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Fast-ion-driven vertical modes in magnetically confined toroidal plasmas

T. Barberis1, F. Porcelli1, and A. Yolbarsop2
1Department of Applied Science and Technology,

Polytechnic University of Turin, Torino 10129, Italy
2KTX Laboratory, School of Nuclear Science and Technology,

University of Science and Technology of China, Hefei, 230022, China
(Dated: January 31, 2022)

A new type of fast particle instability involving axisymmetric modes in magnetic fusion tokamak
plasmas is presented. The relevant dispersion relation involves three roots. One corresponds to a
vertical plasma displacement that, in the absence of active feedback stabilization, grows on the wall
resistivity time scale. The other two, oscillating close to the poloidal Alfvén frequency, are normally
damped by wall resistivity. The resonant interaction with fast ions can drive the oscillatory roots
unstable. Resonance conditions, stability thresholds and experimental evidence are discussed.

It is well known that tokamak plasmas with non-
circular cross sections are prone to an instability, in-
volving axisymmetric modes with toroidal mode number
n = 0, which, if left uncontrolled, would lead to Verti-
cal Displacement Events (VDE) and plasma current dis-
ruptions. As shown in the pioneering work by Laval et
al [1], a nearby perfectly conducting wall can provide
passive feedback stabilization. For the realistic case of
a resistive wall, the relevant dispersion relation is cubic
[2]. Two roots correspond to weakly damped oscillations,
with a frequency close to the poloidal Alfvén frequency
and damping rate of the order of the inverse of the resis-
tive wall time. The third one is unstable, growing on the
resistive wall time, and its complete suppression requires
an active feedback stabilization system, whose principle
and practical implementation have been the subject of
several contributions (see, e.g., Refs. [3–9]). Here, we fo-
cus our attention on the two oscillatory roots, and show
that they can be driven unstable by the resonant inter-
action with energetic ions. This fast-ion-driven vertical
mode (in brief, FIDVM; see Ref. [10] for a preliminary
account) adds to the catalogue of potentially dangerous
fast ion instabilities in tokamak fusion plasmas [11, 12].
We suggest that the FIDVM may provide a possible ex-
planation for the saturated n = 0 Alfvén oscillations ob-
served in recent beam-injected JET experiments with ad-
ditional ICRF heating, tentatively interpreted in Ref. [13]
in terms of n = 0 Global Alfvén Eigenmodes (GAE). We
point out that the FIDVM is a mode with a discrete fre-
quency below the minimum value of the poloidal Alfvén
frequency, not affected by continuum damping. Thus,
its frequency does not depend on transient details of the
safety factor profile, and as such it appears to be also a
robust candidate, on the same footing as GAE, for the
interpretation of the JET n = 0 observations.

The FIDVM dispersion relation is derived within the
framework of the hybrid kinetic-MHD model [14]. The
bulk thermal plasma is described according to ideal-
MHD, while the fast particles are modeled by the col-
lisionless drift-kinetic equation [15]. We study the res-
onant interaction between the oscillatory branch of the
n = 0 dispersion relation and fast ions. We evaluate the
contributions of particles with trapped and passing or-

bits to the mode growth rate and the conditions under
which these can overcome the damping associated with
wall resistivity. We show that instability requires a fast
ion distribution function with positive derivative as func-
tion of energy. The experimental conditions under which
such distribution can be realized are discussed below.
The magnetic field is represented as B = eϕ × ∇ψ +

Bϕ eϕ, where eϕ is the unit vector along the toroidal di-
rection, and Bϕ is nearly constant. The plasma flow is
v = eϕ × ∇φ. The magnetic flux function, ψ, and the
stream function, φ, obey the dimensionless equations:
∂tψ+[φ,ψ] = 0; ∂t ∇· (ϱ∇φ)+

