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A B S T R A C T   

Generative computation has the potential to enhance the accuracy, effectiveness, and creativity of spatial layout 
in design and planning. The paper proposes a methodology to separate the knowledge about objects, spatial 
relationships, and constraints from the generative process. The separation between the knowledge in a domain 
and its possible practical uses is an important achievement of semantic technologies, because it grants access to a 
large body of knowledge, spanning various aspects and processes across buildings and cities, which is being 
codified into formal ontologies. The present study has reused existing knowledge from two established ontol-
ogies. An illustrative case-project demonstrates the suitability of the methodology for a complex layout planning 
problem, involving a large number of decision-makers, with multiple competing objectives and criteria. The 
system implements multidimensional visual interactive tools to assist designers, planners, and decision-makers in 
exploring the layouts and the criteria, to develop their confidence in what qualifies as a good and effective 
solution.   

1. Introduction 

The paper presents a system for generating the spatial layout of ob-
jects according to knowledge about them and about the constraints and 
relationships for the design layout. 

The knowledge is expressed with semantic technologies, namely 
formal ontologies. Artificial Intelligence has developed ontologies as 
effective tools for separating the knowledge in a domain from its uses. 
The separation between the scaffolding and management of knowledge 
and its possible practical uses is relevant, because a large body of 
knowledge, spanning various aspects and processes across buildings and 
cities, is already being codified into formal ontologies, many of them 
accessible as open-source. One aim of the present study is reusing a 
portion of the knowledge in previously created ontologies for layout 
design. The reuse of the knowledge profits from the efforts made by the 
scientific community over decades. For the generation and evaluation of 
layouts, two existing ontologies have been used in the present study. The 
methodology, developed and tested in the research, for the reuse of 
existing ontologies allows the easy integration of further formal 
knowledge. 

Enabling semantic technologies have supported the development of 
the generative system: Web Ontology Language (OWL) for the repre-
sentation of the formal knowledge, and Semantic Web Rule Language 
(SWRL) for the expression of rules and logic. The integration of SWRL 
with OWL has enhanced the reasoning on the knowledge for the 

generation of the layouts. The reasoning has been used to check the 
consistency of knowledge about the various constraints on and re-
lationships for the objects, and to infer from the initially implemented 
knowledge further logical consequences. Furthermore, the semantic 
inference engine has been able to derive every layout instance compliant 
with the knowledge in the ontologies. This has a far-reaching applicative 
consequence: the system can automatically generate all the layouts 
compliant with the knowledge about the objects, the constraints and the 
relationships. 

An assumption of the research is that the generation of all the 
compliant layouts gives stakeholders more power to define and match 
their requirements, and allows designers to explore a wider range of 
hypotheses with the aim of greater control over variety and choice. 

Hou and Stouffs [1] have studied how small quantitative change in 
the layouts can improve algorithmic design in the satisfaction of adja-
cency and area constraints. The assumption of the present work is that a 
small quantitative change in objectives or criteria may produce sub-
stantially different layouts that may better match the designers’ or 
stakeholders’ expectations. We have set the decision-makers (DMs) at 
the core of the decision process: the aim is supporting DMs’ exploration 
of solutions to fit their objectives. 

Multiobjective decision analysis methods [2–4] provide the theo-
retical framework: within all the compliant layouts generated at least 
one set of equally interesting Pareto optimal solutions can be defined. 
This Pareto set recognises all the layouts for which no criterion can be 
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improved except at the expense of at least one of the other criteria. For 
many real-world projects, the DMs’ definition of objectives and criteria 
is impaired by various uncertainty factors. To add robustness to the 
decision process, DMs are provided with visual interactive tools to 
explore the layouts and the criteria, to learn the trade-offs between 
them. The visual interaction assists the designers and DMs to develop 
their confidence in what qualifies as a good and effective layout. 

2. Overview of semantic technologies and ontologies in AEC and 
Smart City 

Semantic technologies are becoming more and more common in the 
fields of Architecture, Engineering and Construction (AEC), and of Smart 
Cities. 

A number of enabling technologies have supported the development 

Table 1 
Ontologies related to AEC and Smart City with the main reference domains implemented [13].  

Formal name Ontology Reference Domains:    

Administrative AEC Building Observations Public 
Serv. 

Smart 
City 

Transport 

AFPS-Onto Active fall protection system ontology [18]  ■      
ALMANAC platform  [19]    ■  ■  
BIMSO BIM shared ontology [20]  ■      
BOnSAI Building ontology for ambient intelligence [21]   ■ ■    
BOT Building topology ontology [22]  ■ ■     
BridgeOnto Bridge deterioration ontology [23]  ■     ■ 
City ontology  [24]      ■  
CityBench  [25]    ■  ■  
CNC ontology Construction noise control ontology [26]  ■      
CQIEOntology Construction quality inspection and 

evaluation ontology 
[27]  ■      

Data quality control Data quality control framework [28]  ■  ■  ■  
Defect Defect ontology [29]  ■      
Delay Delay analysis ontology [30]  ■      
DIMMER DIMMER systems integration ontology [31]   ■ ■  ■  
DogOnt Ontology modelling for intelligent 

domotic environments 
[32]  ■  ■    

E-society E-society ontology [33]  ■    ■  
fiesta-iot FIESTA-IoT [34]    ■  ■  
FMUont Functional mock-up ontology [35]  ■ ■     
FOWLA  [36]  ■      
Freight Freight data ontology [37]       ■ 
gci Global City Indicator Foundation Ontology [38] ■   ■ ■ ■  
IC-PRO-Onto Infrastructure and construction process 

ontology 
[39]  ■      

ifcOWL ifcOWL [40]  ■      
INTER-IoT  [41]    ■  ■  
km4c Km4city, the DISITKnowledge Model for 

City and Mobility 
[42] ■  ■ ■ ■ ■ ■ 

oldssn The W3C Semantic Sensor Network 
Ontology 

[43]    ■  ■  

OntoFM FM ontology [44]  ■ ■ ■    
Onto-integrator Ontology integrator [45]  ■      
OptEEmAL  [46]  ■    ■  
pep Procedure Execution Ontology [47]    ■  ■  
Performance 

Assessment 
Performance Assessment Ontology [48]  ■ ■     

PRISMA  [49]      ■  
QA-ontology Quality audit ontology [50]  ■      
RaCoOn Rail core ontology [51]  ■      
READY4SmartCities  [52]        
san Semantic Actuator Network [53]    ■  ■  
sao Stream Annotation Ontology [54]   ■ ■  ■ ■ 
SAREF Smart appliances reference ontology [55]   ■ ■  ■  
sco Sensor Cloud Ontology [56]    ■  ■  
sctc STAR-CITY [57]    ■ ■ ■  
seas SEAS [47]    ■  ■  
SEMANCO  [58]  ■      
Semantic smart 

gateway 
Semantic smart gateway framework [59]    ■    

Sii-mobility  [60]    ■    
SIMModel ontology Simulation domain model [61]  ■ ■     
SI-Onto Social-equity-oriented stakeholder 

Involvement ontology 
[62] ■ ■    ■  

smart-city Smart City Ontology [63] ■   ■ ■ ■ ■ 
sosa Sensor, Observation, Sample, and Actuator [64]    ■  ■  
Spatial planning Ontology for modelling spatial planning 

systems 
[65]  ■    ■  

ssn Semantic Sensor Network Ontology [66]    ■  ■  
SSN ontology Semantic sensor network (SSN) ontology [67]    ■    
ThinkHome ThinkHome [68]  ■ ■     
vital VITAL [69]    ■ ■ ■  
Web of things (WoT)  [70]    ■  ■   
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of semantic technologies: Web Ontology Language (OWL) is a set of 
languages for authoring ontologies for formal knowledge representa-
tion; Semantic Web Rule Language (SWRL) is a language to express rules 
and logic, that combined with OWL, enhances the reasoning on 
knowledge. 

Ontologies in artificial intelligence are “explicit specification of a 
conceptualization” [5], in which is modelled a domain of knowledge as a 
set of concepts and the relationships among those concepts. “A domain 
ontology does not aim to exhaustively list all concepts in a domain, but 
rather to build an abstract (yet extendable) philosophical (yet practical) 
conceptualization of the essence of knowledge in a domain.” [6]. 

For semantic technologies, a body of studies has focused on the major 
fields of use in interoperability, information representation and extrac-
tion, knowledge management, and logical inference and proofs. 

