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Abstract: The initial state of a nonlinear optical fiber system plays a vital role in the ultrafast
pulse evolution dynamic. In this work, a data-driven compressed convolutional neural network,
named inverse network, is proposed to predict initial pulse distribution through a series of discrete
power profiles at different propagation distances. The inverse network is trained and tested based
on two typical nonlinear dynamics: (1) the pulse evolution in a fiber optical parametric amplifier
system and (2) soliton pair evolution in high-nonlinear fibers. Great prediction accuracy is
reached when the epoch grows to 5000 in both cases, with the normalized root mean square errors
below 0.01 on the entire testing set. Meanwhile, the lightweight network is highly effective. In
this work, it takes approximately 30 seconds for 5,000 epochs training with a dataset size of 900.
The inverse network is further tested and analyzed on the dataset with different signal-to-noise
ratios and input sizes. The results show fair stability at the deviation on the testing set. The
proposed inverse network demonstrates a promising approach to optimizing the initial pulse of
fiber optics systems.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The propagation of ultrashort pulse in optical fiber, which exhibits highly nonlinear evolution,
has attracted attentive research interests and wide applications in the field of nonlinear fiber
optics [1–8]. With the continuous development of optical fiber system towards ultra-high speed,
ultra-large capacity and ultra-long distance, the utilization and suppression of nonlinear pulse
propagation in optical fiber is playing the governing roles in a nonlinear fiber system [9]. However,
the complex evolutions make it challenging and time-consuming to parameters optimization and
control these dynamics by conventional numerical methods [10].

As a powerful tool for system parameter optimization and construction of models of complex
dynamics from observed data, deep learning (DL) algorithms have been recently applied to
ultrafast photonics [11], optical networks [12] as well as other optical fiber systems to add
new functionalities and enhance performance [13–17]. There is recent literature of solving the
nonlinear pulse propagation governed by the nonlinear Schrödinger equation (NLSE) via DL
methods.

For example, the recurrent neural network has been applied in predicting complex nonlinear
propagation in both high-nonlinear fiber (HNLF) and multimode fibers [10,18], as well as
modeling optical fiber channel [19]. Physics-informed neural network was proposed to solve
the NLSE [20]. Deep learning approach was also used to simulate rogue waves [21] and
self-similar parabolic pulses [22–23] governed by NLSE. The comparison of different neural
network architectures for modelling nonlinear pulse propagation was also investigated [24]. The
mentioned works focused on the forward propagation problem of the modeling of the complex
nonlinear optical dynamics from a given input pulse. The corresponding inverse propagation
problem that assesses the initial pulse parameters or distributions from its nonlinear evolution
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is also of vital importance and has potential applications in the design and optimization of
experiments and real-time optical systems.

The digital backpropagation (DBP) algorithm is a promising method to the inverse propagation
problem which works by backpropagating the received signal with inverted fiber parameters.
However, this method requires high computational resources and full knowledge of system
parameters. In addition, the accuracy of the results cannot be guaranteed due to the presence of
random parameters [25–26]. In the system where a sight change in one parameter may lead to
great deviation to pulse evolution, the data-driven methods based on DL can be superior and
desirable. Therein the networks can learn from the received data and counteract the effects of
nonlinearity without prior knowledge. System agnostic nonlinear impairment compensation was
achieved by neural network [26]. The convolutional neural networks were used for compensating
nonlinear distortions in a long-haul ultrahigh capacity fiber-optic transmission system [27].
Different neural networks for obtaining the output pulse characteristics and reconstructing the
input pulse were achieved and compared [24]. The soliton properties were estimated from the
nonlinear propagation map by two types of neural networks [28].

Note that the inverse propagation problems in other nonlinear dynamics are extremely desirable
for expending the applications of DL methods in optimizing of NLSE-based systems and
overcoming time-consuming numerical simulations in a conventional optimization. Also, it is
necessary to investigate the network on the datasets different from the training set (i.e., dataset
with different fiber parameters, different signal-to-noise ratios and input size) to show the stability
of the network and to demonstrate in which case great deviations occur the predicted results.