[
ϱ, (∇φ)2

]
/2+U [φ, ϱ]+

[φ,U ] = [ψ, J ]−eϕ·∇×∇·Ph, where [χ, η] = eϕ·∇χ×∇η,
J = ∇ 2ψ is the current density, and U = ∇ 2φ is the
flow vorticity. The fast particles pressure tensor is de-
fined as Ph = p⊥hI+(p∥−p⊥)he∥e∥, where e∥ = B/B,
p⊥h and p∥h are moments of the fast ions distribution
function, which obeys the collisionless drift-kinetic equa-
tion. The normalization is standard, see Refs. [10] for
details. Time is normalized to the poloidal Alfvén time,

τA = (4π ϱm)
1/2
/B′

p, with ϱm the on-axis mass density
and B′

p the on-axis derivative of the equilibrium poloidal
field; space is normalized to a convenient equilibrium
scale length, r0 = a b/[

(
a 2 + b 2

)
/2]1/2 with a and b

the minor and major semi-axes of the elliptical plasma
boundary.
At equilibrium, we assume stationary fields, no flows,

and isotropic fast ions (p∥h,eq = p⊥h,eq). To allow
for analytic work, and since toroidal effects and cur-
rent density gradients are not expected to affect the
MHD response of the bulk plasma to axisymmetric per-
turbations, the particle and current densities are taken
uniform up to an elliptical boundary, µ = µb, where
(µ, ϑ) are elliptical coordinates: x = A sinh(µ) cos(ϑ);

y = A cosh(µ) sin(ϑ); A =
√
b2 − a2. The equilibrium

current density is Jeq(µ) = 2H(µb − µ), where H(x) is
the unit step function. The equilibrium magnetic flux
is ψeq = (x2/a2 + y2/b2)/2 for µ ≤ µb, ψeq = 1/2 +
α0

2 {µ− µb − e0 sinh [2(µ− µb)] cos(2ϑ)} /2 for µ > µb,
where α2

0 = ab/r20 and e0 = (b2−a2)/(b2+a2) is the ellip-
ticity parameter. The equilibrium flux exhibits X-points
outside the plasma, located at µ = 2µb, ϑ = (π/2, 3π/2).
More details on the equilibrium solution can be found in
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Refs. [16, 17].

Let ψ(µ, ϑ, t) = ψeq(µ, ϑ)+ψ̃(µ, ϑ) e
γ t and φ(µ, ϑ, t) =

φ̃(µ, ϑ) e γ t, where the over-tilde denotes small perturba-
tions. To first order in perturbed quantities,

γ ψ̃ + [φ̃, ψeq] = 0, (1)

γ∇ · (ρeq∇φ̃) = [ψ̃, Jeq] + [ψeq, J̃ ]− ez · ∇ ×∇ · P̃h

(2)

We multiply Eq. (2) by φ̃∗/2γ∗ and integrate over the
whole volume. After straightforward algebra, we obtain
a standard expression for the dispersion relation in terms
of quadratic forms,

−γ2δI = δWMHD + δWfast, (3)

where δI =
∫
V d

3xρξ · ξ∗/2, δWMHD = −
∫
V d

3xξ∗ ·
F (ξ)/2 and δWfast =

∫
V d

3xξ∗ · ∇ · P̃h/2. All the inte-
grals extend over the plasma volume V, the displacement
vector is ξ = ez × ∇φ̃/γ and the reduced MHD force

operator is F (ξ) = (J̃ ×Beq + Jeq × B̃).
Firstly, we neglect energetic particles. As shown

in [10], the rigid-shift vertical displacement, φ̃ = γξx,
with ξ = const, is the exact solution of Eqs. (1)-(2) for
the considered equilibrium. The perturbed flux in the
plasma region is obtained from Eq. (1). In the vacuum
region, the flux is modified by the presence of a nearby
resistive wall, assumed to lie on an elliptical surface,
µ = µw, confocal with the plasma elliptical boundary,
as in Ref. [1]. Considering a thin wall, we solve ana-

lytically for ψ̃ and obtain the expected cubic dispersion
relation for the n = 0 mode:

γ3 + γ2
1

τη
− γγ20 − γ20

1

τη

1

1−D
= 0, (4)

where γ20 = −ω2
0 and

ω0 ≈ e
1/2
0 τ−1

A

√
(D − 1), (5)

with τη the resistive wall time and D =
[exp(4µb) + 1] / [exp(2µw) + 1] a geometrical factor
that depends on the distance between the plasma
boundary and the wall [1]. If µw = 2µb, the wall
intercepts the X-points and D = 1. Values of D > 1
are obtained if the X-points lie outside the wall,
2µb > µw > µb. The criterion D > 1 corresponds to
passive feedback stabilization of the n = 0 mode in
the ideal wall limit (τη → ∞) and it is the scenario
assumed in the remainder of this article. In an actual
tokamak with a divertor separatrix, the plasma extends
to the X-points, which lie inside the wall, and additional
plasma facing components are introduced inside the
vacuum chamber to ensure passive feedback stabiliza-
tion. Furthermore, as shown in [18], even in the no-wall
limit (µw → ∞), the ideal-MHD constraint imposed on
the X-points leads to current sheets, localized on the
magnetic separatrix, adding an important ingredient

to the n = 0 stability properties. The latter scenario
requires careful treatment of the ideal-MHD X-point
resonance and is beyond the scope of the present article.
Solving for γ = −iω in the limit D > 1 and small

resistivity γ0τη ≫ 1, we obtain the three relevant roots

ω ≈ ±ω0 − i
1

2τη

D

(D − 1)
= ±ω0 − iγη (6)

γ =
1

(D − 1)τη
(7)

The two stable roots in (6) oscillate at frequency
ω = ±ω0. As anticipated, the damping rate γη =
D/ [2τη(D − 1)] is related to the resistive wall time, but
the resonant interaction with fast ions can destabilize
these modes, as shown in the following. The third root
corresponds to the unstable n = 0 resistive wall mode,
which is normally suppressed by active feedback stabi-
lization.
Let us now consider the effects of energetic particles,

represented by the last term in Eq. (3). We adopt a
perturbative approach. We introduce the small expan-
sion parameter, ϵh = βh/βc ≪ 1, i.e., the ratio be-
tween energetic particle and core plasma pressures. In
this limit, |δWMHD| ≫ |δWfast|. The cubic disper-
sion relation, Eq. (4), is recovered to zeroth order in ϵh.
Following a standard procedure [15, 19], the quadratic
term related to energetic particles can be written as
δWfast = δWh,ad + δWh,nad. Here, the first term (the
“adiabatic” part) is fluid-like and purely real; the sec-
ond term (“non-adiabatic”) has both real and imaginary
parts, the latter contributed by the resonant fast ions.
The real part of δWfast gives rise to O(ϵh) corrections
to the n = 0 oscillation frequency and thus can be ne-
glected. On the other hand, the imaginary part of δWfast

contributes to the n = 0 growth rate, competing with the
damping term γη. Accordingly, only the imaginary part
of δWfast is retained in the following.
Thus, we are led to the following dispersion relation for

the two oscillatory n = 0 modes modified by fast ions:

ω2 = ω2
0 − 2iω0γη + iω2

0λh +O(γ2/ω2
0), (8)

where λh = Im(δŴh,nad) is a dimensionless parameter

and δŴh,nad the properly normalized quadratic form.
Leading order solutions for the real and imaginary parts
of the mode frequency are ω = ±ω0 + iγtot, where
γtot = ω0λh/2 − γη. In order to determine the stabil-
ity threshold, detailed analysis of δWh,nad is necessary.
For n = 0 modes:

δWh,nad = ζ1
∑
σ

∫
dPϕdEdµ⊥τΩω

∂F

∂E

+∞∑
p=−∞

|Υp|2

ω + pωΩ
,

(9)

where ζ1 = −(2π2c)/(Zem2) and F is the unperturbed
fast ion distribution function. The σ-summation is over
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co- and counter- circulating particle orbits, and integra-
tion is performed over the three invariants of particle mo-
tion: toroidal canonical momentum Pϕ, energy E , and
magnetic moment µ⊥; ωΩ is the bounce frequency of
trapped/passing particle orbits, and τΩ = 2π/ωΩ. The
p-summation is the Fourier expansion of the perturbed
Lagrangian over the harmonics of the unperturbed par-
ticle orbits, labeled by integer p, with Fourier coefficients

Υp(E , µ⊥, Pφ) =

∮
dτ

τΩ
L̃exp(ipωΩτ) (10)

where the loop integral is over a closed banana/transit

orbit, and the perturbed Lagrangian is L̃ ≈ E(2−Λ)ξ ·κ,
with r the radial variable and κ the curvature vector [15].
We consider the ”thin-orbit” approximation, where the
radial excursion of both passing and trapped orbits from
a reference magnetic surface is negligibly small.

To leading order in the parameter ϵh, the displace-
ment vector ξ corresponds to the rigid-shift vertical dis-
placement, which is orthogonal to the main direction
of toroidal curvature. Since the perturbed Lagrangian
is proportional to the scalar product ξ · κ, the inter-
esting consequence is that toroidal curvature contribu-
tions to δŴh,nad are negligibly small. The perturbed La-

grangian can be rewritten as L̃ ≈ ϵ2E(2 − Λ)ξ sin(θ)/r
with ϵ = r/R0, R0 the tokamak major radius and θ
the standard poloidal angle. The pitch angle variable
Λ = B0µ⊥/E ranges from 0 ≤ Λ ≤ 1 − ϵ for passing
orbits, to 1− ϵ ≤ Λ ≤ 1 + ϵ for trapped orbits.

The mode-particle resonant condition is ω + pωΩ = 0.
Note that the p = 0 harmonic is non resonant. The
resonant frequency is proportional to the particle veloc-
ity, v, as we can write ωΩ = vhΩ(r,Λ)/(R0q), where the
safety factor q = rBϕ/(R0Bp) is approximately constant
and the dimensionless function hΩ involves well-known
combinations of elliptic integrals. Changing integration
variables, the pole contribution yields

λh = ζ2

+∞∑
p=1

∫
rdrdΛ

(v∗p)
3

hΩ

∂F

∂E

∣∣∣∣
v=v∗

p

|Υp|2
∣∣∣∣
v=v∗

p

(11)

where ζ2 = (8R0π
4)/(Vρcξ2ω2

0), ρc is the core mass den-
sity and v∗p = ω0R0q/ [phΩ(r,Λ)] is the resonant velocity.
Clearly, the sign of λh depends on the derivative of

the fast particles equilibrium distribution function with
respect to energy. Instability requires ∂F/∂E > 0, giving
rise to a positive λh. Such a distribution can be obtained,
for instance, from Fokker-Plank calculations including a
fast particles loss term, as shown in Ref. [20]. We con-
sider a simplified model with a monochromatic source
term at velocity vfast, and a velocity-independent loss
frequency, νloss. Assuming a uniform radial distribution
of fast ions up to r = rh, and solving the relevant Fokker-
Plank equation, we obtain

F (r, E) = CH(rh − r)
H(vfast − v)

(v3 + v3c )
1−α

(12)

where C is a normalization constant, α = νlossτs/3 and
vc ≪ vfast is the critical velocity. With this model, when
the fast particle slowing down time, τs, is larger than the
loss time, τloss = 1/νloss, the usual, monotonically de-
creasing slowing down distribution cannot form, and F
develops a positive slope as function of energy. Exper-
imental evidence indicates that ∂F/∂E > 0 can also be
induced by a time-dependent source, see Ref. [21] for the
case of modulated neutral beam injection. Another rele-
vant scenario is discussed in [22], where source modula-
tion is caused by sawtooth oscillations. Finally, as dis-
cussed in [23] in connection with the excitation of n = 0
Geodesic Acoustic Modes, a fast ion distribution arising
from Neutral Beam Injection, with a positive slope as
function of energy, can be observed on time intervals, fol-
lowing neutral beam injection time, that are short com-
pared with the fast ion slowing down time.
Next, we investigate the Fourier coefficients Υp. We

