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Abstract The objective of the present work is the computational microme-
chanical analysis of unidirectional fiber-reinforced composites, considering de-
fects. The micromechanical model uses refined beam theories based on the
Carrera Unified Formulation (CUF) and involves using the Component-Wise
(CW) approach, resulting in a high-fidelity model. Defects are introduced in
the representative volume element (RVE) in the form of matrix voids by mod-
ifying the material properties of a certain quantity of the Gauss points asso-
ciated with the matrix. The quantity of Gauss points thus modified is based
on the required void volume fraction, and the resulting set is prescribed a
material property with negligible stiffness to model voids. Two types of void
distribution are considered in the current work – randomly distributed voids
within the matrix, and voids clustered in a region of the RVE. The current
study investigates the influence of the volume fraction of voids present in the
matrix and their distribution throughout the RVE domain on the macroscale
mechanical response. Material nonlinearity is considered for the matrix phase.
Numerical assessments are performed to investigate the influence of the volume
fraction and the distribution of the voids on the macroscopic response.
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1 Introduction

Fiber-reinforced composites are a popular engineering material in the aerospace
and automobile industry owing to their high specific strength and stiffness.
However, manufacturing limitations lead to various kinds of imperfections, es-
pecially in the microstructure, such as fiber misalignment and matrix voids.
Such defects can have significant influences on the global mechanical prop-
erties of the structure. The proper characterization of voids and defects in
the microstructure is therefore an important issue in the analysis of compos-
ite structures. A very common microstructural defect is the presence of voids
in the matrix, which are formed due to trapped air during the curing of the
composite. Voids have a significant influence on matrix-dominated mechan-
ical properties such as compressive and interlaminar shear strength [1], and
cause localization of stresses, thus acting as sites for failure initiation. From an
experimental viewpoint, ultrasonic attenuation is an effective non-destructive
approach to analyze such microstructural defects, since voids scatter elastic
waves [2]. Various experimental studies involved the determination of the void
morphology within the microstructure, both for unidirectional [3] and woven
[4] composites. The influence of microstructural defects on mechanical prop-
erties has been studied by various researchers using computational mechanics.
Such numerical approaches typically employ the finite element method due to
its wide applicability. For instance, finite element analysis (FEA) was used to
study the effects of void geometry on the elastic properties of unidirectional
fiber-reinforced composites [5]. The effect of voids on the mechanical properties
of 3D-woven carbon/carbon composites was investigated in [6,7]. The effect
of matrix defects on the interlaminar tensile fatigue behavior of carbon/epoxy
composites was investigated in [8], and on the transverse mechanical prop-
erties of unidirectional composites in [9]. The aim of the present work is to
investigate the effect of microstructural voids on the macroscale mechanical
response of unidirectional fiber-reinforced composites. The analysis is based
on the Carrera Unified Formulation (CUF), where expansion functions are
employed to enhance the cross-sectional kinematics of 1D finite elements [10].
In particular, the current work uses the Component-Wise approach, where La-
grange polynomials are used as expansion functions thus leading to the explicit
modeling of the various constituents in the microstructure. The use of such
higher-order structural theories leads to an accurate evaluation of the 3D stress
state, while avoiding the computational costs associated with 3D-FEA. Previ-
ous works on the topic of micromechanical analysis include the development of
a micromechanics framework [11,12] and its application to the progressive fail-
ure analysis of fibre-reinforced composites [13]. These works demonstrated the
computational efficiency of the CUF micromechanics framework compared to
standard 3D-FEA approaches, and the present work extends the previous work
by modeling a more realistic microstructure of unidirectional fiber-reinforced
composites, by considering matrix defects such as voids. The paper is arranged
as follows – Section 2 introduces CUF, while Section 3 describes the microme-
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Fig. 1 Arbitrary beam element in CUF coordinate system

chanics framework. Some numerical assessments are presented in Section 4,
followed by the conclusions in Section 5.

2 1D structural theories

2.1 Carrera unified formulation

Consider a beam element as shown in Fig. 1. The generalized displacement
field is given by

u = Fτ (x, z)uτ (y), τ = 1, 2, . . .M (1)

Where u is the displacement field and Fτ (x,z) is the expansion function across
the cross-section. uτ is the generalized displacement vector, and M is the num-
ber of terms in the expansion function. The choice of Fτ and M is arbitrary.
The present work considers the Component-Wise (CW) approach, which ex-
ploits Lagrange polynomials to enhance the cross-section kinematic field of 1D
finite elements. Additionally, this approach leads to purely displacement de-
grees of freedom in the system. As an example, the displacement field obtained
by a quadratic Lagrange polynomial is

ux =

9∑
τ=1

Fτ (x, z) · uxτ (y)

uy =

9∑
τ=1

Fτ (x, z) · uyτ
(y)

uz =

9∑
τ=1

Fτ (x, z) · uzτ (y)

