for two classes can be extended to more classes, for example with a pair-
wise approach (discrimination among pairs of classes) or with the already mentioned
OVR approach.

4.2.4 Classification of mental tasks

In the last algorithm step, the features are classified. A supervised approach was
exploited, hence training is needed before the evaluation phase. Again, the clas-
sifiers are introduced for a binary case but they can be extended to more classes.
The first FBCSP implementation [62] proposed a naive bayesian parzen window
(NBPW) classifier, but also the support vector machine (SVM) was investigated.
Broadly speaking, the classifiers led to compatible performance. While the SVM
is extensively described in specialized texts [3], it is useful to discuss the NBPW
implementation.

The idea behind the Bayesian classifier consists of calculating, for a trial, the
probability of a class given the features f̄ describing that trial. The Bayes rule

p(c|f̄) = p(f̄|c)P(c)
∑

2
c=1 p(f̄|c)P(c)

(4.10)

is applied. While the P(c) is obtained with the frequentist approach on training data,
the conditional probability is computed with a "naive assumption", according to
which all features are conditionally independent, so that

p(f̄|c) =
nM,c

∏
i=1

p( f̄i|c). (4.11)

Each of these conditional probabilities are estimated with the Parzen window of (4.8)
and (4.9) already introduced for the MIBIF selector. Note that the training of the
NBPW consists of using features associated with training trials in the Parzen window
expression, as well as in the frequentist estimation of P(c). After the probability
p(c|f̄) is calculated per each class, the most probable class is assigned to the trial
during the evaluation phase.

The FBCSP approach with NBPW or SVM classifiers were implemented in
Matlab and tested on benchmark datasets from BCI competitions. Such data were
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created in different European institutes to let BCI researchers compete in developing
the best processing approach. After the competitions (the last one was in 2008),
these data were published and they have been largely used in research activities.
Thanks to that, different research groups can compare their results, though the
lack of standardization in this community still prevents their full interpretation and
replication. The benchmark datasets used in this thesis are presented hereafter, and
inherent results are then presented. However, it is worth noting that few expert
subjects were usually involved in acquiring those data. This implies that the real
usability of a motor imagery BCI in daily life could not be simply evaluated by this
data, and statistical significance of eventual improvements could not be proven due
to the small subjects sample. For these reasons, in the following sections more data
will be considered to better evaluate the proposed FBCSP variants.

Benchmark datasets

The first dataset used for testing the FBCSP implementation is the dataset 2a from
BCI competition IV (2008) [115]. It includes EEG data from 9 subjects recorded
through 22 channels in two different days (sessions). Data were sampled at 250 Sa/s.
Each session is composed of 6 runs separated by short breaks. A run consists of 48
trials balanced between motor imagery classes, which are "left hand", "right hand",
"feet", and "tongue". Hence, 12 per class are available. In processing these data,
cross-validation was applied to data from the first session (referred to as A0xT for
subject "x") in order to predict the classification accuracy expected on further data.
In a second step, these data were used for training the algorithm, while the second
session (A0xE) was used for the evaluation. The second dataset used in this work
was the dataset 3a from BCI competition III (2006) [116], including 60-channels
data from only 3 subjects. Data were sampled at 250 Sa/s. Per each class 60 trials
were available, and the classes were "left hand", "right hand", "single foot", and
"tongue".

Two more datasets from BCI competitions were then considered, namely the
dataset 2b of BCI competition IV [117], and the dataset 3b of BCI competition III.
These include 9 and 3 subjects, respectively, but the peculiarity is that data were
recorded from 3 bipolar EEG channels and that neurofeedback was provided during
the trials. Again, data were sampled at 250 Sa/s. Details about the number of
available trials are not recalled here, but they will be recalled later when relevant.
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However, it is to remark that these data were split in half for training and test, as
already explained for the first dataset. For all the four datasets, a cue-based paradigm
was adopted. This meant that in each trial the user is relaxed until an indication
appears on the screen. After about 1 s from the indication, the user has to carry out
the specific mental task until a stop indication was provided. In this sense, this was a
synchronous BCI paradigm. The feedback, when present, was provided on the same
screen. Finally, electrooculopgraphic signals were also recorded for easing artifact
removal, but they were not exploited in achieving the following results.

Testing the FBCSP

The first evaluation of the FBCSP performance was done on dataset 2a with a 6-folds
cross-validation on training data. The six possible class pairs were considered as
well as the four classes altogether. Results are reported in Tab. 4.1 for the NBPW
classifier case. In particular, the mean classification accuracy among subjects is
reported along with the associated standard deviation to also have an estimate of
the mean dispersion. Notably, the results are compatible with the ones obtained by
an SVM with linear kernel, which are not reported in the table. In the binary cases
the accuracy goes from 74 % to 84 % depending on the considered pair, while in
the four classes case it is 63 %. Note that directly comparing results achieved for
different numbers of classes is unfair because the more the classes and the easier
the misclassification. Hence, other metrics exist for normalizing the classification
accuracy to the number of classes (e.g. see the Cohen’s kappa [118]). Despite that,
the classification accuracy will be still considered in the following as it is the most
diffused one.

TASKS ACC ± STD / %
left hand vs right hand 74 ± 20
left hand vs feet 81 ± 13
left hand vs tongue 82 ± 13
right hand vs feet 81 ± 15
right hand vs tongue 84 ± 13
feet vs tongue 75 ± 13
four classes 63 ± 19

Table 4.1 Mean and standard deviation of the cross-validation accuracy obtained on dataset
2a with a Bayesian classifier.
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The relatively high values for the standard deviations indicate that there is much
performance difference among subjects. To better highlight that, Fig. 4.4a shows
box-plots related to the cross-validation accuracies of the 9 subjects from dataset
2a with the addition of the 3 subjects from dataset 3a. These results are shown for
the same classes set as before, and again only the NBPW-related results are shown.
In addition, Fig. 4.4b reports classification accuracies obtained by training on the
first half on data and evaluating on the other half (i.e. the hold-out method). In both
figures, the dashed line represents the random accuracy level, i.e. the theoretical
accuracy that would be obtained if one guesses at random the classes. By assuming
balanced classes, this level equals 50 % in the two-classes cases and 25 % in the
four-classes case.
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(a) cross-validation on training data
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(b) hold-out method

Fig. 4.4 Classification accuracies for the 12 subjects from dataset 2a and dataset 3a. The six
possible classes pairs are considered as well as the four classes case.

The above results show how the median accuracies (red lines) are well above
the random accuracy level, and that only in few cases the accuracy distribution goes
below that level. Overall, classification accuracy is relatively high if compared to
other datasets or more real applications, as it will be seen later in this thesis.

To conclude, results are also reported for the 12 subjects from dataset 2b and
dataset 3b. Only two classes are available, thus Tab. 4.2 reports the accuracy of
all subjects by comparing cross-validation results (CV) with hold-out ones (HO).
Only two bipolar channels out of three were considered in these tests. Despite the
low channel number, the results are compatible with the previous ones, namely the
performance is unexpectedly high. Indeed, later results will show that reducing the
number of channels is typically associated with accuracy decrease. On the one hand,
the results of Tab. 4.2 may point out that datasets from BCI competitions are not
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always representative for real application scenarios. On the other hand, these data
were acquired while providing neurofeedback during MI.

ACCURACY / %
Subjects CV HO
B01 72 67
B02 61 59
B03 54 57
B04 92 96
B05 84 88
B06 80 82
B07 72 74
B08 78 89
B09 80 85
S4b 80 79
X11b 75 74
O3VR 65 64
mean 74 ± 10 76 ± 12

Table 4.2 Classification accuracies for the 12 subjects from dataset 2b and dataset3b. Subject-
by-subject accuracies are reported for cross-validation (CV) and hold-out (HO).

4.3 Acquisition channels

In satisfying the requirements of daily-life brain-computer interfaces, wearability
and portability are strictly linked to the number of channels employed in measuring
the EEG. Selecting a minimum number of channels not only enhances system
wearability and portability, but also optimizes the performance by reducing over-
fitting and excluding noisy channels [119]. Differently from the SSVEP case, many
channels are usually needed to map the spatial information associated with motor
imagery. Moreover, it is not trivial to choose electrodes locations a-priori. For these
reasons, the number and location of the acquisition channels were firstly investigated
with a data-driven approach. In doing that, the FBCSP algorithm introduced above
was mainly exploited. Then, also a knowledge-based approach was investigated, in
which the aim was to choose a small number of subject independent channels.



4.3 Acquisition channels 103

4.3.1 An attempt with a single channel

In pursuing utmost wearability and portability for the MI-BCI, the possibility to
exploit a single-channel EEG was firstly attempted. This investigation was inspired
by a research of 2014 [120] proposing the classification of four motor imagery tasks
with single-channel EEG data. In their work, the authors proposed the usage of
a short-time Fourier transform to obtain spectrograms from single-channel EEG
signals, and then the application of the CSP for features extraction. Since the CSP
would require multi-channel data, the idea behind that work was to exploit the
different frequency bands of the spectrogram in spite of channels. A single channel
was selected in post-processing among the available ones, and 3 s-long time windows
were processed in order to classify the MI tasks. In replicating the proposed approach,
the short-time Fourier transform was calculated in Matlab with the "spectrogram"
function, by considering 100 samples-long windows with 50 % overlap between
consecutive windows. Each one was zero-padded to 128 samples and a Hamming
window was used. Considering the module of the spectrogram, a real matrix is
associated to each single-channel signal. From the spectrogram, if frequency bands
are considered in place of channels, the CSP can be applied for extracting features.
Finally, these features are classified with an SVM. Note that data-driven training is
needed for both the CSP and SVM.

