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Abstract 

Monitoring and preserving state-of-health of high-voltage battery 

packs in electrified road vehicles currently represents an open and 

growing research topic. When predicting high-voltage battery 

lifetime, most current literature assumes a uniform temperature 

distribution among the different cells of the pack. Nevertheless, 

temperature has been demonstrated having a key impact on cell 

lifetime, and different cells of the same battery pack typically exhibit 

different temperature profiles over time, e.g. due to their position 

within the pack. Following these considerations, this paper aims at 

assessing the effect of temperature distribution on the predicted 

lifetime of cells belonging to the same battery pack. To this end, a 

throughput-based numerical cell ageing model is firstly selected due 

to its reasonable compromise between accuracy and computational 

efficiency. Subsequently, experimentally measured temperature and 

C-rate profiles over time in a driving mission are considered for three 

cells of the high-voltage battery pack of a commercially available 

plug-in hybrid electric vehicle. Obtained results suggest that due to 

temperature distribution in the high-voltage battery pack, the 

predicted lifetime for the hottest cell might be as low as 61% 

compared with the coldest cell of the pack. Importance and 

advancement of monitoring and managing the state-of-health of the 

single cells of an electrified vehicle battery pack might be fostered in 

this way thanks to the proposed study. 

Introduction 

Increasingly sensitive regulations regarding environmentally 

sustainable mobility are currently pushing car makers from traditional 

internal combustion engine vehicles towards alternative solutions 

such as electrified ones and alternative fuels, for example [1]. Hybrid 

electric vehicles (HEVs) have particularly proved to be an effective 

option for enhancing fuel economy and reducing on-road emissions.  

HEVs embed two energy sources (i.e. high-voltage battery and fuel) 

and two or more power actuators such as the internal combustion 

engine (ICE) and one or more electric motors, (EMs). HEVs require 

synergic cooperation between ICE and EMs to achieve remarkable 

benefits in terms of exhaust emissions and energy savings [2].  

Furthermore, particular attention must be given to high-voltage 

batteries, which are typically lithium-ion based thanks to their high 

energy density [3]. The high-voltage battery is one of the most 

important elements of an electrified vehicle both from operational 

and price points of view. Moreover, it impacts on several vehicle 

economical aspects such as maintenance and disposal at the end-of-

life. Within the HEV lifetime, inadequate battery management leads 

to increased degradation phenomena and consequently to an 

accelerated reduction of battery lifetime. Battery ageing and wear 

phenomena are regulated by complex chemical phenomena that lead 

to a progressive decrease in battery capacity, an increase in internal 

resistance or, alternatively, thickening of the solid electrolytic 

interface (SEI) [4]-[6]. The rate of the mentioned ageing phenomena 

increases as a function of the severity of battery operating conditions 

in terms of depth of discharge, number of charge and discharge 

cycles and temperature, to mention the most effective factors.  

The importance of safeguarding the high-voltage battery lifetime has 

inspired several research works concerning battery state-of-health 

(SOH) sensitive energy management approaches for HEVs. In 

general, battery state-of-health deterioration is considered as an 

additional HEV control objective that can be studied by means of 

appropriate battery ageing numerical models. For example, this 

problem can be easily addressed by implementing local minimization 

algorithms such as the equivalent consumption minimization strategy 

(ECMS). A multi-objective cost function can be defined in ECMS 

including the fuel consumption rate and the battery energy 

consumption plus a penalty term that quantifies battery ageing. This 

multi-objective formulation of ECMS has been proved to have 

negative effects on fuel economy as the importance given to the 

battery ageing cost term increases [7]. Finding the optimal trade-off 

between fuel economy enhancement and battery lifetime 

safeguarding is not trivial [8]. More sophisticated HEV controllers 

can be implemented to this end. For example, a two-layer internet-

distributed energy management system is presented in [9]. Further 

examples of battery SOH sensitive HEV energy management 

strategies include dynamic programming [10], convex optimization 

[11] and fuzzy logic [12].  

Nevertheless, the above reviewed research works regarding battery 

SOH sensitive HEV energy management approaches generally lay on 

two important assumptions. First, the temperature of the high-voltage 

battery pack is often assumed to be constant over time, i.e. the battery 

conditioning system is supposed operating in ideal conditions. 

However, few recent studies have removed this hypothesis and have 

shown that the temperature evolution over time can have a 

remarkable impact on Li-Ion based battery performance [13][14]. 