In this work, a data-driven convolution based neural network named inverse network is
proposed to restore initial pulse through its nonlinear evolution. To confirm the wide adaptability
of the proposed network, two independent typical nonlinear dynamics, i.e., the pulse evolution in
fiber optical parametric amplifier (FOPA) systems and the soliton pair evolution in high-nonlinear
fiber (HNLF) are discussed in detail [9]. We investigate the inverse network in various cases
to ensure the precise predicting of initial pulse with different key parameters. Additionally, we
evaluate the inverse network in case of different input sizes and different signal-to-noise ratios
(SNRs). The results show that our method reveals a significant approach to estimating and
optimizing the initial pulse in the FOPA and soliton pair systems. The paper is organized as
follows. Section 2 illustrates the theory basis and the structure of proposed network. In section
3, the prediction results under two cases are given and the stability of the inverse network is
discussed. Conclusions come in Section 4.

2. Theory and model

2.1. Pulse evolution in FOPA system

Single-pump FOPA system based on degenerated four-wave mixing of a pump wave, a signal
wave and a conjugate idle wave in optical fibers can be described by coupled NLSEs [29]
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where, Ap, As and AI are the slowly varying complex amplitude of pump wave, signal wave and
idler wave, respectively. αi = α, i = p, s, I is the fiber loss coefficient. ds, dI are the walk-off
parameter for signal waves and idler waves. ∆β = βs + βI − 2βp is the linear phase mismatch
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factor. T is measured in a frame of reference moving with the pulse at the group velocity and
walk-off parameter. γ is nonlinear coefficient.

We consider the typical parameters of a FOPA system [30–31], ds and dI are set to -30
ps/km, β2s equals to - β2I , which is -20 ps2/km, β2p is 0 ps2/km, γ is set to 17 km−1W−1, α is
set to 0.05 dB/km. Other parameters necessary in the simulation are listed as follow: signal
wavelength is 1556 nm, pump wavelength is 1549 nm, second derivative of propagation constant
is -1.2 ps2/km and fourth derivative of propagation constant is -2×10−4 ps4/km. It should be
mentioned that the zero-dispersion wavelength (ZDW) of the fiber is 1549 nm, and we set the
pump wavelength at the ZDW, i.e., the β2p is zero. In this work, amplitude of pulsed signal waves
is given by

As(t, 0) =
√︁

Ps exp(a0(
t2

T2
0
)), (4)

where, Ps is the peak power of signal wave, T0 is the initial half width of signal pulse. a0 is
coefficient of the Gaussian pulse with the value of -1.44.

2.2. Soliton pair evolution in HNLF

The evolution of soliton pair is considered as another typical nonlinear dynamic. In this work,
the propagations of soliton pair with different initial relative amplitudes, separations, and phases
are focused on. In this case, considering propagation attenuation, high-order group velocity
dispersion, and fiber nonlinearity into account, the collision of two solitons can be governed by
NLSE, which can be expressed as [9]
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where, A is the slowly varying complex amplitude of the soliton pair, α is the fiber loss coefficient,
βk is group velocity dispersion of each order, γ is the nonlinear coefficient of fiber. Usually,
Eq. (5) can be simplified as
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Corresponding parameters are set as:β2 is -20 ps2/km, γ is 17 km−1W−1, α is 0.05 dB/km in
the simulation. Soliton pair with different amplitudes and phases as the input of the nonlinear
fiber is

A(0, t) =
√
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)eiθ

]︃
, (7)

where, q0, r and θ are the initial half separation, the relative amplitude, and the initial phase
difference of two solitons, which greatly determines the characteristics of initial pulse and the
evolution. t0 is the initial half width of pulse, which is set as 3 ps. P is the initial power of soliton
pair and is set to 1 W.

The split-step Fourier (SSF) method is applied to solve the Eq. (1)–(3) and (6) iteratively,
which is acknowledged as an effective and commonly used numerical approach. The detailed
basis of SSF is discussed in the authority work [9].

