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Abstract— The use of Deep Learning (DL) algorithms in the 

medical imaging field is increasing in recent years. However, 

they require the selection of a set of parameters to properly 

perform. In this study we evaluated the impact of three factors 

(the construction of the training set, the number of network 

layers and the loss function) on the performance of a U-Net 

system in the segmentation of Locally Advanced Rectal Cancer 

(LARC) on Magnetic Resonance Imaging (MRI). Images from 3 

different institutions and 4 different scanners were used to this 

scope, for a total of 100 patients. All images underwent a pre-

processing step to normalize and to highlight the tumoral area. 

The sequences of two scanners were used to construct the 

networks while the remaining sequences were employed for 

validating the best performing systems. From our results, it 

emerged that Dice Similarity Coefficient is not affected by any 

of the evaluated factors. Conversely, the choice of loss function 

could bias the results towards either precision or recall and, 

thus, it should be properly performed according to the scope of 

the network. Moreover, a slightly improvement of the 

performances was observed using a training set based on 

clustering, maybe due to a better representation of the 

heterogeneity characterizing medical images. 

Keywords—Deep Learning, U-Net, tuning, segmentation, 

MRI, colorectal cancer 

I. INTRODUCTION 

Artificial Intelligence (AI) has shown promises in the 
development of Computer Aided Diagnosis (CAD) systems 
able to detect suspicious areas on medical images, characterize 
tumors and predict patient’s response to therapy, thus allowing 
more personalized treatments [1]–[5]. Despite the promising 
preliminary results obtained by these signatures, the 
translation of this approaches into clinical practice is still 
limited by many reasons, including the lack of automatic 
methods to segment tumors. 

In the last few years, Deep Learning (DL) algorithms have 
been used in the medical imaging field to segment and detect 
anatomical structures (cells, tumors, organs, etc,) [6]–[8]. All 
DL systems require the choice of a set of parameters, such as 
number of layers and loss function. Moreover, also the 
selection of the appropriate examples to be used for the net 
training and the structure of the network itself could influence 
the network performances. Although some studies faced the 
problem of tuning [9]–[11], to the best of our knowledge no 

studies assessed the impact of each specific parameter on the 
final performances of the system.  

In the wide field of DL, recently has gained interest the U-
Net architecture [12], that has been presented to overcome 
some limitations of previously developed structures, i.e, Fully 
Convolutional Networks (FCNs) and Convolutional Neural 
Networks (CNNs). The main advantage of the U-Net structure 
is the absence of the fully connected layer, replaced by the up-
sampling layer and the deconvolutional layer, which allows to 
obtain a probability score map with the same size of the input, 
classifying each pixel instead the whole image [12]. 

The aim of this study is to evaluate how the construction 
of the training set, the number of network layers and the loss 
function influence the performance of a U-Net system in the 
segmentation of Locally Advanced Rectal Cancer (LARC) on 
Magnetic Resonance Imaging (MRI). 

II. MATERIALS AND METHODS 

A. Population and Reference Standard 

In this study, we retrospectively included 100 patients (61 
men, 39 women; mean age: 64 years; range: 34-86 years) with 
histologically-confirmed LARC from three different Italian 
hospitals: Candiolo Cancer Institute, FPO-IRCCS of Candiolo 
(Center A); Molinette hospital A.O.U. Città della Salute e 
della Scienza of Turin (Center B); Mauriziano hospital of 
Turin (Center C). All patients underwent multiparametric 
(mp)MRI before neoadjuvant chemoradiotherapy (nCRT) 
after October 2010, including at least the axial fast spin-echo 
T2 weighted (T2w) and the axial EPI-SE Diffusion-Weighted 
Imaging (DWI) sequences. The sequences were acquired by 
four different scanners: two from center A (A.1 and A.2), one 
for center B and one for center C. All standard sequences were 
collected according to MRI guidelines for reporting rectal 
cancer staging [13].  

All tumours were manually segmented by a resident 
radiologist and revised by a second radiologist with more than 
10 years’ experience in mpMRI. These masks have been used 
as the reference standard for the U-Net based system.   

This was a multi-center retrospective study approved by 
the institutional review boards (IRBs) in each institution, with 
a waiver for requirement of informed consent as de-identified 
data were used. 