The authors of [120] reported a mean classification accuracy equal to 65 % when
classifying four motor imagery tasks from the dataset 3a of BCI competition III.
The maximum accuracy, obtained in a very specific condition, was about 88 %, and
4 s of the input EEG signals were analysed. One attempt of the present work was
thus to replicate such results even on a further benchmark dataset, i.e. the dataset
2a of BCI competition IV. The analyses were conducted first by fixing the number
of CSP components to m = 2 in accordance with the FBCSP approach introduced
earlier, and then by also varying the number of CSP components, as the authors of
[120] proposed. Classification results suggest that in classifying two motor imagery
tasks with data from the dataset 3a, the maximum accuracy that can be obtained
is about 85 % (subject k6b, right hand vs tongue). However, all the accuracies
associated with subjects from dataset 2a are compatible with the random accuracy,
i.e. 50 %. Fig. 4.5 shows the results with respect to the 9 subjects of the dataset 2a
when considering two motor imagery tasks to classify. The random accuracy level
is also reported as a red dashed line which is practically superimposed to the lines



104 A wearable BCI based on spontaneous brain activity

indicating classification results. Then, if considering four classes, accuracy was even
lower. This evidence, together with the fact that no other relevant literature work
attempts the usage of a single channel for MI, discouraged further investigation in
this direction. Instead, such results triggered the need to study the trade-off between
the number of channels and the achievable classification accuracy, as it is reported in
the following paragraph.
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Fig. 4.5 Results of motor imagery classification with single channel data from dataset 2a of
BCI competition IV. The six possible pairs of classes are considered for the 9 subjects: left
hand vs right hand (blue), left hand vs feet (red), left hand vs tongue (yellow), right hand vs
feet (magenta), right hand vs tongue (green), feet vs tongue (cyan).

4.3.2 EEG channels selection

In selecting channels with a data-driven approach, the contribution of each of them
to motor imagery classification had to be estimated. Therefore, during the work
of this thesis, a method was proposed for selecting and then validating the selec-
tion of EEG channels. The method exploited the FBCSP classification approach
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[62] and, to evaluate the contribution to the final performance per each channel, a
non-uniform embedding strategy [121] was added. According to [119], which distin-
guishes between different selection approaches, the proposed method is a wrapper
technique, because, in contrast with filtering approaches, classification is involved
in the selection process. Overall, the method consists of a progressive channel
selection, thus allowing to retrieve the trade-off between the number of channels and
the classification performance.

In more details, the selection step involves an iterative process known as se-
quential forward selection strategy [3], so to choose the best-performing channels:
firstly, motor imagery classification is attempted with every single channel in order
to select the best one, and then the other available channels are added one-by-one
again according to classification performance. Therefore, n channels are used in
the n-th iteration: the first n−1 are the best from previous iterations, while the last
one is found from the remaining channels by assessing the classification accuracy
resulting from an n-channel set. Clearly the iterations are stopped when reaching the
maximum number of available channels. Moreover, the classification performance at
each iteration was assessed as the mean among all available subjects. By doing that,
the method attempts to find subject-independent best channels. To decide for the best
performance, the difference between mean classification accuracy and associated
standard deviation among the subjects (µ −σ ) was maximized. Note that this kind
of objective function tries to also minimize the performance variation (σ ). To ease
the comprehension of the selection algorithm, this is represented in Fig. 4.6

concatenation

i-th best
performing
channel

not-yet-
selected 
channels

j-th channel
guess

selected ch.
and 

associated
performance

Fig. 4.6 Representation of the channel selection algorithm exploiting the FBCSP approach
for the classification of EEG signals.
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The channel selection step corresponds to the training of the system, and clearly
it should only exploit training data. Therefore, a 6-fold cross-validation was used for
the performance assessment. The training data are thus split 6 times in 6 folds, of
which 5 folds are used for training the FBCSP and the remaining one for calculating
the accuracy. Per each subject, cross-validation accuracy is hence obtained as the
mean across 6 folds, and then mean and standard deviation across the subjects can
be obtained. Thanks to the cross-validation, the method aims to determine the
most significant channels in terms of predictive information. In using the FBCSP
approach, a suitable classifier was also found by comparing state-of-the-art solutions,
such as the NBPW [62], the SVM, and a k-nearest neighbors (kNN) classifier [3].
The classifier choice was again data driven. Note that these binary classifiers were
extended to multi-class with the "one-versus-rest" approach. Hence, each class was
discriminated against the remaining ones, and the class assigned to each trial was the
one with the highest classification score.

At the end of the channel selection step, a sequence of sorted channels is available.
Clearly channels are sorted according to the predictive information evaluated with
cross-validation, and these results are useful in designing a BCI system because the
expected classification performance (µ,σ) is given as a function of the channels
subset. However, the channel sequence should be validated on new (independent)
data. Hence, a testing phase is needed to validate the BCI design by also taking into
account the trained FBCSP with the classifier. Such a validation was conducted by
simply considering possible channel subsets according to the found sequence. In
the first test step a single channel was considered, while for the following steps a
channel was added each time according to the channels order. Note that, instead, it
would be unfair to select channels by relying on test data. The results for the channel
selection and validation are reported in the following.

Results

The proposed channel selection method was applied to the benchmark datasets
of BCI competitions 2a (9 subjects) and 3a (3 subjects) introduced earlier. The
method was implemented in MATLAB. First, the optimal classifier was chosen by
considering both binary and multi-class (four classes) classification. Tab. 4.3 reports
the comparison results for the NPBW, SVM, and kNN classifiers in terms of µ and σ

for the 9 subjects of the dataset 2a . The six possible pairs of classes were considered
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for the binary cases (combination of "left hand", "right hand", "feet", "tongue"). The
cross-validation accuracy was calculated on data from the sessions T, thus choosing
the classifier regardless of evaluation data data (sessions E) to be employed later.
All channels (22 for dataset 2a) were taken into account in this step. Performances
appear compatible for the different classifiers if looking at the intervals defined by
mean and standard deviation. Nonetheless, paired t-tests [122] were performed to
have an objective criterion for the choice. Tests were conducted by considering two
classifiers per time for a binary classification problem or for the multi-class case.
The null hypothesis for each paired test was that the mean accuracy µ associated
with a classifier was equal to the one associated with the other. Therefore, rejecting
the null hypothesis would suggest a difference in the performance in terms of mean
accuracy. Then, in calculating the t-statistic, also the standard deviation is taken into
account. The level of significance α for the test was fixed at 5 %.

ACC ± STD / %
TASKS NBPW SVM kNN
left hand vs right hand 74 ± 20 74 ± 20 73 ± 19
left hand vs feet 81 ± 13 82 ± 12 82 ± 13
left hand vs tongue 82 ± 13 81 ± 13 82 ± 13
right hand vs feet 81 ± 15 81 ± 15 81 ± 15
right hand vs tongue 84 ± 13 83 ± 14 83 ± 13
feet vs tongue 75 ± 13 76 ± 13 75 ± 14
four classes 63 ± 19 63 ± 19 63 ± 20

Table 4.3 Comparison between NBPW, SVM, and kNN classifiers for different classification
problems. Mean cross-validation accuracy and associated standard deviation were calculated
among 9 subjects (dataset 2a) by taking into account all channels.

In these conditions, the null hypothesis was only rejected when comparing the
NBPW with the kNN in "left hand vs tongue". This suggested that the NBPW should
be slightly better (p-value = 0.0145), but there was no evidence for the other cases.
However, hyperparameters were tuned for the SVM and the kNN, while this was not
needed in the NBPW case. This implied a small preference for the NBPW, and in
addition the Bayesian approach was preferred in our work since it naturally gives
back a probability as classification score, which could indicate class uncertainty.

After the classifier selection, the channel selection procedure was carried out.
The results are reported in Fig. 4.7 and Fig. 4.8, in terms of mean cross-validation
accuracy (blue line) and standard deviation of the mean σµ = σ/

√
9 (blue shaded
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(a) left hand vs right hand
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(b) left hand vs feet
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(c) left hand vs tongue
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(d) feet vs right hand
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(e) tongue vs right hand
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(f) feet vs tongue

Fig. 4.7 Classification performance (cross-validation) for progressively selected channels
and for each pair of classes.

area). On the x-axis, the channels that are progressively selected within the proposed
procedure are reported, while the y-axis reports the classification accuracy. Note
that a direct comparison between Fig. 4.7 and Fig. 4.8 would not possible because
the y-axes should report a performance normalized by the number of classes. Such
a metric could be the kappa coefficient [118], but classification accuracy was still
chosen since it is more common in literature. In trying to overcome this issue, the y-
axes values reported in the figures are such that there is a one-by-one correspondence
between Fig. 4.7 and Fig. 4.8, namely they correspond to the same Cohen’s kappa
coefficients.

The plots show the trade-off between channels and classification performance.
In some cases, an acceptable performance can also be achieved with 4 channels,
especially in the binary classification problems. Meanwhile, more channels are
typically required in the four-task case. Hence, the figures highlight the possibility
of suitable minimization for the number of channels while preserving the desired
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classification performance. Focusing on the four classes, for instance, the same
accuracy of the 22 channels case can be achieved with 18 channels, but the accuracy
corresponding to 10-12 channels could be still acceptable while gaining in wearability
and portability. It should be also noted that, in some other cases, the maximum
accuracy seems to be reached with less than 22 channels. Although this could
indicate that some noisy channels had been removed, in our case those values were
a random occurrence since they did not result (from the statistical point of view)
significantly different from the accuracy with the whole number of available channels.

F
C

3
C

P
z

C
4

C
3

C
P

3
F
C

4
C

P
2

C
z

P
O

z
P

1
C

5

P
2

C
P

4
F
C

z

P
z

C
P

1
C

6
C

1
C

2
F
C

2
F
C

1 F
z

channels

25

40

55

70

85

a
c
c
u
ra

c
y
 /
 %

Fig. 4.8 Classification performance (cross-validation) for progressively selected channels in
the four-class problem.

The results of the channel selection step are resumed in Tab. 4.4, where the
classification performance at the maximum number of channels (22 in this case) is
compared to the performance obtainable with a reduced number of channels, which
was here chosen as 8 channels as a reasonable trade-off between performance and
user-friendliness for the final system.