2.1. Interoperability 

Formal ontologies offer the capacity to integrate, to link data within 
and across domains, e.g. Architecture, Engineering and Construction 
(AEC), Smart City, energy, transportation, environment, heritage, …, 
and from different sources, e.g. BIM, CAD, GIS, sensor data, simulation 
data, … The common method is to use formal knowledge-based vo-
cabularies, i.e. ontologies, that describe information in a shared 
machine-readable format [7]. 

Bittner et al. [8] and Visser et al. [9] distinguish between syntax, 
structure, and semantic interoperability in data. Syntax and structure 
interoperability deals with representation, format, model interopera-
bility in data. Semantic interoperability deals with the meanings of data: 
it sets connections between computers, between things and computers, 
between humans and computers, and between humans. 

Ontologies are formal specifications of shared conceptualisations 
[10]. As a technology, ontologies have largely been implemented as 
meaning models to capture conceptualisations for representing and 
sharing them. As a methodology, ontologies have provided formal 
methods for clarifying the conceptualisations and the specifications. 

Smart City is commonly understood to mean a community of people, 
resources, infrastructure and environment that can benefit from being 
interconnected [11,12]. In this regard, ontologies, both as technology 
and methodology, have been extensively implemented for interopera-
bility among, for instance, data infrastructures, mobile apps, Internet of 
Things platforms, and a heterogeneous plethora of users. Espinoza-Arias 
et al. [13] have reviewed the ontologies being developed in Smart City. 

The AEC industry have invested in interoperability at the application 
level, BIM above all, and at inter-application scale, e.g. across CAD and 
GIS systems, and towards ICT technologies, e.g. digital twin, internet of 
things, and big data. Espinoza-Arias et al. [13] and Costin and Eastman 
[7] wide-scoping surveys of ontologies are listed in Table 1. The Table 
summarises the reference domains for the ontologies: (1) AEC umbrella 
refers to entities, properties, and functionalities for design, analysis, 
production, and maintenance of building facilities; (2) Building domain 
represents all objects or functions contained in or related to an edifice; 
(3) Administrative Area domain represents places delineated for 
jurisdiction purposes of a particular government (e.g., city, district, 
neighbourhood, etc.); (4) Public Service domain involves all services 
provided by public administrations and organisations (e.g., waste 
management, public parking, water quality control, etc.); (5) Obser-
vations/IoT domain represents all measured values related to a 
particular property of any feature of interest (e.g., noise levels, weather 
conditions, air quality, etc.); (6) Smart City umbrella refers to a city 
managing, in an intelligent way, all its associated resources to improve 
the quality of life and to enhance the quality of the services to citizens; 
and (7) Transport describes activities performed in a city relevant to 
moving means or service. 

2.2. Information representation and extraction 

Ontologies have been developed to extract and represent informa-
tion from unstructured data, e.g. from different textual construction 
documents [14], from images, or from remote sensing which is a vivid 
research topic, beyond the aims of the present paper. Semantic-based 
data mining can discover regularities and patterns, which can lead to 
informed design or planning actions [15]. An emerging field is infor-
mation representation and extraction from big data generated by the 
operation of robots and unmanned vehicles, for instance from vacuum 
cleaning robots. Ontologies provide the knowledge to the robot for 
mapping rooms and objects, for delivery of daily robotic services [16], 
and for extracting, validating, correcting and generating descriptive 
profiles out of datasets without prior knowledge [17]. 

2.3. Knowledge management 

Gruber’s foundational definition of a formal ontology, “explicit 
specification of a conceptualization” [5], has advanced the management 
of knowledge as a set of concepts and their relationships within a 
domain that is a set of representational primitives with which to model a 
discourse or a knowledge domain. That definition is compatible with the 
implementation of ontologies for the management, sharing, and reuse of 
knowledge. “Shared use means that the ontology describes general 
knowledge rather than a personal one. This property implies that the 
ontology represents a knowledge base valid for a context or accepted by 
a group or a community, who could possibly reuse and adapt it for 
diverse purposes.” [71]. 

At the city scale, a large body of applications have been developed 
since the pioneering work of Fonseca et al. [72], grounded on reusing 
existing knowledge from previous urban GIS projects with the creation 
of software components from diverse ontologies as a matter of sharing 
knowledge and data. 

Daneshfar et al. [73] have built the GISOntology4Renovation ontology 
to formalise the knowledge about the surrounding environment of a 
building in an urban context. The ontology makes explicit the con-
ceptualisation about objects and processes in building renovation. The 
aim is to “to create a knowledge management system for different ex-
perts involved in the process of the building renovation, to extend the 
information and stretch the domain from the individual building to the 
environment.” They have acquired the domain knowledge from litera-
ture and renovation pilot-projects. 

In Ardissono et al. [74] the Ontomap ontology makes explicit the 
users’ conceptualisation about community maps, the individual’s in-
formation that enriches the interaction with maps during participatory 
decision-making. The system interprets the individual’s vocabulary, 
from lexis, occurring during queries-interactions, and applies semantic 
interpretation and disambiguation based on the context. The system is 
able to identify relevant concepts and to proactively suggest pertinent 
knowledge with interaction in natural language. 

Sun et al. [75] have managed the knowledge in the domain of urban 
master planning in mountain areas. They have developed an augmented 
planning support system for efficient and flexible decision making, 
whose domain knowledge is provided by an urban planning ontology. 

The ontology manages domain knowledge in master planning for 
mountain zones. The ontology has been structured into three top-levels, 
respectively domain, task, and application in urban planning. 

The domain level encompasses the specific lexicon of urban plan-
ning. A further conceptualisation is given by urban physical layers, i.e. 
land use, building, network, landscaping, and intangible ones, i.e. social, 
economic, cultural, environmental, administrative. There are ten root 
classes: City Size, Urban System Urban Master Layout, Historic City 
Protection, Spatial Control, Immediate Plan, Urban Functional, Urban 
Ecological Protection, Basic Materials, and Development Strategy. The 
classes have subclasses, through “is a” relationships. 

The task level manages the knowledge relevant to the urban planning 
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workflow, i.e. filling, approval, implementation, management, and su-
pervision, to the planning tasks, e.g. master planning, detailed planning, 
construction planning, and so on, and to the approval process. 

The augmented planning support system framework, based on 
domain knowledge, facilitates various urban actors to reach an informed 
consensus, grounded on a common understanding. 

In AEC, the e-COGNOS project (COnsistent knowledGe management 
across prOjects and between enterpriSes in the construction domain - 
IST-2000-28,671) [76] implemented an early deployment of domain 
ontology for knowledge management, by incorporating the ontology in a 
comprehensive knowledge management system. The ontological model 
grounded on “a group of Actors uses a set of Resources to produce a set of 
Products following certain Processes within a work environment 
(Related Domains) and according to certain conditions (Technical 
Topics).” Accordingly, a construction Project is a collection of processes. 
Each Process had input requirements, that is the completion of all 
scheduled processes, the clearance of required approvals, the handling 
of required knowledge items (documents, software, etc.), the availabil-
ity of required Resources (materials, equipment, subcontractors), and 
output requirements, that is update to a product time-line, update to the 
project schedule, update to the project budget, and update to the legal 
status of Actors. The knowledge management system implemented tools 
for the collaborative creation of document, search, sharing, dissemina-
tion, and documentation. 

Further works had integrated Building Information Modelling (BIM) 
with ontology-based knowledge management. Ding et al. [77] modelled 
construction risk knowledge into an ontology-based semantic network 
for planning risk maps. The mapping of the risk-related knowledge 
supported the semantic inference between risks and risk paths. The 
knowledge is semantically linked to the relevant objects in BIM. Lee 
et al. [29] had semantically linked knowledge on unstructured con-
struction defects with BIM objects to reduce the occurrence of defects by 
referring to the previous faulty cases. 

In the field of renewable energies, Abanda et al. [78] developed a 
photovoltaic technology ontology system (PV-TONS) reusing and 
extending the ontology to manage knowledge about photovoltaic- 
systems, previously implemented by Tah and Abanda [79]. Saba et al. 
[80] implemented a tool to optimise hybrid energy systems (HES) based 
on a domain ontology. 

2.4. Logical inference and proofs 

The underlying logical foundations to ontologies rely on Web 
Ontology Language (OWL), a set of knowledge representation lan-
guages, based on Description Logic (DL). That is, OWL classes corre-
spond to DL concepts, OWL properties to DL roles, individuals are named 
in the same manner in the OWL and the DL lexicon. 

