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Iteration Dependent Waveform Relaxation for
Hybrid Field Nonlinear Circuit Problems

Torben Wendt, Student Member, IEEE, Marco De Stefano, Student Member, IEEE, Cheng Yang, Member, IEEE,
Stefano Grivet-Talocia, Fellow, IEEE, and Christian Schuster, Senior Member, IEEE

Abstract—This paper presents a novel waveform relaxation
scheme to solve electromagnetically large structures loaded with
lumped linear and nonlinear elements. The scheme partitions the
problem into a linear electromagnetic structure and a possibly
nonlinear lumped circuit, which are coupled using Thévenin
interfaces across the steps of an iterative Waveform Relaxation
scheme. The main novel contribution is an adaptive selection of
the decoupling resistances used as port references to define inci-
dent and reflected scattering signals, whose time-domain samples
are refined through iterations. The decoupling resistances are
updated through iterations, with the main objective of improving
convergence speed and ultimately runtime. The resulting scheme
is self-adapting to terminations exploiting high dynamic range
in their impedance profiles and is able to provide a suboptimal
convergence rate. Three dimensional shielding structures loaded
with nonlinear elements are employed as numerical examples to
demonstrate the proposed method.

Index Terms—waveform relaxation, transients, field circuit
coupling, macromodeling, nonlinear circuits

I. INTRODUCTION

Hybrid field nonlinear circuit interactions arise in mi-
crowave and Electromagnetic Compatibility (EMC) engineer-
ing, in applications such as the design of frequency selective
surfaces [1], [2], energy selective surfaces [3], waveform-
dependent absorbing metasurfaces [4], [5], as well as power-
dependent impedance surfaces [6]–[8]. Being nonlinear in
nature, the temporal evolution for a given field excitation is
of primary interest during the design of all these applications.
An optimum design usually requires careful consideration of
both the passive structure as well as the nonlinear loads in
accordance with the electromagnetic fields and, hence, poses
a complex numerical problem.

In the past, methods that have been used to solve this class
of problems either directly obtain the solution by using full-
wave simulation e.g. Finite-Difference Time-Domain Method
(FDTD) [9], Time Domain Finite-Element Method (TDFEM)
[10], Partial Element Equivalent Circuit (PEEC) [11] and
Time Domain Integral Equation (TDIE) [12], or alternatively,
construct a model of internal electromagnetic coupling in the
structures, which is then used to find the solution for a given
set of terminations and a particular excitation in a hybrid way,
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e.g. by using transient convolution based techniques [13]–
[17], Harmonic Balance (HB) [18], the envelope tracking
method [19], or a solver of the SPICE class. Alternatively,
fixed point iteration methods that solve the problem over
the entire time span in each iteration can be used, such
as Waveform Relaxation (WR) solvers [20]–[29] and more
general Krylov subspace solvers [30]. Due to multiple eval-
uations to find the fixed point, these methods usually exploit
models of electromagnetic coupling and terminations that are
inexpensive to evaluate, which is the case for macromodels via
recursive convolution and static terminations [31]–[35]. Recent
publications have investigated different decoupling strategies,
e.g. [36], [37], in order to decrease the number of required
fixed point iterations. In general, the fastest convergence is
attained under optimal impedance matching of the decoupled
subsystems [38]–[40].

In this paper, the focus is on the hybrid computation of time
domain responses of three dimensional, electromagnetically
large, resonant, metallic structures loaded with diodes. The
structures are being used for nonlinear shielding and show long
lasting impulse responses and complex interactions between
both nonlinear elements, passive structure, and electromag-
netic fields. We first use a Method of Moments (MoM)
solver to obtain the general coupling between any diode by
means of a network parameters description in the form of
tabulated frequency data. We then use Vector Fitting (VF) to
extract macromodels from the MoM data. For computation
of the transient response, we present a modified Waveform
Relaxation scheme in the scattering domain. The decoupling of
the terminations is achieved by Longitudinal Partitioning (LP)
[21], [24], [35], where the decoupling sources are changed
over iteration. When iterating between the subproblems, renor-
malization to adaptively chosen reference impedances takes
place during the exchange of interface variables, which is
again implemented in the form of recursive convolution.

We codename our proposed method as Iteration-Dependent
Decoupling (IDD) as a novel extension of the standard Wave-
form Relaxation approaches. The main advantage of IDD is the
ability to ensure convergence through iterations also in those
cases in which standard WR with longitudinal partitioning
fails, in particular interconnections of (almost) purely reactive
electromagnetic systems with strongly nonlinear devices. In
such cases, matching of both subsystems with purely resistive
terminations is infeasible, so that earlier approaches [36]–[40]
for tuning and optimizing WR decoupling cannot be applied.

We show that with the proposed strategy the convergence
rate is influenced by the specific and adaptively tuned choice of
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Fig. 1: A nonlinearly-loaded cavity providing an energy-selective shield from
high-power incident fields. Red segments located on a regular grid throughout
the aperture denote lumped ports. Figure adapted from [41].

renormalization resistances, among a rich set spanning various
orders of magnitude. As a result, the numerical method is
intrinsically more robust than standard WR when simulating
nonlinear loads. This is especially useful in a design process,
during which the nonlinear loads are cycled through multiple
choices and therefore the dynamic range of their impedance
profiles varies widely.

The remainder of the paper is organized as follows. Sec-
tion II states the problem that is addressed in this work.
Section III gives a review of the longitudinal decoupling and
motivates the use of iteration dependent decoupling, which
is introduced in Section IV. A proof of concept example is
discussed in Section V, and numerical results of the proposed
method are presented in Section VI. Finally, conclusions are
drawn in Section VII.

II. PROBLEM STATEMENT

We state the main problem addressed in this paper with
reference to the structure depicted in Fig. 1 [42]. An elec-
trically large electromagnetic structure, in this case a box-
shaped metallic shield with an aperture, is loaded by a grid of
lumped elements distributed on the aperture. These elements
can be nonlinear, although particular cases with lumped linear
impedances will be used to investigate convergence properties
of the proposed iterative scheme. The typical scenario will
use identical anti-parallel diodes at all ports, with the ports
defined by the two points of contact between the terminals of
the lumped termination and the linear structure, characterized
by a nonlinear and purely resistive characteristic as depicted
in Fig. 2. With this configuration, the shield exploits energy-
selective properties, being almost transparent to low-power
incident fields, with a shielding effectiveness that increases
with the incident field energy [3], [43].

Our main objective is to construct an efficient and robust
numerical scheme to evaluate the lumped voltages and currents
at all ports, as well as to evaluate the transient electromagnetic
field within the enclosure produced by an incident wave. The
main difficulties in this numerical simulation problem are due
to

Fig. 2: Characteristic equation of an anti-parallel diode pair expressed in terms
of voltage-current (left) and scattering voltage waves (right, with b incident
and a reflected) referenced to 10 mΩ

.

• the electrical size of the enclosure, with a potentially large
number of resonances within the modeling band;

• the possibly large number of ports;
• the presence of nonlinear terminations, which requires a

time-domain approach.
As discussed in [44], once the port voltage and current signals
are computed, the electromagnetic field at an arbitrary location
can be efficiently evaluated through linear and fast recursive
convolution operators. Therefore, this work concentrates on
the calculation of the port signals.