The sequences of channels were validated in a further step by employing the
independent data from sessions E. As anticipated, for each pair of classes and for the
multi-class problem, the algorithm was trained on data from the first session before
the second session data could be classified. The results are plotted in Fig. 4.9 and
Fig. 4.10. The channels on the x-axes correspond to the respective sequence, which
were found during the selection, while on the y-axes the accuracy values were chosen
as before. As a whole, validation results are compatible with the results obtained
during channel selection, but more fluctuations are present with respect to the almost
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ACC ± STD / %
TASKS 8 channels 22 channels
left hand vs right hand 74 ± 17 74 ± 20
left hand vs feet 81 ± 11 81 ± 13
left hand vs tongue 83 ± 9 82 ± 13
right hand vs feet 80 ± 15 81 ± 15
right hand vs tongue (12) 80 ± 11 84 ± 13
feet vs tongue (11) 74 ± 12 75 ± 13
four classes (18) 57 ± 18 63 ± 19

Table 4.4 Mean and standard deviation of the classification accuracy obtained during channel
selection, for both 8 and 22 channels.

monotonic behavior of the channel selection. Therefore, the results of Fig. 4.9 and
Fig. 4.10 were analyzed with paired t-tests. The null hypothesis was that the accuracy
at the maximum number of channels equals the accuracy at a reduced number of
channels, so rejecting the null hypothesis would mean that the performances are
different, either better or worse at the maximum number of channels. The level of
significance was again set to α = 5%. In this case one must also note that failing to
reject would not mean that the null hypothesis is necessarily true. Therefore, when
rejection was not possible, the probability β of a false positive was also taken into
account, so that β ≤ 5% was considered as a reasonable risk of accepting the null
hypothesis. These tests highlighted that performances are significantly worse than
22 channels ones when 3 to 5 channels are considered. Meanwhile, performances
become acceptable with 6 to 13 channels, depending on the considered classification
problems.

Validation results are resumed in Tab. 4.5 by reporting the classification perfor-
mances for both the reduced number of channels (highlighted in the table) and the
maximum number of available channels. In accordance with previous tables, also
this table reports the standard deviation σ in spite of the standard deviation of the
mean σ/

√
9 plotted in the figures. As a further validation of the proposed method,

data from session T and E were flipped in order to repeat the channel selection and
channel selection steps. Apart from an accuracy diminishing of about 1%-5%, the
channel selection proved still effective in selecting a smaller number of channels
while accepting a known accuracy diminishing. Hence, flipping data from the two
sessions suggest that the results shown above are not restricted to the particularly
chosen data. In going further, however, also the dataset 3a was used. With the
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(a) left hand vs right hand

C
P

z
C

4 F
z

C
P

2
C

P
3

F
C

4
C

2
P

O
z

C
z

C
P

4
P

2
F
C

2
C

3
C

1
P

z
P

1
C

6
C

P
1

F
C

1
F
C

3
F
C

z
C

5

channels

50

55

60

65

70

75

80

85

90

a
c
c
u
ra

c
y
 /
 %

(b) left hand vs feet
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(c) left hand vs tongue
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(d) feet vs right hand
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(e) tongue vs right hand
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(f) feet vs tongue

Fig. 4.9 Mean classification performance obtained to validate the respective sequence of the
channel selection procedure in the binary classification cases.

FBCSP approach plus NBPW, classification accuracy for all the available channels
(60) resulted above 80% for 2 tasks, and above 70% for 4 tasks, while the accuracies
for reduced sets of channels resulted between 78% and 92% for in the binary cases,
and about 72% with 10 channels in the four tasks case. These results are also plot in
Fig. 4.11 by considering a representative example of the binary cases (’right hand vs
tongue’).

In general, the presented results are compatible or better than the findings in
the recent literature [123, 124]. However, results can be criticised under some
aspects. Firstly, although considering datasets from BCI competitions guarantees
reproducibility of the results, classification accuracies in real applications are usually
lower because only the best subjects were selected for acquiring these datasets.
Moreover, the results also point out the need for further improvements. For instance,
the fluctuations of the mean accuracy in validating the channel sequences is probably
addressable to the non-stationarity of EEG signals. Indeed, thanks to the modular
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Fig. 4.10 Mean classification performance obtained to validate the respective sequence of
the channel selection procedure in the four-classes case.

ACC ± STD / %
TASKS reduced ch. 22 channels
left hand vs right hand (6) 77 ± 12 79 ± 15
left hand vs feet (6) 80 ± 15 83 ± 15
left hand vs tongue (6) 81 ± 12 84 ± 12
right hand vs feet (10) 81 ± 12 84 ± 15
right hand vs tongue (13) 83 ± 12 84 ± 12
feet vs tongue (13) 77 ± 9 78 ± 12
four classes (10) 62 ± 12 64 ± 12

Table 4.5 Mean and standard deviation of the classification accuracy obtained during channel
sequences validation.

channel selection involving FBCSP, the algorithm can be refined, especially for
managing the non-stationarity. In addition to that, the iterative selection itself could
be also enhanced. In particular, figures report an accuracy diminishing for some
selection steps, and then an increase if one or more other channels are added. This
should suggest that channels are correlated. Therefore, correlation-based selection
could improve the results [125].

To conclude, the location on the scalp of predictive information was analysed.
According to literature, the right hand is related to contralateral activation, the left
hand generally shows a bilateral activation, the tongue is related to the interhemi-
spheric fissure of the sensorimotor cortex, while feet are related to a strong bilateral
activation [126, 127]. Hence, Fig. 4.12 shows contour plots for the binary classifica-
tions in which a weight is assigned to each channel of a sequence: maximum weight
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(a) right hand versus tongue (b) four classes

Fig. 4.11 Classification performance in validating the channel sequences found on dataset 3a.

is assigned to the firstly selected channel, while the weight progressively diminishes
as the channels are selected later. With this reasonable assignment of weights, the
areas highlighted by a concentration of most predictive channels are effectively in
agreement with the above-mentioned literature.

(a) left hand vs right hand
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(b) left hand vs feet
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(c) left hand vs tongue
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(d) feet vs right hand
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(e) tongue vs right hand
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(f) feet vs tongue
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Fig. 4.12 Most predictive information on the scalp for each pair of classes.

4.4 Neurofeedback in MI-BCI

Neurofeedback consists of measuring brain activity and giving back to the user an
activity-related information. Such information is usually presented with a visual,
auditory, or haptic feedback [128]. In implementing a BCI, the feedback can be
part of the system functionality or it can be only exploited during the training
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process [129, 130]. Studies have shown that self-regulating brain activity through
neurofeedback can be beneficial for the BCI performance [131, 132]. Notably,
large ERDs can be observed during the online feedback sessions [133]. Indeed,
neurofeedback training determines performance in the successive sessions, but it is
still not clear the influence of factors such as given instructions, importance of the
mental strategy, aptitude of the user in performing the task, attention to the feedback,
and how the feedback is provided. In the following, neurofeedback is investigated in
the operation of a wearable BCI relying on motor imagery classification. Notably,
visual and vibrotactile feedback have been taken into account.

Many BCI technologies rely on vision for their functionality, and, in particular
for MI-BCI, visual feedback has been employed to enhance the engagement in
movement imagination [134]. The advent of virtual and augmented reality (VR/AR)
technologies has given great contribution to that, thanks to the immersive experience
offered by a computer-generated scenario [135]. Indeed, it is possible to create
virtual objects to interact with, in order to enhance the user engagement in employing
an MI-BCI, and hence receive feedback based on the measurement and interpretation
of the sensorimotor rhythms. More recently, auditory feedback has been proposed
as an alternative for people with deteriorated vision [136] or in conjunction with
visual feedback in trying to improve the performance of motor imagery training
[137]. These studies investigated different audio settings, from mono, to stereo, and
even 3-D vector base amplitude panning. They demonstrated that auditory feedback
can be a valid equivalent of the visual one. The need to investigate further feedback
paradigms arises in aiming to create a more immersive experience, which would
lead to a stronger engagement of the user. In particular, haptic feedback is of great
interest for the AR (and VR) community because it enhances the simulation of a real
situation [138, 139]. The sensation given by haptic feedback allows the user to better
interact with virtual objects by feeling like touching a real object. Starting from that,
in a BCI experimental protocol, the haptic feedback can help in user training for
motor imagery. This could even be an alternative for people with both visual and
auditory impairments, or it could be combined for a multi-modal feedback.

Visual and auditory feedback were already compared [136] showing that there
is no statistical difference in their performance. Instead, there is little evidence
on vibrotactile feedback, especially if exploiting wearable and portable actuators.
Therefore, it was worth investigating this feedback modality as well as a feedback
combination to enhance the BCI user engagement. The combination between visual
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and vibrotactile feedback will be thus considered. The proposed system could find
applications in rehabilitation, gaming, and even in robotics. It can enhance user
experience both for helping in motor imagery training in rehabilitation protocols
or for the usage of the system itself. In the case of users with disabilities, the kind
of feedback to provide can be chosen according to the functional possibilities. For
instance, vibrotactile feedback could be the only solution for deaf-blind people.
In general, the optimal combination of feedbacks should be used to achieve an
enhanced engagement by multi-modal feedback and hence increase the performance
of MI-BCI.

4.4.1 Measuring MI-related phenomena

As discussed above, the same brain areas involved in motor execution are also
activated during MI. Both sensory stimuli and motor activity induce changes in the
activity of neuronal populations [111]. To measure such phenomena, averaging over
multiple trials is required, and in particular it is assumed that (i) the measurand
activity is time-locked with respect to the event, and (ii) the ongoing EEG activity is
uncorrelated additive noise. Literature reports that some events may be time-locked
but not phase-locked, thus averaging can either highlight a decreased or increased
synchronization of neuronal populations. Therefore, event-related desynchronization
and event-related synchronization (ERD/ERS or ERDS) reflect changes in the activity
of local interactions between principal neurons and inter-neurons due to voluntarily
modulated spontaneous activity, i.e. without any external stimulus. Such phenomena
are associated with MI indeed. They are investigated in the time domain, frequency
domain, and also spatial domain. By focusing on the discrimination of left hand
imagery versus right hand imagery, the analysis of EEG signals associated with
motor execution and motor imagery pointed out that the following phenomena can
be detected:

• alpha band ERD: a decrease in alpha rhythms amplitude is expected at the
contralateral area when starting movement (e.g. ERD at electrode C3 when
executing or imagining right hand movement);

• alpha band ERS: an increase in alpha rhythms amplitude could be expected at
the ipsilateral area, almost simultaneously to alpha ERD (e.g. ERS at electrode
C4 when executing or imagining right hand movement);
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• beta band ERS: an increase in beta rhythms amplitude is expected at the
contralateral electrode at the end of the motor task (e.g. ERS at electrode C3
when stopping the execution or imagination of right hand movement).

Studies argue that the more evident these phenomena are, the higher the classification
accuracy of MI-related EEG is [140]. It was thus interesting to assess the presence of
ERDS in the brain signals under analysis and associate it with classification accuracy.
This could be done either without or with the introduction of neurofeedback in
aiming to investigate MI-related phenomena and their sought improvement.

