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Abstract
Star inventors generate superior innovation outcomes. Their capacity to invent high-quality 
patents might be decisive beyond mere productivity. However, the relationship between 
quantitative and qualitative dimensions has not been exhaustively investigated. The equal 
odds baseline (EOB) framework can explicitly model this relationship. This work com-
bines a theoretical model for creative production with recent calls in the patentometrics lit-
erature for multifaceted measurement of the ability to create high-quality patents. The EOB 
is extended and analyzed through structural equation modeling. Specifically, we compared 
a multifaceted EOB model with a single latent variable for quality, and a two-dimensional 
model that distinguishes between technological complexity and value of invention portfo-
lios. The two-dimensional model had better fit but weaker factor scores (for the “value” 
latent variable) than the unidimensional model. These findings suggest that both the uni- 
and the two-dimensional approaches can be directly used for extending research on star 
inventors, while for practical high-stakes assessments the two-dimensional model would 
require further improvements.

Keywords Intellectual productivity · Creativity · Patent quality · Star inventors

Introduction

Star inventors are considered of extreme interest since they generate superior innovation 
outcomes (Groysberg & Lee, 2009; Oldroyd & Morris, 2012; Zucker & Darby, 1997). 
However, their identification is not immediate and can rely on different measures: is 
quantity of output sufficient or are quality indicators needed? For example, stars (please 
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note that from here onward we will use the terms star inventors and stars synonymously 
throughout the manuscript) have been usually identified through statistical cut-offs (e.g., 
using a top percentile or standard deviations as reference thresholds) calculated on mere 
productivity or on both productivity and citation counts as quality indicator (Bergé et al., 
2018; Hess & Rothaermel, 2011; Rothaermel & Hess, 2007).

Disentangling inventors’ productivity and the quality of their patents1 is generally quite 
challenging because quantity and quality are intricately related (Forthmann, Szardenings, 
et al., 2021; Forthmann, et al., 2021a; Prathap, 2018; Simonton, 2009). In fact, the number 
of citations an inventor receives has been found to be a linear function of the number of 
patents, as suggested by Simonton’s equal odds baseline (EOB) (Simonton, 1988a, 1988b, 
1988c, 2004, 2010). However, the EOB framework also suggests the lack of a significant 
correlation between the average quality of an inventor’s patent portfolio and its size. Recent 
theoretical extensions and empirical evidence strongly suggest that the quality-quantity 
relationship increases when conditional quantiles towards the upper tail of the quality dis-
tribution are modeled as a function of quantity (Forthmann, Leveling, et al., 2020; Forth-
mann, Szardenings, et  al., 2021). Hence, it is questionable in how far quality indicators 
such as citation counts are incrementally informative for the identification of star inventors.

In addition, researchers have called for more multifaceted measurement of patent qual-
ity (Caviggioli, Colombelli, et al., 2020; Caviggioli, De Marco, et al., 2020; Higham et al., 
2020; Lanjouw & Schankerman, 2004; van Zeebroeck, 2011). Consequently, a multidimen-
sional measurement perspective that focuses on between-inventor differences and explicitly 
takes the quality-quantity relationship into account poses a challenge for the identification 
of star inventors.

In this study, we focus on patent inventors and their capacity to invent high-quality pat-
ents, a dimension of analysis which might be decisive beyond mere productivity (Kehoe 
et al., 2018; Rothaermel & Hess, 2007). The most frequent methods to define a star inven-
tor in the literature considered when the inventor is either extremely prolific (quantity) and/
or is involved in the creation of outstanding inventions (quality). The relationship between 
the two dimensions has not been exhaustively investigated in light of what can be consid-
ered determinant for the identification of star inventors as agents to increase the produc-
tion of valuable innovations. We use and extend the EOB framework to explicitly take the 
relationship between quantity and quality into account and thus provide useful diagnostic 
information for the identification of star inventors. We contribute to the literature by mod-
eling a multifaceted extension of the EOB and incorporating latent variables with the aim 
to isolate the measurement of quality from quantity. Hence, it should further be noted that, 
beyond the specific implications for the identification of star inventors, the modeling of 
quantity and quality focused solely on one quality dimension thus far (Den Hartigh et al., 
2016; Simonton, 2004, 2010; Sinatra et al., 2016): we extend it from a unidimensional to a 
multidimensional quality modeling.

The remainder of this article is organized as follows. Section  2 reviews the litera-
ture on the identification of star individuals and the EOB model, deriving the aim of our 
research. Section 3 describes the dataset and provide details on the operationalization of 
the employed measures. Section 4 reports the results of the analysis. Finally, Sect. 5 con-
cludes and discusses the findings.

1 Notably, the perhaps most widely known attempt to combine productivity and quality in single score—
i.e., the Hirsch index (Hirsch, 2005)—has also been applied to patents (e.g., Guan &Gao 2009; Motiwala 
et al., 2020).
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Research framework

Star individuals

The relevance of star scientists is not limited to a direct increase of output (Groysberg & 
Lee, 2009) but they also support organization activities (Kehoe & Tzabbar, 2015) and 
improve the attraction of resources and skilled personnel (Hess & Rothaermel, 2011; Lac-
etera et al., 2004). They also indirectly foster the productivity of peers and collaborators 
thanks to learning and emulation (Lockwood & Kunda, 1997). Although there is consensus 
on the presence of a general positive impact of star individuals, it is worth reminding that 
in some cases the literature identified negative effects in organizations due to coordination 
costs and conflicts (Bendersky & Hays, 2012; Groysberg et al., 2011; Swaab et al., 2014). 
Furthermore, hiring stars is often expensive (Groysberg et al., 2011) and thus it should be 
considered a critical activity. The findings of the literature support the need to improve the 
understanding of the way to identify exceptional scientists.

