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2 INRIA,CNRS, IMB and Université de Bordeaux, Talence, France, angelo.iollo@inria.fr
3 DIMEAS, Politecnico di Torino, Torino, Italy, francesco.larocca@polito.it

4DIMEAS, Politecnico di Torino, Torino, Italy, marianna.loffredo@studenti.polito.it
5Osaka, Japan, eugenio.menegatti@gmail.com

ABSTRACT
Turbulence and transition modelling are critical aspects in the prediction of the flow field
in turbomachinery. Recently, several research efforts have been devoted to the use of ma-
chine learning techniques for improving Reynolds-averaged Navier-Stokes (RANS) mod-
els. In this framework, a promising technique is represented by field inversion which
requires to find an optimal correction field that minimises the error between numerical
predictions and experimental data. In this work, Artificial Neural Networks and Random
Forests are investigated as tools to generalise the correction provided by field inversion.
An approach to automatically identify the regions where the correction model should be
computed is proposed: this improves the fitting and reduces the calls to the model during
the predictions. Furthermore, a correction-based weighting of the database is introduced
in order to improve the training performances. The potential and the issues of the methods
are investigated on a high-lift gas turbine cascade at low Reynolds number.
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NOMENCLATURE
a Speed of sound
d Wall distance
g Correction coefficient for the production term
M2s, Re2s Isentropic exit Mach and Reynolds number
Mc, M̃c Convective Mach number and its local approximation
p Pressure
R2 Determination coefficient
u Velocity
WL,WH Weigths for database classes
α, β2 Inlet and exit angle
β Field inversion correction variable
ρ Density
ν, ν̃ Molecular and modified eddy viscosity
ω Vorticity
τi Dimensionless maximum shear stress in an incompressible mixing layer
ζ Kinetic losses
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INTRODUCTION
The simulation of turbulent flows in turbomachinery is challenging because of the presence

of complex phenomena like laminar-turbulent transition and separation which deeply affect the
performances of the system. The use of scale-resolving simulations like Large Eddy Simu-
lations and Direct Numerical Simulations offers the possibility to correctly capture important
physical phenomena by reducing the amount of modelling. However, the computational cost of
scale-resolving simulations limits their applicability during the design process which requires
the evaluation of several geometrical configurations. In this framework, several research efforts
have been devoted to the development of machine learning algorithms which can be used to
analyse high-fidelity data (from experiments or scale-resolving simulations) in order to obtain
correction terms which can be included in Reynolds-averaged Navier-Stokes (RANS) models.
A review of the current state of the art on the simulation of turbomachinery flows with par-
ticular attention to data driven modelling was proposed by Sandberg and Michelassi (2019).
Several approaches have been proposed to improve the prediction capability of RANS models.
Weatheritt and Sandberg (2016) suggested the use of Gene Expression Programming to intro-
duce a non-linear correction in the stress-strain relationship adopted in RANS closures. Zhao
et al. (2020) proposed an evolution of the previous technique in which RANS simulations are
integrated in the training process and which showed good results on the prediction of wake
mixing in turbomachinery. Wang et al. (2017) investigated the use of physics-informed ma-
chine learning techniques to reconstruct Reynolds stress modelling discrepancies starting from
DNS data. Edeling et al. (2014) studied parameter variability in the k–ε RANS model by using
Bayesian estimates.
Another promising strategy is represented by field inversion and machine learning (Duraisamy
et al. (2015); Tracey et al. (2015); Parish and Duraisamy (2016); Singh et al. (2017)): the
method requires the solution of an optimisation problem which provides a field of corrections
to the source term of the RANS model. The correction field obtained by the field inversion must
be then analysed in order to identify correlations between the correction and some flow features
which can be used as inputs: in this way it is possible to generalise the results and perform
actual predictions on different geometries and working conditions.
The use of this procedure for developing intermittency-based transition models in turbomachin-
ery was investigated by Ferrero et al. (2020). Yang and Xiao (2020) applied the field inversion
and machine learning strategy to the improvement of transition prediction with a four equations
RANS models: they proposed to solve the inversion problem by using the regularising ensem-
ble Kalman filtering as an alternative with respect to the adjoint approach which was used in
the previous implementations of field inversion.
The previously described techniques represent some examples of the research efforts that have
been recently devoted to the development of data-augmented RANS models. The interested
reader is suggested to refer to the review carried out by Duraisamy et al. (2019) for a more
general discussion.