In assessing the ERDS, a standard framework was used, notably the python
MNE (MEG + EEG analysis & visualization) package [141]. An ERDS map was
obtained, namely a time/frequency representation of the phenomenon [142]. To this
aim, epochs were extracted from the initial relax period to the break after motor
imagery, time-frequency decomposition was applied to all epochs by means of a
multi-taper transform, then a cluster test was conducted so that only epochs with
p-value less than 5 % would be considered for averaging, and finally time-frequency
maps were obtained per each electrode by averaging over considered epochs. As a
second step, the time course of ERDS could be derived from the time-frequency map
by considering alpha and beta bands. In the present case, this was done for channels
C3 and C4, on the left and right side of the somatosensory area, respectively.

In addition to the ERDS, also the time course of classification accuracy can be
investigated. As already discussed, the FBCSP implemented in Matlab was taken
into account for the classification of MI-related signals. In doing that, trials are
segmented according to the timing of the experiment. The classification should be
random in the relax periods and non-random in the motor imagery periods. Hence, if
trials are analysed with a sliding window, one should expect a random level for the
classification accuracy at the beginning, an increase in the motor imagery period, and
again a random classification in the final break. In addition to that, in the adopted
FBCSP implementation, selected features could be analysed. This was done to
highlight regularities in their choice. In that, cross-validation was considered, and
histograms were built with the features selected across all iterations.

These analyses were first applied to data from a benchmark datasets, the BCI
competition IV dataset 2a. If analysing EEG data associated with subject A03, the
ERDS time course of Fig. 4.13 is obtained. An ERD in the alpha band is clearly
visible for the right hand imagery at the contralateral electrode (C3). This ERD is
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Fig. 4.13 Time course of ERDS for subject A03 (session T) from BCI competition IV dataset
2a.

localized at about t = 2 s, which corresponds to the cue indicating the task to perform.
Then, an ERS seems present before t = 6 s, where the imagination should be stopped,
though this is still in alpha band (not beta band). No other phenomenon among
the abovementioned one appears evident. Moreover, these phenomena are not even
clear for the left hand imagery. Next, the time course of classification accuracy for
the subject A03 (Fig. 4.14a) shows that the discrimination between left and right
hand imagery is random in correspondence of the starting relax period and then it
increases up to almost 100 % during the motor imagery period. Hence, A03 can
be considered a "good" subject in the sense of classification. In the final part, the
accuracy also decreases as it should (ending relax period). In addition to that, the
analysis of features is proposed in Fig. 4.14b. The histogram highlights that, across
the several iterations, selected features are mostly concentrated in the alpha band.
This is in accordance with the ERD phenomenon appearing in the alpha band for
the present subject and it also points out a regularity in the features selected for
classification.

The same analyses could be repeated for the subject A05. Fig. 4.15 shows
that no clear ERD nor ERS phenomenon is visible. However, the time course of
classification accuracy (Fig. 4.16a) points out that a classification accuracy up to
90 % is obtained during the motor imagery period. Hence, also A05 is associated
with a good classification performance. Finally, the histogram of selected features
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(a) Time course of classification accuracy. (b) Mostly selected features.

Fig. 4.14 Analysis of MI-related phenomena for subject A03 (session T) from BCI competi-
tion IV dataset 2a.

reported in Fig. 4.16b still shows concentrated features in the beta band, though they
are more diffused than the previous case.
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Fig. 4.15 Time course of ERDS for subject A05 (session T) from BCI competition IV dataset
2a.

As a last case, the ERDS associated with subject A02 is reported in Fig. 4.17.
Here, an anomalous behavior appears in the alpha band for both left and right hand
imagery. ERS seems present at the cue time instant, while ERD could be identified
about in correspondence of the motor imagery stop. The analysis of classification
accuracy in time reveals that there is random classification over the whole period
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(a) Time course of classification accuracy. (b) Mostly selected features.

Fig. 4.16 Analysis of MI-related phenomena for subject A05 (session T) from BCI competi-
tion IV dataset 2a.

(Fig. 4.18a), and even the histogram does not show any regularity, but selected
features are spread over the whole possible frequencies (Fig. 4.18b).
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Fig. 4.17 Time course of ERDS for subject A02 (session T) from BCI competition IV dataset
2a.

Given the analyses on the benchmark dataset, further analyses were conducted
on data from own experiments. Notably, the FlexEEG system was employed to build
the MI-BCI with neurofeedback. The Olimex EEG-SMT was discarded because
of the poor data quality that could be obtained when electrodes are placed over the
sensorimotor area. In particular, a preliminary feasibility study demonstrated that the
dry electrodes from Olimex have a poor contact impedance when placed at C3 and
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(a) Time course of classification accuracy. (b) Mostly selected features.

Fig. 4.18 Analysis of MI-related phenomena for subject A02 (session T) from BCI competi-
tion IV dataset 2a.

C4 because they are highly sensitive to head movements. The Helmate, instead, had
to be discarded because the online data stream was not yet available, though offline
analysis demonstrated that the EEG signals quality was good enough even with dry
electrodes. In conclusion, the FlexEEG was used by exploiting the three bipolar
channels CP3-FC3, CPz-FCz, and CP4-FC4 by applying conducting gel to ensure
proper electrode-skin contact. As a representative example, a subject from the own
experimental campaign is here considered. By referring to first trials without any
feedback, the time course of ERDS is reported in Fig. 4.19. An ERD could be caught
in the alpha band for right hand imagery, though it appears on both the contralateral
and the ipsilateral channel. Instead, for left hand imagery, the ERD at imagination
start could be present in the beta band. No other phenomenon is clearly present.
The time course of classification accuracy (Fig. 4.20a) suggests that the result could
be not random in the imagery period, but mean accuracy does not overcome 70 %,
which is often considered an empirical threshold for good performance. Finally, the
histogram of features in Fig. 4.20b points out that selected features are relatively
concentrated in alpha band and at the limit between alpha and beta band. As a whole,
these results could be considered a halfway between the A03/A05 case and the A02
one. However, in the following, results on neurofeedback experiments conducted
with the same subject will show how these MI-related phenomena can be improved.



4.4 Neurofeedback in MI-BCI 121

−1.0

−0.5

0.0

0.5

1.0

1.5

ER
DS
 / 
%

left_hand

alpha

right_hand

0 2 4 6
time / s

 1.0

 0.5

0.0

0.5

1.0

1.5

ER
DS
 / 
%

0 2 4 6
time / s

beta

C4 C3

Fig. 4.19 Time course of ERDS for subject AE data acquired with FlexEEG while no
neurofeedback was provided.

4.4.2 Measurement system

Building a system ready for daily life is indeed very challenging. Therefore, some
assumptions had to be made to simplify the problem. In a daily-life application,
the BCI should continuously measure brain activity and distinguish between mental
resting and motor imagery. This system would be an asynchronous BCI, in which the
user can freely decide when to execute a mental task. However, the discrimination
between rest and motor imagery is still inaccurate. For that reason, motor imagery
is often conducted according to an externally-paced cue, which exactly defines the
instants for the mental tasks. The focus of this work is hence on cue-based discrete
trials, namely a synchronous BCI is considered.

Another obvious request for the BCI system would be to have many possible
control commands. This would mean that the system should correctly discriminate
between many motor imagery tasks. On the other hand, the more the control
commands, the less accurate the task classification. At least four classes would be
needed for a 2D control capability, but in this first system implementation only two
motor imagery tasks were taken into account, i.e. left versus right motor imagery.
Then, as a further development, it is foreseen to also consider imagining both hands,
or both feet, or tongue movements.
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(a) Time course of classification accuracy. (b) Mostly selected features.

Fig. 4.20 Analysis of MI-related phenomena for subject subject AE data acquired with
FlexEEG while no neurofeedback was provided.

Finally, exploiting portable instrumentation is indeed useful for applications
outside the laboratory. This would certainly mean that the user’s movements and the
environment are harder to control. According to literature studies and to previous
experiments conducted in our group, there are still many challenges to face before real
portability can be achieved. Because of that, in validating the system implementation,
the user was seated on a comfortable chair and was asked to limit unnecessary
movements. This had to be done to first test the system in a controlled situation, but
the characteristics of the system indeed foresee daily-life usability.

Neurofeedback protocol

In exploiting neurofeedback for improving motor imagery classification, the longer
the experiment, the higher the performance should be due to more available data
(for algorithm training) and long training for the user. However, stress must be
avoided for the user, since this would be deleterious for the performance. Therefore,
the proposed protocol tries to minimize experiment duration. In addition, three
feedback modalities had to be compared: only visual, only vibrotactile, and visual
plus vibrotactile (multimodal).

Different experimental sessions were carried out on different days. Each session
was organized in two blocks. In the first block, EEG data were acquired while the
user executed motor imagery tasks without any feedback. These data were then used
to identify a model for online classification of EEG during the next block. Therefore,
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in the second block, the user executed motor imagery tasks while receiving feedback
about the adherence of his/her EEG activity to the identified model. The EEG data
stream was processed with a sliding window approach. The width of the window
and the overlap between adjacent windows was also decided during the model
identification. The output of online classification consisted of a class and a score. In
each trial, the feedback was actually provided only if the retrieved class was equal
to the assigned task, while the score was used to modulate feedback intensity. The
neurofeedback block was actually divided into three sub-blocks where the three
feedback modalities were provided in a randomly different order per each subject.
Moreover, left and right motor imagery was also randomly assigned during trial
execution to avoid any bias. The described neurofeedback protocol is resumed in
Fig. 4.21. The timing of a single trial is recalled from the common paradigm of BCI

EEG acquisition without feedback 
3 x 30 trials

model identified on previous block data

control of feedback intensity
biased feedback (always correct direction)

MOTOR IMAGERY BLOCK

NEUROFEEDBACK BLOCK

visual: 3 x 30 trials

haptic: 3 x 30 trials

multimodal: 3 x 30 trials

Fig. 4.21 Blocks and sub-blocks of the proposed neurofeedback protocol employed in the
closed-loop motor-imagery-BCI.

competitions [115]. It consists of an initial relax (2 s), a cue indicating the task to
carry on, the motor imagery starting at t =3 s, and then its ending after 6 s. A final
break/relax is also present and its duration is randomized between 1 s to 2 s.