The identification of stars has taken different approaches in the literature, with respect 
to the examined field of activity and the different operationalizations of the criteria to 
distinguish outstanding from common individuals. In general, to be a star the individual 
must engage in disproportionately high performance relative to most other workers in their 
field (Aguinis & O’Boyle, 2014; Call et al., 2015). The examined performance has been 
measured under different perspectives ranging from productivity (Kehoe & Tzabbar, 2015; 
Lahiri et al., 2019; Subramanian et al., 2013; Zucker et al., 2002), impact (Azoulay et al., 
2010; Rothaermel & Hess, 2007) and, in some cases, visibility or celebrity (Oldroyd & 
Morris, 2012).

Star individuals have been studied in several contexts2 with particular attention to scien-
tists/scholars (Azoulay et al., 2010) and inventors (Hohberger, 2016), thanks to data avail-
ability, i.e. articles and patents. Stars in these two categories have been similarly addressed 
by considering either their productivity in terms of quantity of output, in most cases 
through the number of articles or patents, their impact relying on a measure of quality such 
as the received citations (Hess & Rothaermel, 2011; Hohberger, 2016; Liu, 2014), or a 
combination of them (Agrawal et al., 2017; Kehoe & Tzabbar, 2015). The extent to which 
performance must be disproportional varies across studies (Call et al., 2015): some have 
used from one to three standard deviation (SD) difference (e.g. Hess & Rothaermel, 2011), 
others have applied a cutoff value for the top percentage of the examined sample, from 1 to 
10% (e.g. Hohberger, 2016). Table 1 summarizes the approaches in the literature.

So far the literature dealing with the identification and the analysis of the role of star 
inventors has not considered that patents can be evaluated for a variety of quality criteria 
and researchers have called for a multifaceted perspective on patent quality (e.g. Lanjouw 
& Schankerman, 2004; van Zeebroeck, 2011). In particular, the measurement of patent 
quality can be decomposed in two main dimensions with respect to the nature of the pro-
tected invention: technological complexity and value (Caviggioli, Colombelli, et al., 2020; 
Caviggioli, De Marco, et  al., 2020; van Zeebroeck & van Pottelsberghe, 2011). Techno-
logical complexity refers to the number of components, their degree of inter-dependence 
and decomposability (Singh, 1995; Wang et  al., 2013). Patent value, as conceptualized 
in this work, refers to the technical merit and the potential market size of the invention 

2 For example, sport players (Chen and Garg 2018) and actors (Han and Ravid 2020).
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(Caviggioli, Colombelli, et al., 2020).3 The corresponding measures will be described in 
detail in Sect. 3.2.

Quantity and quality: the equal odds baseline

Previous literature analyzed the relationship between quantitative and qualitative output of 
intellectual activities and reported mixed evidence. According to one approach of the lit-
erature dealing with creativity, high-quality ideas consume time and resources, either intel-
lectual and physical: this suggests the presence of a trade-off and a negative correlation 
between average quality (per product) and quantity (Fischer et al., 2012; Guilford, 1968; 
Michalska-Smith & Allesina, 2017). On the other hand, the dual pathway of creativity 
(Nijstad et  al., 2010) considers a positive correlation between average quality and quan-
tity, achieved through two behaviors: flexibility, in terms of variety of conceptual ideas, or 
persistence-and-exhaustion in terms of specialization on a focal theme. Yet, other models 
emphasize the role of luck and propose a null correlation between quantity and average 
quality (Janosov et al., 2020; D. K. Simonton, 2010; D K Simonton, 1988a, 1988b, 1988c; 
Sinatra et al., 2016). In this work, we focus on the EOB which belongs to the latter group 
of models.

Extending the previous work by Wayne Dennis (1958), the seminal study of (Simonton, 
1988a, 1988b, 1988c) introduced the EOB, a statistical model for the relationship between 
quantity and quality of scientific output within a comprehensive theoretical framework for 
scientific productivity (Simonton, 2009, 2010). Considering the focus of this study on pat-
ents, the EOB relies on two main propositions. First, the number of an inventor’ high-qual-
ity patents H (i.e., the number of hits) is positively and linearly related to the total number 
of patents T. Previous works (e.g. Forthmann, Leveling, et  al., 2020; Forthmann, Szard-
enings, et al., 2021) employed the number of citations received as a measure to identify 
“hits”. The EOB models the following equation (Simonton, 2010; p. 163):

where ρ refers to the hit-ratio and ui is a random error term for inventor i.4 The second 
proposition we highlight in the EOB framework is that individual hit-ratios H/T are uncor-
related with T (i.e., invention portfolio sizes in the context of this study). Otherwise it 
would follow that the relationship between H and T is non-linear (Simonton, 2003, 2004). 
In other words, a positive linear correlation between H and T is a necessary but not suf-
ficient condition for the EOB (Forthmann et  al., 2021b; Forthmann, Szardenings, et  al., 
2021; Forthmann, Leveling, et al., 2021). The EOB further proposes an intercept of zero 
and a hit-ratio that equals the ratio of average H and average T. These implications of the 
EOB allow evaluation of model fit within the framework of structural equation modeling, 
SEM (Forthmann et al., 2020; Forthmann et al., 2021). SEM is a widely used approach in 
sociological and psychological research, for example, and it provides many options for the 
evaluation of data-model fit (West et al., 2012).

(1)Hi = �Ti + ui.

4 Please note that we omit the subscript i for simplicity in many parts of the paper.

3 Ideally, one would want to assess value also in terms of economic relevance of the protected invention but 
unfortunately this type of information cannot be easily determined for large samples. The amount of money 
a patent is worth can be determined when it is licensed or sold in disclosed transactions (e.g., cases when 
data on auctions are revealed, as in Caviggioli & Ughetto, 2016), or as a means of broad surveys (e.g., Tor-
risi et al., 2016).
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A multifaceted extension of the equal odds baseline

As mentioned above, researchers have called for a multifaceted perspective on patent 
quality (Lanjouw & Schankerman, 2004; van Zeebroeck, 2011). Previous literature on 
the EOB, however, has not yet considered multiple dimensions of quality within the 
same modeling framework (nor did other chance models of scientific productivity (see, 
for example, Janosov et al., 2020 and Sinatra et al., 2016). Hence, in this work we rely 
on the empirical framework of patent inventors that makes it possible to leverage the 
presence of several indices of quality. This comprehensive assessment approach pro-
vides support to disentangle quantity and quality, with quality as a multifaceted dimen-
sion. Notably, beyond the concrete aim of constructing an assessment model for inven-
tors’ capacity to create high-quality patents, our work extends chance models of creative 
success from unidimensional models to multidimensional modeling of quality. We argue 
that this approach allows a direct test of the generalizability of the model that can be 
evaluated in a multivariate model (i.e., not in multiple analyses conducted separately).

