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Abstract 

Bismuth based materials are among the most versatile species for the production of electroactive, 

adsorptive and photocatalytic materials. Their high tuneability has spread their use in many fields of 

application, proving for instance to be one of the most solid solutions for water monitoring and 

purification. Accordingly, we summarize the most recent and cutting edge achievements of bismuth-

based materials in the field of water research. 

Highlights 

 Bismuth based materials could be used for the detection of both inorganic and organic species in 

aqueous medium. 

 Bismuth based materials are effective adsorptive materials for the removal of heavy metals, 

radionuclides and organic pollutants. 

 It is possible tuning the band gap of bismuth based materials to photoactivate them with visible 

light using several simple scalable routes. 
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1.Introduction 

Water is an essential resource for all life on earth, and in 2010 the United Nations General Assembly 

formally recognized the access to clean drinking water and sanitation as a human right. However, rapid 

economic growth, intensification of agriculture and substantial population rise have caused a significant 

deprecation in water quality [1]. The limited capacity for renewal of groundwater and surface water 

resources, combined with lax regulatory frameworks on industrial and municipal waste effluents has 

further exacerbated the problem. Among all the freshwater contaminants, heavy metals  and persistent 

organic pollutants are especially concerning, not only for the adverse effects they have on human health 

but also for their tendency to bio-accumulate [2]. Consequently, the quantitative detection and removal 

of critical pollutants is of paramount importance.  Bismuth based materials (BBMs) have demonstrated 

to be extremely well suited for both sensing and water regeneration purposes, due to their wide-ranging 

properties[3]. Over the last decades BBMs have attracted the attention of academic and non-academic 

players because of their low cost of extraction, their peculiar photo and electrocatalytic properties and 

easily production [4]. Accordingly, we briefly discuss the most relevant and exciting works where BBMs 

were employed in the fabrication of affordable next generation electrochemical sensors for contaminant 

detection, and highly efficient adsorbent or photocatalytic systems. 

2. BBMs production and properties 

Nowadays, bismuth is mainly used in the form of halide, oxo-halide, nitrate and oxidederivative as 

summarized in figure 1.  



   
 

   
 

 

Figure 1: Main BBMs produced from thermal and thermochemical conversion of raw bismuth minerals. 

The most common precursor of BBMs is Bi(NO3)3, produced through the oxidation of metallic bismuth 

by using HNO3. Bi(NO3)3 is a very useful material that can be easily converted into several subnitrates 

with a wide range of stoichiometry up to Bi5O7NO3. Bi5O7NO3 represents the last thermally stable 

subnitrate prior the conversion of BBMs into pure oxides. Bismuth oxides are a heterogeneous family 

with up to 5 different well defined structures and several sub-oxides[5]. Bismuth oxides can be converted 

into BiX3 (X = F, Cl, Br, I) using a HX in aqueous medium and  then into BiOX through a partial 

hydrolysis of by adding the specific acid. 

BBMs can  also be prepared by combining bismuth oxides and bismuth nitrates with several other 

element, producing doped BBMs with well-known stoichiometry (i.e. BiFeO3, BiVO4, Bi2WO6) or 

through substitutional doping tune the band gap and induce desired magnetic properties in BBMs[6]. 

The great variety of BBMs allows to fine tune two main properties of interest for electrochemical sensing 

and pollutants removal: surface area and band gap. Said parameter can be easily be varied by tuning 

process parameters such as the heating rate, the highest temperature reached and the use of surfactant. 



   
 

   
 

The surface  area is generally reached only few dozens of  m2/g while the band gap could be tuned from 

2.06 eV up to 3.50 eV[7]. 