A coherent representation of the knowledge in OWL can use the 
initial knowledge to infer logical consequences and further instances. 
Besides, semantic reasoners can derive every consequence of the 
knowledge in an ontology, by providing a richer set of mechanisms to 
work with. Several reasoners use first-order predicate logic to perform 
reasoning, while probabilistic reasoners and probabilistic logic networks 
are emerging, using non-axiomatic reasoning systems [81]. “By intro-
ducing ontological reasoning, semantic techniques enable discovery of 
knowledge and information that was not part of the original use case or 
purpose of the ontology itself.” [76]. 

Kadolsky et al. [82], to simplify simulation in the energy-efficiency 
design of buildings, implemented the eeBIM ontology that provided 
the concepts for describing a building, the BIM objects, the external data 
(e.g. climate data), and the interrelations among them. From the eeBIM 
ontology, they inferred logical rules to pre-check the input data and to 
pre-analyse the energy performance, in advance of the simulation. The 
logical rules performed the consistency checking and the consequences 
assessment, for instance accomplishing the verification for compliant 
thermal insulation: 

“the model checking each process is related to a set of logical rules 
specifying restrictions, cardinalities, etc. for the domain model and 
environment model schemas. These logical rules represent the re-
quirements the given models and their instances have to fulfill for the 
related process. The environment and domain models with their certain 
instances represent the resources, which have to follow the given model 
schema and the related rules. Thereby, two processes can be related to 
the same model-schemas, but to different logical rules. This would mean 
that the processes are operating on the same domains and the same 
environment, but they need a different view for the process execution. 
So, the process model comprises both the ‘To-be’ description repre-
sented by the model schemas and logical rules and the ‘As-is’ description 
represented by the model instances.” 

Kuster et al. [83], to support real time assessment of urban sustain-
ability and to inform decision-making, developed the Urban District 
Sustainability Assessment (UDSA) ontology. At district level, the 
ontology links sensors, GIS and BIMs models, and regulations such as 
Leadership in Energy and Environmental Design for Neighbourhood 
Development, Building Research Establishment Environmental Assess-
ment Method, and Comprehensive Assessment System for Built Envi-
ronment Efficiency for Urban Development. The validation has been 
performed on the site of “The Works”, a newly refurbished neighbour-
hood in Ebbw Vale, Wales. The flow of data came from local district 
heating with heat provided by a combination of CHP units, biomass 
boilers and gas boilers, including the energy provision and the measures 
of heat and electricity production and of the demand from the specific 
buildings. The ontology performed the query of the data, where a time 
series is managed as a single observation. OWL 2 reasoning engine 
inferred both explicit and implicit relationships over the series. Because 
of the cumbersome number of observations, the OWL instances prolif-
erated beyond computability. Thus, Kuster et al. moved to OWL 2 QL 
that allows reasoning over a large volume of instances, at the cost of 
some reduction in expressivity: “Therefore, some axioms remain, such as 
subclass axioms, equivalences, inverses, properties etc., whereas some 
others, such as transitivity, cardinality restrictions or universal and 
existential restrictions, are not supported.” 

3. Layouts generation: separating knowledge from process 

For the generation of layouts, we have separated the knowledge 
about the objects, the spatial relationships, and the constraints from the 
generative process. 

The separation between the knowledge and its possible practical uses 
is important, because – as considered in 1. Introduction – a large body of 
knowledge, spanning various aspects across buildings and cities is being 
implemented into formal ontologies. Artificial Intelligence has devel-
oped ontologies as effective tools for separating the knowledge in a 
domain from its uses. 

The present study has reused existing knowledge, used for layout 
generation, from two existing ontologies (cf. 4.). 

The generation process has been addressed in the more general 
geometric constraint-satisfaction problem [84,85]), which can deal with 
the general problem of layout of objects in space matching constraints 
and relationships, in which the plans are not bound until the CSP is 
solved by the constraint satisfaction solver. 

4. Knowledge for layouts generation 

The research has used two existing ontologies. The next Sections 
describe the Urban Morphology Ontology (UMO) [71], and the Semantic 
Tools for Carbon Reduction in Urban Planning (SEMANCO) ontology 
[58,166]. 

4.1. Urban morphology ontology: the basic units and their relationships 

For the formalisation of the UMO, Berta et al. [71] recognised four 
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reference classes that map the hierarchical main morphological levels of 
objects: 

“Those classes have been defined trying to catch the hierarchical 
main levels of urban elements that appear in an urban space project. 

Root class: Geometrical families. This class tries to divide the 
urban space elements starting from their intrinsic dimensional nature: 
lines (i.e. elements with a standard cross section, developed along a 
path, like the streets), surfaces (i.e. every open and non-covered space), 
volumes (i.e. every building over covered space). This class contains also 
a primary distinction between the public/private conditions (for the 
linear elements and the surfaces), and between the closed or open 
volumes. 

Subclass 1: Functional families. In this class of the Urban Ontology 
there is a distinction among the main functional families of the elements, 
such as building, green etc. 

Subclass 2: Architectural typologies. This class articulates the 
typological peculiarities of the entities, such as semi-detached building or 
office block etc. 

Subclass 3: Distribution type / internal organisation. In this last 
class there are some information about the details of the structural 
schemes (e.g. single, double or multiple span) or about the internal 
organisation of the entities. This last class matches with the dimensional 
features, specified for every single element. 

The definition of the Classes only does not provide enough infor-
mation for the arrangement of objects into layouts. To extend the 
description with morphological knowledge, relationships between ob-
jects are defined. 

UMO implements five different types of relationships between class 
individuals:  

• hypernym-hyponym relationships (subclasses and superclasses);  
• holonym-meronym relationships;  
• pertinence relationships;  
• spatial relationships;  
• size relationships. 

The relationships are further defined with data properties that 
include, for example, morphological descriptions, detailed at the level of 
the individual instances in the ontology.” 

UMO is accessible on the WebProtégé server [86] which supports 
collaborative editing, under CC BY Creative Commons license, and as 
Mendeley Data [87]. 

4.2. Semantic tools for carbon reduction in urban planning ontology: the 
basic units and their relations 

The formalisation of the SEMANCO Ontology considered three 
reference forms of concept relationships: “the generic relation, the 
partitive relation and the associative relation. In the generic relation, the 
subordinate concepts within the hierarchy inherit all the characteristics 
of the superordinate concept, and contain descriptions of these charac-
teristics which distinguish them from the superordinate (parent) and 
coordinate (sibling) concepts.” [58]. 

The relationships had been used to structure the energy and envi-
ronmental data, into categories and fields. The leading categories 
referred to: energy quantities, energy costs, climatic conditions, air 
pollutants, legislative constraints, geographical position, land parcels 
and use, land tenure and value. The data fields are either common, 
applicable to all the data, or specific, for instance peculiar to a context, 
project or application. 

The ontology enabled semantic tools to access the data stemming 
from different domains and applications: 

“to 18 technical standards, covering 25 different domains. Each 
standard provides from 1 to 52 terms to the vocabulary (…) In 
relation to the total number of terms defined in the Energy Standard 

Tables and included in the ontology, each standard provides from 1% 
to 5.3% of all terms. However, one term can refer to multiple stan-
dards. The standards which have been most applied in the Energy 
Standard Tables are ANSI/ASHRAE/IESNA Standard 90.1, SAP, 
LBCS Standards, ISO/TR 16344, FprEN 15603, EN 15316, DATA-
MINE and TABULA (determining more than 30 terms each).” [58]. 

The SEMANCO ontology in accessible as Mendeley Data [88]. 

5. Process for layouts generation 

5.1. Background to layout generation 

A large body of studies has considered the generation of layouts. This 
plurality is motivated partly by the several different aims of simulation 
and design, and partly by the multiplicity of the methodologies experi-
mented with. A possible broad differentiation can distinguish between 
methodologies aimed at generation for planning and construction pur-
poses and those aimed at generation for visual realism, e.g. in motion 
pictures and video games. The first have the pragmatic intention of 
giving the designers the ability to control the options with the aim of 
generating the best layout. This is a reduction process from the huge 
number of options open to designer’s choice towards a circumscribed set 
of parameters that are able to control the process. It is often grounded on 
the analysis of existing processes and layouts and the effort to describe 
them possibly with a reduced set of features. Generation for visual re-
alism aims to deliver an experience with such a level of detail and 
textured appearance of materiality that “audiences could surrender 
completely to it” [89]. 