In this work the field inversion approach is adopted for the improvement of RANS models
on low pressure gas turbine cascades. Particular attention is devoted to the generalisation of the
correction field provided by the inversion procedure. Both Artificial Neural Networks (ANNs)
and Random Forests (RFs) are investigated as possible regression techniques which can predict
the correction value as a function of some flow features. These techniques are evaluated in
terms of both fitting capability and prediction capability by performing simulations for working
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conditions not included in the training database. A preliminary analysis of the correction field
suggested the use of a sensor to identify the regions where the correction is necessary: in this
way the training dataset is reduced and, during the predictions, the data-driven correction is
applied only in a small subset of the computational domain.
Furthermore, the fitting performance of the different machine learning techniques are investi-
gated by introducing a pre-processing step during the training: in particular, a correction-based
weight is introduced in the training database in order to improve the fitting for the points where
the correction is not negligible.
The prediction capability of these data-augmented RANS models is investigated on the T106c
low pressure gas turbine cascade by simulating flow conditions characterised by values of
Reynolds number not included in the training database.

RANS SIMULATION AND FIELD INVERSION FOR THE T106c CASCADE
In this work the attention is focused on the T106c low pressure gas turbine cascade in the

working conditions investigated by Michálek et al. (2012) (M2s = 0.65, α = 32.7◦). As the ex-
periments confirmed, this cascade is characterised by a large open separation at low Reynolds
numbers (Re2s < 105) while a smaller separation followed by reattachment is obtained for
higher Reynolds numbers.

Physical model
The compressible RANS equations are considered in this work. In particular, the Spalart-

Allmaras (SA) closure implemented according to Allmaras and Johnson (2012) is chosen. This
model was not developed for low Reynolds number flows in the transitional regime but rather
for fully turbulent high Reynolds number flows. For this reason, the baseline model is expected
to perform poorly when applied to the simulation of the flow field in the T106c low pressure
gas turbine cascade: it represents a good starting point to verify whether the field inversion
procedure can introduce significant improvements.
The model is implemented without the trip term ft1 and the transition delay term ft2, defined
by Allmaras and Johnson (2012). The effect of the term ft2 on low Reynolds number flows in
the T106c cascade was discussed by Ferrero et al. (2019).
The experimental configuration was characterised by a very low turbulence intensity (0.9%). In
order to approximate such a condition the inlet eddy viscosity was set to ν̃/ν = 0.1 where ν̃
and ν represent the modified eddy viscosity and the molecular kinematic viscosity, respectively.
An ideal gas with constant specific heat ratio γ = 1.4 is considered. The viscosity is assumed
constant and the Prandtl number is set to Pr = 0.72. The turbulent Prandtl number is set to
Prt = 0.9. The solid walls are assumed adiabatic.

Discretisation
The governing equations are numerically solved by the method of lines. The discontinuous

Galerkin finite element discretisation is used in space while time integration is performed by
means of the first order linearised implicit Euler method. The solution inside each element is
represented by a modal basis obtained by the application of the modified Gram-Schmidt or-
thonormalisation procedure to a set of monomials defined in the physical space, following the
guidelines of Bassi et al. (2012). A third order accurate scheme is adopted for the spatial dis-
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cretisation. Convective and diffusive fluxes are evaluated by means of an approximate Riemann
solver and a recovery-based approach according to Ferrero et al. (2015).
The linear system resulting from the implicit time discretisation is solved in parallel by the GM-
RES solver with the additive Schwarz preconditioner provided by the PETSc library developed
by Balay et al. (2020).
The computational domain is discretised by the Gmsh tool developed by Geuzaine and Remacle
(2009) with the Frontal-Delaunay for Quads algorithm .

Field inversion
The field inversion procedure is applied to the T106c cascade at two values of Reynolds

number: Re2s = 8 · 104 and 2.5 · 105. The procedure allows to find an optimal correction field
g(β(x)) which multiplies the production term in the Spalart-Allmaras transport equation:

∂ρν̂

∂t
+∇·(ρuν̂) = ρ

[
g(β)P̃ − D̃

]
+

1

σ
∇·(ρ(ν+ ν̂)∇ν̂)+

cb2
σ
ρ(∇ν̂)2− 1

σ
(ν+ ν̂)∇ρ ·∇ν̂ (1)

