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Abstract:

Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In the
Von Neumann architecture, processing and memory units are implemented as separate blocks interchanging
dataintensively and continuously. This data transfer is responsible for a large part of the power consumption.
The next generation computer technology is expected to solve problems at the exascale with 108 calculations
each second. Even though these future computers will be incredibly powerful, if they are based on\on
Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not'have
intrinsic physically built-in capabilities to learn or deal with complex data as our brain does:These needs can
be addressed by neuromorphic computing systems which are inspired by the biological concepts of the
human brain. This new generation of computers has the potential to be used for the storage and processing
of large amounts of digital information with much lower power consumption than conventional processors.
Among their potential future applications, an important niche is moving the control from data centers to
edge devices.
~

The aim of this Roadmap is to present a snapshot of the present staté,of neuromorphic technology and
provide an opinion on the challenges and opportunities that the futuresholds in the major areas of
neuromorphic technology, namely materials, devices, neuromorphic_circuits, heuromorphic algorithms,
applications, and ethics. The Roadmap is a collection of perspectives where leading researchers in the
neuromorphic community provide their own view about the current stateiand the future challenges for each
research area. We hope that this Roadmap will be a useful resource by providing a concise yet comprehensive
introduction to readers outside this field, for those who arejust entering the field, as well as providing future
perspectives for those who are well established in the neuromorphic computing community.
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Introduction

Computers have become essential to all aspects of modern life and are omnipresent all over the globe. Today,
the recent data-intensive applications have placed a high demand on hardware performance, in terms of
short access latency, high capacity, large bandwidth, low cost, and ability to execute artificial intelligence (Al)
tasks. However, the ever-growing pressure for big data creates additional challenges: on the one hand,
energy consumption has become a remarkable challenge, due to the rapid development of sophisticated
algorithms and architectures. Currently, about 5-15% of the world’s energy is spent in some form of data
manipulation, such as transmission or processing’, and this fraction is expected to rapidly increase due to the
exponential increase of data generated by ubiquitous sensors in the era of internet ‘of things. Onsthe‘other
hand, data processing is increasingly limited by the memory bandwidth due to the Won-Neumann's
architecture with physical separation between processing and memory units. While the Von_Neumann
computer architecture has made an incredible contribution to the world of science and technology for
decades, its performance is largely inefficient due to the relatively slow and energy demanding data
movement.

Conventional Von-Neumann computers based on complementary metal oxidé semiconductor (CMOS)
technology do not possess the intrinsic capabilities to learn or deal with.complex data as the human brain
does. To address the limits of digital computers, there are significant research efforts worldwide in
developing profoundly different approaches inspired by biological principles. One’of these approaches is the
development of neuromorphic systems, namely computing systems mimicking the type of information
processing in the human brain.

The term “neuromorphic” was originally coined in the 1990s by Carver Mead to refer to mixed signal
analog/digital very large scale integration computing systems that take’inspiration from the neuro-biological
architectures of the brain?. “Neuromorphic engineering” emerged as an interdisciplinary research field that
focused on building electronic neural processing systems to directly “emulate” the bio-physics of real
neurons and synapses>. More recently, the definition of the.term neuromorphic has been extended in two
additional directions®. Firstly, the term neuromorphic was used to describe spike-based processing systems
engineered to explore large-scale computational neuroscience models. Secondly, neuromorphic computing
comprises dedicated electronic neural architecturesithat implement neuron and synapse circuits. Note that
this concept is distinct from Al machinelearning approaches which are based on pure software algorithms
developed to minimize the recognition’erroriin pattern recognition tasks>. However, a precise definition of
neuromorphic computing is somewhat debated. It can range from very strict high-fidelity mimicking of
neuroscience principles where very'detailed synaptic chemical dynamics are mandatory, to very vague high-
level loosely brain-inspired principles, such as the simple vector (input) times matrix (synapses)
multiplication. In general,.as of today, there is a wide consensus that neuromorphic computing should at
least encompass some time-, event-, or data-driven computation. In this sense, systems like spiking neural
networks (SNN), sometimes. referred to as the third generation of neural networks®, are strongly
representative. However, thereiis an important cross-fertilization between the technologies required to
develop efficient SNNs and those for more traditional non-spiking neural networks, referred to as artificial
neural networks /(ANN), ‘which are typically more time-step-driven. While the former definition of
neuromorphic computing is moreplausible, in this Roadmap we aim at broadening the scope to emphasize
the cross-fertilization between ANN and SNN.

Nature is a vital inspiration for the advancement to a more sustainable computing scenario, where
neuromorphic systems display much lower power consumption than conventional processors, due to the
integration of non-volatile memory and analog/digital processing circuits as well as the dynamic learning
capabilitiesiin.the context of complex data. Building ANNs that mimic a biological counterpart is one of the
remaining challenges in computing. If the fundamental technical issues are solved in the next few years, the
neuromorphic computing market is projected to rise from $0.2 billion in 2025 to $22 billion in 2035’ as
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neuromorphic computers with ultra-low power consumption and high speed advance and drive demands for
neuromorphic devices.

In line with these increasingly pressing issues, the general aim of the Roadmap on Neuromorphic Computing
and Engineering is to provide an overview of the different fields of research and development that contribute
to the advancement of the field, to assess the potential applications of neuromorphic technology.in cutting
edge technologies and to highlight the necessary advances required to reach these. The Roadmap addresses:

Neuromorphic materials and devices
Neuromorphic circuits
Neuromorphic algorithms
Applications

Ethics

Neuromorphic materials and devices: b

To advance the field of neuromorphic computing and engineering, the exploration/of novel materials and
devices will be of key relevance in order to improve the power efficiency and scalability of state-of-the-art
CMOS solutions in a disruptive manner*®, Memristive devices, which can change their conductance in
response to electrical pulses®™!, are promising candidates to act-as energy-@and space-efficient hardware
representation for synapses and neurons in neuromorphic circuits. Memristive devices have originally been
proposed as binary non-volatile random-access memory and research in this field has been mainly driven by
the search for higher performance in solid-state drive technologies (e:g., Flash replacement) or storage class
memory*2. However, thanks to their analog tunability and complex svﬁtching dynamics, memristive devices
also enable novel computing functions such as analeg computing or the realisation of brain-inspired learning
rules. A large variety of different physical phenomena has beenreported to exhibit memristive behaviour,
including electronic effects, ionic effects as well as structural.or ferroic ordering effects. The material classes
range from magnetic alloys, metal oxides, chalcogenides to 2D van de Waals materials or organic materials.
Within this Roadmap, we cover a broad rangeof materials and phenomena with different maturity levels
with respect to their use in neuromorphic circuits. We consider emerging memory devices that are already
commercially available as binary non-volatile memory such as phase-change memory, magnetic random-
access memory, ferroelectric memory.as well.as redox-based resistive random-access memory and review
their prospects for neuromorphic computing andrengineering. We complement it with nanowire networks,
2D materials, and organic materialsithat.are less mature but may offer extended functionalities and new
opportunities for flexible electranics or 3D-integration.

