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Abstract
An automated and data-driven rules extraction is crucial for the construction of Fuzzy Inference Systems
(FIS). This work presents a method for extracting fuzzy rules based on clustering and association mining
through the FP-growth algorithm. First, Self Organizing Maps are used to identify subsets of elements
with similar characteristics, separately for each class. Then, the FP-Growth algorithm is applied to each
cluster. Elements matching each rule are subdivided in the corresponding classes and only rules showing
a predominance of elements belonging to one class are used as fuzzy rules.
The method was applied to the construction of a Decision Support System based on FIS for the target
prostate biopsy outcome prediction based on six pre-bioptic variables. A dataset containing 1447 patients
(824 with positive outcome, 623 with negative outcome) was used. Four and six clusters were identified
for the positive and the negative class, respectively. A total of 151 rules were extracted with FP-Growth
algorithm and 29 were included in the FIS. The system was able to classify 927 patients out of 1447. On
the classi-fied subjects, it reached a sensitivity of 87.5% and a specificity of 58.8%.
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1. Introduction

Ever since their first implementation, Fuzzy Inference Systems (FIS) have proven a valuable
tool to perform classification tasks in complex environments. Their main advantage resides in
their capability of dealing with uncertainty, which is typical of biological systems and is often
difficult to model in real life applications [1, 2]. In the latest decade, indeed, FIS were often used
in the medical field for the implementation of decision support systems, with promising results
[3, 4].
The main critical aspect in the design of a FIS is the construction of the fuzzy rules. On their
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basis, the combination of the activations of specific membership functions in the input variables
leads to a membership degree for the output variable MFs. In several applications, fuzzy rules
are typically identified according to expert knowledge. Nevertheless, it was often proved that
FIS based on expert knowledge lack of generalizability in the case of complex systems and
are uncapable of accurately matching the wide range of combinations that a high number of
features may convey [1, 2].
In this context, research on data-driven approaches for the definition of fuzzy rules is currently
of high interest. In this work, we present a method for extracting fuzzy rules from a dataset
based on clustering and association mining through the FP-growth algorithm. Our method
allows to find underlying patterns within patients with a similar outcome, cutting out the need
to integrate any expert knowledge.
We applied our method to the design of a FIS-based Decision Support System (DSS) for the
prediction of the outcome of target Prostate Biopsy (PB) based on six pre-bioptic variables. The
final goal of the implemented system is the pre-selection of ideal candidates for target PB, thus
reducing the high number of unneeded biopsies that are performed nowadays.

2. Materials and Methods

2.1. Fuzzy Rule Extraction

The method for the extraction of fuzzy rules is made of four steps: (1) clustering using Self
Organizing Maps (SOMs) and hierarchical clustering; (2) dataset binarization; (3) rule extraction
using the FP-growth algorithm; and (4) check of class predominance and rules input into the
FIS.

Step 1: Clustering. The first step consists of dividing the dataset into groups according to
the class and in applying clustering to each group in order to identify subgroups with similar
characteristics. The SOMs combined with agglomerative hierarchical clustering are employed to
this scope. In particular, a SOM is trained for each group of elements. The network parameters
(dimension, neighborhood size, training steps and neuron distance function) are tuned according
to the problem and the dataset characteristics. Once the SOM is trained, the agglomerative
hierarchical clustering with the complete linkage method was applied to the neurons weights
to obtain clusters of neurons. Finally, the elements belonging to neurons of the same cluster are
assembled to obtain subgroups of elements with similar characteristics (clusters).

Step 2: Dataset Binarization. Since the FP-Growth algorithm that is applied to the next
step works only on binary data, each non-binary original variable (continuous, categorical or
discrete) must be transformed into a binary one. To this scope, each continuous or discrete
variable is divided into intervals and each couple variable-interval is associated to a new binary
variable: for each original value that the variable assumes for a given element, a “1” is set in the
corresponding couple variable-interval; all the other couples related to the same variable are set
to “0”. Intervals must be defined according to the fuzzy input variables used for the FIS: each
membership function of a fuzzy variable must correspond to an interval in the binary matrix.
This procedure is applied to every cluster to obtain a binary matrix for each of them.
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Step 3: Rule Extraction. To automatically extract the rules, the FP(Frequent Patterns)-
Growth algorithm is used, that allows frequent pattern generation based on a compressed
representation of the items in a dataset called FP-tree [5]. The FP-Growth is applied to the
binary matrix associated to each cluster (the class variable is not used in this phase) and returned
the list of the frequent itemsets mined from it. The algorithm parameters (support, confidence
and lift) are tuned according to the specific problem. Finally, each itemset is transformed into
a rule: each item in the itemset is transformed into a couple variable-interval and used as
antecedent of the rule; all antecedents are linked with the AND operator; the rule consequent is
assigned to the class which the elements in the considered cluster belongs to. An example of
rule generation from an itemset containing 3 items and extracted from a cluster belonging to the
negative class is reported in Fig. 2.1. Itemsets containing only one item are not used for the rule
extraction since they would produce too generic rules (containing only one antecedent). Once
the rule extraction is performed for every cluster, duplicated rules (i.e. having equal antecedents
and consequent) are removed from the list.

