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Abstract— The aim of the study is to present and tune a fully 

automatic deep learning algorithm to segment colorectal cancers 

(CRC) on MR images, based on a U-Net structure. It is a 

multicenter study, including 3 different Italian institutions, that 

used 4 different MRI scanners. Two of them were used for 

training and tuning the systems, while the other two for the 

validation. The implemented algorithm consists of a pre-

processing step to normalize and to highlight the tumoral area, 

followed by the CRC segmentation using different U-net 

structures. Automatic masks were compared with manual 

segmentations performed by three experienced radiologists, one 

at each center.  The two best performing systems (called mdl2 

and mdl3), obtained a median Dice Similarity Coefficient of 

0.68(mdl2) - 0.69(mdl3), precision of 0.75(mdl2) - 0.71(mdl3), and 

recall of 0.69(mdl2) - 0.73(mdl3) on the validation set.  Both 

systems reached high detection rates, 0.98 and 0.95, respectively, 

on the validation set. These encouraging results, if confirmed on 

larger dataset, might improve the management of patients with 

CRC, since it can be used as a fast and precise tool for further 

radiomics analyses. 

 
Clinical Relevance— To provide a reliable tool able to 

automatically segment CRC tumors that can be used as first step 

in future radiomics studies aimed at predicting response to 

chemotherapy and personalizing treatment. 

I. INTRODUCTION 

Colorectal cancer (CRC) is the third tumor in terms of 

incidence and mortality, and 60% of CRC are diagnosed as 

Locally Advanced Rectal Cancer (LARC)[1]. The 

recommended treatment is neoadjuvant chemoradiotherapy 

(nCRT) followed by Total Mesorectal Excision (TME)[2]. 

Despite the advantages shown by nCRT, patients’ response 

varies widely, ranging from completely response (up to 20% 

of cases) to no response or tumor progression [3]. Artificial 

intelligence (AI) has shown promises in the development of 

radiomics signature, based on Magnetic Resonance Imaging 

(MRI), that can predict patient’s response to nCRT, thus 

allowing more personalized treatments [4]–[7]. Despite the 
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promising results, the translation of this approaches into 

clinical practice is still limited by many reasons, including the 

lack of automatic segmentation methods. Indeed, both manual 

and semi-automatic segmentations methods have two main 

drawbacks: they are a time-consuming task, that has to be 

regarded as prohibitive when very large databases are 

evaluated, and  they lead to a high inter-reader variability that 

can strongly impact on the performance of predictive tools [6]. 

Therefore, developing automatic segmentation methods is of 

key importance to realize robust tools that can be effectively 

used in the clinical practice. In the last few years, Deep 

Learning (DL) algorithms have been used in the medical 

imaging field to segment and detect anatomical structures [8], 

[9]. More recently, the U-Net architecture [10] has been 

presented to overcome some limitations of previously 

developed structures, i.e., Fully Convolutional Networks 

(FCNs) and Convolutional Neural Networks (CNNs). The 

main advantage of the U-Net structure is the absence of the 

fully connected layer, replaced by the up-sampling layer and 

the deconvolutional layer, which allow to obtain a probability 

score map with the same size of the input, classifying each 

pixel instead the whole image [10]. To the best of our 

knowledge, only few studies used the U-Net to automatically 

localize and segment LARC on MR images [11]–[13]. 

However, all these methods require an initial manual crop of 

the image to delimit the region of interest. Moreover, none of 

them was validated on an external dataset.  

In this study, we developed and tuned a fully automatic U-

Net architecture to segment LARC on MRI that was validated 

on an external dataset composed of images acquired on a 

center not involved in the training phase.   

II. MATERIALS AND METHODS 

A. Patients and reference standard 

Patients with proven locally LARC were retrospectively 

collected from three different institutions, with four different 

scanners (GE Health Care GDx Signa Excite and GE Health 
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Care Optima MR450w A, Philips Ingena for center B and 

Philips Achieva for center C). All patients underwent 

multiparametric (mp)MRI before nCRT after October 2010, 

including T2 weighted (T2w) and Diffusion-Weighted 

Imaging (DWI) sequences according to MRI guidelines for 

reporting rectal cancer staging [14]. All tumors were 

manually segmented on T2w images by a resident radiologist 

per each center and revised by a second radiologist with more 

than 10-year experience in mpMR imaging. This was a multi-

center retrospective study approved by the institutional 

review boards (IRBs) in each institution, with a waiver for 

requirement of informed consent as de-identified data were 

used. 

B. Pre-processing 

The pre-processing phase consists of three steps: the 
evaluation of the Apparent Diffusion Coefficient (ADC), the 
cropping and the normalization of the images.  