The second assumption considers a temperature distribution that is 

changing in the time but is uniform between the cells of the battery 

pack. Nevertheless, remarkably different operating temperatures can 

be achieved by the single cells of a high-voltage battery pack in an 

HEV [15][16]. This results from the position of the single cells within 

the battery pack. As example, the temperature of the pack inner cells 

cannot be easily controlled by the battery cooling system due to the 

lower cooling surface available compared with the pack outer cells. 

Quantifying the difference among the operating temperatures of the 
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single cells of a battery pack currently represents an open research 

question. There still has been no detailed investigation on how 

different the cell ageing rates are in a high-voltage battery pack due 

to their different operating temperature. To overcome the highlighted 

research gap, this work evaluates the impact of temperature 

distribution on the expected useful life of different cells of a high-

voltage battery pack. A numerical model that can predict battery 

ageing as a function of temperature and C-rate over time is 

implemented to this end. Experimental data are collected for different 

cells of a plug-in HEV battery pack operating in charge-sustaining 

mode in a real-world driving mission. Results obtained by processing 

the collected experimental data using the implemented cell ageing 

model show that the temperature distribution in the battery pack for 

the hottest cell can lead to more than 30% reduction in terms of 

useful life compared to the coldest one. The importance of 

appropriately balancing the operation of the different cells in high-

voltage battery packs of electrified vehicles can be pointed out in this 

way. The remainder of this paper is organized as follows: numerical 

approaches for modelling battery ageing available in the literature are 

reviewed first. A suitable model is selected for the investigated 

application, and a detailed description is provided. The HEV 

powertrain model and the experimental results are discussed. The 

subsequent section illustrates the numerical results obtained for the 

estimated cell lifetimes within the considered battery pack. 

Conclusions are finally drawn. 

Cell lifetime prediction methodology 

In this section, methodologies available in literature for modeling cell 

ageing will be reviewed first. Among these, a specific approach will 

be selected by providing appropriate motivation. The retained method 

will then be described in detail in the remaining portion of the 

section. 

Review of battery ageing modeling approaches 

Different categories of battery ageing modeling approaches are 

currently available in literature including physico-chemical models, 

event-oriented models, and weighted ampere-hour (Ah) models [17]. 

Table 1 summarizes advantages and disadvantages of the three listed 

categories of battery ageing modeling approaches, while the 

description of each category is reported as follows. 

 

 

 

 

 

 

 

 

Table 1. Advantages and disadvantages of the different categories of battery 
ageing modeling approaches available in literature. 

Methodology Advantages Disadvantages References 

Physico-

chemical 

models 

• Detailed 

information on 
local conditions 

(e.g. temperature, 

current, SOC) 

• Detailed 

understanding of 

ageing processes 

• Complexity 

• Difficult to 

parametrize 

• Computational 

cost 

[19][20] 

[21][22] 

[23] 

Event-

oriented 

models 

• Standard approach 

for planning and 
designing 

• Computational 

efficiency 

• Remarkable 

technical expertise 
required 

• Time consuming 

heuristic tuning 

• Lack of flexibility 

[26] 

Weighted 
ampere-hour 

(Ah) models 

• Computational 

efficiency 

• Flexibility 

• Ease of 

understanding 

• Optimization of 

operating 

conditions 
 

• Lack of physical 

or chemical basis 

• Requires 

experimental 

characterization of 

cell 

[27][28] 
[29][30] 

 

Physico-chemical approaches can provide detailed information on the 

local conditions of the battery by modelling specific phenomena 

occurring at the anode and cathode levels (e.g. SEI increase, fracture 

occurrence in active material particles, evolution of the electrolyte 

decomposition) [18]. Differential equations are generally considered 

to this end [19]-[23]. Nevertheless, physico-chemical models might 

not manage to exhaustively model all battery ageing mechanisms 

triggered by phenomena occurring at a nanoscopic scale. As 

consequence, they cannot be used for directly assessing the effect of 

all stress sources on the performance of the battery. Moreover, their 

complexity and computational cost compromise their capability to be 

implemented in real-time control strategies on-board vehicles. For 

these reasons, physico-chemical battery ageing modelling approaches 

are predominantly used for basic cell research and development [24]. 

Alternatively, they might lay the foundations for extrapolating 

reduced-order computationally efficient models to be subsequently 

used in on-board control systems [25]. 

A different category involves event-oriented models, which have 

been derived from standard approaches applied in engineering design 

disciplines. Event-oriented models quantify battery ageing as a 

function of predefined events and neglect their order of occurrence 

over time [17]. In other words, these approaches depend on the 

assumption that the fading of cell capacity caused by an event does 

not depend on the previous event or on the age of the battery. While 

these approaches are computationally efficient methods, they require 

remarkable time-consuming heuristic tuning processes and lack of 

flexibility since the battery ageing process is related to a small set of 

predefined events only [26]. 