III. BACKGROUND AND NOTATION

A. Notation

We introduce the notation adopted in this paper. Italic
fonts denote scalar quantities x. Upright boldface fonts de-
note numeric vectors x (lowercase) and numeric matrices X
(uppercase). Boldface italic fonts denote instead vector-valued
signals or matrix-valued operators in time x(t) (lowercase) or
frequency domain X(s) (uppercase). The identity matrix is
denoted as I.

The structure under modeling has P ports with port voltages
and currents collected in vectors v(t) and i(t), respectively.
Based on a set of port reference resistances collected in
a diagonal matrix Rµ, we define the (voltage-normalized)
scattering wave vectors as

aµ(t) =
1

2
[v(t) + Rµi(t)] (1)

bµ(t) =
1

2
[v(t)−Rµi(t)] . (2)

We use subscript µ to denote a specific system of port refer-
ence resistances, which will be updated through the iterations
of the proposed scheme.

B. The macromodeling framework

Although several approaches for the direct time-domain
solution of mixed field-circuit problems exist [9]–[12], we
focus here on a well-established framework based on macro-
modeling. Based on the approach of [44], we first consider the



3

large-scale complex Linear and Time-invariant (LTI) electro-
magnetic system by removing its terminations. This structure
can be characterized by its P -port scattering operator, either
in time or frequency domain through a matrix of impulse
responses or transfer functions, respectively.

Assuming an incident field excitation einc(t) with Laplace
transform Einc(s) and defining the port scattering waves aµ(t)
as incident into the ports of the electromagnetic structure, we
have in the Laplace domain

Bµ(s) = Sµ(s)Aµ(s) + Θµ(s) (3)

where vector Θµ(s) represents the contribution of the incident
field to the outgoing waves at all ports under port matching
conditions. In practice, this vector is a derived quantity

Θµ(s) =
1

2
[I− Sµ(s)]Voc(s) (4)

from the open-circuit voltages at all ports excited by the
incident field

V oc(s) = H(s)Einc(s), (5)

where H(s) are suitable transfer functions.
We perform an initial characterization in the frequency do-

main. Therefore, we compute through a full wave solver (e.g.
MoM) a set of n̄ frequency samples of the scattering matrix
Sµ(jωn) and transfer functions H(jωn) for n = 1, . . . , n̄.
These samples span the frequency band of interest where the
spectrum of all signals to be computed is predictably confined.

Given the electrically large nature of the structure and the
possibly large number of ports P , the amount of tabulated
data required for a good resolution can be significant. We then
construct a behavioral macromodel by fitting this data

S̆µ(jωn) ≈ Sµ(jωn), H̆(jωn) ≈H(jωn) (6)

with rational functions

Sµ(s) =

L∑
`=1

Kµ,`

s− pµ,`
+ Kµ,0, H(s) =

L∑
`=1

Υ`

s− q`
+ Υ0

(7)
where s is the complex frequency (Laplace variable), pµ,` and
q` are the model poles, here assumed to be common to all
transfer function entries in order to model global resonances
correctly, Kµ,` and Υ` are the corresponding residues, and
Kµ,0, Υ0 capture the direct couplings. The macromodel is
constructed using the well-known VF [45] in the implemen-
tation [46], which includes a suitable passivity enforcement
loop, here applied to Sµ(s) only. Finally, using standard
methods [47] the model (7) is realized as a state-space form

Sµ(s) = Cq(sI− Aq)
−1Bq + Dq (8)

with Aq , Bq , Cq , Dq denoting system, input, output and
feedthrough matrix respectively, and converted to a SPICE
netlist.

C. Macromodel-based transient analysis

The system response to a particular excitation depends on
the boundary conditions impressed by the lumped elements at
the ports. Placement of the lumped elements at the geometrical

−+Voc

Zi Rµ

Bν+1
µ

Aνµ

−
+2Aνµ

Bν+1
µ

Aν+1
µ

−
+ 2Bν+1

µ

Rµ Iν+1

ZL

+

−

V ν+1

Fig. 3: Circuit interpretation of a WR iteration in the scattering domain based
on a decoupling resistance Rµ, applied to a voltage divider. The left and
right subcircuits are solved iteratively, using the decoupling sources 2Aνµ and
2Bν+1

µ to update solution from one iteration to the next.

location of the ports is equivalent to attaching of lumped ele-
ments to the ports of the macromodel, which can be performed
directly in a SPICE solver. Therefore, the availability of a
SPICE netlist that synthesizes the non-homogeneous macro-
model equations (7) provides a direct and straightforward way
to perform a transient simulation under different excitation
and loading conditions. This is the approach that was pursued
in [44].

Here, we propose a different approach, which has the
potential for more efficient numerical simulations based on a
Waveform Relaxation framework. First, we cast the frequency-
domain input-output relation (3) in time-domain by inverse
Laplace transform, assuming vanishing initial conditions

bµ(t) = sµ(t) ∗ aµ(t) + θµ(t) (9)

where ∗ stands for the convolution operator and

θµ(t) = [I− sµ(t)] ∗ h(t) ∗ einc(t)/2. (10)

Then, we discretize (9) on a uniform grid tm = mδt of
time samples, and we approximate the continuous convolution
operators as recursive convolutions [35], denoted here by ~
and expressed as

θµ(tm) = (I− sµ) ~ (h~ einc)(tm)/2 (11)
bµ(tm) = (sµ~aµ) (tm) + θµ(tm). (12)

The discrete-time macromodel equations (12) are coupled with
the equations of the terminations, which can be generally cast
as a nonlinear operator relating voltage-current or scattering
variables as

i(tm) = N(v(tm)), or aµ(tm) = Gµ(bµ(tm)), (13)

where the nonlinear map Gµ provides the characteristic
equations of the nonlinear loads in terms of the scattering vari-
ables. Note that the reflected waves bµ from the macromodel
are the incident waves (inputs) for the terminations, provided
that the same set of port reference resistances is used. Figure 2
provides a graphical illustration of both characteristics (13) for
an anti-parallel diode termination. The approach we propose to
solve these coupled equations for all time steps m = 1, . . . , m̄
follows the Waveform Relaxation paradigm, discussed next.
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D. Basic Waveform Relaxation

The so-called Longitudinal Waveform Relaxation scheme
is a simple fixed-point iteration. Instead of solving (12)-
(13) for all variables at time tm through a Newton iteration
within a time-stepping outer loop (as SPICE does), a WR
approach refines initial estimates of all signals through iter-
ations ν = 1, 2, . . . . Such estimates will be denoted through
superscript ν . In particular, a basic WR scheme:

1) sets ν = 0 and initializes all signals at all time steps
(e.g. with all-zero vectors);

2) evaluates (12) for t1, . . . , tm̄ with m̄ indexing the last
time sample

bν+1
µ (tm) =

(
sµ~a

ν
µ

)
(tm) + θµ(tm) (14)

(note that θµ(tm) can be precomputed ∀m during prob-
lem setup and initialization);

3) evaluates the scattering representation of the nonlinear
termination (13) for all t1, . . . , tm̄

aν+1
µ (tm) = Gµ(bν+1

µ (tm)), (15)

4) updates iteration index ν ← ν + 1 and repeats steps 2-4
until convergence.

The above basic WR scheme is straightforward to implement
but has a major drawback related to convergence. The scheme
is not guaranteed to converge, and even if it converges, it may
take a huge number of iterations, thus defeating the purpose
of an efficient transient analysis.

E. Convergence of Basic Waveform Relaxation

We illustrate the issues related to WR convergence on a
simple scalar example with linear terminations, so that a
frequency-domain analysis can be performed. This is well-
known material, that we report here since the results will
provide useful guidelines to optimize the convergence of our
proposed adaptive WR scheme.