First, the ADC is calculated from the DWI sequences of 
each patient according to the mono-exponential equation.  The 
second step consists in the automatic crop of the images 
around the bounding box containing the tumor, to reduce the 
amount of irrelevant information and to minimize the 
differences among patients during the normalization step, as 
previously described [15].  Finally, all cropped images were 
normalized to account for differences arose from different 
scanners. Both T2w and ADC sequences are standardized 
using the z-score normalization. 

C. Construction of the Training set 

 The proposed system has been constructed using patients 

from scanners A.1 and C, pooled together to obtain the 

construction set, that was further divided into a training and a 

test set. The latter was used for the tuning process. Finally, the 

system was externally validated on the sequences from 

scanners A.2 and B. To obtain a balanced training set, we 

collected the same number of slices with and without tumor. 

All tumoral slices were included, while the non-tumoral ones 

were chosen randomly among all slices of all patients. Due to 

the high dependency of the performances of the DL 

algorithms to the training dataset, we developed and 

compared two different procedures to build the training set: 

• Random sampling (tr_rnd): this method is based on a 

random selection of 70% of the patients from A.1 and 70% 

from C, while all the remaining cases are included in the 

testing set.  

• Sampling based on clustering (tr_dnd): this approach is 

based on an agglomerative hierarchical clustering method that 

organizes data in a hierarchical tree (called dendrogram) 

based on a proximity measure. Then, the final clusters are 

obtained by cutting the tree at a certain level [16]. To apply 

this approach, first we extracted the following 20 features for 

each patient of A.1 and C: mean, standard deviation, median, 

25th and 75th percentile of both the LARC volume and the 

whole cropped volume in the T2w and ADC sequences. Then, 

we applied the hierarchical clustering to these patients, and 

we cut the tree to create two clusters. The training set was 

created by randomly collecting the same number of patients 

(70% of the less numerous cluster) from both clusters. The 

discarded patients of the clusters were included in the testing 

set. 

D. U-Net 

 Two different hyper-parameters have been analyzed to 

observe how they affected the performances of the system: 

the loss function and the number of descending levels. 

• Loss Function: we analysed the Binary Crossentropy 

(BC), which suits binary classification tasks [17], and a 

custom loss function (CL), which overcomes the issues 

related to the class imbalance, since there is a higher number 

of non-tumoral voxels against tumoral ones. It was 

implemented by merging the BC and the Dice Loss: 

 CL =  −
1

N
∑ yi ∙ log(p(yi)) + 1 −  

2 ∑ yi∙p(yi)

∑ yi+∑ p(yi)
 () 

where yi is the i-th label and p(yi) is the predicted probability 

of the sample to belong to the i-th label class.  

• Number of descending levels: it defines the complexity 

of the features evaluated by the U-Net, strongly affecting the 

learning process. In our study we considered U-Net structures 

with 3, 4, and 5 descending levels. 

All networks were implemented in Python (v. 3.7.4), using 

the Tensorflow (v. 2.2.0) library, with the Adam optimizer 

[18] and a starting learning rate value of 0.001, β1 of 0.9 and 

β2 of 0.999. 

The tuning process of the different training sets, loss functions 

and number of descending levels lead us to develop and 

evaluate 12 U-Net systems. The best configurations on the 

test set were then validated on the validation set. 

E. Post-processing 

Finally, the mask was binarized using the Otsu’s threshold 

of the predicted mask, and to reduce the false positive 

elements detected by the U-Net, characterized by spatially 

connected areas on less than 3 slices. 

F. Validation  

 Once we developed all networks, we select the networks 

which presented the higher DSC, Pr and Re (see following 

section) respectively on the testing set. We also set the 

condition that all three parameters must have been higher than 

0.6, to exclude the models which over- or under-segmented 

the tumoral volume. Those models were then validated on the 

external validation dataset, and their performances were 

analyzed using the same parameters as for the testing set. 

G. Statistical analysis 

 For this study the network performances were evaluated 

using the following parameters: 

• Dice Similarity Coefficient (DSC): 

 DSC =  
2TP

FP+2TP+FN
 () 

where TP is True Positive voxel, FP is False Positive voxel, 

and FN is False Negative voxel. 

• Precision (Pr): 

 Pr =  
TP

TP+FP
 () 

where TP is True Positive voxel, FP is False Positive voxel. 



  

• Recall (Re): 

 Re =
TP

TP+FN
 () 

where TP is True Positive voxel, FN is False Negative voxel. 

A tumor was defined FN if its DSC was lower than 0.2, while 

the Detection Rate (DR) was defined as the percentage of 

correctly detected tumors (DSC>0.2), per each model. 