2.3. Proposed data-driven inverse network structure

The schematic of the proposed data-driven inverse network architecture is shown in Fig. 1, which
contains four parts: down-sampling, convolution blocks, reshaping, and full-connected layers.
Now, let us take a closer look at the technical details of the inverse network. To lightweight the
network and reduce computation demands, down sampling is firstly carried out. The primary
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pulse propagation distribution is transformed to the input of inverse network, which is a matrix
of discrete power profiles at different propagation distance A(z, t) of size m and n corresponding
to the number of sampling points in time and distance domain. In this work, m and n are 128,
which indicate that the size of input A(z, t) is 128×128.

Fig. 1. (a) Schematic of data-driven inverse network architecture: down-sampling, convolu-
tion blocks, reshaping and full-connected layers. (b) Structure of convolution block: 3×3
convolution, rectified linear unit (ReLU) activation function and 2×2 max pooling.

Here, convolution blocks are applied to extract the features of the input intensity matrix. The
number of the convolution blocks is also flexible according to the size of the input image. In this
work, three convolution blocks are used, which contain 3×3 convolution, ReLU activation function
and 2×2 max pooling. Afterwards, the extracted feature cube of 8×16×16 size is reshaped to
one dimensional feature vector (1×2048) and served as the input of three full-connected layers
whose function are to further predict the initial state A(0, t). Note that the reshaping process can
be realized by other structures such as spatial pyramid pooling. We adopt a concise approach
for the sake of computational efficiency while maintaining the accuracy of the prediction. The
mapping function of the inverse network Nθ can be solved by

N∗
θ= arg min

θ∈Θ
| |Nθ (A(z, t)) − A0(0, t)| |,

∀(A(z, t), A0(0, t)) ∈ DT ,
(8)

where, Nθ is the mapping function of the neural network defined by a set of weights and biases
θ ∈ Θ. N∗

θ is the optimal solution of Nθ . DT is the training set.

DT = {(A(z, t)i, A0(0, t)i); i = 1, . . . , K}, (9)

where, A(z, t)i and A0(0, t)i are inputted intensity matrix and ground truth of initial pulse. K is he
size of train set.

The weights and biases of proposed inverse network are updated by the backpropagation of root
mean squared error (RMSE) between the predicted intensity of initial pulse and the ground truth
and Adam is employed as the strategy. The program is implemented with Pytorch framework.

3. Results and discussion

3.1. Pulse prediction in the evolution of pulses in FOPA system

Before we demonstrated the prediction performance of proposed inverse network based on the
mentioned data sets, details of training and testing process are discussed firstly to give an insight
into how the network operated. The signal pulse prediction in FOPA is considered as two cases
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of varying the initial signal power Ps and the initial half width of signal pulse T0. In the first case,
Ps is ranging from 0.5 mW to 1.0 mW with T0 remaining 20 ps. And T0 varies from 30 ps to 10
ps with Ps remaining 0.64 mW in the latter attempt. All the datasets are generated by SSF method
in Python 3.7 platform. The computation platform owns an Intel 9900k CPU and a 2080Ti GPU.

In each case, 1000 NLSE realizations are achieved by simulating the signal pulse propagations
at the fiber length from 100 m to 228 m in the FOPA system. Thereinto, 900 realizations are used
for training the network and 100 realizations are utilized in the testing phase. The cross-validation
is used to overcome overfitting in the training phase. The proposed network is trained and tested
ten times in each case. And each time the training set and the testing set are randomly split,
i.e., the testing set is independent of the training set in the whole training phase. The final
prediction accuracy is the average of ten outcomes. It should be mentioned that the proposed
inverse network can obtain a similar performance on astringency and prediction accuracy on
the dataset with different propagations distances. Hence, without loss of generality, the pulse
propagation distributions from 100 m to 228 m are utilized in the training and testing phases to
show a general prediction result.