Specifically, this work aims at extending the EOB in this regard by formulating the 
EOB as a SEM in which individual differences in hit-rates are explained by a quality 
latent variable. In other words, the error term uij for inventor i (i = 1,…,I) and quality 
indicator j (j = 1,…,J) will be modeled by the following equation

with latent factor �i as the capacity to create high-quality inventions, �j being the loading 
of the jth indicator on the capacity factor, and �ij the remaining error left unexplained after 
taking quantity and the capacity for quality into account. Inserting Eq. 2 into Eq. 1 yields a 
multifaceted EOB:

Specifically, the multifaceted EOB proposes that η and T are uncorrelated which 
allows for independent assessment of inventors’ capacity for quality and productivity 
(i.e., quantity of output). As an extension of Eq. 1, the model in Eq. 3 can also be esti-
mated within the SEM framework (Bollen, 1989). In SEM, a proposed path model, its 
implied covariance matrix and mean vector are examined for their discrepancy to their 
empirically observed counterparts. Useful models have a model-implied covariance 
matrix and mean vector that are close to the observed covariance matrix and vector 
of means (Bollen, 1989). Goodness of fit between a proposed model and data in SEM 
can be evaluated by various established indices (West et  al., 2012). In this approach, 
regression coefficients �j and �j can be estimated by maximum likelihood (or other 
robust variants). Estimates of the latent capacity �i can be obtained by means of empir-
ical Bayes (Estabrook & Neale, 2013), for example. This model is illustrated for the 
five quality indicators used in this study on the left side in Fig.  1 (further details in 
Sect. 3). In particular, two models will be tested: one where capacity for quality is uni-
dimensional (Model 1 in Fig.  1) and a second model where two latent variables for 
quality are assumed (Model 2 in Fig. 1). Since the measurement of patent quality can 
be decomposed into the dimensions of technological complexity and value (Caviggioli, 
Colombelli, et al., 2020; Caviggioli, De Marco, et al., 2020; van Zeebroeck & van Pot-
telsberghe, 2011), Eq. 3 needs to be extended to a two-dimensional model that includes 
the two corresponding latent variables (see also Model 2 in Fig.  1 for a path model 
illustration).

(2)uij = �j�i + �ij,

(3)Hij = �jTi + �j�i + �ij.
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We aim to empirically test the fit of data on inventors to the EOB when quality is meas-
ured by multiple indicators and to explain the hit-ratio variation as a means of a latent 
capacity to create high-quality inventions. This study extends the recent findings and theo-
rizing on the EOB in several ways. First, the literature on EOB has so far focused on quality 
measured with forward citations of patents (Forthmann et al., 2020, 2021b): other indica-
tors are introduced because patent quality is a multifaceted construct (Lanjouw & Schan-
kerman, 2004; van Zeebroeck & van Pottelsberghe, 2011). Second, the EOB is extended 
beyond the current results (Forthmann et al., 2021) and in this work it incorporates a latent 
quality variable that potentially explains individual differences in hit-ratios within a SEM 
framework. Within the classical approach to EOB there is only one quality score H and one 
quantity score T and the differences in hit-ratios are explained by the residual term (e.g., 
some researchers are luckier than others). The residual term also reflects quality as differ-
ences in hit-ratios, but with only one quality score H it is not possible to isolate individual 
differences in the hit-ratio. In a multifaceted approach, there are as many residual terms as 
quality indicators and latent quality factors can be measured based on these residuals. This 
approach makes it possible to measure quality independent of quantity, while at the same 
time H depends linearly on T.

Aim of the current research

The main aim of this study is to extend recent findings and theorizing on the EOB in sev-
eral ways. First, we extend recent results obtained for forward citations of patents (Forth-
mann et  al., 2021b; Forthmann, Leveling et  al., 2020; Forthmann et  al., 2021) to other 
indicators because patent quality is a multifaceted construct (Lanjouw & Schankerman, 
2004). Second, new EOB theorizing allows quantifying the amount of residual variance 
accounted by mere sampling variation (Forthmann et al., 2020; Forthmann et al., 2021). 
This is useful to accurately estimate the amount of hit-ratio variation that is attributable 
to between-inventor differences. The presence of between-inventor variation in hit-ratios 
is essential for the measurement of capacity for patent quality. In this vein, the EOB is 
extended in this work to incorporate a latent quality variable that potentially explains indi-
vidual differences in hit-ratios within a SEM framework. Finally, we aimed at comparing 

Fig. 1  Path models of the unidimensional (left) and two-dimensional (right) multifaceted EOB models 
illustrated with the five quality indicators used in this study (see Sect. 3.2 for details)
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a unidimensional model with a two-dimensional model that incorporated latent variables 
to measure both technological complexity and patent value. Importantly, a reasonable fit 
of the data to either the unidimensional or two-dimensional multifaceted EOB implies that 
inventors’ capacities to create quality patents can be measured to potentially identify star 
inventors in a way that explicitly takes the intricate relationship between overall productiv-
ity and patent quality into account. Finally, the feasibility of the outlined approach for prac-
tical assessment contexts (e.g., high-stakes decisions) was examined. The approach results 
in estimates of inventors’ capacity to invent high-quality patents. These estimates taken 
from the multifaceted EOB are factor scores and it has been recommended in the literature 
that the correlation between these estimates and their true values (i.e., the factor determi-
nacy index; FDI) should be larger than 0.80 for research purposes, but larger than 0.90 for 
individual differences assessments in practical high-stakes contexts (Ferrando & Lorenzo-
Seva, 2018). Thus, we wanted to examine if inventors’ capacity estimates can achieve this 
level of quality and further aimed to illustrate their usage for the identification of stars in 
comparison with other commonly applied approaches.