 

III. RESULTS 

A.  Patients 

100 patients (61 men and 39 women) were retrospectively 

collected, having an average age of 64 years (range 34-86).  

Fifty-eight patients were included in the construction set and 

the remaining 42 were used as validation set. Tr_rnd was 

composed of 41/58 patients, resulting in 222 tumoral and 222 

non tumoral 256x256 slices. Tr_dend showed a slightly 

diffferent number of patients due to the agglomerative 

hierarchical clustering method, i.e., 36/58 patients (211 

tumoral and 211 non tumoral 256x256 slices). 

B. Tuning of parameters using the construction set 

 Table I shows the performances of the models with 

different descending levels, considering all combinations of 

training sets and loss functions. In particular, the Pr results 

related to the lowest number of descending levels (n. 3) do not 

satisfy the condition of Pr>0.60 (Pr=0.58, 0.56, 0.59), except 

for the 3lv_BC std_rnd model (Pr=061). On the other hand, 

the Pr values related to higher number of descending levels 

(n. 4 and n. 5), are comparable to each other. There are two 

models which do not meet the condition of Re>0.60: 4lv_CL 

std_dend (Re=0.55) and 5lv_CL std_rnd (Re=0.58). It is 

possible to notice that the values of Pr and Re are strongly 

related to the combination of training set and loss function, 

while the DSC values are comparable considering the 

different combinations.  

In conclusion, we selected the three different models that 

reaches the highest DSC, Pr and Re:  

• 5lv_CL~std_dend – from now on mdl1: DSC=0.73, 

Pr=0.69, Re=0.78; 

• 4lv_CL~std_rnd – from now on mdl2: DSC=0.64, 

Pr=0.74, Re=0.62; 

• 4lv_BC~std_dend – from now on mdl3: DSC=0.66, 

Pr=0.67, Re=0.78. 

C. Validation set 

Table II shows the performances of the three best models on 
the validation set. mdl1 obtained the highest Re, however, 
performance of mdl2 and mdl3 were higher, if we consider the 
DR. Indeed, sensitivity in the validation set for mdl1 is 88% 
with 5/42 FN, for mdl2 is 98% with 1/42 FN (2.4%), and for 
mdl3 is 95% with 2/42 FN (4.8%). Fig. 1 shows the differences 
between the segmentations obtained by the three models for 2 
patients of the validation set: in patient 73 (Fig 1.a) most of the 
tumor is correctly classified, but there are some FP areas, in 
particular by mdl1. Fig. 1.b (patient 208) show several 
misclassified areas: the first one is not detected by mdl1, while 
mdl2 reaches DSC=0.31 and mdl3 DSC=0.12 on the volume. 
The main reason is probably due to the different pixel 
intensities on both T2w and ADC sequences. Moreover, it is 

wrongly cropped after the pre-processing step. In the 
validation set there are 8/42 cases where the tumoral volume 
is not correctly cropped, but at least 95% of the tumoral voxels 
are included. 

IV. DISCUSSION 

In this study, we developed and tuned several U-Net based 

systems for the automatic segmentation of LARC on mpMRI. 

Two of them reached promising results on both the 

construction and the validation set: mdl2 with median DSC of 

0.68, Pr of 0.75 and Re of 0.69, and mdl3 with DSC of 0.69, 

Pr of 0.71 and Re of 0.73. Soomro et al. [11] presented a 

densely interconnected 3D-FCN based model, which reached 

good performances on the test sets, showing a DSC from 0.83 

to 0.93. Li et al.[12] and used a U-Net algorithm, as we did, 

obtaining higher DSC, i.e., 0.74 and 0.98, respectively, vs 

0.68(mld2) and 0.69(mdl3). However, most of these methods 

 

Figure 5: Box plot of the DSC values related to the implemented networks. As it is shown, the best one is Tr_dnd – norm_2 ~ 4lv.- CL (bright blue box plot). 