Figure 1: Example of rule generation from a cluster of elements belonging to the negative class.

Step 4: Check of class predominance and rules input into the FIS For each rule obtained
from the previous step, the class predominance is assessed. First, the number of elements
matching the rule is counted for each class separately. Then, the rule predominance is calculated
as the ratio between the number of elements belonging to one class with respect to the number
of elements belonging to the other classes. Only rules showing a predominance of elements
belonging to one class are kept and input into the FIS. In this way, rules that are not class-specific
are removed. A threshold on the predominance is set according to the specialization that the
system aims to reach: higher thresholds lead to rules that are more specific for a given class;
however, this could lead to a lower number of elements matching the rules and thus classified
by the FIS.

2.2. Validation

The described method was validated through its usage for the construction of a FIS-based DSS
for the prediction of the outcome of target PB. In particular, the method was applied on a
sample male population counting 1447 patients, whose data were recorded from March 2014 to
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December 2019 and retrospectively analyzed. For each patient, six pre-bioptic features were
taken into account, namely PSA density, digital rectal examination (DRE), previous PBs, number
of suspicious lesions at mp-MRI, lesion location and Pi-Rads score. 824 patients had a positive
biopsy outcome and were classified as class “1”, whereas 623 patients had a negative biopsy
outcome and were classified as class “0”.
The FIS was made of 6 input variables, corresponding to the pre-bioptic features and modelled
with a set of trapezoidal or triangular Membership Functions (MFs), according to the variable,
and 1 output variable associated to the patient class and modelled with two triangular MFs
(negative and positive).
The method results for each step were reported and the final performances were indirectly
assessed by means of the performance of the FIS in classifying the entire sample population.
All steps were implemented using MATLAB® release R2021a (The MathWorks Inc., Natick, MA,
USA).

3. Results and Discussion

The clustering of the two groups of patients was performed using two SOMs with dimension 4x4
and 5x5 for the positive and negative group, respectively. Four clusters of positive patients and
6 clusters of negative patients were identified using the agglomerative hierarchical clustering,
highlighting a higher heterogeneity in the latter group, even though it is smaller than the
positive group.
The dataset binarization allows to obtain 19 binary couples variable-interval: 2 intervals were
identified for the PSA density (≤0.15 ng/ml/cc; >0.15 ng/ml/cc), 3 intervals for the DRE (negative,
positive, uncertain) and the previous PBs (none, all negative, at least one positive), 4 intervals
for the number of suspicious lesions at mp-MRI (1, 2, 3, 4 suspicious lesions), 2 intervals for the
lesion location (peripheral, transitional/anterior) and 5 intervals for the Pi-Rads score (1, 2, 3, 4,
5).
The FP-Growth algorithm was applied to binary matrix of each cluster setting the following
parameters: support = 0.25; confidence = 0.5; lift = 1. These values were selected after a tuning
phase in which the performance of the final FIS was evaluated for each set of extracted rules.
A total of 151 rules were extracted with FP-Growth algorithm after the removal of itemsets
containing only one item and duplicated rules: 99 rules for the negative class and 52 rules for the
positive class. Again, this result confirms the greater heterogeneity of negative patients, since
more rules are needed to describe this population. This intermediate result is neither obvious
nor evident from the analysis of the entire dataset: a higher variability is usually expected in
the positive population, due to differences in the tumor characteristics (e.g. aggressiveness).
We set the threshold for the class predominance equal to 3: this means that only rules matching
a number of positive patients at least triple with respect to the negative ones (or vice-versa)
were included in the FIS. This led to a selection of 29 rules: 21 rules for the classification in
the negative class and the remaining 8 rules for the positive class. The list of the 29 rules is
reported in Table 1.
Using only 29 rules, the FIS was able to classify 927 patients out of 1447 (405 negative and
522 positive). On the classified subjects, it reached a total accuracy of 75%, with sensitivity =
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Table 1
Rules inserted into the FIS.