Method

Data sources

The main data sources are PatentsView and PATSTAT. PatentsView is a data warehouse 
sourced from USPTO-provided data on published patent applications (2001-present) and 
granted patents (1976-present). It provides disambiguated inventors’ names from the appli-
cation of an algorithm that uses discriminative hierarchical co-reference.5 Patent level data 
from PatentsView are linked to PATSTAT, the largest repository of patent data in terms of 
coverage and available information, maintained by the EPO with the collaboration of the 
main patent offices.6

The analyses will be carried out at the level of inventors and the examined sample is 
defined by applying the following steps. The starting sample includes all the inventors with 
at least one US granted patent filed between 2008 and 2010,7 corresponding to 725,577 
disambiguated names in PatentsView. The selected inventors are associated to a total of 
4,297,710 granted patents (their full patenting history) which are linked to PATSTAT to 
collect further information.8

All the selected patents are associated to their INPADOC family (2.9 million families). 
Patent families represent a unit of analysis that is closer to invention: multiple patent docu-
ments regarding the same filing are collapsed to a single unit, providing a more accurate 
measure of inventors’ productivity (OECD, 2009; Martínez, 2011). Furthermore, coun-
try extensions can be identified providing information on the geographical coverage. The 

5 More information at www. paten tsview. org (last access and data release in August 2020, disambiguated 
inventors’ names updated in March 2020).
6 More information at https:// www. epo. org/ searc hing- for- paten ts/ busin ess/ patst at. html (last access in 
August 2020, version of database used in this study: fall 2019).
7 Only “utility” patents have been considered. Withdrawn patents are included (corresponding to 0.17% of 
the examined granted patents).
8 In terms of granted patents, the selected sample is 58% of the total US granted patents in PatentsView 
(1975–2020).

http://www.patentsview.org
https://www.epo.org/searching-for-patents/business/patstat.html
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earliest filing year and the IPC subclasses of each family are collected and several patento-
metrics are calculated following the approach described in (Caviggioli, Colombelli, et al., 
2020; Caviggioli et al., 2020). For each inventor it is thus possible to identify the portfolio 
of inventions and create portfolio level measures (these variables are described in the next 
section in detail) as of 2010 in terms of productivity. The cut-off year is required to con-
sider a subsequent time window sufficiently large to calculate quality indicators such as 
citations and to account for potential delays in the publication of documents.

With the aim to clean the sample from potential errors in the original data, either in 
name disambiguation or in patent family identification, those inventors reporting a port-
folio-level earliest filing date prior to 1981 (3.2%) were excluded. Inventors with no IPC 
codes associated to the invention portfolio were also eliminated (0.01%).

The final sample is a selection of 703,977 inventors active in the years 2008–2010 and 
with a patenting history of maximum 30 years in 2010: each invention portfolios represent 
the cumulated inventions up to 2010. Table 2 reports the distribution of the portfolio size 
in the sample.

Variables

The inventors’ quantitative productivity is captured by the number of patent families 
between 1981 and 2010, corresponding to the T in the previous formulas. Quality is 
described through the count of an inventor’s outstanding inventions H according to several 
measures with the aim to test their relationship with quantity.

The first step to generate the indicators of quality was to compute for any patent family 
the corresponding value of technological scope, generality and originality index, forward 
citations and geographical scope. The first three refer to indicators of technological com-
plexity and the last two to the value of an invention.

The technological scope counts the number of different IPC subclasses associated to 
patents (Lerner, 1994): the count is extended to the family level by considering all the 
family members. It provides a measure of multi-disciplinarity: the broader the scope, the 
greater the complexity and the potential range of technological areas where it can impact 
(Harhoff et al., 2003).

The originality and generality indexes are variations from the Simpson diversity index, 
also known as the Hirschmann-Herfindahl index or the repeat rate (for diversity; e.g., Rous-
seau, 2018). They were first introduced in the patent data framework by Trajtenberg et al. 
(1997) and are calculated considering the concentration of the different technological fields 
among the cited and citing patents of every focal document respectively:

Table 2  Distribution of 
portfolios of inventions across 
selected inventors

Portfolio 
size [from

to] Number of inventors Perc. Cumulate

1 1 214,226 30.43 30.43
2 5 252,228 35.83 66.26
6 10 108,368 15.40 81.65
11 50 119,041 16.89 98.56
51 100 8,032 1.14 99.70
101 Max 2,082 0.30 100.00

Total 703,977 100%
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Any patent family f is associated to k technological fields (up to Nf fields), identified 
by IPC subclasses (four-digit IPC codes). Coherently with the general approach, the pat-
ent citation network is generated at the level of INPADOC families, excluding intra-fam-
ily citations. The generality index is a forward-looking measure describing the width of 
the technological advances. The originality index represents the scope of the underlying 
research.

The forward citations provides a measure of the technical value (van Zeebroeck and van 
Pottelsberghe, 2011). The indicator considers only citations occurring in the first five years 
after the filing to account for the different time of exposure to the “risk” of receiving a cita-
tion (Caviggioli & Ughetto, 2016).9

The geographical scope indicates how large the expected market for the patented tech-
nology is. It is calculated as the number of jurisdictions in which patent protection is 
sought (Agostini et al., 2015; Lanjouw et al., 1998).

Once each patent family was associated to its measures of quality, the next step was to 
follow the approach proposed in van Zeebroeck (2011) which allows calibrating the indica-
tors with respect to the specificities of technological areas and the potential trends occur-
ring in the time frame. Coherently with the unit of analyses, the approach was applied at 
the patent family level. The calibration of each indicator of quality is achieved by ranking 
patent families in a reference cohort, defined by technological sector and year. The sectors 
are identified by considering the concordance table between the IPC codes and 35 techni-
cal fields, developed by the WIPO.10 The reference time is the earliest filing year among 
the family members. The ranking leads to a percentile value for each patent family, rang-
ing between 0 and 100. It represents the share of families in the same sector and with the 
same earliest filing year that have a lower score than the examined family.11 When a patent 
family is associated to more technical fields, the indicator assumes the value of the highest 
percentile. For example, if an invention is developed in the fields “Optics” and “Pharma-
ceuticals” and the percentile of the examined family is 60th for forward citations among all 
the inventions in the former and 80th in the latter, then the selected score for the considered 
family is 80.