3. BBMs for electrochemical sensing of pollutants 

3.1 Heavy metal ions 

Mercury based electrodes have been historically used for heavy metal ions detection, through stripping 

voltammetry analysis. However, given the well-known toxicity of mercury, significant effort has been 

put into finding alternative materials with comparable electroanalytical performances while being more 

environmentally friendly. Bismuth based electrodes have shown to be an attractive and economical 

solution for heavy metal analysis, and the most common deposition techniques are ex situ plating, in-situ 

plating or deposition of a bismuth precursor [8]. The addition of a Nafion (perfluorosulfonated cation-

exchange polymer) membrane to a glassy carbon electrode can enhance the sensor’s sensitivity, and this 

was found to be true both for mercury and bismuth film electrodes. In a recent work, Zhang et al. [9] 

exploited the high ionic conductivity of Nafion for the electrophoretic deposition of nano-bismuth  and 

nano- bismuth oxide obtaining a stable and well adherent coating. Moreover, the combination of bismuth 

with nanoparticles, carbon nanotubes, or 2D nanomaterials such as graphene is currently the subject of 

intensive study and has demonstrated to be a fruitful approach. Novel advancements include the 

fabrication of a Bi/MXene nanocomposite [10], obtained by the deposition of bismuth nanoparticles on 

Ti3C2Tx sheets for the detection of Pb2+ and Cd2+, with detection limits of 10.8 nM and 12.4 nM 

respectively. Another exciting development is represented by the work of Jin et al. [11] where through a 

hydro/solvothermal synthesis a heterostructure of Bi2O3 nanosheets and tin sulfide (SnS) nanoparticles 

is reported. The synergistic interaction between Bi2O3 and SnS allowed for fast electron transfer kinetics 

and exceptional detection limits for Pb2+ and Cd2+: 1.5nM and 1.4nM respectively. 



   
 

   
 

2.2 Organic pollutants 

Persistent organic pollutants are a set of toxic chemicals released in the environment as a result of human 

activity, mostly from agrochemical or industrial processes, oil spills and combustion of fuels. 

Conventional methods of detection include separation and spectrometric techniques such as liquid 

chromatography - mass spectrometry, atomic absorption spectrometry or inductively coupled plasma 

mass spectrometry. Nevertheless, these methods tend to be cumbersome and expensive, whereas 

electrochemical techniques allow for simple, low cost, and easy online detection of critical organic 

pollutants. In a common approach a carbonaceous electrode is thus functionalized with a inorganic or 

organic species to enhance its response. Noble metals, nanostructured carbon and their respective 

combinations have been widely employed, but they suffer from high costs, irreversible adsorption and 

are affected by the presence of metal impurities. In an effort to develop more sensitive and affordable 

electrochemical sensors, BBMs have been proposed as novel electrocatalysts usually with nanostructured 

carbon heterojunctions  as shown in figure 2. 



   
 

   
 

 

Figure 2: Modified screen printed carbon based electrode tailored with BiONO3 as reported by [12]. 

Reprinted with all permission from IEEE. 

The interaction between BBMs and organic materials is quite complex and there are few comprehensive 

studies. Franceschini et al.[13] evaluated the interaction between Bi2O3 and Bi5O7NO3 with paracetamol 

by using computational approach highlighting the relevance of surface defect in the electron transfer rate 

efficiency. 

For the detection of 2-nitroalinine, Krishnapandi et al. [14] obtained notable results with a Bi2MoO6 / 

carbon nanofiber (CNF) functionalized sensing platform, with a limit of detection of 43.7nM for a 

differential pulse voltammetry (DPV) measurement. Such a remarkable response was attributed to the 

peculiar catalytic activity of bismuth molybdate (BiMoO4) and the well-known charge transfer properties 



   
 

   
 

of CNFs. Similarly, Gopi et al. [15] developed a glassy carbon electrode modified with molybdenum 

bismuth vanadate impregnated on graphene oxide (GO − MoBiVO4) to detect via DPV 2, 4, 6 

trichlorophenol in aqueous medium. The authors reported a synergistic interaction between MoBiVO4 

and GO, good stability, selectivity against common interference compounds and a wide linear range (from 

0.199 to 17.8μM ). The use of BBMs for the detection of organic pollutants has also found interesting 

application in the field of photoelectrochemical sensing, supported by a great body of evidence detailing 

the photocatalytic properties of BBMs [16]. Recently, Yan et al. [17] reported an efficient  hydrothermal 

synthetic route for the synthesis  of bismuth phosphate (BiPO4) nanocrystals and nanosheets of bismuth 

oxy chloride (BiOCl) facilitate the separation of photogenerated charge carriers enhancing  the detection 

of 4-chlorophenol.  