B. Pre-processing 

 The pre-processing phase consists of three steps: the 
evaluation of the Apparent Diffusion Coefficient (ADC), the 
cropping and the normalization of the images.  

First, the ADC is calculated from the DWI sequences of 
each patient according to the mono-exponential equation: 

 ADC = -
1

b
ln (

Sb

S0
), (1) 

where S0 is the acquisition with b-value equal to 0, while Sb is 

the one corresponding to the highest b-value [14].  The second 

step consists in the automatic crop of the images around the 

bounding box containing the tumor, to reduce the amount of 

irrelevant information and to minimize the differences among 

patients during the normalization step, as previously described 

[15].  Finally, all cropped images were normalized to account 

for differences arose from different scanners. Both T2w and 

ADC sequences are standardized using the z-score 

normalization, as follows: 

 img
std

 = 
img-μ

σ
, (2) 

where μ is the mean pixel intensity, and σ the standard 
deviation. 

C. U-Net Tuning 

The U-Net structure is characterized by two sections: the 
contracting path and the expansive path [12]. The contracting 
path follows the typical CNN architecture with five 
convolutional blocks, each characterized by two subsequent 
convolutional layers followed by the max pooling layer. This 
path aims to extract the features maps related to the 
identification of the object of interest in different levels of 
resolution. The expansive path is symmetrical to the 
contracting one. So, each convolutional block is characterized 
by two convolutional layers followed by the up-sampling 
layer. This path aims to localize on the image the features 
extracted in the corresponding level of the contracting path. 
Thanks to these two paths, the neural network is able to learn 
how the object is characterized and where it could be localized 
in the image. Fig. 1 shows the developed U-Net structure, 
characterized by a 3x3 kernel and the Rectified Linear Unit 
(ReLU) activation function [16], except the output layer 

which is defined by 1x1 kernel and the sigmoid activation 
function [17].  

Starting from this basic structure, we assessed the effect of 
three factors: training set, number of descending levels and 
loss function. 

• Training Set 

Patients from center A.1 and from center C (n=58) were 
used to construct the system (construction set) while cases 
from center A.2 and center B (n=42) were used as external 
validation set.  

The construction set was divided into training set, to be 
used for training the system, and test set, adopted for the 
system tuning and parameter selection.  To obtain a balanced 
training set, we collected the same number of slices with and 
without tumor. All tumoral slices were included, while the 
non-tumoral ones were chosen randomly among all slices of 
all patients. Two different methodologies were applied to 
obtain the training set: 

a. Random sampling (rnd): this method is based on a random 
selection of 70% of the patients from the center A.1 and 
70% from the center C, while all the remaining cases are 
included in the test set. The training set rnd was then 
composed of 41 patients, and in particular 222 tumoral and 
222 non tumoral 256x256 slices. 

b. Sampling based on clustering (dend): this approach is 
based on an agglomerative hierachical clustering method 
that organizes data in a hierarchical tree (called 
dendrogram) based on a proximity measure. Then, the 
final clusters are obtained by cutting the tree at a certain 
level [18]. To apply this approach, first we extracted from 
each patient of center A.1 and center C the following 20 
features: mean, standard deviation, median, 25th and 75th 
percentile of both the LARC volume and the whole 
cropped volume in the T2w and ADC sequences. Then, we 
applied the hierarchical clustering to these patients and cut 
the tree in order to create two clusters. The training set was 
created by randomly collecting the same number of 
patients (70% of the less numerous cluster) from each 
cluster. The discarded patients of the clusters were 
included in the test set. The training set dend was 

 

 
Fig. 1: U-Net structure with 4 descending levels. 

 



composed of 36 patients, in particular 211 tumoral and 211 
non tumoral 256x256 slices. 

• Number of descending levels 

The number of descending levels defines how deep the 
neural network can go. There are two main problems due to 
an high number of descending levels: the vanishing gradient 
problem [19] during the training and the poor generalization 
caused by the overfitting on the training data. The first issue 
is characterized by the gradient becoming so small preventing 
the weights of the neurons from changing their values. The 
second one defines the inability of the model to correctly 
analyze data not used during the training and generalize the 
results. In particular, we evaluated a number of descending 
levels equal to 3 (3lv), 4 (4lv) and 5 (5lv). 