(4)Generalityf = 1 −

Nf
∑

k=1

(

#Citing Patentsfk

#Citing Patentsf

)2

(5)Originalityf = 1 −

Nf
∑

k=1

(

#Cited Patentsfk

#Cited Patentsf

)2

9 The models were also tested considering a variable with a 10  years window to capture citations (as 
in Forthmann et  al., 2020a). The results are very similar and are openly available in the OSF repository 
(https:// osf. io/ bjad4/). Note that intra-family citations are not considered.
10 Source: WIPO IPC-Technology Concordance Table (last update in 2016), available at https:// www. wipo. 
int/ ipsta ts/ en/ stati stics/ paten ts/ xls/ ipc_ techn ology. xlsx, last access August 2021. Further info available in 
Schmoch (2008).
11 For example, patent families with zero forward citations report “0” as indicator (no other family has a 
lower number of forward citations). The patent family with the maximum number of citations in the sector-
year cohort would be higher than 99.99% of the other families in the same group and thus the indicator 
reports a rounded value of 100.

https://osf.io/bjad4/
https://www.wipo.int/ipstats/en/statistics/patents/xls/ipc_technology.xlsx
https://www.wipo.int/ipstats/en/statistics/patents/xls/ipc_technology.xlsx
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An invention is thus considered outstanding according to the quality indicator j when it 
is equal or above the 95th percentile in the corresponding sector-year cohort (i.e., the fam-
ily level indicator is equal or above 95):

Note that a single patent family could be above the excellence threshold in none, one 
or more of the indicators of quality. Once all the top inventions are identified with respect 
to the quality indicator j, they are aggregated at the portfolio level for each inventor i. This 
provides the number of outstanding inventions generated by inventor i (i.e., her/his hits H):

The hit ratio, that is the share of outstanding inventions in the inventor’s portfolio, can 
be calculated by dividing H with the portfolio size T (i.e., H/T).

Finally, the following two variables are included to improve the model specifications 
and control for inventor’s characteristics. Since the selected sample includes inventors at 
different stage of their career, a proxy of their expertise is introduced as the number of 
years since the first filing date. PatentsView database provides also data on inventors’ gen-
der, as a result of the method explained in the report of the Office of the Chief Econo-
mist (2019). Note that data coverage is not complete (the gender is missing for 9.1% of the 
inventors in the examined sample).

Table 3 shows summary statistics of the variables.

Analysis

Initially, we examined the fit of the data to the EOB for each of the five quality indica-
tors by means of correlations and a check of the presence of individual differences in the 
residual (Forthmann et al., 2020; Forthmann et al., 2021). In the next step, we fitted the 
multifaceted EOB in SEM framework. Finally, we examined star identification based on 
the multifaceted EOB as compared to other common approaches for star identification (see 
Table 1). The R script used to perform the reported analyses and an html-file with all the 
related output are openly available in an online repository in the Open Science Framework 
(https:// osf. io/ bjad4/).

Preliminary tests

First, positive correlations between patent family counts (T) and all indicators of quality 
(H) were found (see column 1 in Table 4). This is in accordance with the EOB which pro-
poses that the relationship between H and T is positive and linear. Concerning the con-
trol variables, as expected, career length was moderately positively correlated with family 
count and with small/moderate values with all indicators of quality. Gender did not corre-
late with any of the measures for creative productivity.

Second, the correlations between patent family counts and each of the quality indi-
cators expressed as hit-ratio (H/T) were close to zero (see column 1 in Table 5), which 
again provides evidence in favor of the EOB across all quality indicators. Both the 

(6)Outstanding Inventionj =

{

1, Indicatorj ≥ 95

0, Indicatorj < 95

(7)Hij =

Ni
∑

k=1

Outstanding Inventionkj.

https://osf.io/bjad4/
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control variables, career length and gender, correlated with all the variables of quality in 
terms of hit-ratio in a negligible way.

As a final preparatory step prior to the examination of the multifaceted EOB, we 
checked if residual variances were larger than what is expected under the strict EOB, 
the model which implies a constant hit-ratio, or in other words where the error term u is 
excluded. This check can be meaningfully done when the EOB displays reasonable fit, 
as suggested by the correlations reported in Tables 4 and 5. The SEM approach to study 
the EOB has been recently further extended (Forthmann et al., 2021b) to allow quanti-
fying if residual variance Var(u) is larger as compared to the strict EOB with Var(u) = 0. 
This approach can be used to examine if individual differences are present in a given 
dataset, i.e., hit-ratio variance is larger than mere sampling error variation. The presence 
of individual differences in hit-ratios are a prerequisite to measure quality as a latent 
variable based on residuals resulting from multiple quality indicators.

Residual variance findings are reported in Table 6. All observed residual variances 
were at least twice as large as compared to the minimum expected residual variance 
under the EOB (i.e., the residual variance under strict equal odds). Hence, we conclude 
that hit-ratio variation in the data was larger than expected under strict equal odds which 

Table 4  Correlation matrix of examined variables: quality indicators expressed as number of excellent 
inventions in the portfolio (Testing H ~ T—EOB correlations  between quantity and quality indicators in 
bold)

Variables 1 2 3 4 5 6 7

1 Quantity: Count of families 1.00
2 Quality: Tech. scope 0.43 1.00
3 Quality: Generality index 0.49 0.65 1.00
4 Quality: Originality index 0.47 0.61 0.78 1.00
5 Quality: Count of fwd.cit. (5-yrs) 0.61 0.47 0.46 0.42 1.00
6 Quality: Geographical scope 0.39 0.33 0.25 0.22 0.41 1.00
7 Career 0.38 0.24 0.29 0.26 0.24 0.18 1.00
8 Gender 0.05 0.03 0.04 0.03 0.03 0.02 0.11