A third category of ageing models relates to weighted ampere-hour 

(Ah) models (also called performance-based models). These assume 

that a battery can achieve an overall lifetime Ah throughput, which is 

typically weighted based on current magnitude, temperature, and 

other factors. These models are computationally efficient and easily 

adaptable to different battery technologies [27]. Moreover, they allow 

optimizing the battery operating conditions, which is a fundamental 
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requirement for real-time on-board implementation [29][30]. As a 

minor drawback, they do not relate to the physical or chemical 

properties of the cell, instead they are extrapolated from ageing tests 

performed under several battery operating conditions.  

The above performed discussion suggests Ah models as the best 

trade-off approach between rapidness and accuracy in estimating 

battery ageing. Ah models thus prove enhanced potential for 

implementation in on-board vehicle control units. The battery ageing 

Ah model selected in this paper will be described in the next section. 

 

Ah battery ageing model 

An Ah model has been retained from [7] and implemented in this 

work to estimate battery ageing. 

The battery SOH can range from 1 to 0, respectively indicating 

beginning and end of life. At a generic time instant ti, the battery 

SOH can be evaluated using equation (1): 

𝑆𝑂𝐻(𝑡𝑖) = 𝑆𝑂𝐻0 − ∫ 𝑆𝑂𝐻̇ (𝑐, 𝑇) 𝑑𝑡
𝑡𝑖

0

 

with  𝑆𝑂𝐻̇ (𝑐, 𝑇) = 0.2 
𝑐

3600∙𝑁(𝑐,𝑇)
 

(1) 

where 𝑆𝑂𝐻0 is the initial SOH, 𝑆𝑂𝐻̇  stands for the instantaneous 

reduction rate in SOH, c is the instantaneous battery C-rate. c is 

evaluated here as the ratio between the battery power in kilowatts and 

the rated battery capacity in kilowatt-hours. N stands for the number 

of evaluated roundtrip cycles that can be achieved during the entire 

battery lifetime. The factor of 0.2 is correlated with the factor N being 

evaluated for a 20% reduction in residual capacity corresponding 

with a value of 0 for battery SOH. The factor of 3600 allows 

converting the units of c from 1/hour to 1/second. N is not a constant 

value, but rather it depends on the battery operating conditions (i.e. 

temperature 𝑇 and C-rate). Evaluating 𝑁 requires determining the 

percentage of battery capacity loss 𝛥𝐴ℎ𝑏𝑎𝑡𝑡%. This can be performed 

by implementing the methodology introduced by Bloom et al. in 

2001 [31] that takes inspiration from the Arrhenius equation 

describing the evolution of the chemical reaction of ideal gases. The 

traditional Arrhenius equation has been adapted as in equation (2) 

aiming at modeling battery ageing [32].   

𝛥𝐴ℎ𝑏𝑎𝑡𝑡% = 𝐵(𝑐) ∙ 𝑒−
𝐴𝑓(𝑐)

𝑇  ∙ 𝐴ℎ𝑡𝑝
𝑧
   (2) 

The change in cell capacity 𝛥𝐴ℎ𝑏𝑎𝑡𝑡% is a function of an empirical 

pre-exponential factor 𝐵, an ageing factor 𝐴𝑓, the lumped cell 

temperature 𝑇, a power-law factor 𝑧 and the total lifetime ampere-

hour throughput 𝐴ℎ𝑡𝑝. Factors 𝐵 and 𝐴𝑓 are determined based on the 

instantaneous battery c-rate 𝑐. The numerical values for the ageing 

parameters of an A123 26650 LiFePO4 chemistry cell were 

previously determined by performing a one-year long experimental 

campaign. In particular, three ANR26650M1-B cells were installed in 

a thermal chamber and connected to a battery cycler. Three current 

profiles were determined by performing numerical simulations of an 

HEV controlled by dynamic programming in the worldwide 

harmonized light vehicle test procedure (WLTP). Obtained current 

profiles were then repeatedly fed to the battery testing cells using a 

75A and 0-5 V rated channel of an MCT 75-0/5-8ME Digatron 

Power Electronics battery cycler. The cells were characterized in 

terms of residual capacity, open-circuit voltage, internal resistance, 

charge power capability and discharge power capability as they aged. 