Here, ρ, ν̃, u, P̃ , D̃ represent density, modified eddy viscosity, velocity, production and
destruction terms, as defined by Allmaras and Johnson (2012). The constants cb2 and σ are set
to the standard values reported by Allmaras and Johnson (2012).
The correction g alters the magnitude of the production term. The original SA model tends to
overpredict the eddy viscosity in the T106c cascade at the considered Reynolds number and so
it is not suitable to describe the laminar separation and the following transition. For this reason,
the correction g is assumed to vary in the interval [0, 1]: in this way it acts as an intermittency
function and can deactivate the turbulence model in the laminar boundary layer. On the contrary,
the original turbulence model is recovered where g = 1.
In the original works of Parish and Duraisamy (2016) and Singh et al. (2017) the correction
was chosen as g(β) = β with β unlimited: this means that the optimisation procedure was free
to choose any value for the correction factor. Ferrero et al. (2020) observed that a more robust
approach, which is still suitable to improve the baseline model, is represented by the following
choice:

g(β) =


0 if β <= 0

3β2 − 2β3 if 0 < β < 1

1 if β >= 1

(2)

which represents a smooth approximation of the ramp function between 0 and 1.
The correction field is determined by solving an optimisation problem driven by the following
goal function G:

G =

∫
w

(Ms −M exp
s )2dl + λ

∫
Ω

(β − 1)2dΩ (3)

where the first integral represents the L2-norm of the error on the isentropic wall Mach number
distribution (limited to the suction side of the blade) while the second integral is a Tikhonov
regularisation. This last term is introduced in order to penalise unnecessary corrections and to
regularise the problem. The penalisation constant λ is here set to 10−3. A discussion on the
choice of the penalisation constant is reported by Ferrero et al. (2020).
The optimisation problem is solved by means of the constant step gradient descent method.
The size of the optimisation problem required for field inversion is related to the size of the
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(a) (b)

Figure 1: Optimal correction factor g (a) and Mach number (b) in the solution provided by field
inversion at Re2s = 8 · 104.

mesh since the optimal correction factor must be computed in each quadrature point of the
domain. This makes the procedure quite expensive since each function evaluation requires a
fully converged steady RANS solution. The gradient of the goal function with respect to the
correction field is evaluated by means of the adjoint approach. More technical details on the
application of the field inversion procedure on the T106c flow can be found in the work of
Ferrero et al. (2020).
The field inversion procedure is here applied at the T106c cascade for two different values of the
Reynolds number: Re2s = 8 · 104 and 2.5 · 105. The Mach field and the correction field g(h(x))
are reported in Figure 1 for the case at Re2s = 8 · 104: the results show that the correction
is essentially activated only on the suction side in order to allow the laminar separation which
would not be captured by the original SA model.
An example of the goal function evolution during the optimisation process is reported in Figure
2 for a configuration at Re2s = 8 · 104. The plot shows that after approximately 20 steps of
the gradient method the goal function reaches a minimum. It is important to remember that for
each step of the gradient method it is necessary to reach a steady RANS solution. This means
that in this example the cost of the field inversion procedure is equivalent to approximately 20-
30 RANS steady simulations for each considered working condition. However, each step of
the gradient method requires the solution of a RANS which contains only small perturbations
with respect to the previous step, especially after the first iterations. As a result, the RANS
simulations can be performed by integrating in time with a very large CFL number and so they
converge relatively quickly.

MACHINE LEARNING
The application of the field inversion procedure for a single value of the Reynolds number

produces a large amount of data. The mesh used for these simulations contains 40436 elements
and, since a third order accurate DG scheme is used, there are 6 degrees of freedom per equation
in each element and 9 volume quadrature points in each element. In each quadrature point the
correction factor and all the conservative variables (and their gradients) are available: this means
that each application of the field inversion procedure gives a database with 40436×9 = 363924
points.
In this work the field inversion is independently applied for two values of Reynolds number:
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Figure 2: Goal function evolution in the field inversion procedure.

the results are collected in a global database with 2× 363924 = 727848 points.
This global database is analysed by different machine learning techniques in order to identify
a functional relationship between some flow features and the correction factor. This step is
fundamental to generalise the correction and to perform predictions on different working con-
ditions and different geometries which are not considered during the field inversion procedure:
the goal is to express the correction as g(Φ), where Φ is a vector of some flow features. In this
way it is possible to introduce the correction in the CFD solver and perform predictions on new
configurations.