To begin with, the case of different initial signal power is considered. The predicted power
profiles and the ground truth setting with initial power of 0.735 mW, 0.526 mW and 0.969 mW
with corresponding epochs of 500, 2000, and 5000 are illustrated in Fig. 2(a)-(c) as typical
examples. Corresponding pulse propagations are shown in Fig. 2(d)-(f). As shown in Fig. 2(d)-(f),
initial signal power greatly affects the temporal amplitude of pulse propagation, especially in the
late stage of evolution. It is clearly seen in Fig. 2(a)-(c), the prediction results are closer to the
ground truth, as the training goes on. During the epoch number increases to 2000, the shapes of
predicted initial pulse gradually approximate the target one. Admirable consistencies are reached
after 5000 epochs training, whether setting the initial signal power low or high, which indicates
the great performance on the different initial power case.

Fig. 2. (a), (b) and (c) Predicted power distribution profiles with initial signal power of
0.735 mW, 0.526 mW and 0.969 mW at corresponding epochs of 500, 2000, 5000 and ground
truth. (d), (e) and (f) Corresponding pulse propagation process of (a), (b) and (c).

Additionally, we discuss the case with various initial pulse widths. Three representative
predicted power profiles are illustrated in Fig. 3(a)-(c). Corresponding pulse propagations are
shown in Fig. 3(d)-(f). Different from Fig. 2(d)-(f), the initial pulse width mainly influences the
broadening of the pulse and has slight impact on the temporal amplitude during the propagation,
which is illustrated in Fig. 3(d)-(f). The predicted pulses with different epochs show a similar
quality to Fig. 2(a)-(c). The inverse network can output strongly consistent initial pulse distribution
when the epoch grows to 5000.
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Fig. 3. (a), (b) and (c) Predicted power distribution profiles with initial signal half pulse
width of 27.10 ps, 10.88 ps and 20.64 ps at corresponding epochs of 500, 2000, 5000 and
ground truth. (d), (e) and (f) Corresponding pulse propagation process of (a), (b) and (c).

The number of epochs that obtain a good prediction result can be floating, which is related
to learning rate, size of the dataset and other network parameters. In this work, thanks to the
mentioned network lightweight approaches, a 5000-epoch training only costs approximately 30
seconds.

We further investigate the relation between dataset size and required training epoch. The
dataset size is changed from 1000 to 500 and 300, and the network setting remains the same. The
network is trained and tested under different dataset sizes according to the case in Fig. 3. The
normalized losses of testing set under different dataset sizes are plotted in Fig. 4. The results
show that reducing the dataset size can speed up the convergence of network. However, reducing
the dataset size will decline the effective prediction range of initial pulse.

Fig. 4. Normalized loss of testing set with different dataset sizes.

Here, the normalized root mean squared error R1 is applied to evaluate the performance of the
inverse network, which is as follow

R1(x, x̂) =

√︄∑︁
(x0 − x̂0)

2∑︁
(x0)

2 , (10)

where x̂0 and x0 are the predicted initial power distribution by the inverse network and ground
truth. Therefore, we measured R1 at different training epoch in two cases (i.e., Case 1: varying
initial signal power, Case 2: varying initial half width of signal wave) on the 100 different pulse
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propagation maps, which is displaced in Fig. 5. The R1 on testing sets further establish the great
predicting performance of the proposed method. After 5000 epochs training, the R1 on two
testing sets are 0.0063 and 0.0067, respectively. The high-degree of consistency on both variable
power case and variable width case demonstrate that proposed inverse network can predict the
initial input state with a limited pulse propagation in FOPAs.

Fig. 5. Normalized root mean squared errors on two cases with corresponding epochs of
500, 2000, 5000.

3.2. Pulse prediction in the soliton pair evolution in HNLF

In addition, we consider pulse prediction in a more complex dynamic that the soliton pair
evolution in HNLF. Two different cases are analyzed that varying the initial half separation q0
and the relative amplitude r of two solitons. In two conditions, q0 is set from 2 ps to 4 ps with
r of 1, and r is set as 0.5 to 1.5 while q0 remaining 3 ps, respectively. Similarly, in each case,
1000 NLSE realizations are obtained by simulating the nonlinear propagations of soliton pair
at distance of 500 m to 1140 m in HNLF. Thereinto, 900 realizations are used for training the
network and 100 realizations are applied in the test phase.