Neuromorphic circuits:

Neuromorphic devices cansbe integrated with conventional CMOS transistors to develop fully functional
neuromorphic circuits. /A key element in neuromorphic circuits is their non-von Neumann architecture, for
instance consisting of multiple cores each implementing distributed computing and memory. Both SSNs,
adopting spikes tofepresent, exchange and compute data in analogy to action potentials in the brain, as well
as circuits that are only loosely inspired by the brain, such as ANNs, are generally included in the roster of
neuromorphic.circuits, thus will be covered in this Roadmap. Regardless of the specific learning and
processing algorithmy a key processing element in neuromorphic circuits is the neural network, including
several synapses and neurons. Given the central role of the neural network, a significant research effort is
currently aimed at technological solutions to realize dense, fast, and energy-efficient neural networks by in-
memory computing®®. For instance, a memory array can accelerate the matrix-vector multiplication (MVM)*,
This is a.common feature of many neuromorphic circuits, including spiking and non-spiking networks, and
takes advantage of Ohm’s and Kirchhoff’s laws to implement multiplication and summation in the network.
The MVM crosspoint circuit allows for the straightforward hardware implementation of synaptic layers with
high density, high real-time processing speed, and high energy efficiency, although the accuracy is challenged
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by stochastic variations in memristive devices in particular, and analog computing in general. An additional
circuit challenge is the mixed analog-digital computation, which results in the need for large and energy-
hungry analog-digital converter circuits at the interface between the analog crosspoint array and the digital
system. Finally, neuromorphic circuits seem to take the most benefit from hybrid integration, combining
front-end CMOS technology with novel memory devices that can implement MVM and neuro-biological
functions, such as spike integration, short-term memory, and synaptic plasticity’>. Hybrid integrationsmay
also need to extend, in the long term, to alternative nanotechnology concepts, such as bottom-up nanewire
networks®, and alternative computing concepts, such as photonic!” and even quantum computing®®, within
a single system or even a single chip with 3D integration. In this scenario, a Roadmap for the development
and assessment of each of these individual innovative concepts is essential.

Neuromorphic algorithms:

A fundamental challenge in neuromorphic engineering for real application systems is to train them directly
in the spiking domain in order to be more energy-efficient, more precise, and.also be able to continuously
learn and update the knowledge on the portable devices themselves without #elying on heavy cloud
computing servers. Spiking data tend to be sparse with some stochasticity and@embedded noise, interacting
with non-ideal non-linear synapses and neurons. Biology knows how tonuse all-this to its advantage to
efficiently acquire knowledge from the surrounding environment. In this sense, ecomputational neuroscience
can be a key ingredient to inspire neuromorphic engineering, and learn from this discipline how brains
perform computations at a variety of scales, from small neurons ensembles, mesoscale aggregations, up to
full tissues, brain regions and the complete brain interacting with peripheral sensors and motor actuators.
On the other hand, fundamental questions arise on how infermation is encoded in the brain using nervous
spikes. Obviously, to maximize energy efficiency for both /processing and communication, the brain
maximizes information per unit spike®. This means unravelling the information encoding and processing by
exploiting spatio-temporal signal processing to maximize information while minimizing energy, speed, and
resources.

Applications:

The realm of applications for neuromorphic computing and engineering continues to grow at a steady rate,
although remaining within the boundaries of researchiand development. While it is becoming clear that many
applications are well suited to neuromorphic. computing and engineering, it is also important to identify new
potential applications to further understand how neuromorphic materials and hardware can address them.
The Roadmap includes some of these emerging applications as examples of biologically-inspired computing
approaches for implementation/in robots, autonomous transport capability or in perception engineering
where the applications are based onfintegration with sensory modalities of humans.

Ethics:

While the future developmentiand application of neuromorphic systems offer possibilities beyond the state
of the art, the progress should also be addressed from an ethical point of view where, e.g., lack of
transparency in complex neuromorphic systems and autonomous decision making can be a concern. The
Roadmap thus ends with afinal.section addressing some of the key ethical questions that may arise in the
wake of advancements in neuromorphic computation.

We hope that this Roadmap represents an overview and updated picture of the current state-of-the-art as
well as being the future projection in these exciting research areas. Each contribution, written by leading
researchers in ¢heir topic, provides the current state of the field, the open challenges, and a future
perspective. This should guide the expected transition towards efficient neuromorphic computations and
highlight the opportunities for societal impact in multiple fields.
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‘igure 1. Key physical attributes that enable neuromorphic computing..a. Non-volatile binary storage facilitates in-memory logical
yperations relevant for applications such as hyper-dimensional computing. b. Analog storage enables efficient matrix-vector multiply
»perations that are key to applications such as deep neural'network inference. c. The accumulative behaviour facilitates applications such as
leep neural network training and emulation of neuronal and synaptic dynamics in spiking neural networks.

Phase-change memory (PCM) exploits the behaviour of certain phase-change materials, typically
compounds of Ge, Sb and Te, that can be switched reversibly between amorphous and crystalline
phases of different electrical resistiKity [1]./A PCM device consists of a certain nanometric volume of
such phase change material sandwiched between two electrodes.

In recent years, PCM devices are being explored for brain-inspired or neuromorphic computing mostly
by exploiting the physical. attributes of these devices to perform certain associated computational
primitives in-place in the memory itself [2,3]. One of the key properties of PCM that enables such in-
memory computing (IMC) is simply the ability to store two levels of resistance/conductance values in
a non-volatile;/manner and to reversibly switch from one level to the other (binary storage capability).
This property ‘facilitates in-memory logical operations enabled through the interaction between the
voltage and resistance state variables [3]. Applications of in-memory logic include database query [4]
and hyper-dimensional computing [5].

Another key/property of PCM that enables IMC is its ability to achieve not just two levels but a
continuum of resistance values (analogue storage capability) [1]. This is typically achieved by
creatingintermediate phase configurations through the application of partial RESET pulses. The
analogue storage capability facilitates the realization of matrix-vector multiply (MVM) operations in
0(1) time complexity by exploiting Kirchhoff’s circuit laws. The most prominent application for this is
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deep neural network (DNN) inference [6]. It is possible to map each synaptic layer of a DNN to a
crossbar array of PCM devices. There is a widening industrial interest in this application owing to the
promise of significantly improved latency and energy consumption with respect to existing solutions.
This in-memory MVM operations also enable non-neuromorphic applications such as linear-solvers
and compressed sensing recovery [3].

The third key property that enables IMC is the accumulative property arising from the crystallization
kinetics. This property can be utilized to implement DNN training [7,8]. It is also the central property
that is exploited for realizing local learning rules like spike-timing-dependent plasticity in spiking
neural networks [9,10]. In both cases, the accumulative property is exploited to implement the
synaptic weight update in an efficient manner. It has also been exploited to emulate neuronal
dynamics [11].

Note that, PCM is at a very high maturity level of development with products already on the market
and a well-established roadmap for scaling. This fact, together with the ease of embedding PCM on

logic platforms (embedded PCM) [12] make this technology of unique interest fc?neuromorphic
computing and IMC in general.

Current and Future Challenges
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‘igure 2. Key challenges associated with PCM devices a. The SET/RESET conductance values exhibit broad distributions which is detrimental
‘or applications such as in-memory logic. b. The drift and. noise associated with analogue conductance values results in imprecise matrix-
rector multiply operations. c. The nonlinear andstochastic accumulative behaviour result in imprecise synaptic weight updates.

PCM devices have several attractivesproperties such as the ability to operate them at timescales on
the order of tens of nanoseconds. The cycling endurance is orders of magnitude higher for PCM
compared to other non-volatile'memary devices such as Flash memory. The retention time can also
be tuned relatively easily with the appropriate choice of materials, although the retention time
associated with the ihtermediate phase configurations could be substantially lower than that of the
full amorphous state.