System implementation

The block diagram of the system for neurofeedback experiments is shown in Fig. 4.22.
It consists of EEG acquisition, EEG (online) processing, and feedback actuation.
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The EEG signals are received by a custom Simulink model, where online signal
processing is also implemented. The EEG classification output consists of a class
label and a class score sent to a purposely designed Unity application. With such
input commands, the Unity application drives the visual and haptic feedback. The
user datagram protocol (UDP) was used in the Simulink-Unity communication.
Details about each block are discussed in the following.

125 Sa/s sampling rate

feedback intensity and direction

protocol timing

UDP

4-8 Hz

6-10 Hz

8-12 Hz

36-40 Hz

…

filter bank CSP MIBIF

F1

F2

F3

F4

…

Fn

class
info

sliding window:
2.00 → 6.00 s

2.00 s long
0.25 s step

motor imagery 
class and score

naïve bayesian
classifier

EEG

Fig. 4.22 Block diagram of the closed-loop BCI system based on motor imagery and neuro-
feedback.

EEG acquisition was carried out with the FlexEEG headset by NeuroCONCISE
Ltd with wet electrodes already introduced in Chapter 2 and recalled in Fig. 4.23.
The headset was used with the FlexMI electrodes configuration, consisting of three
bipolar channels over the sensorimotor area. Recording channels have electrodes
placed at FC3-CP3, FCZ-CPZ, and FC4-CP4, according to the international 10/20
EEG standard [2], while the ground electrode is positioned at AFz. Electrodes
position is shown in Fig. 4.23a Conductive gel was used to ensure low contact
impedance and high stability at the scalp interface, though these electrodes could
be also used without any gel. The EEG signals from the electrodes are filtered and
amplified by the electronic board. Then, these signals are digitized by sampling at
125 Sa/s with 16-bit resolution. Finally, the data are transmitted via Bluetooth 2.0.

To translate the acquired brain activity into control commands, the acquired and
digitized EEG signals were processed with the FBCSP approach, which was properly
adjusted for real-time operation. Notably, a training was first executed with data from
the motor imagery block to identify the classification model. Then, the EEG had to
be classified during the motor imagery execution in order to provide a concomitant
feedback. Therefore, the FBCSP approach with the naive Bayesian classifier was
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FC3 FCZ FC4

AFZ

CP3 CPZ CP4

(a) electrodes placing on the scalp (b) Wearable EEG cap

Fig. 4.23 Wearable and portable EEG acquisition system employed in experiments with
neurofeedback during motor imagery.

applied to a sliding window. The width of the window could range from 1 s to 3 s
and it was chosen on training data so as to maximize the classification accuracy.
Then, the shift of the window was fixed so as to have a feedback of 250 ms. It is to
note that the training of the algorithm considered the optimal motor imagery time
window. The model performance after training was validated with a cross-validation.
The timing of a trial is shown in Fig. 4.24. Though the EEG stream was continuously
processed, during the experiments the feedback could be actually provided starting
from the cue. Thanks to the Bayesian classifier, a class score could be naturally
associated with the class assigned to the processed EEG data because it assigns a
probability to each EEG data epoch.

Fig. 4.24 Timing diagram of a single trial in the BCI experiment with neurofeedback.

The designed feedback consisted of controlling both intensity and direction of a
moving virtual object. Multimodal feedback was obtained by merging visual and
vibrotactile modalities. In detail, the visual feedback was provided by the rolling
of a virtual ball on a PC screen, while the vibrotactile one was given by a wearable
suit with vibrating motors. Intensity and direction of the feedback were determined
by means of the user’s brain activity, measured through EEG. In this prototype, a
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generic PC monitor was used to provide the visual feedback. However, this will
be replaced by smart glasses to provide a more immersive experience and hence
furtherly increase user engagement. A Unity application was purposely developed
to have a virtual environment with a rolling ball, as well as to control the haptic
suit. Note that the applications also indicated the task to carry out (Fig. 4.25). The

Fig. 4.25 Visual feedback consisting of a mentally-controlled virtual ball.

hardware for the haptic feedback consists of a vibrotactile suit from bHaptics Inc.
This suit is indeed wearable and portable and it is commercially available for gaming
[143]. It provides a double 5×4 matrix with vibration motors installed on the front
and back of the torso. Vibration can be adjusted in terms of intensity per each
single motor, so that patterns can be created to give a specific haptic sensation to the
user. The suit can communicate through Bluetooth with a computing unit. In our
application, it is controlled from a PC that receives the EEG data through UART and
then sends control commands to the suit according the the EEG classification. The
suit and the motors locations (vibration matrix) are shown in Fig. 4.26.

4.4.3 Experimental results

Experimental setup

Eight right-handed volunteers (SB1-SB8, three males, mean age 26 years) partici-
pated in the experiment. They were conducted at the Augmented Reality for Health
Monitoring Laboratory (ARHeMLab), University of Naples Federico II, Italy. No
subject reported medical or psychological illness and/or medication and they had
normal or corrected to normal vision. Subject SB1 was experienced in active, passive
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Fig. 4.26 Wearable and portable haptic suit with 40 vibration motors.

and reactive BCI paradigms, subject SB2 was experienced in active BCI, subjects
SB3 and SB4 were experienced in reactive BCI, while the other four subjects had no
BCI experience. Subjects were instructed with information about the experimental
protocol before beginning the experiments. Regarding the visual feedback, the goal
was to overcome the white line (Fig. 4.25). Instead, for the haptic feedback, the
vibration patterns were provided on the front side of the torso starting from the center.
They could move the ball or the vibration to the left or to the right according to the
indicated motor imagery task, and the goal for the user was to reach the respective
side. Finally, in the multimodal feedback case, the aforementioned feedbacks were
jointly provided.

Experiments were conducted according to the neurofeedback protocol proposed
above. This protocol attempted to balance the need of much EEG data with limited
experiment duration to avoid stress to the user. Two or three sessions were recorded
for each subject. Each session lasted about 2 hours. In order to monitor the mental
and physical state, a questionnaire was administered to the participants at the begin-
ning of the session, after the first block, and at the end of the session. By relying on
the questionnaire proposed by [144], the questionnaire of Tab. 4.6) was proposed in
the current experiments.

At the beginning of the first session, the participants were also instructed on the
movement imagination itself. They were asked to try different ways of imagining
hands movement (such as kinesthetic sensation, squeezing a ball, grasping an object,
snapping their fingers, imagining themselves or another person performing the
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movement) to identify the one they were most confident with. Once chosen, they
were asked to keep it constant throughout the session. Finally, they were instructed
to avoid muscle and eye movements during the motor imagery task. As already
mentioned, the first block consisted of acquiring EEG data with no feedback provided
in order to identify the classification model. Then, three runs with 30 trials each and
two classes of imagery were recorded while providing feedback. Participants were
asked to imagine the movement of the right or left hand. The order of the cue-based
tasks was randomized to avoid any bias. A maximum of ten minutes break was given
between the two blocks. In the meanwhile, the selection of the best time window
to train the algorithm for the online experiment was carried out. For this purpose,
the FBCSP was exploited in a 10-repeated 5-folds cross validation technique. Its
performance is tested from 0 s to 7 s with an overlap of 0.25 s. A time window 2 s
wide was used to extract the EEG signal. The time-varying classification accuracy
and associated standard deviation was calculated from the time-varying classification
accuracies obtained using the cross-validation setup. For each subject, the best time
window was chosen in terms of maximum classification accuracy during the motor
imagery task together with the minimum difference between accuracies per class.
Therefore, the algorithm was trained by using such an optimal window. Notably,
another run could be recorded if the results were not satisfactory. Finally, between
feedback sub-blocks, a break of about 2 minutes was given. With 30 trials per run,
the total number of available trails per each subject was 360 acquired under different
conditions.

Data analysis

In analysing data offline, the scope was to highlight the effectiveness of a feedback
modality in improving the detection of motor imagery. Hence, the classification
accuracy associated with each experimental condition was calculated and compared
to other conditions. In data processing, baseline removal was firstly carried out.
Specifically, a period of 100 ms before the cue was used. Then, the time-varying
analysis was performed for all subjects, blocks and sessions by means of the cross-
validation technique.

Subsequently, a permutation test was performed per each session, subject and
block. The purpose was to validate the results obtained in the time-varying analysis
evaluating how far these differed from the random classification. Hence, the labels
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associated with the left and right motor imagery tasks were randomly permuted and
the time-varying analysis was repeated. The time-varying accuracy was calculated
using true labels with the 2.00 s-wide time window and 0.25 s shift, and the mean of
accuracies in cross-validation was taken into account for each window. The same
time-varying accuracy was also calculated with the permuted labels. Finally, the
comparison between the first results obtained and those from the permutation analysis
was carried out using the non-parametric Wilcoxon test with the null hypothesis that
the means of the two distributions were equal. Thus, rejecting the null hypothesis
imply that the accuracy achieved with the true label is non-random. The significance
level for the test was fixed at α = 5 %.

Furthermore, based on the best 2 s time window in terms of classification ac-
curacy, the one-way analysis of variance (ANOVA) was performed to compare the
accuracy between blocks and sessions. The ANOVA was firstly conducted to analyse
the difference between sessions per each subject and block and the difference be-
tween blocks per each subject and session. Then, by considering all subjects together,
this analysis was done for each block to highlight differences between sessions and
for each session to analyse differences between blocks. Before applying the ANOVA,
inherent data assumptions were verified, i.e. data must be normally distributed and
with equal variance (homoscedasticity). In case of normally distributed data samples
with different variances, the Welch’s correction was applied before using ANOVA.
Instead, ANOVA could not be used when data were not normal, and a non-parametric
test, namely the Kruskal-Wallis testm was set in those cases.