Artificial Neural Networks and Random Forests
An Artificial Neural Network (ANNs) is a regression tool obtained by a sequence of layers

formed by several neurons. In the architecture considered in this work each neuron receives
the information from all the neurons (plus a bias) from the previous layer: the signals are av-
eraged with different weights and the results is processed by the sigmoid activation function
of the neurons. The signal coming out from the neuron is transmitted to all the neurons of the
following layer. Since the output is limited in the range [0, 1] also the output layer uses the
sigmoid activation function. The network is trained in Matlab by the Levenberg-Marquadt al-
gorithm with a goal function based on the mean squared error. The training algorithm requires
to split the database in 3 sets: training (75%), validation (10%) and test (15%). The training
set is used to compute the means squared error which drives the training. The validation set
is used to avoid overfitting by stopping the training when the prediction error on the validation
set starts to increase. Finally, the test set is not used during the training but it is exploited to
evaluate the prediction capability of the obtained network. The ANN introduces a scaling of the
inputs/output in order to work with variables in the range [-1,1]: this is automatically done by
normalising with respect to the minimum and maximum values observed in the database. Ac-
cording to the previous analysis carried out by Ferrero et al. (2020), a network with two hidden
layers and 20 neuron per layer is chosen.

A Random forest (RF) is a regression tool based on an ensemble of decision trees. Each
tree is able to predict the outputs by evaluating a set of conditions on the inputs. Each tree is
trained on a random subset of the full training database. The final output of the random forest
is obtained by averaging the predictions of the single trees. These features give good prediction
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performances and can limit the risk of overfitting. The RF model adopted in this work contains
10 trees and it is trained by means of the Python Scikit-learn library by Pedregosa et al. (2011).
The depth of the tree is not limited and the minimum number of samples required to split an
internal node is set to 2. In order to use the same training data factor adopted for the ANN, the
database is split in two sets: a training set (75%) and a test set (25%). The validation set is not
required by the considered RF training algorithm.

A sensor for model activation
A preliminary analysis of the database showed that 97% of the points are characterised by

a correction factor greater than 0.99. The percentage increases to 98% if all the points with
a correction factor greater than 0.9 is considered. This means that in most of the domain the
correction is not active and this is confirmed by the visualisation of the correction field reported
in Figure 1a for the case atRe2s = 8 ·104. For this reason it is useful to pre-process the database
in order to focus the attention to the regions where the correction is active. As a first attempt,
a reduced database was selected by choosing only the points for which the wall distance is less
than a certain threshold. However, this approach gives problems during the predictions because
the model trained only close to the wall gives unacceptable predictions in the wake region far
from the wall. For this reason, a less arbitrary approach was investigated in order to define a
criterion based on physical quantities: in this way it is possible not only to select the region
used for the training in the offline phase but also to understand whether a point needs to call the
correction model during the predictions.
The chosen criterion is based on setting a threshold on an estimate of the convective Mach
number Mc. In the study of shear layers, the convective Mach number is defined as:

Mc =
|u1 − u2|
a1 + a2

(4)

where u1 and u2 represent the speed on the two sides of the shear layer and a1 and a2 represent
the corresponding speeds of sound. The approximation used to estimate Mc is based on the
simplifications proposed by Paciorri and Sabetta (2003) in the framework of a compressibility
correction for the SA model for free-shear flows. They proposed to correlate the eddy viscosity
growth rate in a compressible mixing layer to that in an incompressible flow using local vari-
ables approximations. As a result, the following non-linear equation is obtained from which a
local estimate of the convective Mach number M̃c can be computed:

M̃2
c f2(M̃c) =

1

4τi

ν̃|ω|
a2

(5)

where a, τi and |ω| represent the speed of sound, the dimensionless maximum shear stress in an
incompressible mixing layer and the vorticity magnitude. The parameter τi is set to the constant
value 0.01 according to the self-preservation hypothesis cited by Paciorri and Sabetta (2003).
The correlation f2 is defined as:

f2(M̃c) = 0.44
[
1/(1 + 14M̃5

c )
]

+ 0.56 (6)

The expression ”convective Mach number” could be misleading because it seems to be related
to the Mach number while M̃c represents instead a measure of the local shear. However, in
order to remain consistent with the previous works in the literature this expression is adopted
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(a) (b)

(c)

Figure 3: Convective Mach number M̃c field with isoline for M̃c = 0.1 (a), M̃c = 0.01 (b) and
M̃c = 0.001 (c).