However, there are@alsoseveral device-level challenges as shown in Figure 2. One of the key challenges
associated with the use of PCM for in-memory logic operations is the wide distribution of the SET
states. These distributions could detrimentally impact the evaluation of logical operations. The central
challenge associated with in-memory MVM operations is the limited precision arising from the 1/f
noise as wellasiconductance drift. Drift is attributed to the structural relaxation of the melt-quenched
amorphous phase [13]. Temperature-induced conductance variations could also pose challenges. One
additional.challenge is related to the stoichiometric stability during cycling where ion migration effects
can occur [14]. Moreover, the accumulative behaviour in PCM is highly nonlinear and stochastic. While
one could exploit this intrinsic stochasticity to realize stochastically firing neurons and for stochastic
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computing, this behaviour is detrimental for applications such as DNN training in which the
conductance must be precisely modulated.

PCM-based IMC has the potential for ultra-high compute density since PCM devices can be scaled to
nanoscale dimensions. However, it is not straightforward to fabricate such devices in a large array due
to fabrication challenges such as etch damage and deposition of materials in high-aspect ratio pores
[15]. The integration density is also limited by the access device, which could be a selectot in.the back-
end-of-the-line (BEOL) or front-end bipolar junction transistors (BJT) or Metal-Oxide-Semiconductor
Field Effect Transistors (MOSFET). The threshold voltage must be overcome when SET operations are
performed, so the access device must be able to manage voltages at least as high as the threshold
voltage. While MOSFET selector size is mainly determined by the PCM RESET current, the.BJT and BEOL
selectors can guarantee a minimum cell size of 4F?, leading to very high density [16]. However, BEOL
selector-based arrays have some drawbacks in terms of precise current, control, while the

management of parasitic drops is more complex for BJT-based arrays [17]. -

Advances in Science and Technology to Meet Challenges

A promising solution towards addressing the PCM nonidealities‘such as 1/f noise and drift is that of
projected phase-change memory (Projected PCM) [18, 19]. In‘these devices, there is a non-insulating
projection segment in parallel to the phase-change material segment:By exploiting the highly non-
linear |-V characteristics of phase-change materials, onescould ensure that during the SET/RESET
process, the projection segment has minor impact onithe operation of the device. An increase in the
reset current is anyway expected and some work should be done on material engineering side to
compensate for that. However, during read, the device conductance is mostly determined by the
projection segment that appears parallel to the amorphous phase-change segment. Recently, it was
shown that it is possible to achieve remarkably high precision in-memory scalar multiplication
(equivalent to 8-bit fixed point arithmetic) using projected PCM devices [20]. These projected PCM
devices also facilitate array-level temperature compensation schemes. Alternate multi-layered PCM
devices have also been proposed that exhibit substantially lower drift [21].

There is a perennial focus on trying to reduce the RESET current via scaling the switchable volume of
the PCM device. Either by shrinking\he overall dimension of the device in a confined geometry or by
scaling the bottom electrode dimeénsions of a mushroom-type device. The exploration of new material
classes such as single elemental Antimony could help with the scaling challenge [22].

The limited endurance and various other non-idealities associated with the accumulative behaviour
such as limited dynamic range, nonlinearity and stochasticity can be partially circumvented with multi-
PCM synaptic architectures:'Recently, a multi-PCM synaptic architecture was proposed that employs
an efficient counter-based arbitration scheme [23]. However, to improve the accumulation behaviour
at the device level, more research is required on the effect of device geometries as well as the
randomness associated with crystal growth.

Besides conventional electrical PCM devices, photonic memory devices based on phase-change
materials, which can be written, erased, and accessed optically, are rapidly bridging a gap towards all-
photonic chip-scale information processing. By integrating phase-change materials onto an integrated
photenics chip, the analogue multiplication of an incoming optical signal by a scalar value encoded in
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the state of the phase change material was achieved [24]. It was also shown that by exploiting
wavelength division multiplexing, it is possible to perform convolution operations in a single time step
[25]. This creates opportunities to design phase-change materials that undergo faster phase
transitions and have a higher optical contrast between the crystalline and amorphous phases [26].

Concluding Remarks

The non-volatile binary storage, analogue storage and accumulative behaviour associated with PCM
devices can be exploited to perform in-memory computing. Compared to other non-volatile memory
technologies, the key advantages of PCM are the well understood device physics, volumetric switching
and easy embeddability in a CMOS platform. However, there are several device and fabrication-level
challenges that need be overcome to enable PCM-based IMC and this is an activerarea of research.

It will also be rather interesting to see how PCM-based neuromorphic computing will eventually be
commercialized. Prior to true IMC, a hybrid architecture where PCM memory c%s are used to store
synaptic weights in a non-volatile manner while the computing is performed in a/stacked logic chip is
likely to be considered as an option by the industry. Despite the tight interconnect between the
stacked chips, data transfer will remain a bottleneck for this approach. A better solution could be PCM
directly embedded with the logic itself (BEOL) without any intérconnect bottleneck and eventually we
could foresee full-fledged non-von Neumann accelerator chips wherethe embedded PCM is also used
for analogue in-memory computing.
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1.2 - Ferroelectric Devices
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Status

Ferroelectricity was firstly discovered in 1920 by Valasek in Rochelle salt [1] and:describes the
ability of a non-centrosymmetric crystalline material to exhibit a permanent’and switchable
electrical polarization due to the formation of stable electric dipoles. Historically, the term
ferroelectricity stems from the analogous behavior with the magnetization hysteresis of
ferromagnets when plotting the ferroelectric polarization versus the electrical field. Regions
of opposing polarization are called domains. The polarization direction of.such domains can
be switched typically by 180° but based on the crystal structure also other%gles are possible.
Since the discovery of the stable ferroelectric barium titanate(BTO) in 1943 ferroelectrics
found application in capacitors in electronics industry. Already in.the 1950s ferroelectric
capacitor (FeCAP) based memories (FeERAM) have been propoesed [2], where the information
is stored as polarization state of the ferroelectric material. Read.@nd write operation are
performed by applying an electric field larger than the coercive field Ec. The destructive read
operation determines the switching current of the FECAP upon polarization reversal, thus
requiring a write-back operation after readout/ Thanks to the development of mature
processing techniques for ferroelectric lead ‘zirconium tantalate (PZT) FeRAMs are
commercially available since the early 1990s,.[3]. However, the need for a sufficiently large
capacitor together with the limited thin-film manufacturability of the perovskite materials so
far restricted their use to niche applications [4].

The ferroelectric field effect transistors'(FeFET) that was proposed in 1957 [5] features a
ferroelectric capacitor as gate insulator, modulating the transistor’s threshold voltage that
can be sensed non-destructively by measuring the drain-source current. Perovskite based
FeFET memory arrays with up to 64kBit have been demonstrated [6]. But due to difficulties
in the technological implementation, ‘limited scalability and data retention issues, no
commercial devices became available.

The ferroelectric tunneling junctﬁn (FTJ) was proposed by L. Esaki et al. in 1970s as a “polar
switch” [7] and was firstly. demonstrated in 2009 using a BaTiO3 ferroelectric layer [8]. The
FTJ features a ferroélectric layer.sandwiched between two electrodes, thus modifying the
tunneling electro-resistance. A polarization-dependent current is measured non-destructively
when applying electrical fields smaller than Ec.