TABLE I.   PERFORMANCES ON THE TESTING SET 

        Coefficients 

 

 U-Net 

DSC Pr Re 

Median (IQR) Median (IQR) Median (IQR) 

3lv_BC std_rnd 
0.64 

(0.52 – 0.71) 
0.61 

(0.49 – 0.74) 
0.67 

(0.52 – 0.87) 

3lv_CL std_rnd 
0.63 

(0.44 – 0.71) 

0.58 

(0.49 – 0.76) 

0.64 

(0.41 – 0.83) 

3lv_BC std_dend 
0.62 

(0.54 – 0.70) 
0.56 

(0.46 – 0.69) 
 0.78 

(0.60 – 0.91) 

3lv_CL std_dend 
0.65 

(0.56 – 0.70) 

0.59 

(0.51 – 0.74) 

0.68 

(0.51 – 0.80) 

4lv_BC std_rnd 
0.60 

(0.49 – 0.72) 

0.63 

(0.50 – 0.77) 

0.64 

(0.48 – 0.83) 

4lv_CL std_rnd 
0.64 

(0.47 – 0.72) 

0.74 

(0.66 – 0.82) 

0.62 

(0.37 – 0.72) 

4lv_BC std_dend 
0.66 

(0.63 – 0.76) 
0.67 

(0.55 – 0.75) 
0.78 

(0.63 – 0.83) 

4lv_CL std_dend 
0.63 

(0.48 – 0.72) 

0.75 

(0.63 – 0.82) 

0.55 

(0.39 – 0.76) 

5lv_BC std_rnd 
0.66 

(0.60 – 0.72) 

0.65 

(0.60 – 0.77) 

0.64 

(0.61 – 0.75) 

5lv_CL std_rnd 
0.64 

(0.48 – 0.69) 
0.70 

(0.59 – 0.78) 
0.58 

(0.39 – 0.75) 

5lv_BC std_dend 
0.68 

(0.61 – 0.74) 

0.70 

(0.60 – 0.80) 

0.70 

(0.62 – 0.84) 

5lv_CL std_dend 
0.73 

(0.66 – 0.75) 
0.69 

(0.59 – 0.78) 
0.78 

(0.70 – 0.90) 

BC = Binary Crossentropy, CL = Custom Loss, dend = training and testing 

obtained by the hierarchical clustering method, lv. = descending levels, std = 

standardized sequences, values underlined = under the threshold (0.60), values in 

bold = highest values obtained by the models for each parameter, green 
rows = best performing models on the testing set.  

 

TABLE II.   PERFORMANCES ON THE VALIDATION SET 

      Coefficients 

 

 

U-Net 

DSC Pr Re 

Detection 

Rate Median 
(IQR) 

Median 
(IQR) 

Median 
(IQR) 

5lv_CL_std_dend 
0.62 

(0.43 – 0.73) 

0.60 

(0.50 – 0.74) 

0.75 

(0.42 – 0.89) 

0.88 

(37/42) 

4lv_CL_std_rnd 
0.68 

(0.52 – 0.77) 
0.75 

(0.62 – 0.82) 
0.69 

(0.49 – 0.75) 
0.98 

(41/42) 

4lv_BC_std_dend 
0.69 

(0.52 – 0.75) 
0.71 

(0.55 – 0.79) 
0.73 

(0.55 – 0.84) 
0.95 

(40/42) 
BC = Binary Crossentropy, CL = Custom Loss, dend = training and testing 

obtained by the dendrogram method, lv. = descending levels.  

 



  

were not fully automatic and any of them was validated on an 

external dataset. The latter is a key point, when developing 

robust radiomics CAD systems for clinical use. Indeed, it is 

strongly recommended to use multi-centric dataset, acquired 

with different acquisition scanners and protocols [19]. 

To the best of our knowledge, only Knuth et al. [13] 

presented a U-Net trained on mpMR images from two 

different centers. In our study we obtained higher DSC 

(0.68(mld2) and 0.69(mdl3) vs 0.59). The second strength of 

our method relies on the fact that we focused our analyses also 

on the optimization of different parameters of the U-Net 

architecture, showing the need to fine-tune DL nets.  

This study has also some limitations. First, the high 

dependency of the cropping phase in pre-processing to the 

DWI image quality and acquisition parameters, and the use of 

the ADC sequences to perform this step. The latter can be an 

issue for those centers that do not acquire DWI sequences 

during their clinical protocol. Second, the size of the 

construction set (n=58) should be increased by including 

more centers and possibly developing a prospective clinical 

trial.  Third, we did not train the U-Net by combining 

information from both 2D and 3D volumes.  

In conclusion, the developed U-Net based systems present 

promising performances on an external validation set, being 

able to identify the tumoral volumes on MR images acquired 

with different scanners and acquisition protocols. Hopefully, 

these systems may lead to future development and inclusion 

of automatic detection and prediction systems of CRC in 

clinical pathways. 
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Figure 2.  Validation examples of correctly detected tumor (A) and a FN example (B) wrongly detected by mdl1, mdl2 and mdl3. The first and 
second columns show the ADC and T2w sequences each, while from the third to the fourth columns the predictions of mdl1, mdl2 and mdl3 

respectively. The manual segmentation is contoured by the red line, while the network’s predictions with the blue line.  

 