Let us consider a simple Thévenin source with open-
circuit voltage Voc and internal impedance Zi, loaded by an
impedance ZL. We choose a port reference resistance Rµ
to describe both source and load through their scattering
representations

Bµ(jω) = Sµ(jω)Aµ(jω) + Θµ(jω) (16)
Aµ(jω) = Γµ(jω)Bµ(jω) (17)

where
Θµ(jω) = [1− Sµ(jω)]Voc/2. (18)

and

Sµ(jω) =
Zi(jω)−Rµ
Zi(jω) +Rµ

, Γµ(jω) =
ZL(jω)−Rµ
ZL(jω) +Rµ

. (19)

Longitudinal decoupling is depicted in Fig. 3, which shows
the signal estimates at iteration ν corresponding to the WR
loop

Bν+1
µ (jω) = Sµ(jω)Aνµ(jω) + Θµ(jω) (20)

Aν+1
µ (jω) = Γµ(jω)Bν+1

µ (jω) (21)

Fig. 4: Effective transfer function WN
µ resulting from termination of the

waveform relaxation scheme after N iterations. Zi = Ri + jωLi with
Ri = 50 Ω and Li = 1 µH; Rµ = 50 Ω; ZL = 104 Ω.

where (20) and (21) correspond to the evaluation of the
subcircuits on the left and right, respectively. After a total
of ν = 1, 2, . . . N iterations we can write the load voltage (we
omit arguments jω) as

V N = (1 + Γµ) ·

[
N∑
ν=0

(SµΓµ)ν

]
· 1− Sµ

2
· Voc (22)

= WN
µ ·Voc (23)

Taking the limit for N →∞ leads to the correct solution

lim
N→∞

WN
µ = (1+Γµ)· 1

1− SµΓµ
· 1− Sµ

2
=

ZL
Zi + ZL

. (24)

Convergence to the expected voltage divider holds, provided
that |SµΓµ| < 1. Under such situation, the convergence rate is
exponential, as |SµΓµ|ν . In a multiport setting, both reflection
coefficients Sµ and Γµ become scattering matrices Sµ and
Γµ, and the convergence rate ρνµ is determined by the spectral
radius ρµ = ρ(SµΓµ), which has to be ρµ < 1.

Figure 3 depicts the effective transfer function WN
µ after

N iterations for a particular case of frequency-dependent
source impedance Zi(jω) = Ri + jωLi with Rµ = Ri. The
convergence speed is frequency-dependent. At low frequencies
we see that Zi(jω) ≈ Rµ, so that the source impedance
is matched to the decoupling resistance. This implies that
Sµ(jω) ≈ 0 and WR convergence for small ω is practically
immediate. Conversely, as ω increases, both source and load
impedances become significantly different from (larger than)
Rµ. This mismatch causes both Sµ(jω) and Γµ(jω) to have
nearly unit magnitude, implying that the series (23) converges
very slowly. Even after 200 iterations the WR solution is very
poor.

The above example shows that longitudinal WR schemes
may be effective only when the decoupling resistance Rµ
is close to either source or load effective impedances, at all
frequencies. This requirement is practically impossible with a
standard WR scheme for our specific problem, since:
• metallic enclosures exploit input impedances with large

ranges of variations due to the presence of internal
resonances. Matching such impedances with a set of
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decoupling resistances may be possible only at a fixed
frequency, but not over a broad band as required by our
setting;

• for highly reactive structures with an input impedance
Zi = Ri + jXi such that |Xi| � |Ri|, the magnitude of
the reflection coefficient (19) reads

|Sµ|2 =
(Ri −Rµ)2 +X2

i

(Ri +Rµ)2 +X2
i

≈ 1. (25)

It may be therefore impossible to match such structures
with any real decoupling resistance Rµ.

• nonlinear terminations such as antiparallel diodes switch
from conducting to non-conducting states during a tran-
sient simulation. The equivalent impedance profile is
time-dependent. Therefore, a purely resistive matching
may be performed within a given time interval, but not
for a transient simulation where mutliple diode switchings
occur.

In the remainder of this paper we will introduce strategies
that improve the WR convergence rate, by choosing decou-
pling resistances as close as possible to the (suitably defined)
termination resistances. The above considerations imply that
a single value of Rµ is not able to provide these matching
conditions, and multiple values are required.

Before proceeding, we note that the example in this section
investigated the convergence of the system operator, not the
convergence of the system response to a particular stimulus.
If the stimulus for the given example has only low frequency
content, the response reaches a high accuracy after few itera-
tions.

IV. ITERATION DEPENDENT DECOUPLING

The proposed modification to the basic WR scheme is
based on a different selection of the decoupling resistances
Rµ at different iterations, hence the term Iteration-Dependent
Decoupling (IDD). The main objective is the computation of
the transient port variables up to a given tolerance, and in the
least number of WR iterations. The degrees of freedom to be
exploited to minimize the number of iterations are provided by
the (diagonal) matrix of port reference resistances, that is now
assumed to be iteration-dependent and is denoted as Rν . The
selection of the best set of port resistances at each iteration
is driven by the requirement of approximately matching the
electromagnetic structure or its nonlinear terminations. In the
linear case discussed in Section III-E, this corresponds to
minimizing |Sµ(jω)| and |Γµ(jω)|, respectively.

Let us consider first the requirement of matching the electro-
magnetic structure. Figure 5 depicts the frequency-dependent
eigenvalues of the impedance matrix of the unterminated
electromagnetic shield of Fig. 1. The structure is almost com-
pletely reactive with small losses, and has several resonances
within the modeling bandwidth. Therefore, these eigenvalues
undergo strong variations, and a broadband matching is im-
possible with a single set of reference resistances.

Using large port resistance values may (approximately)
match the structure at some frequencies, whereas small re-
sistance values may achieve matching at other frequencies. A

Fig. 5: Magnitude of real and imaginary part of the eigenvalues of the
impedance matrix Z(jω) of the unterminated box of Fig. 1.

first strategy may then be to cycle the decoupling resistances
between a minimum and a maximum value. This first approach
is not adaptive but uses a set of predefined terminations, which
can be set up by considering the span of the impedance matrix
eigenvalues, as depicted in Fig. 5. We remark that approximate
matching of the electromagnetic structure is viable only when
the real part of the impedance (eigenvalues) is not negligible
with respect to the imaginary part. For highly reactive struc-
tures, resistive matching is not a viable solution.

Full adaptivity may be introduced by pursuing the require-
ment of matching the nonlinear terminations. With reference
to the antiparallel diodes, whose characteristics are depicted in
Fig. 2, the induced transient voltages and currents at each port
i may be interpreted as across a time-dependent load resistance
Ri(t). The latter ranges from small to large values depending
on the conduction state of the diodes. Using therefore a
decoupling resistance at port i equal to the observed effective
(static) resistance Ri(t∗) at some given time instant t∗ is
expected to nearly match that port in a time interval enclosing
t∗, hence improving WR convergence. This consideration
suggests a fully adaptive strategy that computes an estimate of
voltages and currents, identifies the best decoupling resistance
from these estimates, and uses this value for the next WR
iteration.