Table 5  Correlation matrix of examined variables: quality indicators expressed as ratio of excellent inven-
tions on total number of inventions in the portfolio (Testing H/T ~ T—EOB correlations between quantity 
and quality indicators in bold)

Variables 1 2 3 4 5 6 7

1 Quantity: Count of families 1.00
2 Quality: Tech. scope − 0.03 1.00
3 Quality: Generality index − 0.02 0.33 1.00
4 Quality: Originality index − 0.02 0.33 0.39 1.00
5 Quality: Count of fwd.cit. (5-yrs) 0.00 0.32 0.21 0.20 1.00
6 Quality: Geographical scope − 0.03 0.23 0.09 0.09 0.19 1.00
7 Career 0.38 0.04 0.08 0.07 0.08 0.03 1.00
8 Gender 0.05 -0.01 0.01 0.00 0.01 -0.01 0.11
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only allows sampling error as a unique source of residual variation. Hence the data were 
promising for the application of the multifaceted EOB with latent variable(s).

Multifaceted EOB results

The SEM framework is implemented with the package lavaan (Rosseel, 2012) for the 
statistical software R. Model fit was based on indices such as the RMSEA, SRMR, CFI, 
and TLI (Table 7), according to existing cut-offs in the SEM literature (West et al., 2012). 
Using these fit indices is particularly helpful when examining the EOB in very large data-
sets because even small and negligible deviations from the EOB become easily statisti-
cally significant (Forthmann et al., 2020; Forthmann et al., 2021). SEM model fit indices 
indicate if the data can be adequately described by the EOB when sample sizes are large. 
Finally, we estimated marginal reliability for the latent quality variables to quantify meas-
urement precision (Brown & Croudace, 2015; Green et al., 1984). We further report the 
factor determinacy index (FDI; i.e., the correlation between estimated factor scores and 
their true values) which can be obtained as the square-root from marginal reliability. The 
FDI is a useful index to quantify the measurement quality of factor scores for subsequent 
assessment purposes. For example, it has been proposed that a FDI > 0.80 is sufficient for 
research purposes, whereas a value for the FDI > 0.90 is needed for the assessment of indi-
vidual differences in high-stakes situations (Ferrando & Lorenzo-Seva, 2018).

The multifaceted EOB without any latent quality variables displayed excellent fit. The 
model with a single latent variable for quality, the unidimensional one, was estimated and 
displayed adequate fit, with TLI being the only index that did not pass the common cut-off 
of 0.95. Standardized factor loadings of this model are depicted on the left side of Fig. 2. 
These loadings revealed that the overall quality factor was dominated by technological 
complexity (standardized loadings were in the range from 0.57 to 0.76). The indicators 
of quality in terms of “value” had only small loadings (the variables on forward citations 
and geographical scope had a loading of 0.22 and 0.10 respectively). Marginal reliabil-
ity of the latent quality variable was 0.86 indicating good reliability. In addition, the FDI 
was equal to 0.93, which indicated that factor score estimates based on the unidimensional 
multifaceted EOB model had excellent quality that allows using them in the context of 
high-stakes decisions (Ferrando & Lorenzo-Seva, 2018). The latent quality variable was 
predicted by career length to a small degree (β = 0.14, p < 0.001) and negligibly small by 
gender (β = − 0.02, p < 0.001) with an overall R2 = 0.02.

We outlined in the introduction that patent quality can be defined through multiple 
measures, each with different nuances. For the current work, we decided to stick to the 

Table 6  Estimates of the observed residual variance and the smallest expected residual variance

Variables Observed residual variance [95% 
CI]

Smallest residual vari-
ance (Strict EOB) [95% 
CI]

Quality: Tech. scope 0.608 [0.577, 0.639] 0.255 [0.253, 0.257]
Quality: Generality index 1.937 [1.820, 2.054] 0.463 [0.460, 0.466]
Quality: Originality index 2.186 [1.938, 2.434] 0.455 [0.451, 0.458]
Quality: Count of fwd.cit. (5-yrs) 2.353 [2.21, 2.49] 0.540 [0.536, 0.544]
Quality: Geographical scope 2.555 [2.360, 2.750] 0.411 [0.408, 0.415]
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dimensions of technological value and complexity (e.g., Caviggioli, Colombelli, et  al., 
2020; van Zeebroeck and van Pottelsberghe de la Potterie 2011). Notably, those studies 
have included the generality index among the measures of complexity, giving more impor-
tance to the aspect of embedding multiple features for several applications rather than a 
higher number of citations per se, which is directly addressed by the count of forward cita-
tions. However, generality as an index that is also based on forward citations could have 
been alternatively proposed to load on the value factor rather than technological complex-
ity. Hence, we tested two alternative models: (a) a model in which generality loaded on 
value and not on complexity, and (b) a model with cross-loadings of generality on both 
latent factors. The results suggest that these alternative model specifications were not better 
than the original ones (see Fig. 1). First, we tested a two-dimensional model in which gen-
erality loaded on value instead of complexity and found that the latent covariance matrix 
was not positive definite. Inspecting the matrix, it turned out that the correlation between 
both quality dimensions for such a model was greater than one. Such an anomalous finding 
can occur in SEM and it can hint at a mis-specified model, for example. Another alterna-
tive model might allow cross-loadings of generality on both value and complexity. Such 
a model was estimated without any technical difficulties. However, it also did not out-
perform the intended two-dimensional model depicted in Fig. 1 and for which results are 
reported below. The two-dimensional model based on previous literature (RMSEA = 0.013, 
SRMR = 0.034, CFI = 0.977, TLI = 0.962) had mostly better fit indices as compared to the 
model with cross-loadings for generality (RMSEA = 0.015, SRMR = 0.034, CFI = 0.978, 
TLI = 0.958). In addition, the standardized loading of generality on the value factor was 
-0.03 and, hence, negligibly small and negative. Consequently, we consider these addi-
tional checks as further validity evidence in favor of our initially intended models.