Without the ambition of considering such a huge domain exhaus-
tively, in the next Sections we consider production rule systems, fractals, 
cellular automata and declarative. 

5.1.1. Production rule systems 
A shape grammar is understood as a form of production system [90] 

that defines how an initial shape is transformed by successive (recursive) 
application of transformation rules. 

“In order to construct feasible solutions, developers need to extract 
the characteristics of desired designs and allocate them to the rules in 
a certain logic. Obviously, most expert grammars belong to this kind. 
There are mainly three requirements for object representation: 
feasibility, diversity and efficiency. Generally, feasibility is achieved 
by semantic information and constraints. For example, in his design 
grammars for urban planning, Beirão et al. [91] built ontologies to 
organise the semantics of design objects and combined constraint 
descriptions with shape rules to guarantee that designs comply with 
specifications” [92]. 

Duarte et al. [93], for the generation of the historical urban tissue in 
Marrakech Medina, advance a detailed shape grammar, consisting of 
more than sixty transformation rules with their respective control pa-
rameters. In the Medina case, the generation of the road network mainly 
defines the layout of the blocks and plots. The generative role of streets 
and squares in the shaping of the urban tissue is further extended and 
generalised in Duarte’s later works, for instance with the definition of an 
ontology “generated by urban induction patterns (UIPs), which are 
grammar-based algorithms replicating typical urban design moves that 
urban designers apply recurrently” [91]. The root classes in the ontology 
are four generative patterns, respectively of axes, networks, squares, and 
urban units. 

Beirão [94] advances a generalisation of the method of urban design 
with a four-stage approach: 

“(1) identification of territorial features that could establish the plan 
guidelines and the rules for producing them, (2) the rules for 
designing the urban grid or grids, (3) the rules for designing urban 
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units, considering these to be identifiable units of urban elements 
from the neighbourhood to the urban block and (4) the definition of 
rules for designing the plan details. Shape grammars were presented 
as a possible formalism for expressing the design rules at any 
moment in the design process”. 

Al-Sayed et al. [95] defines four basic transformation rules – addi-
tion, pruning, mergence, and subdivision – that are applied in “a positive 
feedback loop that results from the addition of new elements and a 
reinforcing feedback loop that results from pruning certain elements”. 
Their configuration parameters are controlled by topological, geometric 
and metric relationships, whose definition is supported by the analysis 
of urban fabrics. 

Parish and Muller [96] in CityEngine implement and develop a 
production rule system, initially introduced by Wonka et al. [97], which 
extends the grammar and the general rules of L-systems. The extension 
aims to reduce the growth of the number of rules and conditions, by 
means of the “ideal successor”. 

“When writing a complex rule system to create a street map, there are 
a large number of parameters and conditions that have to be 
implemented to the L-system. The number of productions and their 
complexity grows very quickly. Every time a new constraint is 
implemented, many rules have to be rewritten. This makes extensi-
bility a very difficult task. Thus, instead of trying to set the param-
eters of the modules inside the productions, the L-system creates only 
a generic template at each step. We call this generic template the 
ideal successor”. 

The grammar uses general rules, such as add, rotate, scale, and 
translate, common to L-systems, implemented with a sequential pro-
cessing, to model the description of structures, peculiar to road networks 
and buildings [98]. 

CityEngine gives the user the control of the global patterns of the 
roads using 2D tensor fields, to generate ideal-typical tissues, e.g. grid, 
radial, along a boundary, and their mixes [99]. The tissues can be 
modelled indirectly by inserting local vectors, which are a generalisation 
of the tensors, or directly by reshaping specific roads. 

Several shape grammars have been developed for the generation of 
floor plans. Hou and Stouffs [92] recognise shape grammars for:  

• analytical aims, to generatively reproduce a specific architectural 
style, Palladian houses [100], Frank Lloyd houses [101], and Alvaro 
Siza’s houses [102];  

• synthesis aims, to generate new designs, for instance play wooden 
building blocks as generative elements of design [103], rectangular 
floor plans [104], floor plans matching constraints defined with a 
Bayesian network [105] or placing requirements for objects 
[106,107]. 

5.1.2. Fractals 
Several research studies, just a few of which are mentioned below, 

have analysed the fractal dimensions of road and transportation net-
works [108–111]. 

For a generative approach, Chen and Liu [112] have implemented a 
fractal generative system based on two processes: iterating and fractal. 
The iterating process starts with settling buildings, streets, and squares, 
through dividing an area into an “area-list”. The fractal process “starts at 
on each element […] in above area-list, and goes on the same process 
until terminated condition is satisfied. The terminated condition can be 
threshold size of area when it can be used for constructing building, 
road, lawn etc.”. The road network and, more generally the public space, 
emerge by subtraction of the built. Meanwhile Thomas and Frankhauser 
[113] in their research focus “on the relationship between the spatial 
distribution of built-up elements and the spatial organization of the 
street network at the scale of city districts”. 

The fractal dynamics of transportation networks and, more 

generally, of urban morphologies have been associated with diffusion 
limited aggregation (DLA) [110,114]. Batty et al. [115] has advanced a 
DLA model to generate the growth in the form of dendritic structures by 
several sub-clusters of roads, without links between them. 

Erickson and Lloyd Jones [116] have introduced a conditional clause 
in the generative process: after the addition of a new street trunk, the 
surrounding area is checked for existing streets, which are then linked to 
the new one. 

5.1.3. Cellular automata 
The DLA process has been transferred to the description of the evo-

lution of a road network over time. Toffoli and Margolus [117] start with 
an empty space, a two-dimensional regular lattice of squares. The 
network grows step by step according to a Cellular Automaton (CA), 
whose nodes are the crossings, connected by edges, the paths, within a 
given distance r, which is the radius of the neighbourhood area under 
consideration. A new step is created according to connecting rules that 
determine that two nodes are connected by an edge depending on the 
number of nodes in their area, and on their respective distance, greater 
than r [118,119]. 

5.1.4. Declarative 
The declarative approach to road modelling aims to shape networks 

consistent with their description in terms of properties and constraints. 
The descriptions can be composed out of geometric, topological, and 
semantic knowledge [120]. 

Liège and Hegron [121] define a declarative model of roads 
described according to their properties, within one street, between two 
streets, and among several streets. The network is being described “in a 
hierarchical and incremental way” [122]. The user begins with an 
approximate sketch, formalised by means of a description language, 
giving only the main features such as the main roads and crossings. “This 
description is used to propose one or several solutions that the designer 
can refine.” The scene description is translated in a constraint graph 
which is instantiated to produce a solution using constraint propagation 
with backtracking and a scene generation model. Finally, a geometric 
model (2D map) is extracted from the scene generation model. This 
process is repeated in a hierarchical and incremental way, starting from 
a crude description of the scene up to more refined layout descriptions. 

5.2. Implemented layout generation 

Our implemented layout generation process derives from work on 
the Constraint Satisfaction Problem specifically the Geometric 
Constraint Satisfaction Problem (GCSP) [84,85]. 

In a GCSP the constraints refer to object, to place and to size [123]. In 
our current implementation, a set of constraints are context- and/or 
user-defined, and concern:  

• Geometric constraints refer to layout shape, dimensions and area 
constraints, and to objects, morphology and relationships that derive 
from classes and their relationships in the ontologies (cf. 4.);  

• Adjacency constraints derive from relationships between objects, e.g. 
accessibility, distance, connection and nearness that express the 
spatial relations between entities in the ontologies; 

• Network constraints relate to movements of people, objects, or en-
ergy that are defined by transportation-means and -networks 
[124–126]. 

5.2.1. Geometric constraint satisfaction algorithm 
“Layout generation problem (LGP) is a typical design problem which 

can rely on recurrent operations to yield diverse solutions that can be 
quantitatively evaluated.” [1]. 

A Constraint Satisfaction Problem (CSP) [84] is defined by a triple 
(X, D, C), where: 
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1. X is a finite set of variables.  
2. D is a function that maps each variable x in X to a finite set of values D 

(x), which it is allowed to take. The set D(x) is called the domain of x.  
3. C is a finite set of constraints, i.e. relations, that are assumed to hold 

between the values of the variables. These relations can be given 
intentionally, i.e. in a symbolic form such as predicate logic, or 
extensionally, i.e. as an explicit enumeration of the tuples that are 
allowed by the constraint, or procedurally, i.e. with an appropriate 
generating or recognising function. 