Both strategies discussed above lead to a WR scheme that
changes the set of decoupling resistances Rµ at each iteration,
either in a predefined way or adaptively. Throughout this work,
we assume identical resistances at all ports, so that Rµ = RµI,
with the values of Rµ chosen in a predefined set

R = {Rµ, µ ∈ I}, I = {1, . . . , µ̄}. (26)

Elements of this set can be predetermined from the eigenvalue
plot of Fig. 5 and from the nonlinear termination characteris-
tics of Fig. 2. Adaptivity is provided by a rule C(ν,I) that at
any iteration ν selects one element from this set as

R
ν C←− RµI, µ ∈ I. (27)

Note that C(ν,I) is only a shorthand notation, since appli-
cation of this rule may require the history of past resistance
values and/or some adaptive processing of the port signals, see
below.
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A general pseudocode of this approach is provided in
Algorithm 1 and commented below at high level. Imple-
mentation details and derivations are postponed to dedicated
subsections. The proposed method consists of 1) an inner loop
(lines 6–11), which evaluates only once both macromodel of
the electromagnetic structure and its nonlinear terminations;
2) and an outer loop, which repeats the inner loop until
numerical convergence is achieved. During an initialization
step, the set (26) of reference resistances is constructed,
and all corresponding scattering macromodels Sµ(s) in pole-
residue form (7) are initialized (line 2). At the same time, the
tabulated scattering characteristic of the nonlinear terminations
are evaluated, and the source terms θµ are pre-computed
via (11) at all time samples (line 3). The requirement of
pre-computing macromodels referenced to different port resis-
tances is discussed in Section IV-B, where details on how this
conversion is performed are provided. The first set of reference
resistances µ = 1 is selected for the first iteration, and the
wave incident on the ports of the electromagnetic structure is
initialized with zero (line 4).

The first operation in the inner loop is the evaluation of the
transient scattered signal from the macromodel Sµ (line 7).
This operation is performed through fast recursive convolu-
tions that return the reflected signal bν+1

µ at all time samples.
Next step (line 8) takes this signal as input to the terminations
and evaluates the nonlinearly reflected signal aν+1

µ at all
time samples. This operation amounts to a simple function
evaluation, as discussed in Section IV-C. Next line 9 applies
the preferred selection rule for the reference resistance indexed
by µ1 to be used at next iteration, as discussed in Section IV-E.
Finally, scattering signals are renormalized to this new set of
resistances (lines 10–11), as shown in Section IV-A, and the
loop is restarted. Iterations are stopped when estimates of the
port signals of interest between two successive iterations are
closer than a prescribed threshold. Since scattering signals are
continuously updated and renormalized through iterations, we
check convergence using the port voltages in line 12.

We should remark that the basic structure of this algorithm
is the same as the standard WR with longitudinal partitioning,
with the main difference in the lines 9–11 for renormalization,
in addition to the required initial preprocessing (lines 1–3).

A. Renormalization of scattering signals

The proposed Iteration Dependent Decoupling (IDD)
method is essentially based on a change of normalization
resistances that define the port signals, which is applied at each
iteration. This conversion is provided by a purely algebraic
operation with negligible cost. Based on the definitions (1)-
(2), we define an operator Tµ, mapping port voltages and
currents scattering signals

(
aµ
bµ

)
=

1

2

(
I Rµ

I −Rµ

)
︸ ︷︷ ︸

Tµ

(
v
i

)
, (28)

Algorithm 1 IDD WR Implementation

Require: S0, N, voc

1: for µ = 1 to µ̄ do . Initialization Loop

2: Compute Sµ, Gµ . Macromodels, Terminations

3: θµ = (voc − Sµ ~ voc) /2 . Source Terms

4: µ1 = 1, a1
µ = 0 . Initialization

5: for ν = 1 to N do . Outer Loop

6: µ = µ1

7: bν+1
µ = Sµ ~ aνµ + θµ . Solve macromodel

8: aν+1
µ = Gµ(bν+1

µ ) . Solve nonlinear circuit

9: µ1 = C(ν,I) . Next decoupling resistance

10: (vν+1, iν+1)T = T−1
µ (aν+1

µ , bν+1
µ )T

11: aν+1
µ1

=
(
vν+1 + Rµ1

iν+1
)
/2 . Renormalization

12: if ||vν+1 − vν ||∞ < ε then . Break condition

13: return vν+1, iν+1

and its inverse(
v
i

)
=

(
I I

R−1
µ −R−1

µ

)
︸ ︷︷ ︸

T
−1
µ

(
aµ
bµ

)
. (29)

Accordingly, renormalization from a scattering-voltage-wave
representations with reference R1 to a new reference R2 is
achieved by (

a2

b2

)
= T2T

−1
1

(
a1

b1

)
. (30)

Note that in line 11 of Algorithm 1, only the upper block
of (28) is applied since only the incident wave aµ1

in the new
normalization is required for exciting the macromodel Sµ1 at
the next iteration.

B. Macromodel renormalization

The key for enabling fast execution in the WR loop is
the availability of a set of macromodels Sµ(s) referenced
to all sets of port resistances Rµ that may be required at
runtime. If such macromodels are available in pole-residue
form (7), then the evaluation of the reflected scattering waves
from the electromagnetic structure at all samples is computed
in linear time through simple recursive convolution. This is
only possible if the macromodel is referenced to the same set
of resistances as the normalization resistance of the incident
scattering wave. In this section, we discuss how to compute
a pole-residue form in a different scattering representation
starting from a given initial macromodel referenced to a
different set of port resistances.

Let us assume an initial macromodel S1(s) in pole-residue
form (7) with µ = 1, which approximates the scattering
responses normalized to port resistances R1. The corre-
sponding state-space form is (8), with state-space matrices
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{A1,B1,C1,D1}. Our objective is to determine both a state-
space representation and the associated pole-residue represen-
tation following a port renormalization to a different set of
resistances R2. This normalization can be written as

S2(s) = Ψ−1 (I− S1(s)Φ)
−1

(S1(s)−Φ) Ψ (31)

where Ψ = diag(ψi) and Φ = diag(φi), with

ψi =
R1i +R2i

R2i
, φi =

R2i −R1i

R2i +R1i
. (32)

Understanding the first and second bracket of (31) as a system
formed by two concatenated systems (see [47] for concate-
nation and inversion of state space system representations),
which is pre- and post- multiplied by Ψ−1 and Ψ, respectively,
yields the following state-space realization for S2(s)

A2 =

(
A1 0

B1Φ (I−D1Φ)
−1 C1 A1 + B1Φ (I−D1Φ)

−1 C1

)
B2 =

(
B1

B1Φ (I−D1Φ)
−1

(D1 −Φ)

)
Ψ

C2 = Ψ−1
(
(I−D1Φ)−1C1 (I−D1Φ)

−1 C1

)
D2 = Ψ−1(I−D1Φ)−1(D1 −Φ)Ψ.

(33)
A pole residue representation in form (7) of the renormal-

ized state space system (33) is obtained in two steps. First, we
apply a similarity transformation

S2(s) = C2

(
sI−VΛ2V

−1
)−1

B2 + D2 (34)

= C2V︸︷︷︸
C̃

(sI−Λ2)
−1

V−1B2︸ ︷︷ ︸
B̃

+D2. (35)

where Λ2 = V−1A2V = diag(λ`) is an eigenvalue decompo-
sition of the state matrix and λ` are the poles of S2(s). Next,
the corresponding residue matrices K2,` are computed using

K2,` = C̃∗,` · B̃`,∗ (36)

where C̃∗,` denotes the `-th column of C̃ and B̃`,∗ denotes the
`-th row of B̃, leading to

S2(s) =

L̄∑
`=1

K2,`

s− λ`
+ D2. (37)

The above renormalization produces a rational form (37)
with a different structure with respect to the initial macro-
model. Instead of L pole-residue pairs with associated full-
rank residue matrices in (7), a total of L̄ terms is obtained, with
rank-1 residues K2,`. This rank reduction would be beneficial
for speeding up numerical simulations based on the model; un-
fortunately, it is counterbalanced by a much larger number of
terms L̄ = 2PL arising from the renormalization. In turn, this
makes recursive convolution approaches [35] highly inefficient
in transient analysis, since the associated cost is proportional
to the number of independent poles. For this reason, we
have developed a dedicated fast convolution approach, which
results mathematically equivalent to the approach in [35], yet
dramatically more efficient for large pole and port counts.