Finally, the collected experimental data were used to calibrate the 

battery ageing model. The interested reader can consult [14] to get 

more details concerning the experimental campaign performed and 

the tuning process for the numerical ageing model. Retained values 

for the parameters of the described Ah battery ageing model are 

reported in Table 2. In particular, values for the factor 𝐵 reported in 

the third row of Table 2 correlate with the respective values of the C-

rate listed in the fourth row of Table 4. 

Table 2. Parameters of the battery ageing model for A123 26650 cells. 

Parameter Value Units of 

measure 

Ageing factor, Af 3,814.7 – 44.6∙c K 

Power law factor, z 0.55 - 

Empirical pre-

exponential factor 
B(c) 

[21,681 ; 17,307 ; 12,934 ; 13,512 ; 

15,512 ; 12,099 ; 11,380; 13,656 ; 
16,342  ; 14,599] 

- 

Current C-rate, c [2 ; 4 ; 6 ; 8 ; 10 ; 12 ; 14 ; 16 ; 18 ; 20] 1/h 

 

As mentioned earlier, the battery is assumed here to reach the end of 

life (i.e. SOH=0) when 20% of its initial capacity is lost. Therefore, 

the overall value of 𝛥𝐴ℎ𝑏𝑎𝑡𝑡% can be set to 20% and 𝐴ℎ𝑡𝑝 can be 

determined as a function of c and T using equation (2). Subsequently, 

the total number of lifetime roundtrip cycles 𝑁 can be calculated 

using equation (3):  

𝑁(𝑐, 𝑇) =
𝐴ℎ𝑡𝑝(𝑐,𝑇)

2∙𝐴ℎ𝑏𝑎𝑡𝑡
     (3) 

where 𝐴ℎ𝑏𝑎𝑡𝑡 stand for the rated battery capacity in ampere-hours. 

The factor 2 in the denominator is to account for 𝐴ℎ𝑡𝑝 including both 

the charge and discharge Ah. Figure 1 shows the number of allowed 

battery roundtrip cycles for different temperatures on a logarithmic 

scale as given by the implemented ageing model.  

 

Figure 1. Number of allowed battery roundtrip cycles as function of the C-rate 
and temperature as predicted by the implemented ageing model. 

The described Ah numerical model is implemented in Matlab® 

software and it allows predicting the battery capacity fading as 

function of battery C-rate and temperature. For the modeling in this 

paper, it is assumed that ageing is independent of SOC, as supported 

by the ageing test results presented in [33]. This also is likely what 

happens for the retained case study because the HEV powertrain is 

studied while operating in charge sustaining mode, where the battery 

SOC stays within a narrow band. 
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Results  

This section presents numerical results obtained by implementing the 

selected Ah battery ageing model. A real-world driving mission 

performed by a plug-in HEV is considered to this end. The test 

vehicle features a P0-P4 plug-in hybrid electric powertrain which is 

illustrated in Figure 2. A smaller electric machine (MGP0) is 

connected to the internal combustion engine (ICE) by means of a 

belt. Both MGP0 and ICE propel the front axle through a six-speed 

stepped-gear transmission (TR) and a final drive (FD). On the other 

hand, a larger electric machine (MGP4) is directly connected to the 

rear axle in P4 position. This electrified powertrain architecture can 

propel the vehicle through both axles and coherently can also defined 

as a “parallel-through-the-road” HEV. The high-voltage battery pack 

is electrically connected to both MGP0 and MGP4 through 

bidirectional AC/DC converters.  

Figure 2. Schematic representation of the hybrid electric powertrain of the test 
vehicle. 

As far as the HEV energy management is concerned, the test vehicle 

can operate in three different modes [34]: 

1. Electric mode, in which the ICE is disconnected from the 

road and the vehicle is propelled only by the MGP4; 

2. Hybrid mode, in which MGP0, MGP4 and ICE 

simultaneously supply tractive power to the HEV. The 

torques of MGP0 and MGP4 are typically controlled to 

have the ICE working as close as possible to its optimal 

operating region; 

3. E-save mode, in which the ICE is used to both propel the 

vehicle and charge the battery. This can be performed by 

employing MGP0 and MGP4 as electrical generators.  

The main characteristics of the power and energy sources included in 

the test vehicle are reported in Table 3.  

Table 3. Main characteristics of the powertrain components. 