Results

A representative example of the time-varying analysis plots generated from the
original and randomly permuted data is reported in Fig. 4.27 for subject SB1. The
mean classification accuracy and the associated standard deviation are calculated
with a cross-validation across trials and by considering the shifting time window.
The three different sessions are reported on rows, while the four different feedback
conditions are reported on columns. Each plot has time in seconds on the x-axis
and mean classification accuracy expressed in percentage on the y-axis. The red
curves indicate the accuracy corresponding to the permuted labels, while the blue
line corresponds to the results reached using the true labels. As it would be expected,
the two lines are indistinguishable up to the cue (at 2 s) in most cases. Then, it is
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noticeable that the two lines separate during the motor imagery. At a first glance, it
can be seen that the classification is more distant from random when neurofeedback
is exploited. Moreover, better performance is also obtained in the last session, thus
pointing out a training effect for the user. Similar results could be obtained with

Fig. 4.27 An example of the permutation test for the subject SB1 executed on the time course
of classification accuracy in different experimental conditions. The blue curves correspond to
the accuracy calculated with true labels, the red curves correspond to the accuracy obtained
with permuted labels.

other subjects, though in some cases the classification was compatible with the
chance level. The results of the Wilcoxon test associated with the permutation test
demonstrated that, as a whole, four subjects in the first session and six in the second
session achieved non-random accuracy when no feedback was provided. Then, five
to seven subjects, out of eight, achieved non-random accuracy in the first session
with feedback, with no dominant feedback modality. In the second session, instead,
at least six subjects achieved non-random accuracy. The results are compatible with
literature, since they highlight that a training effect subsists between sessions and
that feedback is useful for increasing the performance. Notably, such results have
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been obtained with a wearable and portable system implemented with commercial
hardware, which is a relatively novel trend for the BCI field. Also the results from
the third session (with only four subjects out of eight) point out an increase in
overall performance. Nonetheless, mean classification accuracies appear compatible
across the sessions and further experiments will be needed to properly reveal an
improved detection across sessions. On the other hand, the improvement due to
the neurofeedback is already evident. This is also resumed in Fig. 4.28. There, the
time-varying classification accuracy associated with subject SB1 is compared to
the one associated with the subject A03 from BCI competition IV. The Fig. 4.28a
highlights that the trained subject A03 has substantially higher classification accuracy
in the motor imagery period if compared to the performance of subject SB1. Then,
Fig. 4.28b shows that the accuracies obtained with the neurofeedback become closer
to the one of a trained subject.

(a) no feedback (b) with neurofeedback

Fig. 4.28 Time varying decoding accuracy associated with motor imagery. The classification
accuracy of subject SB1 is compared to the one of a trained subject (A03 from BCI competi-
tion IV).

Finally, the ANOVA executed as discussed above allowed to rigorously compare
the classification accuracies in different conditions. As already mentioned, no
statistically significant difference is revealed when considering the performance
across sessions for all subjects. Moreover, the performance improvement with
feedback is still not significant when all subjects are taken altogether. On the
contrary, with the ANOVA executed subject-by-subject, the accuracy improvement
is statistically significant for about half of the subjects between sessions, and the
feedback results effective for six subjects out of eight. In conclusion, neurofeedback
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resulted useful for most subjects in a daily-life BCI for improving motor imagery
detection despite few channels being used, though future experiments are needed to
furtherly assess the system performance and better evaluate its limitations.
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Experimental Information at start

Date yyyy:mm:dd
Session
Starting time hh:mm
Handedness 1: left / 2: right / 3: both
Age
Sex 1: male / 2: female
Do you practice any sport? 0: no / 1: yes / 2: professional
BCI experience 0: no / 1: active / 2: passive / 3: reactive / 4: multiple types
Biofeedback experience 0: no / number: how many times
How long did you sleep? number: hours
Did you drink coffee within the past 24 h? 0: no / number: hours before
Did you drink alcohol within the past 24 h? 0: no / number: hours before
Did you smoke within the past 24 h? 0: no / number: hours before
How do you feel? Anxious 1 2 3 4 5 Relaxed

Bored 1 2 3 4 5 Excited
(Physical state) Tired 1 2 3 4 5 Very good
(Mental state) Tired 1 2 3 4 5 Very good

Which motor imagery are you confindent with? 1: grasp / 2: squeeze / 3: kinesthetic

After training block

How do you feel? (Attention level) Low 1 2 3 4 5 High
(Physical state) Tired 1 2 3 4 5 Very good
(Mental state) Tired 1 2 3 4 5 Very good

Have you nodded off/slept a while? No 1 2 3 4 5 Yes
How easy was motor imagery? Hard 1 2 3 4 5 Easy
How do you feel? (Attention level) Low 1 2 3 4 5 High

(Physical state) Tired 1 2 3 4 5 Very good
(Mental state) Tired 1 2 3 4 5 Very good

Have you nodded off/slept a while? No 1 2 3 4 5 Yes
Did you feel to control the feedback? (Visual) No 1 2 3 4 5 Yes

(Haptic) No 1 2 3 4 5 Yes
(Multimodal) No 1 2 3 4 5 Yes

How easy was motor imagery? Hard 1 2 3 4 5 Easy

After the motor imagery experiment

Which type of feedback did you prefer? 0: v / 1: h / 2: v-h
How do you feel? Anxious 1 2 3 4 5 Relaxed

Bored 1 2 3 4 5 Excited
How was this experiment? (Duration) Too long 1 2 3 4 5 Good

(Timing) Too fast 1 2 3 4 5 Good
(Enviroment) Poor 1 2 3 4 5 Good
(System) Uncomfortable 1 2 3 4 5 Comfortable

Table 4.6 Questionnaire provided to the participants at each experimental session
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The present doctoral thesis has treated the development of daily-life brain-computer
interfaces from a metrological perspective. The rigorous tools provided by metrology
can be effectively employed in such systems because of two main reasons. First, these
systems rely on the measurement of brain activity and their design must be carefully
carried out, particularly when aiming to detect neurophysiological phenomena with
a minimal hardware. Secondly, the instruments adopted in building brain-computer
interfaces should be characterized in order to fully understand the system operation,
especially when consumer-grade equipment is considered. Hence, the aim of this
work was to contribute to bringing such a technology from a laboratory environment
to everyday life, so as to address applications either for able-bodied people and
impaired ones.

In Chapter 1, some background knowledge has been recalled concerning brain-
computer interface technology, and measurement aspects have been underlined with
specific regards to brain signals acquisition and processing. Then, key require-
ments for daily-life neural interfaces have been outlined. Indeed, a non-invasive
neuroimaging technique had to be considered in acquiring brain activity. Hence,
electroencephalography was exploited, for it is also suitable for developing wear-
able, portable, and relatively low-cost systems. However, this also implies some
drawbacks: poor spatial resolution and lower signal-to-noise ratio if compared to
more invasive neuroimaging techniques. The last aspect is even more relevant if
few electrodes are employed. This was actually the case for the present discussion
because of aiming at utmost wearability and portability. Finally, portability of the
system also demands to deal with motion artifacts affecting brain signals measure-
ment. This issue is particularly relevant when dry electrodes are employed, where
no conductive gel is employed at the electrode-skin interface. Though artifacts were
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already considered in the current work, this aspect surely deserves more investigation
in the near future.

On this basis, Chapter 2 has dealt with the design of brain-computer interfaces.
Consumer-grade devices with few electrodes have been first introduced as acquisition
hardware for electroencephalographic signals. Then, signal processing was also
considered for daily-life applications sought for minimal calibration time and real-
time performance. Next, metrological aspects were stressed with specific regards
to the measurands taken into account, namely evoked activity or spontaneous brain
potentials. Thereafter, methods for a metrological characterization of brain-computer
interface components have been proposed. Electroencephalograph calibration was
carried out by means of laboratory instrumentation that is commonly used in metro-
logical institutes. Meanwhile, a photo-transducer was designed and implemented
for characterizing the flickering icons of smart glasses specifically addressed to
evoked potential elicitation. Characterization results show that consumer-grade
electroencephalographs can be successfully employed in brain-computer interface
applications thanks to their linearity and limited gain error, which could be eventually
calibrated. A low-cost device was notably used as the device under test. On the other
hand, the characterization of flickering icons demonstrated that the harmonic content
of such stimuli can be meaningfully different from the nominal optical response.
The considerations reported here for three representative smart glasses should be
also extended to further stimuli generators, as these are crucial in studying how the
human brain transduces sensory stimuli. As a whole, the characterization of the
visual stimuli justified the exploitation of commercial smart glasses in the operation
of a reactive brain-computer interface, but it also pointed out that their harmonic con-
tent should be carefully measured before addressing the brain response to flickering
lights.

After these general chapters, Chapter 3 has proposed a wearable system based
on steady-state visually evoked potentials. Such a reactive interface was built with
a low-cost electroencephalograph employing a single differential channel and dry
electrodes, integrated with commercial augmented reality glasses. Evoked potentials
were detected by means of a processing algorithm based on power spectral density.
An experimental campaign conducted with 20 subjects pointed out the trade-off
between classification accuracy and stimulation time. The former quantifies the
success rate in understanding which icon the user is staring at. The latter is directly
related to the latency of the system in choosing an icon. The performance results
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demonstrate that mean classification accuracy among subjects can be as high as
95 % at 10 s stimulation time. Though this accuracy value is compatible with current
literature, such a value drops to about 75 % when a 2 s stimulation is considered,
and it is unacceptably low at 1 s stimulation. Thus, further studies should involve
the enhancement of classification accuracy at low stimulation times because the
currently required times limit the applicability of the system. Despite that, some
applications were considered as case studies, either in the industrial and healthcare
fields.

As a last chapter, Chapter 4 has proposed a wearable system based on motor
imagery, i.e. a voluntarily modulated spontaneous brain activity. In this regard, the
selection of a minimum number of acquisition channels was first considered. The
reduction approach relied on the well-known filter bank common spatial pattern
algorithm for the classification of motor imagery-related activity. However, such
an approach is typically adopted when more than eight electrodes are employed in
acquiring sensorimotor brain activity. The results of the present study have firstly
demonstrated that a single channel is not suitable for the detection of motor imagery,
but the number of channels can be as low as three while keeping a classification
performance compatible with the one associated with more electrodes. The exact
channels to exploit do depend on the involved tasks and subjects and they can
vary from session to session. Nonetheless, the locations of selected channels were
compatible with the sensorimotor area reported in the scientific literature. Given this
results, it was noted that the wearability and portability of such a system could be
still achieved, though with a greater number of channels if compared to the reactive
brain-computer interface. Moreover, after some preliminary tests, it was pointed out
that conductive gel is needed to ensure proper contact with the scalp. Therefore, a
commercial device with three bipolar channels and wet electrodes was exploited.
Furthermore, neurofeedback was also considered to improve motor imagery detection
by engaging the user during the task. Thus, the proposed design adds an extended
reality multi-sensory feedback by means of a rolling ball on a screen and a haptic
suit. Results of an experimental campaign conducted with eight subjects demonstrate
that neurofeedback is effective in improving the detection of motor imagery for
most subjects. Then, when considering all subjects together, the mean classification
accuracy resulted higher when exploiting neurofeedback and compatible with 70 %,
which is an empirical threshold for an acceptable performance of motor imagery
brain-computer interfaces.
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As a whole the work has demonstrated that reactive brain-computer interfaces are
closer to daily-life applications. Indeed, the wearable and portable system discussed
in this thesis mostly deserves an engineering phase. On the contrary, systems relying
on motor imagery still need research and development, and the next step will probably
involve a deeper study of neurofeedback as a means for enhancing the detection of
these neurophysiological phenomena.
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Appendix A

Measuring brain activity

The current Appendix furtherly discusses how brain activity can be measured, either
in terms of neuroimaging techniques and measurand signals of interest. Indeed, the
most relevant aspects are already treated in the chapters of this thesis to carry on
a consistent discussion. Nonetheless, the interested reader can find more details
hereafter.