are going to show that passing particles contribute mostly
to the p = 1 harmonic, trapped particles mostly to the
p = 1 and p = 2 harmonics, while all other harmon-
ics can be neglected. This result is obtained in the
thin-orbit limit, where r ≈ const along the particle or-
bit and the perturbed Lagrangian depends on time only
through the poloidal angle θ. Therefore, we can set
Υp = E(2− Λ)(ξ/r)Xp, where Xp = ⟨sin(θ) exp(ipωΩτ)⟩
and ⟨⟩ means orbit averaging.
Let us consider the transit frequency of passing

particles, ωΩ → ωt = πvκ
√
ϵ/2/

[
R0qK(1/κ2)

]
, where

K(x) is the complete elliptic integral of the first kind
and κ2 = 1/2 + (1− Λ)/(2ϵ) (for passing orbits, κ ≥ 1).
We find that ωtτ = πF (θ/2|1/κ2)/K(1/κ2) ≈ θ, where
F (ϕ|x2) is the incomplete elliptic integral of the first
kind and the last equality is valid for most values
of κ, with the exception of κ very close to unity,
which corresponds to the barely passing limit. Since
for barely passing particles ωt → 0, these particles
are non-resonant, and so their contribution to λh
can be safely neglected. In this way, Xp reduces to

i(1/4K(1/κ2))
∫ 2π

0
dθ [sin(θ) sin(pθ)] /

√
1− sin2(θ/2)/κ2,

and in the asymptotic limit κ ≫ 1, Xp ≈
i(1/2π)

∫ 2π

0
dθ sin(θ) sin(pθ). It is clear that the

only harmonic that contributes in this limit is p = 1,
while the average is zero for all other p values. Figure 1
displays |Xp|2 for the first two harmonics as functions
of κ, showing that even considering all κ values the
contribution of passing particles for harmonics with
p > 1 is indeed negligible.
For trapped particles, 0 ≤ κ ≤ 1, the bounce fre-

quency is ωΩ → ωb = πv
√
ϵ/2/

[
2R0qK(κ2)

]
. Then,

ωbτ = π/2F (ζ|κ2)/K(κ2), where sin(θ/2) = κ sin(ζ).
For κ sufficiently far from the barely trapped limit κ = 1,
where the bounce frequency drops to 0, it is possible
to approximate ωbτ ≈ ζ. Therefore, one obtains Xp =

κ/K(κ2)
∫ π/2

−π/2
dζ sin(ζ) sin(pζ). As shown in Fig. 1, this

is zero for both barely trapped (κ = 1) and deeply
trapped (κ = 0) particles. It can be shown that all
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even-p harmonics yield a non-zero Xp; however, values
of Xp with p ≥ 4 are negligibly small. For odd-p values,
Xp = 0, with the only exception of p = 1. Thus, we
conclude that only the p = 1 and p = 2 harmonics are
of interest. In Fig. 1, values of |Xp|2 for the p = 1 and
p = 2 harmonics are plotted as functions of κ.

(a) First harmonic p=1 (b) Second harmonic p=2

FIG. 1: Plots of |Xp|2 = |⟨sin(θ) exp(ipωΩτ)⟩|2 as a
function of κ for p = 1 and p = 2 harmonics.

The reason why deeply trapped (κ = 0) as well as
barely trapped/passing (κ = 1) particles do not con-
tribute to Υp, and thus to λh, is very simple. For n = 0
vertical displacements, ξ ·κ ∼ sin θ. Deeply trapped par-
ticles are localized near θ = 0; barely trapped particles
spend most of their time near θ = π; hence, the orbit-
averaged value of the scalar product ξ ·κ vanishes in both
these limits.