Component Parameter Value 

ICE 
Max power (kW @ rpm) 

Max torque (Nm @ rpm) 

96.7 @ 5500 

270 @ 1850 

MGP0 
Max power (kW) 
Max torque (Nm  

14.9 
48 

MGP4 
Max power (kW) 

Max torque (Nm) 

44 

250 

High-voltage 

Battery 

Nominal capacity (kWh) 

Voltage (V) 

11.4 

400 

 

Time series of the signals experimentally collected on-board the test 

vehicle are illustrated in Figure 3, Figure 4, and Figure 5 in terms of 

C-rate, SOC and temperature, respectively. Both C-rate and SOC are 

measured at the battery pack level and are assumed having the same 

values for all the cells of the battery pack. Both C-rate and SOC 

respectively illustrated in in Figure 3 and in Figure 4 have been 

normalized according to reference values for confidentiality reasons. 

The time series of the vehicle speed trace indirectly represents the 

power demanded to the HEV powertrain. As it can be noted, the 

normalized values of C-rate are principally located around or below 

0.5, whereas a peak point is achieved during the last part of the 

driving mission in which a strong acceleration phase is encountered. 

Then, the normalized trend of the cell SOC throughout the mission is 

reported in Figure 4. A charge sustaining behavior is clearly 

highlighted as the final cell SOC value is almost equal to the initial 

one.  

 

Figure 3. Time series of the normalized battery C-rate values measured 
throughout the real-world driving mission. 

 

Figure 4. Time series of the normalized battery SOC measured throughout the 
real-world driving mission. 

Finally, temperatures for three different cells of the battery pack have 

been measured during the real-world driving mission and have been 

reported in Figure 5. The coldest cell temperature ranges around 34 

°C, the average around 37 °C and the hottest around and above 40 °C. 

For the sake of clarity, since the Ah battery ageing model does not 

require the information about the cell SOC, only the C-rate and cell 

temperature traces have been considered as inputs of the model and 

employed to produce an estimation of the cell SOH variation. It 

should be noted that the battery pack of the commercially available 

plug-in HEV features nickel manganese cobalt (NMC) cells. 

Nevertheless, a numerical ageing model for these cells was not 

available. To overcome this drawback, the battery pack was assumed 

being constituted by A123 26650 cells due to the availability of data 

for modeling the ageing behavior [33]. 
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Figure 5. Time series of three different cell temperatures measured throughout 
the real-world driving mission.  

According to the equations of the Ah battery model presented in this 

paper, three different cell lifetimes have been predicted based on the 

measured cell temperatures shown in Figure 5. The cell SOH decays 

are reported in Figure 6 along with the driving mission velocity 

profile. The initial cell SOH has been assumed to be similar for each 

testing scenario and equal to 1 (i.e. new cells). From the beginning 

onwards, the variation of the cell SOH appears to be dependent upon 

the cell temperature as hotter scenarios produce a larger reduction of 

the SOH with respect to colder conditions. The cell lifetimes could 

hence be estimated assuming the driving mission to be repeated 

iteratively until the cell reaches its end-of-life. Obtained results are 

reported in Table 4. Consistently with the estimation of the cell SOH 

at the end of the first run along the real-world driving mission, even a 

very small absolute variation in the cell SOH can lead to a relevant 

long-term reduction of the cell lifetime. Indeed, the numerical ageing 

model predicts the average cell and the hottest cell to exhibit around 

23% and 39% shorter lifetime compared with the coldest cell of the 

battery pack. Obtained results demonstrate that remarkable 

differences can be achieved in terms of predicted lifetime among the 

cells of the same battery pack due to the temperature distribution. 

 

Figure 6. Variation of the battery SOH throughout the experimental driving 
mission estimated for three different cell temperatures. 

Table 4. Cell lifetimes estimated for three different cell temperatures. 

 Coldest cell Average cell Hottest cell 

Final SOH (%) 99.9889 99.9856 99.9819 

Cell lifetime 

(km·1000) 
294 226 (-23.1%) 180 (-38.8%) 

Conclusions 

With this research work the effect of temperature distribution on the 

expected lifetime for three different cell working conditions (namely 

operative temperature) of a plug-in HEV battery pack has been 

evaluated. Analyses were carried out considering a throughput-based 

cell ageing model. Temperature and C-rate profiles for three cells of 

the test plug-in HEV battery pack were experimentally measured in a 

real-world driving mission and considered as an input for the 

analysis. The obtained results show how the performance in terms of 

battery useful life worsens relevantly (-38.8%) when considering 

either the coldest cell or the hottest one. Thus, it is highlighted that a 

temperature non-homogeneity between the cells of a battery pack is 

not a negligible factor. Conversely, proper balance between cells and 

appropriate battery pack thermal management should be considered. 

Future studies will focus on the development of HEV controllers 

sensitive to battery pack inhomogeneities by implementing dedicated 

control strategies and ageing models. 
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