(a)

(b)

Fig. 6: Predefined selection of normalization resistances through iterations.
Top: sawtooth pattern; bottom: V-cycle pattern.

C. Evaluation of nonlinear terminations

Traditional solvers of nonlinear circuits perform some form
of Newton iteration at each time step to solve for the variables
of interest, embedding this evaluation in an outer time-stepping
loop. In a WR loop, we reverse this operation and compute the
output variables resulting from the NL terminations excited
by their input variables at all time steps. The nature of the
investigated terminations, which may be strongly nonlinear but
are purely resistive, enables this operation to be performed
very efficiently, using a purely algebraic operation.

Since our WR formulation is in the scattering domain,
we adopt the scattering formulation in (13) based on the
operator Gµ, which returns at each time step tm the reflected
scattering variables aµ(tm) from the corresponding incident
waves bµ(tm). The operator Gµ is not known analytically,
since the characteristic of each termination is usually known
in terms of port voltages and currents. However, a fine sweep
of this characteristic can be pre-computed in a preprocessing
phase at given points (V̂k, Îk) in the range of interest, which
are then converted to the corresponding scattering variables
using (28). The result is a set of tabulated values (B̂µ,k, Âµ,k),
depicted in the right panel of Fig. 2. The evaluation of Gµ
during WR iteration is obtained by a simple piecewise linear
or spline interpolation of such tabulated scattering-domain
characteristics. Since multiple reference resistances Rµ are
used by our IDD scheme, the corresponding multiple tabulated
characteristics associated to these normalization resistances
are pre-computed during initialization, forming a library of
representations ready to be used in runtime.

D. Predefined Iteration Dependent Decoupling

The specific choice of normalization resistances Rν to be
used at a given iteration ν depends on the adopted rule (27).
This selection may be performed according to a prescribed
pattern or adaptive on the solution being computed. Here we
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present two predefined patterns that provided good perfor-
mance in our tests. The starting point is a set R of given
discrete values of port resistances, see (26). Assuming that
the resistances Rµ in this set for µ = 1, . . . , µ̄ are sorted
in increasing order with µ̄ being the index of the largest
resistance, we can adopt
• a sawtooth pattern, depicted in Fig. 6(a), which corre-

sponds to the rule

µ(ν)
C←− 1 + mod((ν − 1), µ̄) (38)

where mod(m,n) denotes the modulo operator (remain-
der of integer division of m by n);

• a V-cycle pattern, depicted in Fig. 6(b), which corre-
sponds to the rule

µ(ν)
C←− 1 + |mod(ν − 1, 2(µ̄− 1))− (µ̄− 1)| (39)

Of course, other patterns are possible. These two are the only
ones that we tested in our numerical experiments.

E. Adaptive Iteration Dependent Decoupling

Adaptivity in the selection of the reference resistances for
the next WR iteration is achieved by trying to match the
nonlinear terminations, at least over a limited time span.
Therefore, we define the following rule

Rνi (tm) = vνi (tm)/iνi (tm) (40)

where vνi and iνi are the port voltages and currents at the
port i of interest at iteration ν, and tm is the time instant for
which the convergence rate is to be improved. Our strategy to
select tm is based on the location of the maximum difference
between the voltage scattering waves available from the last
two iterations normalized to the current reference.

The reference resistance to be used for next iteration is thus
defined as the closest available reference resistance among the
available sets

R
ν+1 = arg min

µ∈I
||Rµ − R̄ν(tm)I||, (41)

where R̄ν(tm) denotes the geometric mean of Rνi (tm) across
the ports.

Additionally, we found that capping the maximum relative
change of the reference to factors between 0.01 and 100 yields
better results than unconstrained change, providing a smoother
variation of the reference through iterations.

F. Linear convergence analysis

All (predefined or adaptive) implementation strategies re-
quire a detailed convergence analysis, in order to demonstrate
the benefits of proposed iteration-dependent scheme. For the
special case of linear terminations, a detailed frequency-
domain analysis is presented in Appendix A, where an explicit
expression of the WR iteration operator is derived based on
a given sequence of reference resistance matrices. We report
here the main conclusions.

Assuming a periodic pattern in reference resistances (with
period ν0), such as the V-cycle or the Sawtooth schemes of

Fig. 7: Example circuit of Section V-A used for Fig. 8 and Fig. 9.

Fig. 8: Instructive example of Section V-A. Deviation ∆vνref at each WR
iteration with respect to a reference SPICE solution vνref = vSPICE. Solid
straight lines correspond to standard WR with constant decoupling. The
staircase orange line corresponds to the V-cycle IDD. Dashed black line is the
proposed V-cycle plotted only at integer multiples of ν0 (the period of the
V-cycle). The green line corresponds to an aperiodic randomized selection
of models. The advantage of the predefined IDD will become evident for
nonlinear terminations.

Fig. 6, overall convergence is guaranteed when the spectral
radius % = ρ(Qν0) of (51), repeated here for convenience,

Qν0 = Mν0−1Mν0−2 · · ·M0 (42)

is less than one, where Mν defined as in (46). This matrix
operator corresponds to a block of ν0 iterations, each using
a different decoupling resistance Rµ(ν). This should be com-
pared to the condition for the standard WR scheme, which
requires ρ(ΓµSµ) to be less than unity, where however both
Γµ and Sµ are fixed through iterations.

Even in the general case of nonlinear terminations, the
resulting convergence rate is the cumulative effect of the con-
vergence rates associated to individual decoupling resistances.
Each term contributes to speed up convergence within a given
frequency interval (matching the electromagnetic structure
whenever this is feasible) or a given time interval (matching
nonlinear terminations), resulting in an overall benefit. This is
confirmed by the numerical examples, presented next.

V. PROOF OF CONCEPT

As a proof of concept, we use a simple one port example
consisting of a Thévenin equivalent formed by a voltage
source voc with a series impedance Zi. In Section V-A we
illustrate the general convergence properties of the WR scheme
with iteration-dependent decoupling. Section V-B shows the
advantages of proposed adaptive decoupling strategy under
nonlinear loading.
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Fig. 9: As in Fig. 8, but reporting deviation ∆vνref between consecutive WR
iteration steps, i.e., vνref = vν−1. The dashed black line corresponds to the
proposed V-cycle IDD using vνref = vν−ν0 .