• Loss function 

The loss function estimates the prediction errors of the 
model to be used to update neurons’ weight during the training 
phase. Since the DL network learns a mapping from inputs to 
outputs, it is of key importance to choose the most suitable 
loss function for the task. 

Two different loss functions were compared: 

a. Binary Crossentropy (BC): this loss function (3), has been 
demonstrated useful for binary classification tasks.  

         BC = -
1

N
∑ (y

i
∙ log (p(y

i
)) +(1-y

i
) ∙ log(1-y

i
)), (3) 

where yi is the i-th label and p(yi) is the predicted 
probability of the sample to belong to the i-th label class.        

 

 
Fig. 2: Impact of the training set (panel A), number of descending levels (panel B) and loss function (panel C) on the segmentation performances 

obtained on the test set with different U-Net configurations. The solid lines represent the median values across all patients in the test set, whereas the 

colored areas represent the corresponding inter-quartile ranges. 



b. Custom Loss (CL): this loss function is based on the Dice 
Loss (DL) function (4). 

 DL = 1-
2 ∑ yi*p(yi)

∑ yi+ ∑ p(yi)
. (4) 

The DL function allows a better balance between classes 
and a network learning improvement in detecting even 
objects of small size and weak saliency [20]. 

More specifically, our implemented loss function was 
obtained by merging (3) and (4):  

 CL = -
1

N
∑ y

i
∙ log (p(y

i
))N

i=1 +1-
2 ∑ yi*p(yi)

∑ yi+ ∑ p(yi)
. (5) 

where, in (4) and (5), yi is the i-th label and p(yi) is the 
predicted probability of the sample to belong to the i-th 
label class. With respect to the DL function, the CL 
function is able to overcome the issues related to the class 
imbalance, since there is a higher number of non-tumoral 
voxels against tumoral ones.  

A total of 12 U-net systems were evaluated. All networks 
were implemented in Keras with Tensorflow library, with the 
Adam optimizer [21] and a learning rate of 0.001, β1 of 0.9 
and β2 of 0.999. 

D. Performance Evaluation 

The probability maps obtained from the U-Nets were 
binarized using the Otsu’s Thresholding method [22]. The 
following metrics were computed by comparing the binary 
masks with the reference standard: 

• Dice Similarity Coefficient (DSC): 

 DSC = 
2|MM ∩OM|

|MM|+|OM|
=

2TP

FP+2TP+FN
, (6) 

where MM is the volume of the manual mask (reference 
standard), OM the volume of the mask produced by the 
network, TP True Positive, FP False Positive, and FN False 
Negative. DSC is also known as Overlap Index. It gives a 
score between 0 and 1, where 1 indicates a complete overlap, 
i.e. the predicted mask OM is identical to the ground truth 
MM. 

• Precision (Pr): 

 Pr = 
TP

TP+FP
, (7) 

it gives a value between 0 and 1, where 1 indicates the best 
prediction. It gives a measure related to the over-
segmentation. 

• Recall (Re): 

 Re = 
TP

TP+FN
. (8) 

this parameter is also referred as the True Positive Rate or 
sensitivity. As the others, it gives a value between 0 and 1, 
where 1 indicates the best prediction. Unlike the previous 
parameter, it gives a measure related to the under-
segmentation. 

In general terms, Pr means the percentage of results which 
are relevant, and Re refers to the percentage of total relevant 
results correctly classified by the algorithm. They are often 
used together in order to have a complete overview of the 
behavior of the system. In fact, all those parameters provide 
information related on how much the segmentations differ, 
both in shape and in misclassified tissues.  

The two-tailed Mann-Whitney U test was performed to 
compare the results of the three metrics. A p-value <0.05 was 
considered statistically significant. 

First, we evaluate the impact of each of the three above 

mentioned factors on the three metrics. Then, we chose the 

best U-Net parameters’ combinations based on DSC, Pr and 

Re and we applied these networks to the external validation 

dataset.   

III. RESULTS AND DISCUSSION 

Fig. 2 shows the impact of the training set (panel A), 

number of descending levels (panel B) and loss function 

(panel C) on the segmentation performances obtained on the 

test set.  

In general, the DSC is not particularly influenced by any of 

the three evaluated factors. 