Since in GCSP, all the constraints are instances belonging to objects, 
places or their relationships, a CS problem is usually represented as an 
undirected graph, called Constraint Graph in which each node represents 
a variable in X and there is an arc between any two variables that are 
related by a constraint. Unary constraints can be disposed of by just 
redefining the domains to contain only the values that satisfy all the 
unary constraints. The constraint graph is also called a primal constraint 
graph [127]. For CSP with only binary constraints there is a direct as-
sociation between arcs and constraints. To maintain this association for 
general constraint networks, we need a Constraint Hypergraph repre-
sentation, in which for each constraint there is a hyperedge S that rep-
resents the constraint. 

The constraint satisfaction problem is to find an instantiation of all 
variables in X so that all constraints are satisfied. 

5.2.2. Tessellation algorithm 
Convex Optimization [128] has been implemented in order to 

generate a tessellation representing the layout of the objects. The 
tessellation step defines the value of a subset of our GCSP variables, i.e. 
the variables representing the position and the size of each object inside 
a layout. 

Our implementation generalises the methodology adopted for fixed 
outline floorplanning in nanometer integrated circuit technology [129], 
defined by Lin and Hung [128]: they optimise the total wirelength, a sort 
of global adjacency condition is applied to all the modules through the 
minimisation of the cost function Our algorithm also takes into account 
geometric and adjacency constraints between objects and network dis-
tance constraints, as well as for the layout area:  

• the shape (if given),  
• the dimensions, and  
• the constraints. 

The electronic modules of the floorplanning are replaced by the 
objects in the present implementation of the algorithm. 

Furthermore, we have generalised Lin’s method, taking into account 
non-rectangular layouts too. In Lin’s algorithm, to optimise the total 
wire length, a sort of global adjacency condition is applied to all the 
modules through the minimisation of the cost function. In other words, 
this ensures that the circles that represent modules have been uniformly 
distributed over a specified region. Our algorithm can also arrange 
clusters of objects into superstructures, e.g. into on-site tasks, rooms, 
buildings or plots. The users can direct the aggregation process by 
defining which objects or activities must be adjacent to each other to 
cluster them. 

The problem of a superstructure with a rectangular contour has been 
broken down into two phases: a stage for uniform distribution and 
adjacency-network constraints, followed by a placement and shaping 
phase, in which objects are aggregated into clusters in an interactive 
way. The first phase consists of two steps:  

- In the first step M area clusters are identified, based on the 
adjacency-network constraints. A circle Ci is assigned to each cluster 
with radius ri proportional to the square root of the total cluster area 
Aj. We have set the value of the radius equal to the radius of the circle 
inscribed in the square of area Aj. The PP model proposed by Lin has 

been generalised to uniformly spread the clusters on the super-
structure surface, also dealing with the constraints on the positions of 
the clusters inside the superstructure (Fig. 1a). These conditions can 
be directly inferred from the constraints on the placement, defined 
by the user, e.g. if an object must be on the Northern side of a layout, 
this is also true for the cluster which contains the objects.  

- In the second step each cluster is exploded in N sub-circles with 
radius ri proportional to the square root of the corresponding area ai 
(in this case also we have set this value equal to the value of the 
radius of the circle inscribed in the square of area ai). Lin’s PP model 
has been generalised to spread the circles on the superstructure 
surface managing their correspondent position and adjacency- 
network constraints defined by the user (Fig. 1b). Adjacency and 
network constraints inside each cluster are satisfied using a deter-
ministic dynamic approach. 

Both in the first and in the second step the designer can interact with 
the diagram to reallocate the circles. After the second step, the user can 
also interactively define the main accessibility paths or axes and their 
topological relationships with the objects. After the first stage, the cir-
cles that represent objects have been uniformly distributed over the 
superblock area and the constraints are satisfied. In the second phase we 
have to determine the exact locations and shapes of objects so that no 
two objects overlap and all the plots are placed inside the superstruc-
ture. This phase has been subdivided into three steps:  

- In the first step we extract geometric relations of objects from the 
circles’ distribution and record them by constraint graphs, as in the 
DT method [130]. We have generalised the DT graph in order to deal 
with the topological relationships between axes and objects defined 
by the user in the previous stage. 

- In the second step, according to the constraints defined in the con-
structed constraint graphs, we use a constrained nonlinear optimi-
sation algorithm to reshape the clusters so that objects can be placed 
inside the superstructure and no two objects overlap (Fig. 1c). The 
sum of the squares of the differences between the areas and their 
nominal values defined by the user has been chosen as objective 
function. Furthermore, the constraints on the maximum and mini-
mum values of each area and on the ratio between the dimensions of 
each object are taken into account.  

- In the third and last step, the designer can interact again with the 
diagram to define the minor paths. We use a constrained nonlinear 
optimisation algorithm to reshape the layout again in order to 
generate minor paths, when interactively defined by the user, and to 
eliminate (optionally) room between objects (zero dead space), by 
smoothly relaxing the constraints used in the previous step and by 
respecting the constraint on the minimum distance between acces-
sibility axes (Fig. 1d). 

The algorithm can deal with pre-placed objects easily due to its 
mathematical formulation, better than in Lin’s algorithm. Since the 
coordinates of pre-placed objects are known, we only need to assign the 
values to the centres of the corresponding circles in the global distri-
bution stage, as in Lin’s algorithm. All circles can be moved arbitrarily 
except these circles which are placed on the fixed locations by means of 
two linear constraints on their centre coordinates. Since we give aspect 
ratio constraints for areas during the placement and shaping phase, we 
can also give them for pre-placed modules. Therefore, they cannot 
overlap with other modules at the end of the legalisation phase and we 
don’t need to adjust the shapes of modules overlapped by them as in the 
Lin algorithm. 

Finally, we have used an approach based on the Szegö projection 
[131] in order to obtain a solution for non-rectangular layouts too. The 
solution for the first stage of the problem is first calculated in a rect-
angular area, based on the algorithm for the first stage discussed above. 
The rectangular area is that one that best approximates to the original 
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layout. Dummy pre-placed objects are used when the original area has a 
shape very different from a rectangular area. Then, the solution is 
transformed by means of the Discrete Cauchy-Green transform [131] to 
obtain the (approximate) solution in the original layout. 

In the second stage, the problem is solved by using as the rectangular 
area the bounding box of the original layout. 

6. Linking knowledge to process 

The knowledge about the constraints on the layout and objects is 
imported from the ontologies. In the ontologies they are represented as 
classes and their relationships. Specifically, the ones in the two existing 
ontologies are considered (cf. Section 4.). 

The constraints are formally defined with Semantic Web Rule Lan-
guage (SWRL). SWRL combines sublanguages of the OWL Web Ontology 
Language (OWL DL and Lite) with those of the Rule Markup Language 
(Unary/Binary Datalog). The formal foundation to OWL DL is provided 
by Description Logic. The reference classes in the ontologies correspond 
to concepts in Description Logic, where the properties match the DL 
rules. 

Rules are of the form of an implication between an antecedent (body) 
and consequent (head). The intended meaning can be read as: whenever 
the conditions specified in the antecedent hold, then the conditions 
specified in the consequent must also hold. At present, reasoners do not 
support the full SWRL specification, because the reasoning quickly be-
comes undecidable. We used Pellet, an open-source Java OWL DL 
reasoner, which has SWRL-support, to check the consistency of the on-
tologies. In particular we checked the consistency of the constraint 
definitions with the restrictions of the ontology concepts used to define 
them. 

For the purposes of layout generation for an eco-industrial park (EIP, 
cf. 8.1), UMO provides four reference types of constraints:  

• Topological constraints,  

• Dimensional constraints,  
• Directional constraints,  
• Distance constraints. 

The classes, imported from UMO, are highlighted in red in Fig. 2. 
SEMANCO Ontology provides constraints, categories and fields for 

the layout matching waste heat reuse in an EIP, according to industrial 
symbiosis. To reuse heat at different levels through networks –intra- 
company, inter-company, and with neighbouring communities– SEM-
ANCO instantiates the fields for the categories (cf. 4.2). The leading 
types of constraints imported from the ontology are about:  

• energy systems, energy quantities and boundary condition data, 
namely energy, climatic, and building technical classes and data;  

• energy-related or contextual data, i.e. energy cost, environmental, 
legislative constraints, and geographical data. 

The classes, imported from SEMANCO, are highlighted in red in Fig. 
3. 

For the sake of generality in industrial symbiosis of energy, SEM-
ANCO delivers to the layout generation process broad definitions of 
classes and datatypes. Meanwhile, the Open Energy Ontology has been 
put forward [133]: it provides a common description of knowledge and 
vocabulary across domains and different modelling approaches. 