Since the fortuitous discovery of ferroelectricity in hafnium oxide (HfO;) in 2008 and its first
publication in 2011 [9],the'well-established and CMOS-compatible fluorite-structure material
has been extensively studied and recently gained a lot of interest in the field of nonvolatile
memories and beyond von-Neumann computing [10] [11].
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Figure 1. The center shows two typical ferroelectric crystals and the corresponding PV=hysteresis.curve. The top figure illustrates a
FeCAP based FeRAM, the figure on the bottom left shows a FeFET and the bottom right an FTJ.

Current and Future Challenges 3

Very encouraging electrical results of fully front-end-of-line (FEOL) integrated FeFET devices
featuring switching speeds <50ns at <5V pulse voltage have been reported recently based on
>1Mbit memory arrays [12]. The ability of fine-grained co-integration of FeFET memory
devices together with CMOS logic transistors paves the way for the realization of brain-
inspired architectures to overcome theilimitations of the van-Neumann bottleneck, which
restricts the data transfer due to limited memory and data bus bandwidth [13]. However, one
of the main challenges for the FEFET devices and topic of intense research is the formation of
ferroelectric HfO,-based thin films featuring a uniform polarization behavior at nano-scale as
an important prerequisite for the realization of small scaled devices with feature sizes
<100nm. N

Another important challenge for many application cases is the limited cycling endurance of
silicon-based FeFETsthat is typically in the range of 10° cycles. This value is mainly dictated
by the breakdown ofithe dielectric SiO. interfacial layer that forms between the Si channel
and the ferroelectric gate insulator.

Ferroelectric capacitors have been successfully integrated into the back-end-of-line (BEOL) of
modern CMOS _technologies and operation of a HfO,-based based FERAM memory array at
2.5V and 14ns switching pulses was successfully demonstrated [14]. At this point the main
challenge is the decrease of the ferroelectric layer thickness well below 10nm to allow scaling
of 3D capacitors towards the 10nm node. Moreover, phenomenon such as the so called
“wake-up effect” with increasing of P, for low cycle counts as well as the “fatigue effect”
resulting in.a reduction of P, at high cycle counts due to oxygen vacancy redistribution [15]
and defect generation have to be tackled. That is especially important for fine-grained circuit
implementations where the switching properties of single ferroelectric devices impact the
designed operation point of analogue circuits.
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One of the most interesting benefits of FTJ devices is the small current density making them
very attractive for applications requiring massive parallel operations such as analogue matrix-
vector-multiplications in larger cross-bar structures [16]. However, increasing the ratio
between the on-current density and the self-capacitance of the FTJ devices turns outias one
of the main challenges to increase the reading speed for these devices. The tunneling ¢urrent
densities depend strongly on the thickness of the ferroelectric layer and the compesition, of
the multi-layer stacks. The formation of very thin ferroelectric layers is hindered hy
unintentional formation of interfacial dead layers towards the electrodes and increasing
leakage currents due to defects and grain-boundaries in the poly-crystalline thinfilms.

Advances in Science and Technology to Meet Challenges -
Although ferroelectricity in hafnium oxide has been extensively studied for over one decade
now, there are still many open questions in understanding the formation of the ferroelectric
Pca2; phase and regarding the interaction with material layers.such as electrodes, dielectric
tunneling barriers in multi-layer FTJs or interfacial layers in FeFETS. Moreover, the interplay
between charge trapping phenomenon and ferroelectric switching mechanisms [17], the
trade-off between switching speed and voltage of.the nucleation limited switching and its
impact on device reliability or the different behayior of abrupt single domain switching [11]
and smooth polarization transitions in negative capacitance devices that were observed in
the very similar material stacks are still not completely understood. However, that knowledge
will be an important ingredient for proper optimization of material stacks as well as electrical
device operation conditions.

On the materials side the stabilization of ‘the ferroelectric orthorhombic Pca2: phase in
crystallized HfO: thin films has to be optimized further. Adding dopants, changing oxygen
vacancy densities or inducing stress by suitable'material stack and electrode engineering are
typical measures. In most cases.a poly-crystalline material layer is attained consisting of a
mixture of different crystalline ferroelectric and non-ferroelectric phase fractions. Moreover,
ferroelectric grains that differjinisize or orientation of the polarization axis, electronically
active defects as well as grain size dependent surface energy effects give rise to the formation
of ferroelectric domains that possess different electrical properties in terms of coercive field
Ec (typical values ~1 MV/cm) eriremnant polarization P, (typical values 10 — 40 pC/cm?) with
impact on the device-to-device variability and the gradual switching properties that are
important especially for-analog synaptic devices. Some drawbacks of the poly-crystallinity of
ferroelectric HfO2-= and ZrOz-based thin films could be tackled by the development of epitaxial
growth of monocrystalline ferroelectric layers [18] where domains might extend over a larger
area. Especially in the case,of FTJs the effect of domain wall motion might allow a more
gradual andranalogue switching behavior even in small scaled devices. The utilization of an
anti-ferroelectrie hysteretic switching that was demonstrated in ZrO; thin films bears the
potential \to overcome some limitations that are related to the high coercive field of
ferroelectric HfO,, such as operation voltages being larger than the typical core voltages in
madern CMOS technologies or the limited cycling endurance [19].

Finally,nbesides the very encouraging results adopting ferroelectric HfO, in 2019 another
promising material was realized. The AIScN is a semiconductor processing compatible and
already utilized piezoelectric material that was made ferroelectric [20].



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - NCE-100024.R1

Roadmap on Neuromorphic Computing and Engineering

Electrode 1

UG

Dielectric

Electrode 2

7 pomnin]
f

0 100 200 30
At (ps)

12
-300 -200 -100

Neuron

L

Ly
Tee
e,
.,
.,
a
.
.,
0
0
o
.

Figure 2. Main elements of a neural network. Neurons can be realized using scaled down FeFETs [11] while synapses can be realized
using FTJs [10] or medium to large scale FeFETS. Adapted with permission from [10] Copyright (2020) American Chemical Society and
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Concluding Remarks

The discovery of ferroelectricity in hafnium oxide has,led to a resumption in the research on
ferroelectric memory devices, since hafnium oxide is a well-established and fully CMOS
compatible material in both front end of.line and back end of line processing. Besides the
expected prospective realization of denselynintegrated non-volatile and ultra-low-power
ferroelectric memories in near future, this development directly leads to the adoption of the
trinity of ferroelectric memory/devices = FeCAP, FeFET and FTJ - for beyond von Neumann
computing. While in the memary application the important topic of reliability on the array
level is yet to be solved, for neur?rnorphic applications the linear switching to many different
states, especially in scaled down devices, is a topic that needs further attention. Moreover,
very specific properties of theddifferent ferroelectric device types demand for the
development of new ¢ircuit architectures that facilitate a proper device operation taking into
account the existing non=idealities. A thorough design technology co-optimization will be the
key to fully exploit their potential in neuromorphic and edge computing. Finally, large scale
demonstrationsrof ferroelectrics based neuromorphic circuits need to be investigated to
identify all possible issues:
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1.3 Valence change memory

Sabina Spiga, CNR-IMM, Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza
(MB), Italy