Especially since the development of nanostructured bismuth oxide tailored on screen printed electrodes 

BBMs reached a commercial breakthrough [18]. 

3. Bismuth based materials for environmental remediation 

3.1 Adsorptive designed materials 

Adsorption is the most common route for water purification and BBMs have proved to be extremely 

versatile in the removal of the major contaminants from drinking water [19]. BBMs have demonstrated 

notable efficiencies in the removal of different harmful inorganics in a wide range of concentrations. 

Among them, anions such As(III) and As(V) are a real plague in south-east Asia and in central America. 

Bi2O3 has shown remarkable performances in the capture of arsenic anions due to its defective crystal 

structure  reaching an efficiency of up to 33.1 mol/m2 and 31.6 mol/m2 for As(III) and As(V) 

respectively [20]. Defectiveness of BBMs was key to the successful removal of arsenic as proved by the 

use of bismuth hydroxides for the concurrent removal of arsenic fluoride and nitrates from drinking water 



   
 

   
 

[21] and or BBMs doping with cations such as magnesium, calcium or iron[22]. Iron doped BBMs could 

also be an interesting solution for the immobilization of arsenic in paddy solid after the combination with 

bioderived carbon source though ferrolisys route[23]. The addition of iron boosts the performance of 

BBMs, as reported by Murtaza et al.[24]. The authors decorated metallic bismuth microparticles with 

nanoscale zerovalent iron particles achieving a removal of Cd(II) from a concentration of up to 10 mg/L 

down to 0.4 mg/L retaining the same efficiency for 6 cycles. 

Similarly, the coupling of metallic bismuth atoms with nitrogen based carbon nanodots increased of up 

to 40 % the ability of the adsorption of Cu(II) [25] and the modification of BBMs with metal organic 

frameworks let to the realization of a selective adsorber for phosphates[26].  

Maksoud et al. [27] reported a noteworthy application of bismuth tungstate (Bi2WO6) for the removal of 

radionuclides 134Cs and 152+154Eu(III)) with an efficiency of up to 46 mg/g and 112 mg/g at 24 °C 

respectively. The authors reached a very effective water purification efficiency, removing up to 92 % of 

radionuclides and outperforming any other adsorption material and reaching the same performances of 

activated alumina, the best in the field.  Han et al.[28] also proved the viability of Bismuth Iodate 

(Bi(IO3)3) tailored graphene oxide for the removal of radioactive iodine with an efficiency higher than 

99 %. Such an exceptional result was mainly due to the formation of stable bismuth iodide  (BiI3) with a 

similar process  as the one described by Reda et al.[29] for iodine. 

Furthermore, the adsorption of hazardous inorganic species could be easily coupled with the removal of 

organic species [30, 31]. As reported by Najdanović et al. [32], bismuth nitrate clusters could reach high 

dye removal efficiencies, up to 1049 mg/g. Similarly, emerging pollutants such as doxorubicin could be 

adsorbed and degraded by using bismuth ferrite (BiFeO3) with an efficiency of up to 93% [33]. 

Considering the moderate surface area of BBMs, adsorptive procedures are generally neglected and 

BBMs are more commonly used as photocatalysts for organic pollutants’ degradation.  Furthermore, the 



   
 

   
 

regeneration and the cost of a BBMs adsorption process is far to be competitive with respect to cheaper 

materials currently available (e.g.activated carbon). 

3.2 Catalytic designed materials 

BBMs possibly represent the most tuneable resource for the production of photocatalysts in the visible 

light region [16] with a mechanism of action sketched in figure 4. 

 

Figure 4: Action mechanism of photocatalyst during organic materials degradation. Reprint from [16] 

with all permission from Elsevier. 

As reported by Gadhi et al.[34], it is not easy to discriminate between the partial degradation and fully 

mineralization of organic species. This task represents the main challenge to be fully solved before a real 

breakthrough of  on-field applications of BBMs can be realized. The radical degradative pathway of each 

pollutant is unique and should be carefully considered, while avoiding the formation of new organic 

species that could be more harmfully than the starting one. 

Contrary to a simple adsorption process, photocatalytic degradation activity should be carefully evaluated 

balancing both adsorption and degradative effects, as reported by Hernández-Gordillo et al.[35]. This is 



   
 

   
 

not a trivial task and can be accomplished only by combining kinetic and structural studies.  A simpler 

approach is generally used in the scientific literature, where the contribution of adsorption is neglected. 