OntoEIP [134] implements different classes of power generator and 
energy market aspects, besides OntoPowSys [135] extends the classes 
and properties hierarchy to electrical power systems. 

At the level of the individual instances, the constraints are defined by 
means of both qualitative and quantitative properties. Qualitative con-
straints are expressed by directional, nearness and RCC (Region 
Connection Calculus) topological relationships. Quantitative constraints 
are expressed through equations or inequations in Cartesian, longitu-
dinal and polar coordinates. 

For each layout-project, a set of variables (numerical properties) was 

Fig. 1. Four steps of the implemented tessellation algorithm.  
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defined for the GCSP problem. For instance, they could be plot shape, 
buildings footprints, front size, gross floor surface, number of floors, 
energy costs, climatic conditions, normative, and so on. 

The variables were grouped into dependent variables and indepen-
dent variables, and related to each other by means of the quantitative 
constraints. For the system users, independent variables assume the 
meaning of “layout parameters”, whose values they can play with, to 
generate different arrangements of layouts. 

7. Generative process 

To integrate the generative process into the earliest phases of the 

design, we implemented the system on top of SketchUp, because it offers 
an established GUI that is widely appreciated for its intuitiveness and 
ease for manipulating and editing designs in 3D. 

For the sake of integration, the object definitions were created with a 
declarative programming approach. Declarative programming style is, 
in fact, more appropriate than imperative style to represent the back-
ground declarative knowledge in the ontologies. The elements of each 
object in the layout define a meronymic taxonomy of geometrical forms, 
placed on the layout according to the ontology constraints. This char-
acteristic allowed us to create the objects in SketchUp as Dynamic 
Components. SketchUp Dynamic Components are parametric definitions 
of specialised and structured set of components to which attributes have 
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been assigned by means of a Ruby based geometric description lan-
guage. Attributes can also contain spatial relationships between com-
ponents (quantitative relationships such as Cartesian, longitudinal and 
polar relationships), and behaviours (like smart scaling). Object in-
stances are set up to be fully reconfigurable by the user after their 
generation via a dialog interface box. The CSP solver of the SketchUp 
Dynamic Components was used to generate the layout instances satis-
fying the GCSP problem constraints. 

7.1. Semantic generation 

The system is able to generate all the layout instances fitting the 
GCSP problem constraints. The constraints on and the relationships 
among the layout and objects are set in the ontologies (cf. 6. Linking 
knowledge to process). 

The set of knowledge about objects and the set of knowledge about 
spatial relations in a domain give rise to the process of generating lay-
outs. Layouts plural, because the methodology is not designed to 
generate a single arrangement, rather it produces a plurality of solu-
tions, all compliant with the knowledge within the ontological 
formalisation. 

In Gero and Sosa [136] the set of all the compliant layouts has been 
termed a design space: 

“Modern design theory views the design process as a search in a 
predefined space of possible designs [137]. This design space is 
implicitly fixed by defining its generator (a process that can generate 
any design in this space). This notion of design space has played an 
important role in formalising designing and the processes that can be 
computationally implemented ([138; 139])”. 
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Fig. 3. The structure of Root Classes and Subclasses in the SEMANCO Ontology. The relationship between a Class and a Subclass is represented with a blue solid line. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
The Classes used in the generation of the layouts are highlighted in red. 
Readers are invited to explore the ontology personally [88]. 
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Very often within a design space, more than one layout can fit the 
designers’ and stakeholders’ requirements. For instance, layouts can 
differ in the detachment distance from the border of the plot, the di-
mensions of the objects, the gross floor area, the coverage ratio, and so 
on. Moreover, small changes in a single variable or in the combinations 
among variables can produce dramatic differences in the layout. 

Our working thesis is that the plurality of generated layouts gives 
greater flexibility to stakeholders in defining and matching their re-
quirements, and to designers to explore a wider range of hypotheses in 
the view of a greater control over variety and choice. Often AEC and 
Smart City projects involve a large number of different actors, pursuing 
competing, diverging or conflicting objectives. Multicriteria decision 
analysis (MCDA) has been used to formalise the design space, to improve 
the decision-making process, and to make it clearer. MCDA focus is on 
the process and on the decision-makers (DMs). If the process aims to 
match the best layout, possibly within predefined subsets, then multi-
attribute decision analysis is applied [140]. Conversely, when the aim is 
the systematic exploration of alternatives fitting designers’ or DMs’ 
objectives, Multiobjective decision analysis (MODA) methods are used 
[2–4]. 

Generating layouts fitting multiobjective criteria implies that a finite 
set of equally interesting Pareto optimal solutions can be found, instead 
of a single optimal solution. Within a design space a Pareto set, also 
known as a Pareto front, defines all the layouts that cannot be improved 
in one criterion except at the cost of depreciating the value for another 
criterion. 

Semantic generation is able to generate all the layout instances, and 
within them an algorithm can identify all the Pareto optimal ones. 
Miettinen, [2], Hwang and Masud [3], and Branke et al. [4] have used 
the description “a posteriori” for methods which identify all the Pareto 
optimal solutions, and generate their representations. For stakeholders 
and designers, the advantage is a whole picture of all the available al-
ternatives for the layout. 

Since the semantic generation runs in SWRL, on top of OWL DL, and 
the OWL DL reasoner is able to efficiently check consistency and to 
generate all the compliant instances (cf. 6. Linking knowledge to pro-
cess), the computation effort is reasonable and time effective for a real 
decision making-process. 

Many real-world projects are affected by a plethora of external fac-
tors, e.g. market fluctuations, economic externalities, environmental- 
weather conditions, human mistakes of omission (errors made by not 
taking the right evaluations) and mistakes of commission (errors made 
by taking the right evaluations in a wrong way). Appropriate manage-
ment of the uncertainties is critical to the successful completion of 
projects. 

The main sources of uncertainty relate to:  

• Parameters, “the values of parameters are not known at the time a 
problem is solved” [141] or can change over time. Eichfelder et al. 
[141] and Zhou-Kangas et al. [142] address parameter uncertainty 
with “ranges characterized by best and worst objective function 
values describe the variations due to the possible perturbations in the 
decision variables.”  

• Decisions, “Decision makers often describe their preferences rather 
ambiguously. Further, experts who formulate decision problems as 
multiobjective programming problems often express parameters of 
the objective functions and constraints imprecisely.” [143]. Decision 
makers can change their minds or objectives, due to a better un-
derstanding of the design space and the Pareto front. That is to 
enable conscious decision, which is one of the long-term aims of 
MODA. The uncertainties can possibly be even greater in early stages 
of design process. 

Uncertainty affects the stability of the Pareto set, and can undermine 
the decision-making process. To address the decision uncertainty, we 
generate the representation of the Pareto front, and present it to the DMs 

who can interact with it. The DMs interact with the criteria, to visualise 
how the layouts change accordingly. 

The literature on visualisation for MODA has addressed the means to 
represent the Pareto optimal solutions to the DMs, particularly when 
more than three objective functions are considered [144–146]. Among 
the visualisation techniques to enable designers and DMs to explore the 
multidimensional design space generated by the system, we have 
custom-developed parallel coordinates plot [147]: each variable is 
represented as a vertical axis with the ranges of values increasing from 
the bottom of the axis to the top. 

In the Euclidean plane R2 with xy Cartesian coordinates, N copies of 
the real line R labeled X‾ 1, X‾ 2, …, X‾ N are placed equidistant and 
perpendicular to the x-axis. They are the axes of the parallel coordinates 
system for the Euclidean N-dimensional space RN, all having the same 
positive orientation as the y-axis. 

A point C ∈ RN with coordinates (c1, c2, …, cN) is represented by the 
complete polygonal line C‾ (i.e., the complete lines containing the seg-
ments between the axes) whose N vertices are at (i − 1, ci) on the X‾ i 
-axis for i = 1, …,N [148]. 

Several axes can be accommodated in parallel, and the data are 
plotted on these axes; this is the origin of the term “parallel coordinates”. 
The corresponding points are connected with polylines. Each polyline 
represents a single data dimension, and lines crossings between di-
mensions often indicate inverse correlation. A specific advantage of 
parallel coordinates is that they are relatively compact, so several var-
iables can be analysed simultaneously. 

A specific layout is represented as one polyline whose vertices 
intersect the parallel axes: each intersection point identifies the value of 
the corresponding criterion. 