With respect to the unidimensional model, the two-dimensional model with latent vari-
ables for value and technological complexity displayed better fit. The factors that describe 
technological value and complexity factors reported a correlation of 0.35, indicating a lim-
ited overlap. Figure 2 reports the standardized factor loadings (right side): the indices of 
technological complexity display strong factor loadings (all above 0.57), while for value, 
only the variable based on forward citations shows a strong loading (0.64). In this model, 
marginal reliability was 0.66 for the latent variable referring to the dimension of “value” 

Fig. 2  Standardized estimates for the unidimensional (left) and two-dimensional (right) multifaceted EOB 
models
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and 0.86 for the latent variable referring to the technological complexity. The factor scores 
for “value” had an FDI equal to 0.81 and can thus be used for research purposes, but not 
for the practical assessment of individual differences (Ferrando & Lorenzo-Seva, 2018). 
The factor scores for the technological complexity were associated to an FDI of 0.93, thus 
having excellent psychometric quality: they can be used for any assessment purpose (e.g., 
high-stakes decisions). Hence, value was comparably less reliable, whereas technologi-
cal complexity had excellent reliability. The results suggest that the measurement of value 
should be complemented by other indicators developed in the corresponding samples: for 
example the number of renewals of granted patents, litigations or oppositions for disputed 
patents, licensing or sales data for transacted inventions, or direct assessment of the eco-
nomic relevance through a survey (Caviggioli & Ughetto, 2016; Torrisi et al., 2016; van 
Zeebroeck and van Pottelsberghe 2011).

The technological complexity latent variable was predicted by career length to a small 
degree (β = 0.14, p < 0.001) and negligible small by gender (β = − 0.02, p < 0.001) with an 
overall R2 = 0.02, similarly to the findings for the unidimensional model. In addition, the 
R2 for the “value” latent variable was zero which indicated that both control variables had 
a negligible relationship with it.

To test the robustness of the results, we analyzed the same models on 35 subsamples 
based on the technological fields represented in the WIPO concordance table. Each inven-
tor was associated to one or more fields by considering the technological areas where s/he 
patented the most or representing at least a third of her/his total portfolio of inventions, to 
avoid marginal contributions. The fit indices of the 35 models are very similar across the 
subsamples based on the WIPO fields. The results are reported in the Appendix (Fig. 3).

Identification of stars

To see the proposed assessment approach based on the multifaceted EOB in action, we 
compared estimates of inventors’ capacity to create high-quality patents with other com-
monly used approaches for the identification of stars. To understand how far quality indi-
cators are incrementally informative for the identification of stars with respect to quantity 
alone, we calculated the Jaccard similarity between different groups of stars identified by 
different criteria. We tested in our sample if using either productivity or citation counts 
identifies nearly the same set of stars, and if so, how well the introduction of the multifac-
eted EOB for quality measurement can produce incremental information when the multi-
faceted EOB is used for measurement of quality: Jaccard similarity quantifies the amount 
of incremental information provided by different approaches for star identification beyond 
quantity.

We identified stars as inventors who performed better than 3SD above the mean because 
this strategy has been used the most in the literature (Table 1). We employed this criterion 
for star identification to the dimensions of quantity, of quality based on forward citations, 
as well as to both quantity and the number of high-quality patents based on forward cita-
tions (Table 8). All these variables were normalized for career length (to account for the 
correlations of Table 4). These common approaches yielded percentages of stars (between 
0.32 and 1.31%) in a comparable range as in previous works (Table 1). In addition, we 
used factor scores from the unidimensional multifaceted EOB model (Model 1 on the left 
in Figs. 1 and 2) because the FDI passed the recommended cut-off for usage in high-stakes 
decision contexts. Hence, for practical purposes we chose a model with less favorable 
model fit results (yet model fit was still adequate) over a better fitting model because the 
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reliability of the associated capacity estimates indicated unambiguously higher quality (see 
Sect. 4.2). Star identification based on the quality factor score estimated in Model 1 yielded 
a percentage of stars of approximately 1%. However, when combining this quality score 
with quantity, the percentage of stars was at a minimum of 0.15%. This result was expected 
because quality as measured in Model 1 by the latent variable η is disentangled from quan-
tity (i.e., quantity and quality are uncorrelated).

We checked the Jaccard similarity of the pools of identified stars for all pairs of applied 
approaches (Table  8). Using the latent variable η for identification reports significantly 
smaller similarity scores with respect to the other criteria, indicating that this approach is 
based on different information. For example, the identification based on quantity and qual-
ity in terms forward citations is more similar to the group of stars based on quantity alone 
than the combination from quantity and quality defined by η. These similarities revealed 
that common practice to identify stars based on approaches that ignore the inherent relation 
of quantity and quality as implied by the EOB were indeed more alike as compared to the 
similarities of these approaches with star identification based on estimates of η. In other 
words, being identified as a star becomes less likely when the EOB is explicitly considered 
in a theoretically driven measurement approach.

Conclusion

In this work we extended the EOB, which accounts for the intricate relationship between 
quantity and quality in scientific productivity, into a multidimensional model that provides 
a practical assessment framework for the identification of star inventors.

Previous findings demonstrated that the EOB fits reasonably well to data on scien-
tific productivity. However, these results were mostly limited to citation counts as quality 
indicators, whereas in this work quality of patents was operationalized as a multifaceted 
construct (i.e., we used citations, geographical scope, technological scope, generality, and 
originality as indicators). The multifaceted EOB proposed in this work (i.e., without mod-
eling quality as a latent variable) fitted quite well to the data which provides further empiri-
cal support of the generalizability of the EOB to other quality indicators than citation 
counts. Furthermore, the analyses revealed that the residual variance conceptualized within 
the EOB framework was clearly larger than what is expected because of mere chance fluc-
tuations. This finding was robust across the studied quality indicators and represents a pre-
requisite to model individual differences in hit-ratios as a function of latent variables.