Stephan Menzel, FZ Juelich (PGI-7), Juelich , Germany

Status

Resistive random access memories (RRAMs), also named memristive devices, change their resistance
state upon electrical stimuli. They can store and compute information at the same timejthus enabling
in-memory and brain-inspired computing [1, 2]. RRAM devices relying on oxygen ion migration effects
and subsequent valence changes are named valence change memory (VCM) [3]. They have been
proposed to implement electronic synapses in hardware neural networks, due to the ability to adapt
their strength (conductance) in an analogue fashion as a function of incoming electrical pulses
(synaptic plasticity), leading to long-term (short-term) potentiation ahd depression. In addition,
learning rules such as spike-time or spike-rate dependent plasticity, paired-pulse facilitation or the
voltage threshold—based plasticity have been demonstrated; the stochasticity ofthe switching process
has been exploited for stochastic update rules [4-6]. Most of the VCM devices are based on a two-
terminal configuration, and the switching geometry involves either confined filamentary, or interfacial
regions (Fig.1A). Filamentary VCMs are today the most advanced in'terms of integration and scaling.
Their switching mechanism relies on the creation and ruptdre of conductive filaments (CF), formed by
a localized concentration of defects, shorting the two glectrodes: The modulation/control of the CF
diameter and/or CF dissolution can lead to two or multiple'stable aesistance states [7, 8]. Prototypes
of neuromorphic chips have been recently shown, integrating HfO, and TaOx-based filamentary-VCM
as synaptic nodes in combination with CMOS, neurons [9-11]. In interfacial VCM devices, the
conductance scales with the junction area of the device, and the mechanism is related to a
homogenous oxygen ion movement through'the oxides, either at the electrode/oxide or oxide/oxide
interface. Reference material systems are based on complex oxides, such as bismuth ferrite [12] and
praseodymium calcium manganiten[13]; or bilayers stacks, e.g. TiO,/TaO; [14] and a-Si/TiO, [15].
Finally, 3-terminal VCM redox transistors have been recently studied (Fig.1A-right), where the
switching mechanism is related to the control.of the oxygen vacancy concentration in the bulk of the
transistor channel [16, 17]. Whijs interfacial and redox-transistor devices are today at low
technological readiness, and most of the studies are reported at single device level, they promise
future advancement in neuromorphic computing in terms of analogue control, higher resistance
values, improved reliability, reduced stochasticity with respect to filamentary devices [18]. To design
neuromorphic circuitsineluding,VCM devices, compact models are requested. For filamentary devices
compact models including variability are available [18, 19], but lacking for interfacial VCM and redox-
based transistors.

Current and Future Challenges

VCM devices have been developed in the last 15 years mainly for storage applications, but for
neuromorphic applications the required properties differ. In general, desirable properties of
memories for.neural networks include (i) analogue behaviour or controllable multilevel states, (ii)
compatibility:\with learning rules supporting also online learning, (iii) tuneable short-term and long-
term stability of the weights to implement various dynamics and timescales in synaptic and neuronal
circuits [4-6]. A significant debate still refers to the linear/non-linear and symmetric/asymmetric
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conductance update of experimental devices, synaptic resolution (number of resistance levels), and
how to exploit or mitigate these features (Figs1-B,C).

Filamentary devices are the most mature type of VCMs. Nevertheless, many issues are pending: e.g.
control of multi-level operation, device variability, intrinsic stochasticity, program and read disturbs,
and the still too low resistance level range for neuromorphic circuits [20]. Moreover, the
understanding/modelling of their switching mechanism is still under debate. Whereas first models
including switching variability and read noise are available [18, 19], retention modelling, and the
modelling of volatile effects and device failures are current challenges. First hybrid CMOS-VCM:chips
have been developed demonstrating inference application, but so far they do not suppert on-chip
learning [9-11].

Interfacial VCM devices show in general less variability, less (no) read instability'anda very analogue
tuning of the conductance states, which can leads to a more deterministic and linear conductance
update compared to filamentary devices [13]. Still these properties are not characterized on a high
statistical basis. The retention, especially for thin oxide devices, is lower than fon"llamentary devices,
which may be still compatible with some applications. As the conductance scales with area, the
achievable high resistance levels promise a low power operation. Typicahdevices, however, have a
large area or thick switching oxides, and scaling them to the nanoscale is an open issue. Moreover,
devices showing a large resistance modulation require high switching voltages, not easily compatible
with scaled CMOS nodes. The fabrication and characterization of interfacial VCM arrays needs to be
further addressed. Simulation models for interfacial VEM are not available yet and need to be
developed. &

Redox-based VCM transistors have been only shown on a single device level [16, 17]. Thus, reliable
statistical data on cycle-to-cycle variability, device-to-device variability and stability of the
programmed states is not available yet. Moreover, the trade-off between switching speed and voltage
has not been studied in detail. Anotherschallenge is\the understanding of the switching mechanism
and the development of suitable models forcircuit design.

The open challenges for all three types of VCM devices are summarized in Table I.

Advances in Science and Technology to Meet Challenges

The current challenges for VCM—typk devices push the research in various but connected directions,
which span from material, to theory, devices and architecture. A better understanding of material
properties and microscopic switching'mechanisms is definitely required. However, the key step is to
demonstrate the device integration in complex circuits and hybrid CMOS-VCM hardware
neuromorphic chips. While'WVCMs are not ideal devices, many issues can be solved or mitigated at
circuit level still taking advantage of their properties in term of power, density, and dynamic
properties.

In this context, filamentary VEM devices are the most mature technology, but their deployment into
neuromorphic computing hardware is still at its infancy. A comprehensive compact model, depicting
complete dynamics including retention effects, e.g. to accurately simulate online learning, is required
for the development of optimized circuits. On the material level, the biggest issues are read noise and
switching variability. Due to the inherent Joule heating effect, the transition time of the conductance
switching is very short and depends strongly on the device state [21]. This makes it hard to control the
conductance update. Future research could explore very fast pulses in the range of the transition time
to update the cell conductance, or use thermal engineering of the device stacks to increase the
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transition time. Finally, to achieve low power operation, resistance state values should be moved to
the MQ regime.

For interfacial and redox-transistor VCM devices, one of the next important steps is to shift from
single device research to large arrays, possibly co-integrated with CMOS. This step enables to:collect
a large amount of data, which is required for modelling and demonstrating robust neuromorphic
functions. It would be highly desirable to identify a reference material system with a robust switching
mechanism supported by a comprehensive understanding and modelling from underlying physics to
compact and circuits modelling. Indeed, the modelling of these devices are still"at its infancy:-One
open question for both devices is the trade-off between data retention and switching, speed. In
contrast to the filamentary devices, the velocity of the ions are probably not accelerated by Joule
heating. Thus, the voltage needs to be increased more than in filamentary devices, to operate the
devices at fast speed [22]. This might limit the application of these device to @ certaintime domain as
the CMOS might not be able to provide the required voltage. By using thinnerdevice layers or material

engineering this issue could be addressed. -

Concluding Remarks

The VCM device technologies can integrate novel functionalities in_ hardware as key elements of the
synaptic nodes in neural networks, i.e. to store the synaptic weight. Moreover, they can enable new
learning algorithms that enable bio-plausible functions over. multiple timescales. At the moment, it is
still not clear which can be the best “final” VCM material systemand/or VCM device type, having each
of them advantages and disadvantages. .The missing “killer” system, with consolidated
properties/understanding/easy manufacturing, prevents to concentrate the efforts of the scientific
community in single direction to bring VCM device tosindustrial real applications beyond a niche
market. While filamentary VCMs aresalready been implemented in neuromorphic computing
hardware, interfacial VCM or redox transistor.can open new perspectives in the long term. To this end,
there is an urgent request to further develop VCM devices enhancing new properties through a
combined synergetic development based on materials design, physical and electrical characterizations
and multiscale modelling to support the microscopic understanding of the link between the device
structure and the electrical characteristics. Moreover, the device development targeting brain-
inspired computing systems an oﬁy go hand-in-hand with theory and architectures design in a
holistic view.
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Figure 1. A. Sketch of the three types of VCM devices (filamentary, interfacial and redoxtrafisistor). B. Possible functionalities that can
be implemented by VCM devices, namely binary memory (left), analog/multilevel (centre) and stochastic (right) memory. In the figures,
the device resistance evolution is plotted as a function of applied electrical stimuli(pulses). C. Schematic drawing of some of the
interesting properties of VCM for neuromorphic applications, i.e.'synaptic plasticity dynamics and type of memory with different long or
short retention scales (LTM, STM) . Many experimental VCM devices show:a hon-linear and asymmetric modulation of the conductance
(G) update, but plasticity dynamics can be as well modulated by programming strategies or materials engineering.
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Table I. Summary of status and open challenges of the three types of VC
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1.4 Electrochemical metallization cells
llia Valov, Research Centre Juelich