also in this work.
The value of M̃c can be used to identify the regions where the model should be trained and then
used during the predictions. In Figure 3 the M̃c field for the solution provided by field inversion
at Re2s = 8 · 104 is reported. The isolevel for M̃c = 0.1, M̃c = 0.01 and M̃c = 0.001 is
highlighted in the plots of Figure 3a, 3b and 3c, respectively. The results show that for M̃c = 0.1
only a portion of the boundary layer and only some regions of the wake are included. However,
the full boundary layer and the entire wake are included for M̃c = 0.01 and for M̃c = 0.001.
After a preliminary analysis, it was chosen to set the threshold as M̃c > 10−3 which means that
only the inviscid external region is excluded while the near wall region and the wake region are
fully included. When this threshold is applied to the database its size is reduced to the 30% of
the original size.
The condition M̃c > 10−3 will also be evaluated at runtime during the predictions: when the
condition is not satisfied the machine-learned model is not used and the correction is imposed
as g = 1.
Finally, it is possible to observe that setting a threshold on M̃c is equivalent to setting a threshold
on the term in the right hand side of Eq.5: in this way the limit condition could be directly
computed from ν̃, a and ω without the need to solve Eq.5 iteratively for M̃c. In this work, the
threshold is imposed on M̃c because of the tendency of this variable to assume values in the
typical range reported in Figure 3 for the problems under investigation. However, also the right
hand side of Eq.5 tends to assume values in a finite interval and so it should be equally easy to
find a general threshold for this quantity.
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Input selection
The choice of the inputs for the ANN and RF models is not trivial. There are some guide-

lines in the literature about this choice. For example, Wang et al. (2017) suggested to choose
input variables which are Galilean-invariant, based on RANS computed variables and local.
Furthermore, it is important to use non-dimensional variables as inputs in order to get a model
which is scale-independent. Ferrero et al. (2020) proposed five input variables for the flow
on the T106c cascade in the transitional regime. However, some of these variables were ob-
tained as the ratio between quantities which can go to zero and so they assume values on a
very wide range. In order to avoid numerical problems a logarithmic scale was used and small
constants were added to avoid division by zero. In the present work, these poorly conditioned
input variables are avoided. In particular, the following four input variables are chosen: ν̃/ν, f ′d,
∇p ·u/ (p|u|/d) and M̃c. The variable f ′d is a modified version of the shedding function defined
by Ferrero et al. (2020). The third input is the adimensional streamwise pressure gradient which
was found to be very effective in the regression step by Yang and Xiao (2020).

The scatter plots in Figure 4 show the distribution of the values assumed by the four inputs
in the database. The plots do not suggest an evident trend between the correction factor and the
inputs. The same conclusion is obtained by performing a linear correlation investigation. This
can be done by computing the correlation coefficientCC which measures the linear dependency
between two variables A and B:

CC(A,B) =
cov(A,B)

σAσB
(7)

where cov(A,B) is the covariance of the variables A and B and σ represents the standard
deviation. The results of this linear correlation analysis are reported in Table 1. The correlation
coefficients between the inputs and the correction factor are small: this means that they are not
correlated by a linear relation.
In order to further investigate the relation between the chosen inputs and the correction factor,
a non-linear correlation is assumed. An artificial neural network, which is capable of capturing
strongly non-linear correlations, is used for a preliminary test. In particular, a network with 2
hidden layers and 20 neurons per layer is considered. First of all the network is trained by using
all the four input variables. Then a leave-one-out strategy is applied, neglecting in turn one of
the input variables and training the network on the remaining inputs. The results are reported
in Table 2: the values of the coefficient of determination R2 for the test portion of the database
not used in training show that the small network is able to get a trend in the results while the
previous linear analysis was unable to get a representative correlation. The Table shows also
the reduction in the coefficient of determination ∆R2 obtained by neglecting each of the inputs:
they seem to give contributions with the same order of magnitude but the largest contribution
seems to come from f ′d.

Training: sensor-based database reduction and oversampling
The use of the threshold on M̃c reduces the size of the database by excluding the external

regions where the correction is set to one. Even in this way, most of the points in the database
are related to corrections close to unity. Since the training of the ANN and the RF are based on
the minimisation of the mean squared error, the training algorithms tend to fit the region where
the correction is not active (h ≈ 1) and do not focus on the region where strong corrections
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Figure 4: Scatter plots for the inputs in the database.
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CC(∇p · u/ (p|u|/d) , g) -0.0185
CC(ν̃/ν, g) 0.0183
CC(f ′d, g) 0.1919
CC(M̃c, g) -0.1730

Table 1: Linear correlation coefficients.