(2)

Further details on the use of Lagrange polynomials as a class of expansion
functions can be found in [14].
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2.2 Finite element formulation

The stress and strain fields are given by

σ = {σxx σyy σzz σxz σyz σxy}T
ε = {εxx εyy εzz εxz εyz εxy}T

(3)

Considering linear strains, the strain-displacement relation is given by

ϵ = Du (4)

where D is the linear differentiation operator. The constitutive law makes use
of the elastoplastic stress-strain relation,

σ = Ccepϵ (5)

where Ccep stands for the consistent elastoplastic tangent material matrix.
The present work models matrix nonlinearities using the von Mises plasticity
model. The structure is modeled using 1D finite elements with standard shape
functions Ni(y), and the resulting displacement field is written as

u(x, y, z) = Fτ (x, z)Ni(y)uτi (6)

where uτi is the nodal displacement field. For the quasi-static nonlinear prob-
lem, the principle of virtual work is herein recalled,

δLint = δLext (7)

where δLint is the virtual variation of the strain energy and δLext is the virtual
variation of the work of the external loads. The virtual variation of the internal
work can be expressed as:

δLint =

∫
V

δϵTσ dV (8)

where V is the volume of the body. Introducing the constitutive relations,

δLint = δuT
sj

(∫
V

DT
sjC

cepDτi dV

)
uτi (9)

Looping through the four indices i, j, τ , s results in the element stiffness matrix,
which is then assembled to generate the global stiffness matrix.
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Fig. 2 Component-Wise modelling of the RVE using 1D CUF

3 Micromechanical analysis

Considering the CW approach, the representative volume element (RVE) is
modeled using 1D-CUF theories, where the beam models the RVE depth and
Lagrange elements model the cross-section, i.e., the x2-x3 plane, as shown
in Fig. 2. The micromechanics framework is based on the periodic nature
of the RVE, and periodic boundary conditions (PBC) are applied to ensure
displacement compatibility across the faces of the RVE [15]. The displacements
applied on opposite RVE surface pairs is given by

uj+
i (x, y, z)− uj−

i (x, y, z) = ϵ̄ik(x
j+
k − xj−

k ) (10)

where ϵ̄ik is the applied macroscopic strain, indices j+ and j- represent the
positive and negative directions, respectively, along xk. The homogenized stress
(σ̄ij) and strain (ϵ̄ij) response is obtained by volume averaging the microscopic
fields (σij , ϵij) [16],

ϵ̄ij =
1

V

∫
V

ϵijdV (11)

σ̄ij =
1

V

∫
V

σijdV (12)

where V is the RVE volume. The constitutive relation for the homogenized
medium reads as

σ̄ij = C̄ijklϵ̄ij (13)

where C̄ijkl is the homogenized material matrix. A detailed explanation of the
1D micromechanics framework in CUF is given in [11].

Matrix voids within the RVE are modelled by selecting a certain quantity
of Gauss points associated with the matrix constituent and assigning a ma-
terial property to them with negligible stiffness. The number of such Gauss
points depends on the required void volume fraction specified by the user.
The distribution of the voids can also be specified by controlling the selection
procedure of the matrix Gauss point set. Further details on the modelling of
matrix voids within the RVE may be found in [12]. Two types of void distri-
bution are considered in the current work – randomly distributed voids within
the matrix, and voids clustered in a region of the RVE. The current study in-
vestigates the influence of the volume fraction of voids present in the matrix,
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Fig. 3 Schematic diagram of the RVE with randomly distributed fibres (left), and the L9
cross-sectional discretisation (right)

Table 1 Properties of the constituent materials, the units of the elastic moduli are GPa

Material E11 E22=E33 G12=G13=G23 ν12=ν13 ν23
Fiber 276 16 5 0.28 0.31
Matrix 3.5 3.5 1.3 0.35 0.35

as well as their distribution throughout the RVE domain, on the macroscale
mechanical response.