In order to determine stability thresholds, we consider
the model distribution function in Eq. (12), where the
normalization constant is determined by

∫
d3vF = nh,

with nh the fast particle density. After straightforward
algebra, we obtain

λh =
9πα(α− 1)q2

a2R2
0

nhmh

ncmc

∑
p=1,2

(
v∗p0
vfast

)3α
1

p2
×

∫
drdΛ

r3(2− Λ)2|Xp|2

hΩ(r,Λ)3α+3
H(rh − r)H(vfast − v∗p) (13)

where nc is the core plasma density, mc and mh are
the core and fast particle mass, respectively, and v∗p0 =
ω0R0q/p is the resonant velocity of passing particles with
Λ = 0. We can write λh = (nh/nc)(mh/mc)(q

2a2/R2
0)λ,

where λ(α, rh/a, v
∗
p0/vfast) is a dimensionless factor that

depends on three parameters. Inserting this expression
for λh in Eq. (8), the instability threshold can be cast in
the form

nh
nc

≥
(
nh
nc

)
crit

=
mc

mh

R2
0

q2a2
2γη
λω0

. (14)

To gain further insight on realistic numerical values for
the critical density threshold, we consider the parameters
of the JET experiments discussed in Ref. [13], where sat-
urated n = 0 oscillations were observed, and MeV fast
ions were produced by a combination of ICRH and NBI.
Some parameters are experimentally well known, e.g.,
R0 = 3m, a = 0.9m, elongation b/a ≈ 1.3, which cor-
responds to e0 ≈ 0.3, toroidal magnetic field BT = 2.2T ,

q ≈ 1, and Deuterium main ion species, yielding an in-
verse poloidal Alfvén time τ−1

A ≈ 2 × 10−6s−1. The
experimentally observed n = 0 oscillation frequency is
in the range f0 = ω0/2π ≈ 300kHz, which compares
well with the theoretical predicted value of the frequency
ω0, defined below Eq. (4), if we assume realistic val-
ues for the geometrical factor, D ≈ 3. Fast ions in
the mentioned JET experiments are also mostly Deu-
terium, thus we take mh/mc = 1. We assume rh/a = 0.5
and α ≈ 2. The remaining parameter to be evalu-
ated, v∗p0/vfast = ω0R0q/(pvfast), depends on the fast

ion cut-off energy, Efast = mhv
2
fast/2. Realistic JET

estimates indicate values of Efast in the MeV range.
We can see that the p = 1 harmonic, contributed by
the passing particles, is the leading contribution for fast
ion energies up to ∼ 1.5 MeV. At higher energies, the
p = 2 harmonic contributed by trapped particles can
also give a significant contribution. On the other hand,
for the considered parameters, the p = 1 harmonic con-
tributed by trapped particles gives a non-zero contribu-
tion only for cut-off energy Efast ≥ 5MeV . Let us write
λ = λp=1,pass + λp=2,trap. In Fig. (2), we present plots
of these quantities as functions of Efast, having fixed
all the other parameters to the JET-relevant values in-
dicated above. The overall value of the parameter λ is
estimated of order 3 × 10−1 for the JET experiments of
interest.

FIG. 2: Coefficients λp=1,pass and λp=2,trap as function
of fast ion cut-off energy Efast.

The damping rate due to the resistive wall can be esti-
mated of the order of γη ∼ 3×102 s−1. As a consequence,
the critical instability threshold for the relevant JET ex-
periments can be estimated to be (nh/nc)crit ∼ 1×10−2.

In this analysis, we have restricted ourselves to fast ion
distribution functions that are isotropic in velocity space.
In principle, pitch-angle anisotropy may also contribute
to the instability drive. This should make the instability
more ubiquitous in many tokamak experiments, where
fast ions are produced by neutral beam injection and/or
by ion cyclotron radio frequency heating. The effect of
velocity space anisotropy will be investigated in a future
article.