Input set R2 ∆R2

ν̃/ν, f ′d, ∇p · u/ (p|u|/d),M̃c 0.846 0.000
ν̃/ν, f ′d,M̃c 0.834 0.012

f ′d,∇p · u/ (p|u|/d),M̃c 0.738 0.108
ν̃/ν, ∇p · u/ (p|u|/d),M̃c 0.677 0.169
ν̃/ν, f ′d,∇p · u/ (p|u|/d) 0.693 0.153

Table 2: Leave-one-out analysis to quantify the contribution of the different inputs.

are applied (h << 1). In order to reduce this issue, the points in the database are split in
two classes: low value corrections (h < 0.9) and high value corrections (h >= 0.9). Then
two different weights are applied to the two classes, WL and WH . The weights are applied in
this way: the original database is pre-processed and each point is repeated WL or WH times,
depending on the class to which it belongs. In this way, it is possible to increase the influence
of the strong corrections (h < 0.9) in the computation of the mean squared error which drives
the training. This approach is also known as oversampling and is widely used for classification
tasks in machine learning Ling and Li (1998).
In Table 3 the coefficients of determination R2 for both the ANN and the RF are reported. The
values refer to actual test predictions performed on a random subset of the database not used
for training (15% of the database for ANN and 25% of the database for RF). The first two lines
show that the introduction of the threshold on M̃c does not alter significantly the value of R2.
However, the size of the database is reduced by a factor 0.3 and this speeds up the training.
Then the weight WL is increased to 5 and 10: in this way the points with the strong corrections
acquire more influence during the training. The results show that the values of R2 increases as
WL/WH increases for both the ANN and the RF. This tendency is confirmed by the regression
plots reported in Figure 5 and 6 in which the points cloud tends to the bisector for high values
of WL. These plots represent actual predictions since they are evaluated on the test subset of
the data which is not used during the training.

R2 with RF R2 with ANN
∀M̃c, WL = 1, WH = 1 0.926 0.846

M̃c > 10−3, WL = 1, WH = 1 0.922 0.843
M̃c > 10−3, WL = 5, WH = 1 0.990 0.942
M̃c > 10−3, WL = 10, WH = 1 0.995 0.940

Table 3: Effect of threshold on M̃c and data weighting on the training.
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Figure 5: Regression plot for ANN with full database and WL = WH = 1 (a) and reduced
database with WL = 10 and WH = 1 (b)
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Figure 6: Regression plot for RF with full database and WL = WH = 1 (a) and reduced
database with WL = 10 and WH = 1 (b)
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Figure 7: Mass-averaged kinetic losses (a) and exit angle (b) for different values of Reynolds
number.

PREDICTIONS
The SA model augmented by the correction found by the analysis of the database is tested

by simulating the flow in the T106c cascade at different values of Reynolds number: 8 · 104,
1 · 105, 1.2 · 105, 1.4 · 105, 1.6 · 105, 2.1 · 105 and 2.5 · 105. The mass averaged kinetic losses
and exit angle are reported in Figure 7a and 7b, respectively. The plots show the experimental
data and some numerical results from Babajee (2013), Pacciani et al. (2010) and Benyahia et al.
(2011). It is possible to see that the SA model with the RF and ANN corrections (SA-RF and
SA-ANN, respectively) perform better than the baseline SA model at low Reynolds number
when the large laminar separation occurs. The results obtained by the SA-RF and SA-ANN
models are in agreement for Re2s = 8 · 104 and 2.5 · 105 (which were used for the training)
but they show significant differences in the actual predictions at Re2s = 1.2 · 105 and 1.6 · 105.
This suggests that, even starting from the same training database, different machine learning
strategies can lead to quite different results during the predictions.
While the machine-learning approach seems to improve the prediction capability in terms of
losses, a large discrepancy is observed on the exit angle. This problem remains also at high
values of Reynolds number for which there is no separation: in these conditions the different
models should agree. It is indeed possible to observe that the numerical results obtained in
this work and in other studies available in the literature seem to converge to an asymptotic
value which presents an offset with respect to the experimental data. This anomaly will be
investigated in the future also by testing the proposed approach on other test cases.