A. Understanding the convergence pattern of the WR-IDD
scheme

Let us consider a source impedance Zi consisting of a 1 Ω
resistor in series with a parallel circuit of a 10 nF capacitor
and a 1 MΩ resistor as depicted in Fig. 7. This frequency-
dependent impedance has a low and high frequency limit of
about 1 MΩ and 1 Ω, respectively. At mid frequencies (about
10 kHz), the imaginary part is about 3 orders of magnitude
larger than the real part, so that a purely resistive broadband
matching is impossible. We choose a voltage source with a
spectrum centered in this range, in order to emphasize these
matching difficulties. In particular, we set

voc(t) = V0 e
−at2 cos(ωct), a = −

(ωc2 bw)2

4 · log(10
bw
20 )

(43)

with ωc = 2π · 10 kHz and bw = 1 and unit amplitude V0.
The Thévenin source circuit is terminated with a 5 Ω

resistor, and the objective is to compute the voltage across
this termination. Since the reactive nature of the source
impedance prevents its matching where the spectrum of
the source is dominant, we concentrate on the ability of
the proposed IDD scheme to match the 5 Ω termination.
We choose a set of µ̄ = 7 decoupling resistances R =
{100 mΩ, 1 Ω, 10 Ω, 100 Ω, 1 kΩ, 10 kΩ, 100 kΩ}, so that none
of these resistances is ideally matched to the load. Lowest
values of Rµ will provide better matching with respect to
highest values. In a preprocessing phase, we precompute the
corresponding Sµ and Gµ; then, we iterate in a predefined
manner as depicted in Fig. 6. The computed voltage across the
termination is compared to a reference signal vνref at iteration
ν by computing the Normalized Root Mean Square Deviation
(NRMSD)

∆vνref =

√
1
m̄

∑m̄
m=1 |vν(tm)− vνref(tm)|2

|max(vνref)−min(vνref)|
(44)

where m̄ denotes the number of time samples.
Figure 8 depicts the evolution of the error (44) using as

reference a signal vνref = vSPICE obtained using SPICE,
which we here assume to be a good approximation of the
exact solution. The figure reports the results of proposed IDD

schemes as well as the results of the standard WR iterations
applied with fixed decoupling resistance from the set R. For
all schemes, the error always decays through iterations. As
expected, the WR scheme based on Rµ = 10 Ω performs best,
since this value is the closest to the termination resistance.
When Rµ is significantly different, convergence is very poor.
Both proposed Sawtooth and V-cycle IDD provide an error
decay rate that is different from one iteration to the other, as
can be noted by the characteristic staircase behavior. This is
also expected and is due to the different degree of matching
provided by the particular reference resistance used at each
iteration. The best progress towards the solution is made when
using the 10 Ω decoupling resistance. A clear exponential
decay is also visible when plotting the error evolution only at
iterations that are multiples of the Sawtooth or V-cycle period
ν0. It can be observed that this convergence rate is a sort of
“average” between the individual convergence rates that would
be implied by each individual value of decoupling resistance
in the set R. It is clear that the WR-IDD is not optimal for this
example, for which an optimal choice can be performed based
on the value of the real and constant termination resistance.
This is of course not possible in case of nonlinear termination,
which is the real objective of this work. Since the Sawtooth
IDD provides very similar performance of the V-cycle IDD
with half a period, only the latter will be considered in the
following.

Figure 9 shows the evolution of the error (44) through
iterations, but using as reference the voltage estimate avail-
able from the previous iteration, vνref = vν−1. In practical
situations, a reference solution is not available, so that an error
control to trigger a stopping condition can only be performed
using solution estimates coming from previous iterations.
This operation is straightforward when the convergence rate
is uniformly exponential, as in standard WR. In proposed
IDD implementations, the situation is more complicated, as
discussed below.

The IDD error estimate in Fig. 9 has an oscillatory behavior,
which is due to the fact that the reference for each iteration
is the solution computed at a previous step, with a different
normalization resistance. Since individual convergence rates
associated to different decoupling resistances are different, it
is expected that the accuracy gain with respect to previous
iteration oscillates between large amounts (faster convergence
rate) and small amounts (slower convergence rates). Therefore,
the oscillation is an artefact due to an incorrect local referenc-
ing. In fact, if the reference signal is taken as vνref = vν−ν0 ,
so that the two signals used to compute ∆vνref in (44) are
based on the same normalization resistance, the error decay is
smooth and with a well-defined exponential rate.

B. Matching nonlinear terminations

We now consider a more challenging case, with a Thévenin
circuit based on the same voltage source voc (amplitude
V0 = 2.5 V) and a purely reactive source impedance (a
1 nH inductance). This impedance is impossible to match
since its real part is identically vanishing and the associated
reflection coefficient has unit magnitude at all frequencies.
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Fig. 10: Evolution of RMSE error for the example of Section V-B using
standard WR decoupling with constant resistances ranging from {100 mΩ
to 100 kΩ} (black solid lines) and proposed IDD approaches (blue and red
lines).

Fig. 11: Termination voltage for the example of Section V-B.

This source circuit is terminated with anti-parallel diodes, and
the objective is to compute the voltage across this termination.
Under these conditions, a good matching with a real constant
decoupling resistance is unfeasible. Nonetheless, we show
that the proposed IDD scheme provides good convergence
properties.

Applying the IDD scheme, we choose the set of µ̄ =
25 geometrically spaced decoupling resistances R =
{100 mΩ, ..., 100 kΩ}, we compute the corresponding Sµ and
Gµ and then we apply the proposed WR-IDD scheme us-
ing both predefined and adaptive implementations. Figure 10
shows the evolution over iterations of the error with respect
to a reference SPICE solution, for i) a constant decoupling
resistance over iteration (all values in R) denoted by solid
black lines, ii) the predefined sweep as depicted in Fig. 6(a)
(V-cycle), and iii) an adaptive scheme, which chooses the
next iterations decoupling resistance online as described in
IV-E. The figure confirms that both predefined and adaptive
approaches outperform standard WR based on any constant
decoupling resistance value. The latter make a negligible
progress through iterations, whereas proposed approaches con-
verge to the reference solution. The adaptive scheme converges
faster, since optimized on the solution being computed.

An intuitive explanation can be given using Fig. 11, which

Fig. 12: Equivalent resistances of anti-parallel diodes at the ports of the 3×3
box excited with a 120 V m−1 gaussian incident field centered at 50 MHz
computed by dividing voltage by the current at each port for all time samples.

shows the obtained voltage across the anti-parallel diodes after
terminating the different schemes after 120 iterations. Due to
the excitation, the diodes terminating the source are driven
into different conducting states over time. For the first half
of the simulation interval, the diodes equivalent resistance
takes values down to 500 mΩ, while in the second interval,
the equivalent resistance is in the range of 100 kΩ. The two
constant decoupling resistances (100 kΩ in blue and 1 Ω in
orange) fail to provide a good matching where the equivalent
resistance is significantly different, leading to the very poor
progress in the global error reduction observed in Fig. 10.
Changing the decoupling resistance over iterations overcomes
this limitation.

VI. SIMULATION OF NONLINEARLY LOADED
ELECTROMAGNETIC SHIELDS

We now apply the proposed WD-IDD method to sim-
ulate the behavior of nonlinearly loaded (energy-selective)
electromagnetic shields. We consider a box-shaped shielding
structure as depicted in Fig. 1, with size 0.5m×0.5m×0.5m.
A 0.25m × 0.25m aperture is present on one face of the
box and is loaded with a square grid of nonlinear elements
(antiparallel diodes) with a 9 = 3 × 3 or 25 = 5 × 5 ar-
rangement. The structure is excited by a strong incident plane
wave, with the electric field polarized along the Y direction,
parallel to the arrangement of the diodes in each column. The
waveform of this field is a modulated gaussian pulse (43) with
spectrum centered at 50 MHz. In order to correctly reproduce
the nonlinear effects and the generation of higher harmonics
induced by the loads due to clipping, the unterminated box is
characterized through broadband macromodels derived from
full-wave MoM simulation data up to 1 GHz.