To begin with, we discuss the three typical prediction results of different q0 with training
epochs of 500, 2000 and 5000 in the condition of relative amplitude and relative phase setting to
1 and 0 respectively, which are plotted in Fig. 6(a)-(c). The corresponding pulse propagation
process is shown in Fig. 6(d)-(f). The dynamic of soliton pair with the same power and phase is a
periodic attraction that the soliton pair attracts to each other, and periodic collision occurs along
with the propagation distance. The q0 affects the periodic length that the larger q0, the longer a
collision occurs. At the epoch of 500, it is observed in Fig. 6(a)-(c) that the generated initial
pulses perform poorly and distinct with the ground truth. As the number of epochs turns to 2000,
the distributions of prediction pulse are approximate to the target ones. The inverse network can
generate a highly exact estimation of initial waveform when the epoch number increases to 5000.

Then, we test the prediction performance in the case of different r while the initial half
separation remaining 3 ps. The initial relative phase of two solitons is 0. As established in
Fig. 7(a)-(c), we select three typical predictions of high, low, and normal relative amplitude
r when training epochs reach 500, 2000 and 5000. Corresponding pulse propagation process
of Fig. 7(a)-(c) are given in Fig. 7(d)-(f), in which the soliton pair attract to each other and
periodic crash when the relative amplitude is near 1. Once there is a great amplitude difference
between soliton pair, two solitons propagate separately along with the fiber length and nonlinear
fluctuations occur on both solitons. Besides, the proposed inverse network reveals a similar
performance during training compared to the above case of different q0. After 2000 epochs of
training, the generated initial waveform gradually matches the expected distribution from a badly
agreed primary prediction. Exact initial pulse distributions are obtained with their sectional
evolution maps when the number of epochs turns to 5000, as clearly shown in Fig. 7(a)-(c).
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Fig. 6. (a), (b) and (c) Predicted power distribution profiles with initial half separation of
2.078 ps, 3.862 ps and 2.922 ps at corresponding epochs of 500, 2000, 5000 and ground
truth. (d), (e) and (f) Corresponding pulse propagation process of (a), (b) and (c).

Fig. 7. (a), (b) and (c) Predicted power distribution profiles with relative amplitude of 1.005,
0.640 and 1.422 at corresponding epochs of 500, 2000, 5000 and ground truth. (d), (e) and
(f) Corresponding pulse propagation process of (a), (b) and (c).

Note that the initial phase difference of neighboring solitons θ is also a non-negligible factor
that impacts the evolution of soliton pair. The in-phase cases are discussed above. We further
test the proposed network under two aforesaid cases by interchanging the initial phase difference
θ to π/4 for verifying the robustness of the proposed method. The case of variable q0 is firstly
given in Fig. 8(a)-(c). Comparing Fig. 6(d)-(f) to Fig. 8(d)-(f), the difference of initial phase
of two solitons θ leading to wide divergences of soliton pair propagation. Different from the
periodic attraction in Fig. 6(d)-(f), soliton pair appear diverse propagation process when the
relative phase of π/4. In Fig. 8(d) and (e), the two solitons repulse strongly and the distance
between them increases during subsequent evolution, after an initial phase of attraction. However,
weakening interaction between the two solitons to make solitons propagating smoothly in a long
distance is essential in the optical communication system. The expected propagation process can
be achieved by setting the appropriate q0, as demonstrated in Fig. 8(f).