N Antecedent Consequent

1 IF (lesion location IS periph) AND (Pi-Rads IS 3) THEN (class IS n)
2 IF (N of lesions IS 1) AND (Pi-Rads IS 3) THEN (class IS n)
3 IF (lesion location IS periph) AND (N of lesions IS 1) AND (Pi-Rads IS

3)
THEN (class IS n)

4 IF (previous PBs IS all negative) AND (Pi-Rads IS 3) THEN (class IS n)
5 IF (previous PBs IS none) AND (N of lesions IS 1) AND (Pi-Rads IS 3) THEN (class IS n)
6 IF (DRE IS negative) AND (Pi-Rads IS 3) THEN (class IS n)
7 IF (DRE IS negative) AND (lesion location IS periph) AND (Pi-Rads IS

3)
THEN (class IS n)

8 IF (DRE IS negative) AND (N of lesions IS 1) AND (Pi-Rads IS 3) THEN (class IS n)
9 IF (DRE IS negative) AND (N of lesions IS 1) AND (lesion location IS

periph) AND (Pi-Rads IS 3)
THEN (class IS n)

10 IF (DRE IS negative) AND (previous PBs IS none) AND (Pi-Rads IS 3) THEN (class IS n)
11 IF (DRE IS negative) AND (previous PBs IS none) AND (N of lesions IS

1) AND (Pi-Rads IS 3)
THEN (class IS n)

12 IF (DRE IS negative) AND (previous PBs IS none) AND (N of lesions IS
1) AND (lesion location IS periph) AND (Pi-Rads IS 3)

THEN (class IS n)

13 IF (PSA density IS low) AND (Pi-Rads IS 3) THEN (class IS n)
14 IF (PSA density IS low) AND (lesion location IS periph) AND (Pi-Rads

IS 3)
THEN (class IS n)

15 IF (PSA density IS low) AND (N of lesions IS 1) AND (Pi-Rads IS 3) THEN (class IS n)
16 IF (PSA density IS low) AND (N of lesions IS 1) AND (lesion location IS

periph) AND (Pi-Rads IS 3)
THEN (class IS n)

17 IF (PSA density IS low) AND (previous PBs IS none) AND (Pi-Rads IS 3) THEN (class IS n)
18 IF (PSA density IS low) AND (DRE IS negative) AND (Pi-Rads IS 3) THEN (class IS n)
19 IF (PSA density IS low) AND (DRE IS negative) AND (lesion location IS

periph) AND (Pi-Rads IS 3)
THEN (class IS n)

20 IF (PSA density IS low) AND (DRE IS negative) AND (N of lesions IS 1)
AND (Pi-Rads IS 3)

THEN (class IS n)

21 IF (PSA density IS low) AND (DRE IS negative) AND (previous PBs IS
none) AND (Pi-Rads IS 3)

THEN (class IS n)

22 IF (lesion location IS periph) AND (Pi-Rads IS 5) THEN (class IS p)
23 IF (previous PBs IS none) AND (Pi-Rads IS 5) THEN (class IS p)
24 IF (previous PBs IS none) AND IF (lesion location IS periph) AND (Pi-

Rads IS 5)
THEN (class IS p)

25 IF (DRE IS positive) AND (lesion location IS periph) THEN (class IS p)
26 IF (DRE IS positive) AND (N of lesions IS 1) THEN (class IS p)
27 IF (DRE IS positive) AND (N of lesions IS 1) AND (lesion location IS

periph)
THEN (class IS p)

28 IF (PSA density IS high) AND (previous PBs IS none) THEN (class IS p)
29 IF (PSA density IS high) AND (previous PBs IS none) AND (lesion

location IS periph)
THEN (class IS p)
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87.5% and specificity = 58.8%. This means that, although the limited number of rules extracted
for the positive class (only 8 rules), they are able to correctly describe the characteristics of
more than the 87% of patients that will result positive to the biopsy. On the other hand, the
lower performance on the negative class (specificity =58.8%) could be explained with the high
heterogeneity that emerged for these patients in the previous steps. This problem could be faced,
for example, by clustering these patients using a higher number of clusters, in order to further
reduce the intra-cluster variability. Another criticality emerging from these results could be the
presence of patients that are not classified by the system. However, from the clinical point of
view, it is possible to consider these subjects (218 negative and 302 positive) as “at risk” and
perform the biopsy.

4. Conclusions

In this study we present a methodology that combines clustering and association mining for the
extraction of a set of fuzzy rules in an automated, data-driven way. We presented the results of
the methodology application for the extraction of rules to be included in a FIS-based DSS for the
prediction of the outcome of target prostate biopsy. Our results, although preliminary, proved
the effectiveness of the methodology, since a sensitivity of 87.5% was reached by our system.
From the intermediate results of the method it is possible to mine new knowledge about the
dataset heterogeneity.
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