4 Numerical results

4.1 Micromechanical analysis of RVE without defects

The first numerical assessment involves the micromechanical analysis of a pris-
tine RVE, i.e. without defects. A randomly distributed RVE is considered with
a fibre volume fraction Vf = 0.47. The 1D-CUF model consists of 2 four-
node beam (B4) elements in the 11-direction to describe the RVE depth, and
277 nine-node bi-quadratic expansions (L9) to describe the cross-section. A
schematic representation of the RVE architecture, as well as its discretization,
is shown in Fig. 3. The fibre constituent is modelled as a linear-elastic ma-
terial. Nonlinearity is introduced within the matrix constituent, modelled as
an elastoplastic material based on the J2 plasticity theory. Further details on
the implementation of this constitutive model within CUF is found in [17].
The constituent material properties are listed in Table 1 and the plasticity
curve, which defines the nonlinear matrix behaviour, is plotted in Fig. 4. Two
load cases have been considered in the current assessment, where strains are
applied in the 22- and 23-direction of the RVE, respectively. The magnitude
of applied strain in both cases is 0.02. The macroscopic stress-strain response
for the loading cases is plotted in Fig. 5. Dehomogenization is also performed
to obtain the local stress and strain fields within the RVE. The von Mises
stress field (MPa) and equivalent plastic strain distribution for the case of
22-direction loading is shown in Fig. 6, while that for the case of 23-direction
loading is shown in Fig. 7.
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Fig. 4 Stress – plastic strain curve of the elastoplastic matrix

0.000 0.005 0.010 0.015 0.020

0

40

80

120

160

σ
2
2
[M
P
a
]

ε
22
[-]

0.000 0.005 0.010 0.015 0.020

0

15

30

45

60

σ
2
3
[M
P
a
]

ε
23
[-]

Fig. 5 Macroscopic stress-strain response for the pristine RVE, for strains applied in the
22-direction (left) and the 23-direction (right), stress reported in MPa
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in the 22-direction
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Fig. 7 von Mises stress (MPa, left) and eq. plastic strain (right) for the pristine RVE loaded
in the 23-direction

Fig. 8 Schematic representation of the RVE with 2% voids in the matrix. Randomly dis-
tributed voids (left), and clustered voids (right)

4.2 Micromechanical analysis of RVE with defects

The RVE shown in Fig. 3 is considered again, now with defects in the form
of matrix voids. A void volume fraction of 2% has been used for the current
assessment. Two versions of the RVE are analyzed, one with randomly dis-
tributed voids and the other with clustered voids, to investigate the effect of
void distribution on the microscale fields. The two RVEs with different void
distributions are schematically shown in Fig. 8. Dehomogenization analysis is
carried out to determine the local stress and strain fields within the RVE. In
this case, a strain in applied in the 22-direction. The distribution of the von
Mises stress and equivalent plastic strains for the case of the randomly dis-
tributed voids is given in Fig. 9, while that for the case of clustered voids is
shown in Fig. 10. The following observations are made:

– Stress concentration occurs in the vicinity of the voids, and the stress mag-
nitude increases compared to the pristine RVE. This is seen by comparing
the von Mises stress fields in Fig. 6 with those in Figs. 9 and 10.
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Fig. 10 von Mises stress (MPa, left) and eq. plastic strain (right) for the RVE with clustered
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– The increased magnitude of von Mises stresses leads to higher plasticity,
as seen in Figs. 9 and 10.

– Clustered voids lead to higher stress concentration, and consequently plas-
tic effects, compared to randomly distributed voids.

4.3 Influence of the void fraction

The final numerical assessment is the investigation of the influence of the void
fraction on the overall macroscopic stress-strain response. Various RVEs are
developed with void fractions ranging from 1-4%, and both random and clus-
tered void distributions are considered. A strain of magnitude 0.02 is applied
in the 22-direction. Homogenisation is performed to determine the macroscale
stress-strain response. The normalized macro-stress as a function of void frac-
tion is plotted and the macroscopic stress-strain response for a void fraction
of 4% are plotted in Fig. 11. The following comments are made:

– The computed macro-stress reduces as the void fraction is increased.
– The presence of voids leads to a reduction in the macroscale material stiff-

ness, which can significantly influence global mechanical behavior.
– In all cases, clustered voids lead to a greater reduction in stresses compared

to randomly distributed voids, owing to increased localization of plasticity.
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Fig. 11 Influence of void fraction on macroscopic stress response (left), and macroscopic
stress-strain response for a void fraction of 4% (right); stress in MPa

5 Conclusions

The present work investigated the effect of microstructural matrix voids on the
macroscale mechanical behavior of unidirectional fiber-reinforced composites.
The analysis was performed via a micromechanics framework based on re-
fined beam theories, obtained using the Carrera Unified Formulation. Periodic
boundary conditions were used to maintain consistency with the repeating
nature of the RVE. Homogenization was performed to obtain the macroscopic
response, while dehomogenization provided the local stress and strain fields.
The influence of voids on the global mechanical behavior was studied, both in
terms of the void volume fraction, as well as void distribution through the RVE.
It was shown that the increase of voids leads to significant reductions in the
macroscale stiffness of the composite. It was also observed that clustered voids
are more critical than randomly distributed voids, since a clustered configura-
tion develops higher stress concentration, leading to more localized plasticity,
eventually resulting in significant reduction of the structural mechanical per-
formance. Future works include micromechanical progressive damage analysis,
considering voids, as well as structural analysis based on multiscale approaches.
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