A.1 Measurement techniques

The core of a BCI system is the acquisition and processing of brain signals. The
choice of a proper approach for signal processing largely depends on the brain
signals to analyze, and most of BCI literature has been focusing on algorithms of
varying complexity for the analysis of specific brain activities [30]. Hence, it is of
foremost importance to select a proper signal acquisition method in accordance with
the requirements. In line with our current understanding of the human brain, the
measurand brain activity is related to neurons, hundreds of billion nerve cells that
communicate by means of electrical signals or chemical reactions. Typically, the
activity of an entire brain area is measured, thus meaning that the average activity
of a great number of neurons is considered at once. Each area is specialized for
particular tasks, but concurrent tasks can be processed by the same area and many
tasks are processed in multiple areas. Advancing technology and more deep brain
function understanding allow to decipher with ever greater resolution the ongoing
brain activity, but it is not (yet) possible to “read thoughts” [42]. Nowadays, one can
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only measure general processes, and several challenges are posed by intra-subject
and inter-subject variability in brain functionality.

The most common techniques for brain activity measurement are briefly de-
scribed in the following. The aim is to help the reader understand the main ad-
vantages and disadvantages of each technique, and also to justify our focus on
electroencephalography. Interestingly, multiple measurement techniques could also
be used at once in order to improve BCI system performance [11].

A.1.1 Electroencephalography

Electroencephalography (EEG) is a technique used to record the electrical activity
of the human brain by means of electrodes placed on the scalp [43]. The term
’EEG’ typically refers to a non-invasive technique. The measurement setup is
simple and safe. However, the electrical potentials detected with this technique
must cross the tissues interposed between the scalp and the brain to reach the
electrodes. Consequently, there is a considerable attenuation and the detection
reliability decreases. Instead, in an electrocorticography (ECoG) the electrodes
would be surgically positioned on the cerebral cortex, or they could be even implanted
inside the cortex in intracortical techniques or electrograms. This would guarantee
greater temporal and spatial resolution, as well as greater signal-to-noise ratios if
compared to an EEG [36]. Usually, an EEG acquisition system is inexpensive, highly
portable, and wearable. Clearly, this also depends on the number of electrodes,
which can be more than one hundred. Electroencephalography guarantees a temporal
resolution equal to 10 ms and 1 cm spatial resolution [42, 145]. Electrical signal
amplitudes vary from 5 µV to 100 µV for EEG, while these signal amplitudes would
reach 1 mV to 2 mV if the electrodes were implanted in the skull [146]. The signal
bandwidth of usual interest spans the 0.1 Hz to 100 Hz range, and the amplitude
decreases with increasing frequency. Recent studies also support the idea that EEG
amplitudes correlate with the degree of neuron synchronization [147]. On the other
side, EEG alone cannot detect brain area activation occurring in deeper regions. In
this regard, techniques like fMRI and MEG can be employed.
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A.1.2 Magnetoencephalography

Magnetoencephalography (MEG) is a technique allowing the detection of magnetic
fields generated by the neurons’ electrical activity. This technique guarantees deeper
imaging if compared to the EEG, with a greater spatial resolution (about 1 mm)
and a similar temporal resolution (1 ms to 10 ms) because the skull is almost com-
pletely transparent to magnetic fields [42, 145]. However, it is an expensive and
not portable technology because it requires big magnets, and/or superconductiv-
ity, e.g. in superconducting quantum interference device [36]. Furthermore, MEG
equipment can interfere with other instrumentation or suffer from electromagnetic
interference. Therefore, MEG seems not very suitable for applications in every-day
life. Nonetheless, magnetoencephalography is seen as complementary to EEG: a
synergically employment of both techniques can provide important information
about the dynamics of brain functions [148].

A.1.3 Functional magnetic resonance imaging

Magnetic resonance imaging (MRI) exploits nuclear magnetic resonance to recon-
struct an image of a physiological process. A strong magnetic field is generated to
make atoms absorb and release energy at radio frequency. In particular, hydrogen
atoms are usually involved, which are abundant in water and fat. By localizing
the signals emitted from the atoms, it is thus possible to obtain an image [149].
There are also other imaging techniques such as computed tomography scan (CT)
or positron emission tomography (PET), but despite them MRI does not use X-rays
or ionizing radiation. Functional Magnetic Resonance Imaging (fMRI) exploits the
basic principles of MRI to detect changes in blood flow through changing blood
magnetic properties, which are related to neural activity in the brain. Indeed, neurons
need more oxygen and glucose when they communicate, thus causing an increase in
blood flow to active regions of the brain [42]. fMRI is expansive and not portable
because it requires cumbersome instrumentation, such as superconductive magnets
[42, 145]. It provides data with high spatial resolution (even below 1 mm) but with
a poor temporal resolution (few seconds) [145] due to the slow changes in blood
flow. An hybrid system could, for instance, employ fMRI in conjunction with EEG
or MEG to achieve both high temporal and spatial resolution [148]. Obviously, this
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would require a proper fusion of the two measurement methods so to combine data
and provide insight that could not be achieved with a single technique.

A.1.4 Functional near-infrared spectroscopy

Functional near-infrared spectroscopy (fNIRS) exploits light in the near-infrared
range to determine the blood flow related to neuronal activity. It provides high spatial
resolution (few millimeters), but poor temporal resolution (few seconds) [36, 145].
Compared to fMRI, fNIRS is portable and less expensive but it provides less imaging
capabilities. The potential advantages of this technique include insensitivity to signal
perception errors (artifacts) that are typically present in EEG [150]. Hence, a hybrid
BCI would benefit from a proper combination of EEG and fNIRS.

A.1.5 Other techniques

In this last subsection, few notes are reported about further measurement techniques
related to brain activity detection that go beyond the non-invasive techniques recalled
above. As already mentioned above, neuroimaging techniques like electrocorticog-
raphy (ECoG) or intracortical neuron recording are of great interest in the BCI
field because they allow for a superior signal quality. ECoG is usually referred to
as “partially-invasive” or “semi-invasive” to highlight its lower degree of invasive-
ness if compared to intracortical recording. However, the ECoG itself requires a
craniectomy by which the electrodes are directly placed on the exposed surface of
the brain [151]. Meanwhile, intracortical neuron recording exploits microelectrode
arrays placed inside the gray matter of the brain in order to capture spike signals and
local field potentials from neurons [98]. Invasive techniques also guarantee lower
vulnerability to artefacts such as blinks and eye movement. Nevertheless, despite
the advantages from the metrological point of view, there are evident difficulties in
considering such techniques in daily-life applications.

Even the already mentioned CT and PET are noteworthy because they are of
utmost importance for brain activity monitoring, notably in clinical applications.
Computed Tomography (CT) is a technique that has much in common with PET,
except that it uses X-rays and a camera to detect and record the activity of the
brain. A similar technique is the “single-photon emission computed tomography
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(SPECT)” which instead uses γ-rays [42]. Instead, positron emission tomography
(PET) is a nuclear imaging technique based on the detection of blood flow and
glucose consumption through a small amount of radioactive isotopes introduced into
the blood. This technique has high spatial resolutions, down to 2 mm, while temporal
resolution is again limited by the dynamics of [148]. In a certain sense, also CT and
PET are invasive techniques and they are clearly unsuitable for a brain-computer
interface. Indeed, they are poorly considered in the BCI community, unless they
would be needed for a medical diagnosis. In conclusion, Tab. A.1 resumes the main

neuroimaging
technique

physical
property

temporal
resolution

spatial
resolution advantages disadvantages

EEG
electrical
potential 10-100 ms 1 cm

low cost
wearabile
portabile

noisy
sensible to artifacts
electrodes placing

MEG
magnetic
potential 10 ms 1 mm deep imaging

expensive
bulky

fMRI
blood
flow 1 s 1 mm deep imaging

expensive
bulky

fNIRS
blood flow
in cortical
tissue

1 s <1 cm
low cost
wearable
portable

no deep imaging
low time resolution

ECoG
electrical
potential 1 ms 1 mm

signal quality
portable (semi)invasive

Intracorical
local electrical
field potential 1 ms <1 mm

signal quality
portable invasive

SPECT
blood
flow 1 s 1 mm deep imaging

expensive
bulky
radiation

PET
blood
flow 1 s 1 mm deep imaging

expensive
bulky
radiation

Table A.1 Summary of the main characteristics concerning neuroimaging methods.

characteristics of the described neuroimaging techniques. A particular focus is given
to the order of magnitudes for the respective temporal and spatial resolutions, and
also to the advantages that make a technique suitable for daily-life applications, as
well as the disadvantages that eventually make it unsuitable for that purpose.

As a final note, there are two other measurement techniques that are noteworthy
for BCI application, but, strictly speaking, they do not measure brain activity. These
are the electroculography (EOG), which measures the electric potential between the
front and the back of the human eye, and the electromyography (EMG), i.e. the
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measuring of the electrical activity of muscle tissue. EOG and EMG artifacts are
indeed the most important sources of errors in neuroimaging, thus the measurement
of ocular and/or muscular activity is exploited in many artifact removal techniques
[45].

A.2 Measuring the electrical brain activity

An electroencephalographic signal, or EEG, is obtained as the potential difference
over time between signals of measurement electrodes and the reference electrode
signal [98]. Electrodes used for electroencephalography can be wet or dry. For
wet electrodes, gel is needed between the electrode and the scalp to reduce the
contact impedance down to 1 kΩ to 10 kΩ. However, the main drawback of gels
or electrolytic paste is the long preparation time of the subject and periodic refresh
required for good quality signal [98]. Indeed, gel progressively dries out: this
determines contact impedance and signal quality is negatively affected. Moreover,
care must be taken to ensure that the gel does not slip between the electrodes since
this would create a short circuit. On the other side, dry electrodes do not require
any gel. These kinds of electrodes may be dry active electrodes, which have pre-
amplification circuits for dealing with very high electrode-skin contact impedances,
or dry passive electrodes, which have no active circuits, but are linked to EEG
recording systems with ultra-high input impedance.