Status

Electrochemical metallization memories were introduced in nanoelectronics with perspective to be
used as memory, optical, programmable resistor/capacitor devices, sensors and as well for crossbar
arrays and rudimentary neuromorphic circuits by M. Kozicki[1, 2] under the name programmable
metallization cells (PMC). These type devices are termed also conductive bridgingarandom access
memories (CBRAM) or atomic switches[3]. The principle of operation of these two‘electrode devices
using thin layers as ion transporting media is schematically shown in Figure 1. As electrochemically
active electrodes Ag, Cu, Fe or Ni are mostly used and as counter electrodes Pt, Ru, Pd, TiN or W are
preferred. Electrochemical reactions at the electrodes and ionic transport within the device trigged by
internal[4] or applied voltage the formation of metallic filament (bridge) short-circuiting the
electrodes and defining low resistance state (LRS). Voltage of opposite polarity is\used to dissolve the
filament, returning the resistance to high ohmic state (HRS). LRS and'HRS are used to define Boolean
1 and O, respectively.

Apart from prospective for a paradigm shift in computing and information technology offered by
memrsitive devices in general[5], ECMs provide particular advantages compared to other redox-based
resistive memories. They operate at low voltages (~ 0.2 Vito~ 1 V).and currents (from nA to YA range)
allowing for low power consumption. Huge spectrum of materials’can be used as solid electrolytes,
ionic conductors, mixed conductors, semiconductors, /macroscopic insulators and even high-k
materials such as SiO,, HfO,, Ta,0s etc. predominantly in amoerphous but also in crystalline state[6].
The spectrum of these materials includes also 1D and 2D.materials but also different polymers, bio-
inspired / bio-compatible materials, proteins.and other organic and composite materials[7, 8]. The
metallic filament can vary in thickness and may eithercompletely bridge the device, or be only partially
dissolved providing multilevel to analog behaviour. Very thin filaments are extremely unstable and
dissolve fast (down to 10 sec)[9]. The.devices are stable against radiation/cosmic rays, high energy
particles and electromagnetic waves and can operate in large temperature range[10, 11]. Due to
these properties, ECMs can be implemented to various environments, systems and technologies. The
typical applications are as selectck devices, volatile, non-volatile digital and analog memories,
transparent and flexible devices, sensars, artificial neurons and synapses[12-14]. The devices can
combine more functionsiand are thought as basic units for the fields of autonomous systems, beyond
von Neumann computing andartificial intelligence. Further development in the field is essential to
realise the full potential of this technology.
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Figure 1. Principle operation and current-voltage characteristics of electrochemical metallization devices. The individual physical processes

are related to the corresponding part of the I-V dependence. The figure,is reproduced from[1 5]

Current and Future Challenges
N

Despite the apparent simplicity and ease operation ECM cells are complex nanoscale systems, relying
on redox reactions and.ion transport/at extreme conditions[16]. Despite low absolute voltages and
currents, the devices are exposed to electric fields of up to 108 V cm™ and current densities of up to ~
10 A cm?. There i§ naootherexample in the entire field of electrochemical applications even
approaching theseiconditions..Small device volume, harsh and strongly non-equilibrium conditions is
making the understanding of fundamental processes and their control extremely challenging. The
latter results in lessfprecise (or missing) control over the functionalities and reliable operation. Indeed,
maybe the mostserious disadvantage of ECMs is the large variability in switching voltages, currents
and resistive states. Additional problems are fluctuations and drift of the resistance states, as well
their chemically and/or physically determined instabilities.
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24 Figure 2. Schematic differences between ideal cells (left) and real cells accounting for interface interactions occurring due to sputtering

25 conditions, chemical interactions or environmental influences. Physical instabilities/dissolution of the electrode, leading to clustering and

2% formation of conductive oxides in ECM devices (middle). Chemical dissolution of the electrode and:formation of insulating oxides (right) The
27 figure is modified from[1 7]
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30 Several notable issues should be taken in consideration: (1) Missing unequivocal experimental value
31 about what part of the applied current is carried by.ions and by electrons. Whereas in macroscopic
g; systems these numbers are constant, in nanoscale ECMs'it. may vary depending on the conditions and
34 charge concentration. 2) The charge/ion cancentration may vary with time. Due to the small volume,
35 it is easy to enrich or deplete the film with. mobile“ions (acting as donors/acceptors) during the
;? operation cycles, resulting in deviation of the switching voltages and currents and finally to failures.
38 3) Again due to small volume, evennlow number of foreign atoms/ions (impurities) will cause
39 considerable changes in the electronic properties. Impurities or dopants and as well the matrix
40 significantly alter the characteristics due/ to effects on the switching layer[18, 19] or on the
2; electrodes[20] . 4) Effects of protons and oxygen. Both can be incorporated either during device
43 preparation (e.g. lithography /teps, or deposition technique e.g. ALD etc. ) or from the
44 environment[21], even'if cappinglayer is used. Many devices even cannot operate without presence
22 of protons and many electrode materials such as Cu, Mo, W or TiN etc. can be partially or even are
47 fully oxidized by environmental factors. 5) Interfacial interactions are commonly occurring at the
48 electrode/solid electrolyte interface. The thickness of these interfacial layers can sometime even
49 exceed the thickness of the switching layer and inhibit or support reliable operation[17].

?1) All these effects have their origin in the nanosize of the devices and highly non-equilibrium operating
52 conditions:

53

g: Advances inScience and Technology to Meet Challenges

56

57 Addressing the challenges and issues that still limit the implementation of ECM devices in the praxis,
58 should be considered on different levels. On a fundamental level, an in-depth understanding of the
59

nanoscale processes and rate-limiting steps that determine the resistive switching mechanism is
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essential. To overcome the current limitations the theory should be further improved to account not
only quantitatively but also qualitatively for the fundamental differences in thermodynamics and
kinetics on the nanoscale compared to the macroscale. The scientific equipment needs to be improved
to address the demand on sufficient mass and charge sensitivity and as well lateral and vertical
resolution. Accent should be set on in situ and in operando techniques at real conditions enhanced by
high time and imaging resolutions.

On a materials level, efforts should be made to understand and effectively use the relation between
physical and chemical material properties, such as chemical composition, non-stoichiometry, purity,
doping, density, thickness and mechanical properties and device performance and functionalities. A
more narrow selection from the vast sea of ECM materials should be made an which systematic
research should be performed. Final task to be achieved by these selective materials research
approach is establishing a universal materials treasure map.