The goal is to compute the transient voltage across the
anti-parallel diodes at the various ports of the structure. The
excitation amplitude 120 V m−1 of the incident electric field
pulse is chosen such that the diodes switch their conduction
states multiple times during the simulated time interval. In fact,
the time-dependent equivalent resistance (40) derived from the
computed port voltages and currents spans multiple orders of
magnitude, as shown in Fig. 12.
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Fig. 13: Box loaded with with a 3 × 3 diode grid. Error with respect to a
reference SPICE solution of proposed WR-IDD adaptive scheme (blue line),
compared to the errors achieved by standard WR iterations based on fixed
decoupling resistances ranging from 1 Ω to 100 kΩ (black lines).

Fig. 14: Box loaded with with a 3 × 3 diode grid. Adaptive choices of the
decoupling resistance performed by the WR-IDD scheme during runtime.

Applying the adaptive IDD scheme, we choose a set of
µ̄ = 25 geometrically spaced decoupling resistances R =
{1 Ω, . . . , 100 kΩ}, we compute the corresponding Sµ and Gµ
operators, and we apply the proposed WR-IDD scheme using
the adaptive implementation. Figure 13 shows the evolution
over iterations of the error with respect to a reference SPICE
solution, using: i) a constant decoupling resistance at all
WR iterations (solid black lines, one line for each individ-
ual resistance value in R); ii) the adaptive scheme, which
chooses the decoupling resistance for the next iteration during
runtime, as described in Section IV-E. The figure confirms
that the adaptive approach outperforms standard WR based
on any constant decoupling resistance value. The latter makes
a negligible progress through iterations, whereas the proposed
approach converges to the reference solution.

Except for the multiport extension, this example is sim-
ilar to the one port example used as a proof of concept
in Section V-B, since the box is electrically small at the
frequencies excited by the incident field. In such frequency
band, the input impedance of the linear electromagnetic (un-
terminated) structure is dominantly reactive. Very little energy
dissipation is performed by the linear structure during the
standard longitudinal decoupling waveform relaxation scheme.
This is confirmed by the black solid curves denoting the fixed

Fig. 15: Box loaded with with a 5 × 5 diode grid. Adaptive choices of the
decoupling resistance performed by the WR-IDD scheme during runtime.

decoupling in Fig. 13, which mostly show negligible progress
compared to the adaptive scheme.

Figure 14 shows the sequence of decoupling resistance
values that are automatically selected by the adaptive scheme.
For the first twenty iterations, the scheme chooses relatively
low decoupling resistances, which can be linked to matching
the diodes in their conducting state. Once the relative change
over iterations becomes small enough, the scheme proceeds
to attempt matching the diodes closer to the low conductance
state. Also this behaviour is in line with the observations made
for the one port example of Section V-B.

The above general observations are confirmed by the results
obtained on a second example, namely the box loaded by a
5× 5 diode grid. In this second case, we increase the incident
field amplitude to 350 V m−1, and we apply the proposed WR-
IDD adaptive scheme to evalute all port voltages and currents.
Similarly to the previous 3 × 3 grid example, the proposed
adaptive scheme updates the decoupling resistances while
trying to match the diodes in their time-dependent conduction
states. The results of this dynamic selection are depicted in
Fig. 15.

Figure 16 shows the obtained voltage across one termination
port at different iterations compared to a SPICE reference solu-
tion, for: (a) decoupling with a fixed high resistance (180 kΩ);
(b) decoupling with a fixed intermediate resistance (3.3 kΩ);
(c) decoupling with a fixed low resistance (10 Ω); and (d) the
proposed adaptive scheme with µ̄ = 25 geometrically spaced
decoupling resistances R = {10 Ω, . . . , 200 kΩ}. Decoupling
with a single high resistance in Fig. 16a leads to a poor
performance as the decoupling fails to match the terminations
at early times, where the diodes are in a conductive state
due to the high-power excitation. When decoupling with a
single intermediate resistance (3.3 kΩ) as shown in Fig. 16b,
the diodes are sufficiently matched in their conductive state,
which yields a fair approximation of the system response
for early time, but fails for late time where the effective
resistance of the diodes in their nonconducting states is much
larger. As a result, significant differences compared to SPICE
remain after ν = 60 iterations. Further decreasing of the
decoupling resistance to 10 Ω in Fig. 16c shows that the
obtained solution after 60 iterations is accurate up to only
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Fig. 16: Comparison of voltages at one port of the box loaded with with a
5× 5 diode grid for four different WR decoupling: (a) fixed high resistance
(180 kΩ), (b) fixed intermediate resistance (3.3 kΩ), (c) fixed low resistance
(10 Ω) and (d) proposed adaptive scheme.

about 30 ns, which is worse than the intermediate decoupling
of Fig. 16b. This can be explained by a worse mismatch
compared to the intermediate decoupling at later time. In
conclusion, a significant error remains after ν = 60 iterations
when using any prescribed constant decoupling resistance
value. Figure 16d shows that the proposed method solves
the observed dilemma. An accurate solution for early time
is attained by first decoupling using small resistance values.
As the iterations progress, the method automatically updates
the decoupling resistances to larger values, leading to faster
convergence in the low conductance state of the diodes.

Table I shows that the proposed adaptive method outper-
forms a number of alternative simulation approaches for the
investigated examples. In particular, we can see that compared
to the time required by the standard SPICE, we gain a speedup

TABLE I: Required Iterations and Computation Time

Name Box9 Box25
Iter Time Iter Time

SPICE [48] - 184.35 s - 724.69 s
WR-LPTP 501 44.74 s 600† 62.68 s

WR-NGMRES 9 43.7 s 19 138.38 s
Adaptive (proposed) 58 3.35 s 58 1.93 s

WR-LP

50 Ω 291 22.83 s 600† 50.54 s
850 Ω 119 7.08 s 131 4.37 s

† denotes no convergence after 600 iterations

factor of 55× for the nine port box and 375× for the
25 port box. Additionally, the proposed adaptive approach
outperforms other WR schemes as the transverse partitioning
WR-LPTP [35] (mode two, three inner iterations), which does
not converge within 600 iterations for the 25 port example.
Furthermore, comparing to the Newton-GMRES Waveform
Relaxation (WR-NGMRES [30], [34]), the proposed adaptive
approach shows a speedup of 13× and 72× for the nine
and 25 port examples, respectively. Finally, the standard WR-
LP scheme [30] is outperformed for all 25 investigated static
decoupling choices (from 100 mΩ to 10 kΩ), including the best
performing reported in the last line of Table I. We recall that
these reference resistances are not known a priori, and that the
proposed method is able to automatically select a sequence of
references which leads to minimum 2× speedup.

Sweeping the excitation amplitude from 10 mV, 100 mV to
100 V peak voltage of voc gave average speedups of 175×,
55×, and 95× compared to SPICE, WR-NGMRES and WR-
LPTP, respectively.

Still, there is potential for improvement, since our current
implementation is single-threaded while most of the com-
putations can be parallelized. In addition, the combination
of proposed longitudinal adaptive decoupling with transverse
partitioning is under way and will be documented in a future
report. It is expected that the boost in efficiency achieved
by this hybrid partitioning as documented in [35] will be
applicable also to proposed WR-IDD scheme.