To analyse several criteria simultaneously, many axes can be placed 
side by side. On the other hand, plots with large Pareto sets can turn 
chaotic: the familiar “spaghetti” graph of polyline congestion. To facil-
itate the simultaneous analysis of large Pareto fronts, in the online 
version we have implemented interaction techniques (Fig. 4). These 
techniques aim to enable users to directly manipulate and interpret vi-
sual representations of the relationships among criteria and the gener-
ated layouts. Among the interaction techniques, the system implements 
visualisation of a design solution, multiple selection, and animation. 

Visualisation of a design solution, the user can move the mouse 
over a polyline to highlight it and to visualise the corresponding layout 
that is represented in plan and isometric views in two windows at the 
bottom-left corner of Fig. 4. 

Multiple selection, holding down the left mouse button and moving 
the cursor over various polylines allows the user to select a subset of 
design solutions. The selected set of polylines can be used as input for 
subsequent operations, such as further selections, e.g. on different axes, 
or for the masking or isolation of solutions. 

Animation, moving the mouse across several polylines animates the 
design solutions, visualised in the two bottom-left windows. The user 
can control the speed of the animation with the movement of the cursor. 

For example, let suppose that a designer/planner is considering the 
layout for an EIP. The user knows the dimensions of the area, the gross 
floor area, and possibly has in mind an approximate width of the front of 
the building. In the parallel coordinates plot, each objective turns into a 
multiple selection action over the corresponding criteria. The selection 
process highlights a subset of design solutions, that the system repre-
sents assigning a specific colour to the selected polylines (Fig. 4). 
Moving the cursor over this subset, the user can analyse the single layout 
and the values of the criteria over the axes. Alternatively, the user can 
interactively animate the selected subset, moving the cursor vertically 
over an axis. For instance, as the mouse slides over the axis representing 
the dimension of the frontage, the plan and the isometric views rapidly 
represent the different solutions that turn into an animation of the lay-
outs, similar to a flip book, with the frontage extension of the building 
changing. 
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8. A case-study application 

8.1. Case-study eco-industrial park 

An early opportunity for testing the method and the system has been 
made possible thanks to an agreement between our Laboratory at Poli-
tecnico di Torino and the Municipality of Collegno, a town near Turin: 
the research team has been commissioned to study urban design alter-
natives for an eco-industrial park (EIP) on the northern border of the 
city. 

EIPs are industrial-parks or -clusters where businesses cooperate 
inside the area and outside with the neighbouring communities. 
Applying the principles of industrial ecology and industrial symbiosis 
[149], EIPs set exchanges, reuse and valorisation of energy by means of 
exchanges between the companies in the EIP and with the neighbouring 
communities, to reduce waste and pollution, and seek for economic 
growth and economic benefits, with the aim of sustainability and envi-
ronmental quality. 

The new EIP covers an area of about 500,000 square meters, and is 
intended as a “buffer zone” between the existing industries and the 
nearby river park. In the intentions of the Municipality, the site should 
provide a close integration between industry, private/public services, 
and nearby neighbourhoods. The opportunities for and the character-
istics of the new EIP are currently the subject of discussion between 
municipal and regional levels of public decision-making. 

8.2. Methods and scope 

For economic viability, EIP operation seeks optimality or quasi- 
optimality in functioning under a range of different industrial 

symbiosis processes. In the literature [150], the main types of symbiotic 
exchanges are: water, energy, and materials. In the case-project, energy 
exchanges have been mathematically modelled as reuse of heat at 
different levels through networks. 

The modelling of the constraints has often proved sensitive to the 
parameter values [151]. As considered in 7.1 Semantic Generation, in 
the planning and managing of EIP, DMs pursue multiple objectives that 
can be competing, diverging or conflicting. In this context, the system 
has been used for generating different design layouts for the EIP, as DMs’ 
assessments of the objectives change (Fig. 5). The exploration of 
different Pareto fronts can be helpful in decision-making processes, to 
provide outlooks on layouts at the changing of several stakeholders’ 
requirements. 

About one hundred businesses, interested in settling in the new EIP, 
have participated and contributed to the planning process. Their data 
and requirements were collected by the Municipality through ques-
tionnaires and interviews. 

The system has managed the large number of stakeholders, objec-
tives and criteria, generating all the compliant layouts. The challenges to 
the process came from:  

• the plurality of DMs, arising from both the extent and number of 
activities in the EIP;  

• the multi-scalarity of the public decision-making process, from local 
and municipal, to regional;  

• the early stage of the process in the planning track, when most of the 
actors don’t have a stable understanding of objectives and of the 
tradeoffs and synergies among the criteria; 

• objectives and criteria changed at a faster pace than the Public Ad-
ministrations’ agendas and policies. 

Fig. 4. Layouts for an industrial parcel in the EIP. Parallel coordinates plot with plan and isometric views in the bottom-left windows: selecting a polyline in the 
parallel coordinates plot displays the corresponding views of the layout in the windows. The variables on the vertical axes, from left to right, are (1) layout number, 
(2–15) for respectively the office building (in blue) and the warehouse/manufacturing (in yellow): detach from the left side of the plot (x coordinate), detach from 
front of the plot (y coordinate), detach from right side of the plot, dimension along the front of the plot, dimension along the side of the plot, number of floors, and 
gross floor surface, (16) distance between the office building and warehouse/manufacturing, and (17) coverage ratio. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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These challenges contributed to perturbations of the parameters and 
the feasible region, resulting in instability of the Pareto set. The insta-
bility, on one side, has proved challenging for approximation and vis-
ualisation. On the other hand, the interactivity of the multidimensional 
visualisation of all the compliant layouts assisted the DMs to gain an 
insight into and promote learning for even ill-posed design spaces. The 
company DMs were motivated, in proactively contributing to the pro-
cess, to maximise the revenues from properly planned and managed 
industrial symbioses. 

Visual interaction with the set of generated layouts constituting the 
Pareto front is a promising method and tool to:  

• improve the ratio of layouts considered satisfactory by DMs, within 
the large number of generated layouts, all compliant with the 
knowledge in the ontological formalisation and with the constraints;  

• disregard the amount of generated layouts with minor variations in 
the parameters, the performance, and the characteristics, since they 
don’t fit the improvement in one objective without impairing the 
value of other objectives. 

9. Conclusion and future developments 

9.1. Strengths of methodology and system 

A novel generative approach of layouts was presented. The main 
strengths are in that it: 

Contributes to ontology and knowledge reuse. A notable capa-
bility of ontologies is the reuse of existing knowledge. The present 
implementation has improved the effectiveness, since it has reduced the 
cost and the time required for the conceptualisation of specific domains 
compared to starting from scratch, and has increased the quality of 
newly implemented knowledge by reusing components that have 
already been validated by different research groups independently. 

Contributes to ontology and knowledge sharing. “Ontology is 
another useful method to conceptualize the terms, their conceptual 
dependencies, and the associated axioms. Since it relies on meaning and 
rules to automate the information extraction and content analysis, it has 
been proved effective in avoiding the relatively opaque nature of ma-
chine learning” [152]. In layout planning and design, ontologies offer a 
methodology to conceptualize in a formal and explicit way a portion of 
experts’ knowledge, which is compliant with Gruber’s [5] classic defi-
nition of ontology as a “formal, explicit specification of a shared 

conceptualization”. Knowledge sharing among machines, between 
humans and machine, and among humans, for instance to enhance, 
speed up and share the antecedents, the context conditions and the 
outcomes of each layout. 

Separates the knowledge on the objects, the spatial relationships, 
and the constraints from the generative process. The knowledge has 
been successfully acquired from two existing domain ontologies. The 
knowledge has proved sufficiently general for the generation of layouts 
at different scales of planning and design. The specific domain of 
experimentation, the early stages of layout for an EIP, has proved suit-
able for both the domain knowledge and the process. Further general 
ontologies on AEC and Smart Cities (cf. 2.), and domain ontologies on 
EIP [153] are available and are candidates for integration in the system. 

Strengthens the reuse of knowledge, and its scaffolding within and 
across domains. The acquisition and representation of knowledge are 
time and resource consuming activities; the present work demonstrates 
the feasibility of knowledge reuse in generative processes. 