For what concerns Pr, no differences can be observed 

between the two training sets (Fig. 2A), whereas lower Pr are 

evident with a number of descending level equal to 3 (Fig. 

2B). In particular, 4lv results are statistically higher than 3lv 

in the configuration with CL-dend (p-value: 0.04) and it 

shows a trend toward significance in combination with CL-

rnd and BC-dend (p=0.07 and 0.08, respectively). Moreover, 

 

 
Fig. 3: Results of the three best U-Net structures applied on the test set and on the external validation set. Bars represent the median values and 

whiskers represent the corresponding inter-quartile ranges. 



5lv is statistically higher than 3lv when it is used with BC-

dend (p=0.03). No differences are found between 4lv and 5lv. 

Finally, comparing the two loss functions (Fig. 2C), a slightly 

higher Pr is reached for CL with respect to BC, in 

combination with 4lv-dend (p-value=0.09).  

Focusing on Re, we found that in general the training set 

dend outperforms the training set rnd (Fig. 2A). In particular, 

Re is statistically higher when dend is combined with 5lv-CL 

(p=0.009) and it shows a trend toward significance in 

combination with 4lv-BC (p=0.07). Comparing different 

descending levels (Fig. 2B), 5lv shows a higher Re than 4lv 

when combined with CL-dend (p=0.004). Regarding 

differences between BC and CL (Fig. 2.C), we can observe a 

general increase of Re for BC, in particular when it is used 

with 4lv-dend.  

Observing the general behaviour for BC and CL (last row 

in Fig.2), we can notice that the two loss functions affect Pr 

and Re in an opposite manner: higher Pr is visible for CL 

whereas higher Re is obtained with BC (Fig. 2C). This is 

coherent with literature since CL has been developed to 

overcome the limitation of BC when dealing with unbalanced 

datasets.  

From the analysis of the overall results, we selected the 

combinations 5lv-CL-dend and 4lv-BC-dend, since they 

show the highest Re values (the combination 3lv-BC-dend 

was excluded due to its low Pr value). Moreover, the 

combination 4lv-CL-rnd was selected for its high Pr value, 

while 4lv-CL-dend was discarded since it obtained a low Re 

value. The DSC was not useful in this phase since there were 

no significant differences among the networks.  

The three selected U-Net structures were applied on the 

external validation set and the obtained results are showed in 

Fig. 3, compared with those on the test set. As it emerged 

from the graph, the three structures proved to be robust as 

they perform similarly on the test and validation sets.  

Fig. 4 shows an example of all tumoral slices of a patient 

belonging to the validation set where 5lv-CL-dend achieves 

DSC=0.74, 4lv-CL-rnd DSC=0.77 and 4lv-BC-dend 

DSC=0.71. Even if the DSC values are around the 0.7~0.8, 

all models are able to correctly detect most of the tumoral 

volume, despite the presence of some FN and FP voxels in 

some slices (in particular sl. 3 and 4 and 6 for 5lv-CL-dend 

and 4lv-BC-dend).  

IV. CONCLUSIONS 

In this study we assessed the impact of three different 

factors (i.e. training set, number of descending levels and loss 

function) on the segmentation performance obtained with a 

U-Net.  

Looking at the results, it is evident that DSC is not affected 

by any of the evaluated factors. Conversely, Pr and Re show 

different behaviors on almost all evaluated networks. In 

particular, the choice of loss function could bias the results 

towards either Pr or Re and, thus, it should be properly 

performed according to the scope of the system. 

Moreover, we observed a slightly improvement of the 

performances using a training set based on clustering. This 

could be due to a better representation of the heterogeneity 

characterizing medical images using this kind of approach. In 

future, other clustering methods could be employed for the 

training set construction. 

For what concerns the number of descending levels and 

other combinations, we cannot draw any precise guidance on 

which configuration is the best for each problem, but we have 

demonstrated the need for precise and comprehensive 

parameter tuning to develop DL networks. In fact, we proved 

that tuning allows to select structures having good 

generalization capability, since their results were robust also 

on the external validation set.   
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Fig. 4. Example of the segmentations obtained by the three selected networks for all slices of a patient in the validation set. The reference standard is 

presented by the red line, the network’s segmentation by the blue line. 
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