VII. CONCLUSION

This paper introduced a novel WR scheme for transient
simulation of three dimensional electromagnetic structures
loaded with nonlinear elements. The scheme is based on longi-
tudinal partitioning, which separates the nonlinear terminations
from the linear structure and couples them through relaxation
sources that are updated through iterations until convergence.
The novelty of the approach lies in adapting the relaxation
sources to the terminations as the solution is being computed,
based on a renormalization of the scattering port variables to
suitably selected reference resistances. The latter are changed
at each iteration, in order to provide heuristically optimal
matching and thus speedup convergence.

The time-domain operators describing the electromagnetic
structure are approximated through rational macromodels,
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whose evaluation is performed through recursive convolutions.
A piecewise approximation of the nonlinear characteristics
of the terminations in the scattering domain allows a direct
forward evaluation, thus avoiding Newton-like iterations. The
numerical results show that the proposed method can decrease
the number of required iterations for nonlinear terminations
compared to standard longitudinal partitioning, reducing the
overall computational cost. In particular, the proposed scheme
provides a fair convergence rate also in those extreme cases
of highly reactive structures terminated in strongly nonlinear
devices, when standard WR fails.

This work provided the general framework and a proof
of concept of iteration-dependent WR decoupling. Further
research is under way to optimize the heuristic rules currently
used for the selection of the best decoupling scheme during
runtime, and to parallelize all computational stages.

APPENDIX A
LINEAR CONVERGENCE ANALYSIS

The convergence rate of the proposed WR-IDD scheme is
derived in the frequency domain assuming a P -port Thévenin
source with open-circuit voltage vector Voc and internal
impedance matrix Zi, to be decoupled from a load impedance
ZL. All matrices and vectors are assumed to be frequency-
dependent, and we will omit their argument (jω).

Since scattering wave vectors are renormalized at each
iteration ν, we base this convergence study on the vectors of
port voltages Vν and currents Iν , which are uniquely defined,
and which we collect in a single block vector Xν . Given
a suitable iteration-dependent selection rule µ = µ(ν) for
the reference resistances [we also omit argument (ν) in this
derivation], each iteration of the proposed IDD scheme:

1) selects the set of resistances Rµ to be used in the next
step and converts the voltage-current pairs to scattering
variables defined by these normalization resistances;

2) applies the linear macromodel operator (3) in its scat-
tering form, referenced to Rµ;

3) computes the effect of the termination, which in the
linear case is achieved through its scattering matrix
referenced to Rµ;

4) converts the scattering vectors to voltages and currents.
A simple algebraic derivation leads to the following expres-
sion, which summarizes the above steps as

Xν+1 = MνXν +NνVoc (45)

where

Mν = T
−1
µ

(
ΓµSµ 0
Sµ 0

)
Tµ, (46)

Nν =
1

2
T
−1
µ

(
Γµ
I

)
[I− Sµ] , (47)

with Sµ and Γµ denoting the scattering matrices of source
and termination circuits, respectively.

Applying the recursion rule (45) for a block of ν + 1
iterations and assuming X0 = 0 leads to

Xν+1 = WνVoc (48)

where

Wν =

ν∑
i=0

(MνMν−1 · · ·M i+1N i)

=

ν∑
i=0

ν−i−1∏
j=0

Mν−j

 ·N i

(49)

is the approximation of the transfer matrix between the voltage
source vector and the port voltages and currents.

The above expression is best interpreted in the framework of
proposed WR-IDD with predefined selection rules (V-cycle or
Sawtooth, see Fig. 6), which correspond to a periodic function
µ(ν) with period ν0. This implies that Mν is periodic with
the same period, so that Mν0+ν = Mν , and similarly for
Nν . Evaluating now (48) at any integer multiple ν = qν0 of
this period leads to the following expression

Xqν0 = Wqν0−1 · Voc =

q−1∑
i=0

Qi
ν0 ·Wν0−1 · Voc (50)

where

Qν0 = Mν0−1Mν0−2 · · ·M0. (51)

We recognize in (50) a geometric series similar to (23),
whose rate of convergence is governed by the spectral radius
% := max |λi

(
Qν0

)
| of Qν0 . This matrix is obtained as

the multiplication of individual terms (46). Each of these
terms has P vanishing eigenvalues and a spectral radius
ρ(ΓµSµ) computed from the scattering matrices of source and
termination circuits at the particular normalization Rµ(ν) used
at iteration ν. The spectral radius of Qν0 is thus computed on
a matrix that accumulates the contribution of all individual
matrix terms Mν , evaluated over the full set of decoupling
resistances in the V-cycle or Sawtooth period. The overall
contractivity % < 1 of Qν0 is thus achieved by inheriting
contractivity of the individual matrix terms.

We conclude this section by noting that the convergence of
the adaptive scheme can only be assessed on a statistical basis
through (48)-(49), since no clear periodic behavior is imposed.
Nonetheless, the same qualitative considerations apply, and the
overall convergence rate is governed by the spectral radius of
the matrix product accumulated in the leading term of Wν .
Since individual terms of this product are adaptively selected
to match at best the static resistance of the terminations where
error is largest, there is a high probability that the adaptive
scheme converges faster than any preassigned periodic se-
quence, even in presence of nonlinear terminations.

APPENDIX B
FAST CONVOLUTION

As discussed in Sec. IV-B, traditional recursive convolution
approaches for the transient evaluation of the macromodel as
in (9) or its discretized form (12) are highly inefficient when
the number of poles L and ports P is large. This section
presents an alternative approach that proves very efficient un-
der these conditions. As in [35], we assume that the input time
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signals are piecewise linear on the uniform grid tm = mδt,
thus admitting the representation for the j-th component

aj(t) =
∑
m

αjmΛ(t− tm) (52)

where Λ(t) is the unit triangle centered at t = 0 with semi-
width δt. Defining the (closed-form) response of a first-order
system with a single pole p` to the input signal Λ(t) as

ŝ`(t) = L−1{(s− p`)−1} ∗ Λ(t), (53)

we can express the total output signal at port i of the
macromodel due to a single input Λ(t) at port j as

ŝij(t) =

L∑
`=1

kij` · ŝ`(t), (54)

where kij` denotes the ij-th entry of the residue matrix Kµ,`

associated to the `-th pole in (7). Denoting as ŝij the vector
collecting the time samples of (54) for {t1, . . . , tM}, and
denoting the corresponding output samples at port i excited
by a signal (52) at port j as bij , we see that

bij = ŝij ?αj (55)

where αj collects all coefficients in (52) and ? denotes
discrete convolution. Direct evaluation of (55) is performed
in O(M logM) operations through standard FFT/inverse FFT.
Since the macromodel responses ŝij are independent on the
inputs, they can be precomputed in the setup phase, thus
making the runtime cost independent on the number of poles.

As a second layer of computational cost reduction, we
further perform an accuracy-controlled operator compression.
We collect all samples (54) in a 3-way tensor Ŝ ∈ RM×P×P .
Next, we use the Singular Value Decomposition (SVD) on
the mode-1 matricization [49] of Ŝ to express the full set
of P 2 elementary triangle responses as a linear combination
of ρ � P 2 basis functions, see [50] for details. These basis
functions are convolved (using FFT/iFFT) with each input and
are then mapped through the right singular values/vectors back
to the original RM×P space, reducing the required number
of convolutions from P 2 to ρ · P . As shown in [50], this
entire procedure can be accuracy-controlled by tuning the
SVD truncation threshold. As an example, using a threshold
10−6 leads to an overall speedup of 700× with respect to
the standard recursive convolution [35] when applied to the
25-port box example.
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