CONCLUSIONS
The use of ANNs and RFs for the identification of correlations between some flow features

and the correction provided by field inversion is investigated. A local criterion based on the
magnitude of the local shear is proposed to reduce the training data-set and to limit the use of
the machine-learned model during the predictions. The training performance of both ANNs
and RFs were improved by introducing a weight in the database in order to better fit the points
in which the correction is not negligible: this oversampling strategy allows to focus the atten-
tion on the regions where the original RANS model fails. The final data-augmented models
are tested in actual predictions for values of Reynolds numbers not considered in the training
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database. The obtained results appear promising since it is possible to observe a significant
improvement with respect to the baseline SA model at low values of Reynolds number.
However, it is important to keep in mind that the procedure is affected by different uncertainty
contributions. First of all, the reference data are usually experimental measurements which are
inevitably affected by uncertainty and this propagates through the procedure. Furthermore, the
field inversion is performed by solving an optimisation problem: there are no guarantees that
this problem has a unique solution and the optimisation could stop in a local minimum. Finally,
the regression step tends to capture a trend in the database but it introduces an approximation,
since the coefficient of determination R2 is never unity. This means that different machine
learning algorithms, like for example the ANN and the RF tested in this work, can generate
different correction models: these differences can become evident when dealing with critical
conditions like the lowest values of Reynolds number investigated in this work. However, the
goal of the proposed procedure is not to find a universal RANS model but to suggest a proce-
dure which allows to exploit the available reference data to obtain a thrustworthy model for a
specific application. This is in line with the classical developments of RANS models: there are
several RANS models in the literature which can provide quite different results in critical test
cases. The generality of the machine-learned corrections can be ideally improved by adding
more test cases in the training database.
Finally, there is an open-question which is shared by most machine learning approaches: when
a regression shows a correlation between some flow features and the output there is no proof
that it is a cause-effect relation. Future work will be devoted to introducing physical constraints
in the machine-learned model and to find ways to prove the existence of a cause-effect relation
between the chosen flow features and the correction.
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Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,
Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G., May,
D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini,
S., Zhang, H., and Zhang, H. (2020). PETSc users manual. Technical Report ANL-95/11 -
Revision 3.14, Argonne National Laboratory.

Bassi, F., Botti, L., Colombo, A., Di Pietro, D. A., and Tesini, P. (2012). On the flexibility
of agglomeration based physical space discontinuous galerkin discretizations. Journal of
Computational Physics, 231(1):45–65.

14



Benyahia, A., Castillon, L., and Houdeville, R. (2011). Prediction of separation-induced tran-
sition on high lift low pressure turbine blade. In ASME 2011 Turbo Expo: Turbine Technical
Conference and Exposition, pages 1835–1846. American Society of Mechanical Engineers.

Duraisamy, K., Iaccarino, G., and Xiao, H. (2019). Turbulence modeling in the age of data.
Annual Review of Fluid Mechanics, 51:357–377.

Duraisamy, K., Zhang, Z. J., and Singh, A. P. (2015). New approaches in turbulence and
transition modeling using data-driven techniques. In 53rd AIAA Aerospace Sciences Meeting,
page 1284.

Edeling, W. N., Cinnella, P., Dwight, R. P., and Bijl, H. (2014). Bayesian estimates of parameter
variability in the k–ε turbulence model. Journal of Computational Physics, 258:73–94.

Ferrero, A., Iollo, A., and Larocca, F. (2019). Rans closure approximation by artificialneural
networks. In ETC 2019-13th European Turbomachinery Conference on Turbomachinery
Fluid Dynamics and Thermodynamics.

Ferrero, A., Iollo, A., and Larocca, F. (2020). Field inversion for data-augmented rans modelling
in turbomachinery flows. Computers & Fluids, 201:104474.

Ferrero, A., Larocca, F., and Puppo, G. (2015). A robust and adaptive recovery-based dis-
continuous galerkin method for the numerical solution of convection–diffusion equations.
International Journal for Numerical Methods in Fluids, 77(2):63–91.

Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-d finite element mesh generator with
built-in pre-and post-processing facilities. International journal for numerical methods in
engineering, 79(11):1309–1331.

Ling, C. X. and Li, C. (1998). Data mining for direct marketing: Problems and solutions. In
Kdd, volume 98, pages 73–79.
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