As we have already pointed out, the theory presented
in this article is motivated in part by the observation of
saturated n = 0 fluctuations, with a frequency of the
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order of the poloidal Alfvén frequency, in recent JET
experiments where fast ions are produced by auxiliary
heating, see Ref. [13]. At that time, the FIDVM insta-
bility was not a known concept, and the observations
were tentatively interpreted in [13] in terms of a satu-
rated n = 0 Global Alfvén Eigenmode (GAE). It is early
for us to conclude whether, in fact, the mode observed at
JET is a FIDVM rather than a GAE: more experiments
are required, but also, the theory developed here ought
to be developed further. Nevertheless, we can indicate
what are the main points of distinction between GAE and
FIDVM that may facilitate the experimental identifica-
tion. These are basically three. First, the GAE mode fre-
quency for n = 0 is given by [24] ωGAE = vA/qR = τ−1

A ,
where τA is the poloidal Alfvén as defined in the first page
of this article. On the other hand, the FIDVM mode fre-
quency is given by Eq. (5), and, taking the parameter D
of order unity, it falls below the GAE mode frequency,
since the ellipticity parameter e0 is typically below unity.
Secondly, the FIDVM scales as the square root of e0,
while the n = 0 GAE mode frequency is independent of
elongation. Indeed, the GAE would survive in the cir-
cular limit, while the FIDVM would not. Thirdly, and
perhaps most importantly, the FIDVM mode structure
is different from that of the GAE. The FIDVM is a verti-
cal mode, corresponding to a vertical shift of the plasma
cross section. This signature would be easily detected
by magnetic perturbation coils placed top and bottom
of the tokamak midplane. The GAE mode structure fa-
vors instead a ballooning type of parity, with the relevant
perturbed flux being an even function of the poloidal an-
gle. It also happened at JET, as reported in Ref. [13],
that the GAE mode frequency was close to the frequency
of Ellipticity-induced Alfvén Eigenmodes (EAE) [25]. In
this case, however, the distinction between the FIDVM
and the EAE is easy, because EAEs are not axisymmetric
(their toroidal mode number is n ̸= 0).

In conclusion, we have presented a new type of fast
ion instability, dubbed FIDVM, involving n = 0 axisym-
metric modes in a tokamak plasma, with a well defined,

discrete frequency, ω0 = e
1/2
0 τ−1

A

√
D − 1, determined by

passive feedback stabilization of vertical displacements in
plasma with elongated cross-section. The mode is driven
unstable by a mode-particle resonant interaction involv-

ing fast ions on both trapped and passing orbits. In-
stability requires a fast ion distribution with a positive
slope as function of energy. The critical fast ion density
threshold for instability is determined by the competition
between the mode-particle resonance drive and damping
introduced by the resistive wall.
Even though the theory presented in this article is

linear, it is appropriate to speculate on what might be
the nonlinear consequences of this instability. Typically,
n = 0 perturbations do not cause a direct radial trans-
port of resonant particles; at most, we might expect that
they induce a faster relaxation of the fast ion distribu-
tion function, by eliminating ”bumps” in the tail of the
distribution, thus relaxing it faster to a standard slowing
down distribution. On the other hand, vertical displace-
ments are potentially dangerous, because of their con-
nection with VDEs. One aspect of axisymmetric MHD
modes that deserves further attention is the fact that
these modes are resonant at the X-point(s) of a tokamak
divertor [18]. The resonance is likely to drive perturbed
current sheets in the vicinity of the X-points and ex-
tending along the separatrix, as numerical simulations
reported, e.g., in Ref. [5] also seem to indicate. These
current sheets may in turn affect the stability of edge-
localized modes and, more in general, the dynamics of
plasma flows in the divertor region.
The theoretical model presented in this article is a

proof of concept, indicating that the FIDVM is a po-
tential instability in fusion burning tokamak plasmas.
Preliminary estimates indicate that the theoretically pre-
dicted mode frequency and stability threshold compare
favourably with JET experimental results [13, 22]. How-
ever, a more detailed comparison between theory and
experiments requires numerical work using realistic equi-
libria and a careful assessment of the fast ion distribution
function.
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