On a device/circuit/technology level, common problems such as sneak path’problem/still need to be
addressed. Limitation of interactions between devices and high-density inte?ration (also within
CMOS) needs to be further improved. The control during the deposition of layer/materials should be
adjusted to avoid layer intermixing, contaminations and incorporation oflimpurities. In many cases,
deposition of thin films of non-oxidized elements or components with higher affinity to oxygen such
as W, Mo, TiN or oxygen-free containing chalcogenides is possible only‘after special pre-care. The
technological processes must be adapted and regularly controlled toensure high quality and defined
chemical composition. Additional efforts should also be.made to integrate devices utilizing different
functionalities and allowing for higher degree of complexity. The.internal electromotive force should
be further explored and utilized in respect autonomous/systems and as well applications in space
technologies and medicine should be further developed.

These issues are in fact highly interrelated,and closely depend on each other. Most important on the
current stage of development of ECM devices is to understand and control the relation between
material properties, physical processes and device performance and functionalities. This knowledge
will result in improved reliability of the,devices and advanced technology.

Concluding Remarks

ECM devices have been intensivelyH’éveIoped in the last 20 years however, still not reaching their full
potential. Opportunities for various| applications in the fields of nanoelectronics, nanoionics,
magnetics, optics, sensorics etc. andprospective for implementation as basic units in neuromorphic
computing, big data processing, ,autonomous systems and artificial intelligence are impeded by
insufficient control of the nanoscale processes and incomplete knowledge on the relation between
material properties, fundamental processes and devices characteristics and functionalities. To achieve
these tasks, not/only existing theory but also the scientific equipment and characterization techniques
should be further improvedallewing a direct insight in the complex nanoscale phenomena. Interacting
and complementing fundamental and applied research is the key to address these issues in order to
deploy the advantages and opportunities offered by the electrochemical metallization cells into
modern infoermation and communications technologies.
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1.5 Nanowire Networks
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Status

The human brain is a complex network of about 10!' neurons connected by 10'* synapses,
anatomically organized over multiple scales of space, and fun¢tionallyyinteracting over
multiple scales of time [1]. Synaptic plasticity, i.e. the ability of synaptic connections to
strengthen or weaken over time depending on external stimulation,is at the'root of information
processing and memory capabilities of neuronal circuits. As building blocks for the realization
of artificial neurons and synapses, memristive devices organizediin large crossbar arrays with
a top-down approach have been recently proposed [2]. Despiteithe state-of-art of this rapidly
growing technology demonstrated hardware implementation of supervised and unsupervised
learning paradigms in artificial neural networks (ANN), thg rigid top-down and grid-like
architecture of crossbar arrays fails in emulating the topology, connectivity and adaptability of
biological neural networks, where the principle of self-organization governs both structure and
functions [1]. Inspired by biological systems (Figure la), more biologically plausible
nanoarchitectures based on self-organized memristive nanowire (NW) networks have been
proposed [3]-[8] (Figure 1b and c). Here, the'main goal is to focus on the emergent behaviour
of the system arising from complexity ratherthan on learning schemes that require addressing
of single ANN elements. Indeed, in this case main players are not individual nano objects but
their interactions [9]. In this framework, the cross-talk in between individual devices, that
represents an unwanted source 'of sneak currents in conventional crossbar architectures, here
represents an essential component,for the network emerging behaviour needed for the
implementation of unconventienal ¢omputing paradigms. NW networks can be fabricated by
randomly dispersingNWs with,a metallic core and an insulating shell layer on a substrate by a
low-cost drop casting technique that does not require nanolithography or cleanroom facilities.
The obtained NW/network topology shows small-world architecture similarly to biological
systems [10]. Both single NW junctions and single NWs show memristive behaviour due to
the formation/fupture of a'metallic filament across the insulating shell layer and to breakdown
events followed by eléctromigration effects in the formed nanogap, respectively (Figure 1e-h)
[7]. Emerging network-wide memristive dynamics were observed to arise from the mutual
electrochemicaldnteraction in between NWs, where the information is encoded in “winner-
takes-all” conductivity pathways that depend on the spatial location and temporal sequence of
stimulations [11]-[13]. By exploiting these dynamics, NW networks in multiterminal
configuration can exhibit homosynaptic, heterosynaptic and structural plasticity with
spatiotemporal processing of input signals [7]. Also, nanonetworks have been reported to
exhibit:fingerprints of self-organized criticality similarly to our brain [3], [14], [15], a feature



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - NCE-100024.R1 Page 32 of 169

Roadmap on Neuromorphic Computing and Engineering

that is considered responsible for optimization of information transfer and processing in
biological circuits. Because of both topological structure and functionalities, NW networks are
considered as very promising platforms for hardware realization of biologically plausible
intelligent systems.

-
Insulating
shell layer

Figure 1. Bio-inspired memristive NW networks. (a) Biological neural networks where synaptic connections between neurons are
represented by bright fluorescent boutons (image of primary mouse hippocampal neurons); (b) self-organizing memristive Ag NW
networks realized by drop-casting (scale bar, 500 nm). Adapted from [7] under the terms of Creative Commons Attribution 4.0 License,
Copyright 2020, Wiley-VCH. (c) Atomic switch network of Ag wires. Adapted from [8], Copyright 2013, IOP Publishing. (d-e) Single NW
junction device where the memristive mechanism rely/on.the formation/rupture of a metallic conductive filament in between metallic
cores of intersecting NWs under the action of an applied electric field:and (f-g) single NW device where the switching mechanism, after
the formation of a nanogap along the NW due to an electrical breakdown, is related to the electromigration of metal ions across this gap.
Adapted from [7] under the terms of Creative Commons Attribution4.0 License, Copyright 2020, Wiley-VCH.
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Current and Future Challenges

Current and future challenges for hardware implementation of neuromorphic computing in the
bottom-up NW network will need integrated theoretical and experimental multidisciplinary
approaches involving material physics, electronics engineering, neuroscience and network
science (an overview of the roadmap is shown in Figure 2). In NW networks, unconventional
computing paradigms that emphasize the network as a whole rather than the role of single
elements need to be developed. In this framework, great attention has recently been devoted to
the reservoir computing (RC) paradigm where a complex network of nonlinear elements is
exploited to map input signals into a higher dimensional feature space that is then analysed by
means of a readout function. In this framework, nano-networks have been proposed [16] and
experimentally exploited as ‘physical’ reservoirs for in materia implementation of the RC
paradigm [17,18,19]. However, fundamental research is needed to address remaining
challenges. The design and fabrication of multiterminal memristive?NW| networks able to
process multiple spatio-temporal inputs with nonlinear dynamics, fading memory (short-term
memory) and echo-state properties minimizing energy dissipation are,needed. Importantly,
these NW networks have to operate at low voltages and. currents to be implemented with
conventional electronics. These represent challenges from the material science point of view,
since to achieve this goal NWs have to be optimized in terms of core-shell structures for
tailoring ionic dynamics underlying resistive switching mechanism. Also, a fully-hardware RC
system requires hardware implementation of the readout function for processing outputs of the
NW network physical reservoir. Despite themeural network readout can be implemented by
means of crossbar arrays of ReRAM devices tonrealize a fully-memristive architecture as
demonstrated in ref. [17], the software/hardware for interfacing the NW network with the
ReRAM readout represents a challenge from'the electronic engineering point of view. To fully
investigate the computing capabilities of these self-organized systems, modelling of the
emergent behaviour is required for understanding the interplay in between network topology
and functionalities. This relationship ean be explored with a complex network approach by
means of graph theory metrics. Current’ challenges in understanding and modelling the
emergent behaviour of NW networks rely on the experimental investigation of resistive
switching mechanism in single' network elements, including a statistical analysis of inherent
stochastic switching features of individual memristive elements. Also, combined experiment
and modelling are esSential to investigate hallmarks of criticality including short and long-
range correlations amongmetwork elements, power-law distributions of events and avalanche
effects by means©fan information theory approach. Despite scale-free networks operating near
the critical point similarlyto the cortical tissue are expected to enhance information processing,
understanding how critical phenomena affect computational capabilities of self-organized NW
networks_still remain‘an open challenge.
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Neuromorphiwyst
, Challenge: adaptive int
and robotics