Furthermore, we discuss the predictions with π/4 initial phase difference and various relative
amplitude. Three traditional facts with r of 1.036, 0.658 and 1.432 are shown in Fig. 9(a)-(c).
Corresponding evolutions of soliton pair are shown in Fig. 9(d)-(f). Similar to the results of the



Research Article Vol. 29, No. 26 / 20 Dec 2021 / Optics Express 44088

Fig. 8. (a), (b) and (c) Predicted power distribution profiles with relative phase and initial
half distance of 2.078 ps, 3.862 ps and 2.922 ps at corresponding epochs of 500, 2000, 5000
and ground truth. (d), (e) and (f) Corresponding pulse propagation process of (a), (b) and
(c).

previous cases, accurate initial pulse waveforms are generated by the inverse network after 5000
epochs training. Comparing Fig. 7(d) to Fig. 9(d), the relative phase has a great impact on the
behavior of soliton pair when relative amplitude is about 1. When the initial phase difference
of two solitons is set to π/4, instead of periodically attracting, solitons firstly go through the
attraction phase then attempt to repel and separate. However, if the amplitude of two solitons
is largely different, the influence of relative phase on the soliton pair propagation is tiny, the
behaviors of soliton pair are semblable with Fig. 7(e)-(f).

Fig. 9. (a), (b) and (c) Predicted power distribution profiles with π/4 relative phase and
relative amplitude of 1.036, 0.658 and 1.432 at corresponding epochs of 500, 2000, 5000 and
ground truth. (d), (e) and (f) Corresponding pulse propagation process of (a), (b) and (c).

Afterwards, the normalized root mean squared error R1 is utilized in the four concerned cases,
which are listed as Case 1: varying initial half separation with initial phase difference of 0, Case
2: varying relative amplitude with initial phase difference of 0, Case 3: varying initial half
separation with initial phase difference of π/4 and Case 4: varying relative amplitude with initial
phase difference of π/4, respectively. The calculated R1 are demonstrated in Fig. 10. As the
number of epochs grows to 5000, the R1 with four cases are 0.0037, 0.0025, 0.0062, and 0.0096
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respectively, which verify that the predicted initial distributions are highly consistent with the
ground truth in entire testing sets.

Fig. 10. Normalized root mean squared errors on four cases with corresponding epochs of
500, 2000, 5000.

3.3. Stability of the inverse network

Furthermore, we investigate the stability of the inverse network. The performance of the inverse
network to the noise is discussed firstly. Gaussian noises are added to the testing sets in previous
cases (i.e., two FOPA cases and four soliton cases). The inverse network is examined on
the corresponding testing sets with the SNR of 10 dB, 20 dB, and 30 dB, respectively. The
corresponding normalized root mean squared errors are listed in Table 1 and 2, respectively.

Table 1. Normalized root mean squared errors in
FOPA cases with different SNRs

SNR Case 1 Case 2

10 dB 0.0749 0.0749

20 dB 0.0278 0.0225

30 dB 0.0085 0.0098

The results show that the inverse network is robust to the noise. When the SNR of the testing
set is 30 dB, the predicting accuracy is hardly influenced. As the SNR decreases, the deviation of
predicted pulse to the truth increases.

Table 2 further demonstrates the noise immunity of the inverse network. When the SNR of
the testing sets is higher than 20 dB, the R1 is still very low, which indicates that stability of
the inverse network to Gaussian noise is significant. However, in case that the SNR of testing
set is about 10 dB, the prediction error has increased substantially. The network needs to be
retrained to accommodate the noise data. Besides, the R1 in the soliton cases are lower than that
of FOPA cases at same SNR. The propagation characteristics that the amplitude of soliton is
relatively stable compared with that of FOPA system can lead to the advantage. In FOPA system,
the amplitude of signal pulse is weak in the beginning, high noise influences the early stage of
the FOPA evolution greatly, thus leading to higher deviation on the prediction initial pulse.

Despite the stability of network to noise, the performance of inverse network on different sizes
of input is also studied. We emphasize the prediction by using less or even a dozen discrete
power distributions profiles at different propagation locations.