Demonstrates in a real-project the automatic generation of all the 
instances compliant with the knowledge. This was achieved by the in-
crease and cost effectiveness of the computing power and the im-
provements in the reasoner engines. The tractability stems from the 
nature of the design process, the knowledge and the constraints. As 
considered in Section 8.2, they contribute to the stability of the Pareto 
set that is relevant for the decidability in the decision-making process. 
Sawaragi et al. [154] stated the necessary and the sufficient conditions 
for the stability as theorems: “If some simple technical conditions are 
satisfied, the stability of the Pareto frontier is provided by the coinci-
dence of an unbiased Pareto frontier and a weak Pareto frontier. If the 
class of disturbances is broad enough, this condition is also necessary.” 

Offers a quick and effective tool to assist the early stages of 
planning and design. The integration of semantic generation with mul-
tiobjective decision analysis and interactive visualisation offers an effi-
cient approach for stakeholders, planners, and designers to effectively 
explore large design spaces. During the decision-making process, they 
can address a larger number of options, under a wider range of objec-
tives and criteria. 

Enables learning, frequently layouts planning and design are man- 
in-loop processes, which are influenced by DMs’ attitude, experience 
and context. Humans learn, if they have motivations to. These pre-
conditions suggest that the decision-making process is undermined by 
uncertainties and no certain layout exists for a multiobjective problem to 
satisfy the requirements of the DMs definitely [155]. In the proposed 

Fig. 5. The system rapidly generates and visualises the compliant layouts. Six Pareto-optimal choices of production out of the Pareto front, providing an outlook on 
DMs’ set of criteria. In (a) and (b) every single land plot retains the same surface, dimensions and position, but the road pattern varies, and consequently the building 
orientation. In (c) and (d) the plots retain the same surface of (a) and (b), but their dimensions and position vary; new road patterns and EIP layouts are generated. (e) 
and (f) differ in plots’ number, area, dimensions and position; the road pattern and EIP layout change accordingly. 
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approach, the visual interaction assists the users to explore the design 
space, starting from the Pareto front, learning from the relationships 
between layouts objectives and criteria. Cajot et al. [156] has argued 
that DMs’ aim is to acquire a correct understanding of the design space, 
functional to interpret and contextualise the decisions: “Therefore, the 
insights gained during the process, about the tradeoffs, synergies and 
feasible boundaries are eventually more useful outcomes than the so-
lution itself.” 

Rewards DMs with the exploration of the Pareto set, since they can 
gain awareness of having explored a larger number of options, and that 
can lead to an increase in the robustness of the chosen solution/s. 

9.2. Gaps, challenges and outlooks 

Ontology and knowledge reuse. The approach used, for the reuse 
of the ontologies and the integration of the existing knowledge, is 
manual. An automatic or assisted one would be beneficial, to acquire 
more existing ontologies (cf. 1.). Methodologies have been already put 
forward: authors of new ontologies can adhere to standards, developed 
for the collaborative exchange and reuse of ontology content [157]; 
KADS [158] advances ready-made model elements to assist the knowl-
edge engineer in modelling a knowledge domain; Lonsdale et al. [159] 
propose architectures for automating ontology generation from existing 
ontologies. Towards implementation of ontology reuse, OWL 2 natively 
supports the axiom owl:imports. However, it manages an ontology as a 
whole, not allowing the custom import of classes, subclasses, relation-
ships, or data properties. Solutions are being advanced either by linking 
back the reused concepts to the upper ontology with the annotation 
property “rdfs:isDefinedBy” or by declaring the reused classes and 
properties with OPLa, which is fully specified in OWL, and “models how 
ontology concepts can be grouped into modules, and the provenance of 
and interrelations between such modules” [160]. 

Ontology and knowledge sharing. Formal ontology languages (cf. 
6.) should be used in writing ontologies, to achieve the formal and 
explicit specification of the conceptualisation. Formal and explicit 
conceptualisation is an expert intensive task, and tends to be time 
consuming and to be inefficient, due to the large expert effort required. 
Besides, a degree of generalisation is required, since an ontology de-
scribes general knowledge rather than a personal one. This is relevant 
for what an ontology is for: improving knowledge sharing and reuse; it 
can make the effort worthwhile. 

One more objective or criterion. In real projects, there is always one 
(at least) missing objective or criterion to be added to the generative 
process. Furthermore, not all DMs may agree on criteria to place at the 
centre of the decision-making process, i.e. quantitative and qualitative 
evaluations. 

A bunch of solutions is not welcome! DMs are used to asking a 
designer for a layout that matches their requirements. Providing instead 
a bunch of layouts, even if optimal, may simply dissatisfy them. 

A bunch of solutions is frustrating! When the number of alterna-
tives does not allow a (satisfactory) compromise to be achieved or, even, 
when the perception of the number of existing alternatives contributes 
to developing the awareness that no personally satisfying solution can be 
achieved (for instance because of the trade-off with other criteria or of 
other DMs’ objectives) DMs may perceive the process as unsatisfactory, 
regardless of the extent of the gains they were actually able to achieve. 

The quality of layouts is not apparent. Hou and Stouffs’ research 
[92] aims to “improve design satisfaction”: they advance search heu-
ristics, including trial-and-error, backtracking and backjumping, that 
“shows a significantly superior performance of this advanced design 
grammar, which generates a substantial ratio of good designs, even 
including many perfect layouts.” Our approach generates all the layouts, 
compliant with the knowledge. In that sense, it defines “a language of 
designs” [1] which, interpreted by a design machine (cf. 7.), generates 
only the formally valid layouts. They are formally valid, since OWL DL 
reasoner checks the consistency of the classes and relationships in the 

ontologies. That is to define the ‘formal’ quality of the generated layouts. 
Regarding the ‘perceived’ quality, it is much more dependent on DMs’, 
planners’, and designers’ expectation or judgement: 

“there seems to be an inherent contradiction between the automation 
of problem solving here presented and design exploration. Whereas 
the latter is well adopted, the former is much less so. This is evident 
in the fact that systems that generate layouts never reached a 
widespread application. Essentially, full automation requires all the 
information to be explicated which means we have to provide the 
means to solve all the possible problems during the process. How-
ever, design exploration, regardless of manual or automated design, 
is always accompanied by some uncertainty and ambiguity as a 
designer cannot predict and describe all the situations, instead, he or 
she has to solve an issue after it emerges.” [92]. 

DMs are plural, usually. In most AEC and Smart City projects 
several stakeholders bring their agenda into the process. The current 
access to the system is assisted: facilitator explains the methodology 
implemented in the system, accompanies the users along the process, 
interacts with the visualisation, and discusses the evidences from re-
lationships across the layouts, the objectives, and the criteria. The 
experience and the communicative skills of the facilitator are of para-
mount relevance for the process. Some DMs would like to have direct 
access and insight to the system, to explore the design space and the 
Pareto front autonomously. 

9.3. Future developments 

Direct access to the system is the matter of implementing a web 
interface to the system, to grant personal access to DMs. At the same 
time, it is more than this, it deals on how the process has to develop in 
order “to facilitate informative discussion and team decision making” 
[161]. This relates to the very nature of the decision-making process, 
and stems from the number of the DMs involved, their priorities, moti-
vations, expectations, skills and benefits. To some extent, “challenges 
involve irreducible uncertainty, heterogeneity of values, nonlinear dy-
namics, and contested problem framings [162]. With contested fram-
ings, parties to a decision disagree not just on potential solutions, but on 
the nature of the problem they are trying to solve.” [163]. 

Researchers have explored the domains of multiobjective problems 
and multi-DMs participation, and have advanced several methodologies. 
Anderson-Cook and Lu [161] have discussed different visualisation 
techniques of Pareto fronts to match simultaneously multiple responses, 
e.g. plots of frequency of appearance on the Pareto front and mixture 
plots for showing the average frequency as optimal across the preferred 
desirability weight region for top ranked solutions. Furthermore, they 
have considered proportion plots to highlight top choices across all 
possible weight combinations in a set of decisions. Babbar-Sebens et al. 
[164] have proposed multi-user participation through interactivity: 
DMs’ ratings are aggregated into a common preference model. To assist 
DMs to learn about a problem, Cajot et al. [156] have developed and 
tested interactive optimisation methods with parallel coordinates to 
“handle and visualize many objectives simultaneously, provide optimal 
solutions quickly and representatively, all while remaining simple and 
intuitive to use and understand by practitioners.” Do Nascimento and 
Eades [165] have studied DMs’ competition and cooperation in devel-
oping new solutions, and have proposed mechanisms to share the best 
performing solutions from personal searches among a group of users. 

This body of studies contributes to shaping the framework for the 
future developments of the system. 
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