Macroscale: multiterminal a
. Challenge: multiterminal characteri
interfacing NW networks with C

Mesoscale: emergent behavior
Challenge: controlling network-wide synaptic
plasticity dynamics, avalanche effects and cri

Nanoscale: resistive switching mechanism
. Challenge: controlling ionic dynamics in NWs
and NW junctions

Figure 2. Roadmap for the development of neuromorphic systems based on NW networks.
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Advances in Science and Technology to Meet Challenges

Understanding dynamics from the nanoscale, at the single NW/NW junction level, to the
macroscale where a collective behaviour emerges is a key requirement for implementing
neuromorphic-type of data processing in NW networks. At the nanoscale, scanning probe
microscopy (SPM) techniques can be employed to assess local network dynamics. In particular,
Conductive Atomic Force Microscopy (C-AFM), that provides information on the local NW
network conductivity, can be exploited not only as a tool to investigate changes of conductivity
after switching events, but also for locally manipulating the electrical connectivity atthe single
NW/NW junction level [20]. Scanning Thermal Microscopy (SThM) can be employed to
locally measure the network temperature with spatial resolution < 10"nm, well below the
resolution of the conventional Lock-in Thermography (LIT) [12], providing information about
nanoscale current pathways across the sample. At the macroscale, advances in electrical
characterization techniques are required for analysing the spatial _distribution of electrical
properties across the network and their evolution over timesupon_stimulation. In this
framework, one-probe electrical mapping can be adopted for spatially visualizing voltage
equipotential lines across the network [21], even if this scanning, technique does not allow an
analysis of the network evolution over time. In contrast, non=scanning electrical resistance
tomography (ERT) have been recently demonstrated as'a versatile tool for mapping the network
conductivity over time at the macroscale (~ cm?){[22].Thus, ERT can allow in-situ direct
visualization of the formation and spontaneous relaxation of conductive pathways, providing
quantitative information on the conductivity. and morphology of conductive pathways in
relation with the spatio-temporal location of stimulation. Advancements in the synthesis of
core-shell NWs are required for engineering the insulating shell layer surrounding the metallic
inner core that acts as a solid electrolyte. Taking into advantage of the possibility of producing
conformal thin films with control of thickness and composition at the atomic level, Atomic
Layer Deposition (ALD) represents one of the most promising techniques for the realization of
metal-oxide shell layers. Also, altérnative bottom-up nanopatterning techniques such as Direct
Self-Assembly (DSA) of Block'Copolymers (BCPs) can be explored for the fabrication of self-
organizing NW networks with the pessibility of controlling correlation lengths and degree of
order [23]. This approach canfallow a statistical control of network topology. Customized
characterization techmiques, fromthe nanoscale to the macroscale, coupled with a proper
engineering of NW structure/materials and network topology, will ultimately enable the control
of network dynamics needed for efficient computing implementations.
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Concluding Remarks

Self-organized NW networks can provide a new paradigm for the realization of neuromorphic
hardware. The concept of nanoarchitecture, where the mutual interaction among a huge number
of nano parts causes new functionalities to emerge, resembles our brain, where an emergent
behaviour arises from the synaptic interactions among a huge number of neurons. Besides
reservoir computing that represents one of the most promising computing paradigms to be
implemented on these nanoarchitectures, unconventional computing frameworks able" to
process sensor inputs from the environment can be explored for online adapting,of robot
behavior. In perspective, more complex network dynamics can be explored by realizing
computing nanoarchitectures composed of multiple interconnected networks or by:stimulating
networks with heterogeneous stimuli. In this scenario, NW networks that can learn and adapt
when externally stimulated - thus mimicking the processes of experience-dependent synaptic
plasticity that shapes connectivity of our nervous system - would not only represent a
breakthrough platform for neuro-inspired computing but could alsefacilitate the understanding
of information processing in our brain, where structure and functionalities are intrinsically
related.
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1.6 - 2D materials
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Status

~
With more and more deployed edge devices, the huge volumes of data are being generated each

day and waiting for real-time analysis. To process these raw data, these data have to be
collected and stored, which are accomplished in sensors, memory unit and computing unit,
respectively. This usually gives rise to large delay and high energy consumption, which
becomes severe with an explosive growth in data generation. Computing in sensory or memory
devices allows for reducing latency and power consumption a@ssociated with data transfer [1]
and is promising for real-time analysis. Funetional diversity and performances of these two
distinct computing paradigms are largely determined by the type of functional materials. Two-
dimensional (2D) materials representasnovel class of materials and show many promising
properties, such as atomically thin geometry, excellent electronic properties, electrostatic
doping, gate-tuneable photoresponse, superior thermal stability, exceptional mechanical
flexibility and strength, etc. Stacking distinct 2D materials on top of each other enables creation
of diverse van der Waals (vdW) heterostructures with different combinations and stacking
orders, not only retaining the’ properties of dividual 2D components but also exhibiting

additional intriguing properties beyond those of individual 2D materials.

2D materials and vdW- heterostructures has recently shown great potential on achieving in-
sensor computing.and. in-memory computing, as shown in Fig. 1. There has intense interest in
exploring unique/properties of 2D materials and their vdW heterostructures for designing
computational ‘sensing devices. For example, photovoltaic properties of gate-tuneable p-n
homojunction based on ambipolar material WSe, were exploited for ultrafast vision sensor
capable of processing images within 50 ns [2]. Employing gate-tuneable optoelectronic

response of WSe>/h-BN vdW heterostructure can emulate the hierarchical architecture and
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biological functionalities of human retina to design reconfigurable retinomorphic sensor array

[3].

2D materials and their associated vdW heterostructures were also introduced for in-memory
computing devices and circuits to improve the switching characteristics and offering additional
functionalities. Several switching mechanisms such as conductive filament [4], charging-
discharging [5-7], grain boundary migration [8], ionic intercalation [9, 10}, lattice phase
transition [11], etc., have been reported in 2D materials-based planar and vertical devices. With
strict limitation in available space and the number of references, only-a‘few representative
works are mentioned in this roadmap. Interested readers are encouraged to refer to previous
review article [12]. Based on superior thermal stability and atomically=sharp interface of
graphene/MoS2.xOx/graphene vdW heterostructure, a robust memristive deyice was reported to
exhibit endurance of 107 at room temperature and stable switching pérformance in a record-
high operating temperature of 340 °C [13]. Different frommoxide-based memristive devices,
metal/2D material/metal vertical devices with layeredsstructure feature of switching medium
were used to mimic high-performance electronic synapses wi~th good energy efficiency [14],
which holds promise for modelling artificial neural network in a high-density memristive
crossbar array [15]. Reducing the thickness of switching medium down to monolayer allows
for fabrication of thinnest resistive switching devices with featuring the conductive-point

resistive switching mechanism [16, 17].

Current and Future Challenges

In these prototype demonstrations of'in-sensor computing, the fabricated device arrays are
limited due to