In detail, the datasets with different sizes are obtained by discrete sampling step size over
propagation distance. In two discussed nonlinear dynamics, the origin step size is set as 1 m
and 5 m. We ulteriorly considered step size of 2 m, 4 m, 8 m within FOPA cases and step size



Research Article Vol. 29, No. 26 / 20 Dec 2021 / Optics Express 44090

Table 2. Normalized root mean squared errors in soliton
cases with different SNRs

SNR Case 1 Case 2 Case 3 Case 4

10 dB 0.0428 0.0269 0.0515 0.0801

20 dB 0.0125 0.0096 0.0296 0.0223

30 dB 0.0047 0.0027 0.0161 0.0104

of 10 m, 20 m, 40 m in the soliton cases, which corresponds to 64, 32, 16 power profiles. We
keep the structure of the inverse network as well as the realization of network training and testing
unchanged. The results of two FOPA cases are shown in Table 3.

Table 3. Normalized root mean squared errors in
FOPA cases

Number of profiles (Epoch) Case 1 Case 2

64 (5k) 0.0087 0.0092

32 (5k) 0.0118 0.0125

16 (5k) 0.0179 0.0152

Similar prediction performance on the whole testing set is obtained compared to results shown
in Fig. 4. Despite the decreasing of power profiles used in training having a minor influence on
the R1, the inverse network reaches a great prediction accuracy when the epoch grows to 5000.
Especially when the power distribution profiles are reduced to an eighth of the original setting,
the R1 is still below 0.02. Besides, the R1 on the soliton pair evolution cases are displaced in
Table 4.

Table 4. Normalized root mean squared errors in soliton cases

Number of profiles (Epoch) Case 1 Case 2 Case 3 Case 4

64 (5k) 0.0071 0.0108 0.0087 0.0095

32 (5k) 0.0148 0.0097 0.0125 0.0134

16 (5k) 0.0225 0.0178 0.0189 0.0154

Compared with the prediction based on 128 distance discrete power distributions that given
in Fig. 9, the R1 slightly increases when the number of power distribution profiles is declined
at epoch of 5000 in Table 4. However, the increase is acceptable since for the R1 is lower than
0.025 after 5000 epochs training when the input size is heavily reduced. The results show that
decreasing the number of power distribution profile used in training has a minor effect on the
convergence rate and prediction accuracy in both nonlinear dynamics, which further reveals the
robustness of the proposed network in a small input size.

In summary, the comparisons of normalized root mean squared errors on all tests performed
are detailed given in Table 5. The discussion of adaptability on different noise levels and input
sizes proves the inverse network a promising approach to assess the initial state of nonlinear fiber
system. In addition, the proposed network can be very concise and timesaving by virtue of a
series of lightweight methods, with potential application in the real-time system optimization
and pulse prediction.
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Table 5. Comparison of normalized root mean squared errors on all tests performed

Different SNRs with input size of 128 Different input sizes without noise

30 dB 20 dB 10 dB 64 32 16

FOPA Case1 0.0085 0.0278 0.0749 0.0087 0.0118 0.0179

FOPA Case2 0.0098 0.0225 0.0749 0.0092 0.0125 0.0152

Soliton Case1 0.0047 0.0125 0.0428 0.0071 0.0148 0.0225

Soliton Case2 0.0027 0.0096 0.0269 0.0108 0.0097 0.0178

Soliton Case3 0.0161 0.0296 0.0515 0.0087 0.0125 0.0189

Soliton Case4 0.0104 0.0223 0.0801 0.0095 0.0134 0.0154

4. Conclusions

The initial pulse state has a great impact on the nonlinear pulse evolution in fiber optics, which
makes it significant to assess the initial distribution of a nonlinear optical fiber system. In
this work, an inverse network that contains down-sampling, convolution blocks, reshaping, and
full-connected layers is proposed to predict the initial pulse distribution of two typical nonlinear
dynamics (i.e., the pulse evolution in FOPA system and the soliton pair evolution in HLNF)
through their limited power profiles at different propagation distance. When the epoch grows to
5000, the inverse network can output accurate predicted initial pulse waveform in both cases.
While maintaining the prediction accuracy, the highly compressed inverse network demonstrates
great performance in efficiency. We further test the inverse network with datasets of different
SNRs and input sizes. The inverse network shows pretty stability to the deviation on the testing
set. The proposed inverse network opens new perspectives for initial pulse estimation and pulse
parameter optimization for future nonlinear fiber optics systems.
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