Usually, in multi-channel recordings, the 10/20 electrode system [2] is adopted.
The measurement technique is based on standard landmarks of the skull, namely
the nasion, which is a craniometric point placed in the midline bony depression
between the eyes where the frontal and two nasal bones meet, the inion, other
craniometric point that is an external occipital protuberance, and the left and right
pre-auricular points. The pre-auricular points are felt as depressions at the root of the
zygoma, which are behind the tragus [2]. The system’s name is derived from the fact
that electrodes are placed in determined positions at 10% intervals and 20% of the
distances joining the nasion-inion points and the right and left pre-auricular points.
To reduce preparation time of the subject, pre-assembled electrodes are generally
already set in standard positions on the headset. The amplitude of oscillations at the
brain surface can reach tens of mV, but amplitudes recorded on the scalp are about
hundreds of µV [152]. Then, in EEG signal frequency of interest lies in the 0.5 Hz
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to 100 Hz range, and specific sub-bands are related to physiological or pathological
states [152, 98]. These sub-bands are know as EEG rhythms and five are typically
distinguished:

• Delta (δ ) rhythms: delta waves have frequencies in the 0.5 Hz to 4.0 Hz, and
their amplitude is usually under 100 µV. In adults, delta waves are associated
with a state of deep sleep. Delta waves are mostly present in children. Their
amplitude decreases with increasing age.

• Theta (θ ) rhythms: theta waves have frequencies in the 4.0 Hz to 7.0 Hz, and
their amplitude is below 100 µV. As delta rhythm, theta waves are mostly
present in children. In adults, theta waves are associated with states of sleep
or meditation. In some adults, theta rhythm is also associated with emotional
stress.

• Alfa (α) rhythms: alpha waves have frequencies in the 8.0 Hz to 13.0 Hz, and
their amplitude is below 10 µV. These waves can be recorded during waking
state, but they indicate a state of relaxation. In the same range of the alpha
waves, but in the motor cortex, the mu (µ) rhythm is also detected. This
rhythm is interesting since it is strongly related both to movement, and to the
observation of the movement executed by someone else (because of mirror
neurons [153]), both to the imagination of the movement (after some training)
[151, 154].

• Beta (β ) rhythms: beta waves have frequencies in the 13.0 Hz to 30.0 Hz, and
their amplitude is below 20 µV. These waves appear during waking state,
when the subject is occupied in a mental activity [151, 111]. Beta rhythms
are also associated with motor activity. They are modulated either during real
movement and during motor imagery.

• Gamma (γ) rhythms: gamma rhythms have frequencies over 30 Hz and they
indicate a state of deep concentration . Some experiments have revealed a
relationship in normal humans between motor activities and gamma waves
during maximal muscle contraction. Gamma rhythms are less commonly used
in EEG-based BCI systems, because artifacts or electrooculography are likely
to affect them.
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A.3 Measurand brain signals

With the different neuroimaging techniques reported in the previous section, it is
possible to measure several types of brain signals. Indeed, there is a relation between
the brain activity of interest and the neuroimaging method to employ for its detection.
In the present section, the main focus will be on the brain signals measurable through
the electroencephalography (EEG for short). However, this does not imply that EEG
is the only possibility for such measurements, and surely hybrid approaches are often
possible. Then, depending on the available signals and on the final application, a
proper processing approach will be adopted.

In following a chronological order, it is convenient to start by introducing “evoked
potential” (EP). EPs are variations of the EEG signals occurring as a result of a
sensory stimulation. For instance, a largely treated class of EPs are the “visually
evoked potentials” (VEP), where brain activity modulations occur in the visual
cortex in correspondence of a visual stimulus [155]. Typical visual stimuli are
flickering icons or light flashing. Therefore, the VEPs reflect the brain’s processing
of visual information [61] and different types can be distinguished according to
the kind of information they contain. An interesting distinction is proposed in [91]
between transient VEPs (t-VEP), steady-state VEPs (SSVEP or f-VEP), and code-
modulated VEPs (c-VEP). In t-VEPs, the frequency of visual stimulation is kept
below 4 Hz to 6 Hz so that consecutive flashes do not overlap. The target flashes are
mutually independent and they are typically detected by averaging over many signal
epochs. Hence, successive epochs must be properly synchronized. Meanwhile, in
frequency modulated VEPs (f-VEP), more commonly referred to as SSVEPs, the
visual stimulus is a flickering icon with a frequency above 6 Hz. In such a case,
the evoked potentials result from the overlapping of consecutive flashes, whom
period is lower than a single t-VEP duration [61]. Different targets are therefore
distinguished by means of different flickering frequencies and/or thanks to the phase
information. Where the phase relation between targets is of interest for the SSVEP
detection, a trigger signal is also needed for synchronization. Finally, c-VEPs rely on
pseudo-random sequences of bits that modulate the duration of a flashing target. In
detecting the response to a code-modulated stimulus, a synchronization of measured
signals is needed and a template matching method is exploited to retrieve the code.
Higher communication speeds are achievable with a c-VEP [91], but a more complex
training of both the user and the algorithm is needed as well. Instead, a trainingless
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BCI can be built, at least in principle, by considering SSVEPs. Another important
difference between c-VEP and SSVEP is that the first has a broadband spectrum,
while the second is characterized by narrow bands. Such considerations are crucial in
choosing the processing approach. Generally speaking, evoked potentials recorded
with EEG have relatively small amplitudes, so there is the need of proper filtering
and amplification to extract the signal features of interest [98].

The discussion conducted for visually EPs can be extended to other evoked
potentials, relying for example on auditory or somatosensory stimulation. As a whole,
EPs are common measurands in reactive BCI paradigms and, thanks to the EEG, they
can be exploited in building non-invasive, wearable and portable brain-computer
interfaces for daily-life applications. In particular, the present thesis considers
SSVEP-based BCI systems. Meanwhile, it is worth reporting further considerations
about a largely exploited transient EP, which is the P300 potential. P300 EPs are
positive peaks in the EEG elicited by infrequent visual, auditory, or somatosensory
stimuli (flashes) [32]. The P300 wave is an endogenous response elicited about
300 ms after attending the stimulus. As already highlighted for SSVEPs, the use of
P300-based BCIs does not necessarily require training. However, some studies have
proven that the less probable the stimulus, the larger the amplitude of the response
peak, and for that reason the system performance may be reduced if the user gets
used to the flashes [98]. Also, P300-based BCIs speed is limited by the averaging
process that is usually required in transient EP detection. On the other hand, it is
possible to distinguish among many targets in a P300 paradigm, and for that reason
these EPs are mostly exploited in building BCI spellers [156]. Despite this advantage,
P300 was not considered in the present work, but it could be taken into account in a
near future to furtherly investigate hybrid paradigms.

As further relevant measurand signals, sensorimotor rhythms comprise µ and β

rhythms, which are oscillations in the brain activity localized in the mu band (7.0 Hz
to 13.0 Hz), also known as the Rolandic band, and beta band (13.0 Hz to 30.0 Hz),
respectively [98]. The amplitude of the sensorimotor rhythms varies when cerebral
activity is related to any motor task although actual movement is not required to
modulate the amplitude of sensorimotor rhythms. Similar modulation patterns in the
motor rhythms are produced as a result of mental rehearsal of a motor act without
any overt motor output. Sensorimotor rhythms have been used to control BCIs, be-
cause people can learn to generate these modulations voluntarily in the sensorimotor
rhythms [98]. Studies [154] proved that, through the only imagination of the move-
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ment (motor imagery), it is possible to start variations in sensorimotor rhythms like
the ones associated with real movements [98]. Sensory stimulation, motor behaviour,
and mental imagery can change the functional connectivity within the cortex and
results in an amplitude suppression, the event-related desynchronization (ERD), or
in an amplitude enhancement, the event-related synchronization (ERS), of mu and
central beta rhythms. The dynamics of brain oscillations associated with sensory
and cognitive processing and motor behaviour can form complex spatio-temporal
patterns. Thus, a synchronization of higher frequency components embedded in
a desynchronization of lower frequency components can be found on a specific
electrode location at the same moment of time [157]. Voluntary movement induces
ERD of µ and β sensorimotor rhythms [158]. Desynchronization begins in the con-
tralateral hemisphere 2 s before the motor act, then it becomes symmetric during the
execution of the movement [158]. The same ERD desynchronization can be revealed
during motor imagery [158]. ERD desynchronization is often followed by ERS
synchronization in the ipsilateral hemisphere, with similar frequency components
[158]. One important feature of these beta oscillations is their strict somatotopic
organization in MEG and EEG [157]. For this reason, patterns associated with the
imagination of the movement of a hand can be distinguished with respect to the
ones associated with the movement of the other hand. To properly record ERD and
ERS, the EEG electrodes must be located close to the primary sensorimotor areas.
Usually, the most interesting electrodes for these studies are C3 and C4. However,
since two bipolar derivations are insufficient to describe the overall brain activity, it
seems reasonable to assume that more EEG signals recorded over sensorimotor areas,
which are sensitive to differences between left and right imagery, would improve the
classification accuracy of the BCI [159]. Furthermore, although electrodes close to
primary sensorimotor areas contain the most relevant information for discrimination,
surrounding electrodes over premotor and supplementary motor areas also contribute
some information to discriminate between brain states related to the motor imagery
task [159]. Obviously, the more signals are recorded, the less BCI systems are
portable because of the great number of electrodes and because of proportionally
longer preparation times. Sensorimotor rhythms are utilizable for the design of
endogenous BCIs, which are more useful than exogenous BCIs. Nevertheless, self-
control of sensorimotor rhythms is not easy, and most people have difficulties with
motor imagery. People tend to imagine visual images of related real movements,
which is not sufficiently useful for a BCI system, because the patterns of these
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sensorimotor rhythms differ from actual motor imagery [98]. Sensorimotor rhythms
have been investigated extensively in BCI research. Well-known BCI systems such
as Wadsworth, Berlin, or Graz BCIs employ sensorimotor rhythms as control signals
[98].
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