In relation to this, it should be noted that besides the EOB other chance models (i.e., 
models that propose a random occurrence of high-quality products throughout a career) of 
creative productivity exist such as the Q model (Janosov et al., 2020; Sinatra et al., 2016). 
The Q model has been shown to fit data of scientists (Janosov et al., 2020; Sinatra et al., 
2016), as well as data of people working in the movie business, the music business, or book 
authors (Janosov et al., 2020). This clearly hints at the wide applicability of chance models 
beyond science and patent inventors. For all these other fields, however, multidimensional 
extensions as proposed and empirically examined in the current work have not yet been 
considered. The Q model models the quality Si,a of product a produced by person i as a 
multiplicative function of Qi (i.e., the creator’s capacity generate high-quality products) 
and pa (i.e., the “luck” parameter or potential quality of a product). This highlights that the 
Q model is formulated at a finer level of aggregation (i.e., the level of products) as com-
pared to the EOB (i.e., quality indicators are aggregated for each person across products). 
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Hence, the Q model cannot be as simply integrated into a SEM framework as compared 
to the EOB. Nonetheless, we argue that extending the Q model into a multidimensional 
framework would be a useful extension to be tested in future research too. For example, 
analogous to the question (studied in the current work) in how far quality indicators load 
on the same person latent variable, it would be quite interesting to know if the luck compo-
nent of a product is shared across different quality indicators.

In accordance with the previous literature that considered patent value and technological 
complexity as different subdimensions of patent quality, we found that the model including 
the two dimensions as latent variables displayed better fit than the unidimensional model. 
Moreover, regressing the latent quality variables on gender and career length revealed no 
significant result for gender, but a small positive relationship between career length and 
quality in the unidimensional model, and technological complexity in the two-dimensional 
model respectively.

The usefulness and applicability of the proposed assessment framework is highlighted 
by the good reliability and FDI findings that imply that factor scores (i.e., estimates for 
inventors’ capacity for high-quality patents) can be used in subsequent analyses and in 
practical assessment activities. SEM models can be directly used for extending the research 
on scientific productivity and the relationship among value, technological complexity and 
other variables. Within SEM, such estimated relationships (e.g., latent variable regression 
coefficients) account for unreliability of observed measures. Although further refinements 
of the two-dimensional model seem not absolutely necessary for research contexts, for 
practical assessment contexts the factor scores for the value latent variable were not reli-
able enough, having an FDI < 0.90 (Ferrando & Lorenzo-Seva, 2018). Hence, further indi-
cators of patent value would improve the reliability of the measurement. This is particu-
larly the case when stakeholders and/or evaluators put a strong weight on the measurement 
of value in practical high-stakes decisions.

Despite its theoretical soundness and comparably better model fit, the two-dimensional 
multifaceted EOB model seems to be not suited for practical assessment purposes with-
out further improvements. For this reason, we illustrated the identification of star inven-
tors based on the unidimensional multifaceted EOB model. Even if this model fit to the 
data is worse than the two-dimensional model, it displayed still adequate fit. The factor 
loadings in the unidimensional model weighted all indicators of technological complexity 
as stronger than the value indicators. Hence, the capacity to invent high-quality products 
as measured in this model is associated to technological complexity more than to value 
indicators. This finding seems to explain why the identification of star inventors according 
to the unidimensional multifaceted EOB appeared to be different from the other common 
approaches employed in the literature that ignore the EOB. Indeed, the overlap between the 
stars defined by patent quantity and the stars based on the count of highly cited inventions 
is larger than the overlap between those same prolific inventors and the stars identified via 
the unidimensional EOB approach.

Finally, we equip researchers and evaluators with an R script to replicate all the findings 
reported in this work. This might pave the way for other scholars to employ the multifac-
eted EOB in their research and practical assessment projects, once the fit of the EOB to 
the data and the presence of individual differences in the model residuals are evaluated as 
requisite for application of the multifaceted EOB.

Our work is not exempt from limitations. In particular, the model specification does 
not account for potential heterogeneity in the impact of the resources of patent assignees 
on quantity or quality. The assumption here is that working for a company with many or 
few resources provides a proportional impact both on quantity and quality, while the effect 
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on one of the two dimensions might be disproportionately larger. In particular, this is of 
relevance for two aspects: when an inventor changes employer and the new one is very 
different from the prior in terms of available resources; the geographical scope can be 
particularly affected by employers’ resources (i.e., more than the other quality metrics). 
Future research could improve the analyses by examining when the role of employers is 
more impactful on the investigated dimensions of quantity and quality. Finally, the results 
suggest that the characterization of the value dimension could benefit from the introduction 
of additional variables which might be tested on specific subsamples, such as the number 
of renewals of granted patents, licensing or sales values for transacted patents, or the direct 
assessment of the economic relevance through a survey of inventors.

Appendix

This section reports the robustness checks of the model fit of the unidimensional and two-
dimensional multifaceted EOB models (Fig.  3). The models were tested on 35 different 
subsamples, corresponding to the technological fields in the WIPO concordance table 
which associates IPC codes to technical areas. On the left side in Fig. 3, the robustness 
check for the unidimensional multifaceted EOB is depicted. With the TLI as an exception, 
it is clearly visible that all other fit indices were at least acceptable for most of the WIPOs. 
Reliability and FDI values were good to excellent for latent quality factor scores across all 
WIPOs. This picture of results was found to be slightly reversed for the two-dimensional 
multifaceted EOB (see right side in Fig. 3). Model fit was clearly generally better for this 
model, but reliability for the value factor was below the recommended cut-offs for almost 
all WIPOs. In addition, although not visible in Fig.  3, technical estimation issues (e.g., 
Heywood-cases) occurred only for the two-dimensional model.

For detailed findings on each of the 35 subsamples, the interested reader can look at the 
Open Science Framework repository for this work (https:// osf. io/ bjad4/).

Fig. 3  Model fit, reliability, and FDI results summarized across all 35 WIPO technical fields for both the 
unidimensional Model 1 (left) and the two-dimensional Model 2 (right). Desirable cut-offs are depicted as 
dark gray dashed vertical lines. FDI, reliability, TLI, and CFI should be right to the cut-off, whereas SRMR 
and RMSEA should be left to the cut-off

https://osf.io/bjad4/
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