This operative route overestimates the actual photocatalytic activity of BBMs but for highly performing 

materials is still acceptable. Among BBMs, bismuth oxides are the most studied due to their facile 

thermal synthesis [36]and their band gap ranging from 2.3 up to 2.7 eV. Furthermore, bismuth oxide 

could be combined with clay filters in large batch reactors reaching a mineralization efficiency up to 70 

% [37]  for organic materials or could be used to tailor biochar for the removal of steroids from drinking 

water [38]. The natural photocatalytic activity of bismuth oxide could also be enhanced by creating 

heterostructures with bismuth subnitrates so as to be active even in the visible-light spectrum [39] due to 

an improved charge carriers separation at the heterojunction interphase with an enhanced formation of 

reactive oxygen species. Bismuth oxide/bismuth subnitrate heterostructures have been tested both for 

organic molecules degradation [40] and pathogen removal [41] under  visible light proving a remarkable 

efficiency. 

Other interesting heterostructures are produced by combining Bi2O3 with BiOX (X=Cl, Br, I).  Tang et 

al.[42] tested the effectiveness of BiOBr/-Bi2O3 against pure BiOBr and -Bi2O3 reporting a fifty times 

higher photocatalytic activity of the heterostructure. 

BiOX could also be used as pure materials even if the fast recombination rate of photogenerated charge 

carriers limits their practical use [43]. BiOCl has attracted a lot of interest due to its layered structure 

with a high surface area but it has a band gap of around 3.2–3.4 eV that requires the use of UV light.  

Nevertheless, several materials ranging from ternary oxyhalides to BiOI have been developed to 

overcame the stability issues. The addition of iodine ions to BiOCl structure leads to beneficial effects 

such as an increased stability and a reduction of band gap in the visible light region. Zhang et al.[44] 

developed a microwave synthetic route to directly incorporated I- into BiOCl producing a photocatalyst 



   
 

   
 

abled to degrade hydroxyl derivatives of paraben under solar light. Similar results could be achieved by 

incorporating BiOX (X=Cl, Br) into carbonaceous[45] or polymeric [46] membranes.  

Oxalides heterostructures with other bismuth based species such as bismuth selenide were very effective 

for recalcitrant pollutants degradation under visible LED irradiation [47].  

The addition of other metallic species into BBMs structures represent an alternative approach to improve 

the photocatalytic activity as proved by the combination of BiOI with CdS for water de-oiling [48]. 

The production of BBMs included in complex clusters such as Bi2WO6, BiVO4 or Bi2Sn2O7 is also useful 

for reducing the band gap down to 2.4-2.9 eV. This approach was reported as very effective for the 

removal of several emerging pollutants such as drug traces in drinking water [49]. Also, BBMs are a 

good solution to tune the photocatalytic properties of traditional materials such as Titania [50]. 

4. Conclusions 

BBMs properties represent a unique combination of versatility and effectiveness.  The scientific literature 

is rich of researches that claim water purification efficiencies up to 99% but this is true only under 

idealized conditions for a few substrates. Nevertheless, BBMs could be used to treat polluted waters 

where several contaminants occurred simultaneously on a regular basis. The possible use as both 

adsorption and degradative materials is another unneglectable advantage of BBMs over other materials 

such as the more diffuse resin filters are more appealing for real application. Furthermore, BBMs could 

also provide a very effective tool for monitoring both inorganic and organic species even in low 

concentrations. Many challenges must still be overcome before suggesting BBMs as alternatives to 

traditional materials used in environmental remediation, but the research is moving fast in this direction 

as briefly summarized in table 1. 



   
 

   
 

Table 1: Advantages and disadvantages related to the use of BBMs in sensing and environmental 

remediation. 

BBMs uses Materials Advantages  Disadvantages 

Detection of inorganic 

species 
 Bismuth oxides 

 High tuneability 

of  oxygen 

vacancies and 

electron transfer 

rate. 

 Easy synthesis 

through 

thermochemical 

routes. 

 Good detection 

limits and linear 

range 

 Requires pH 

adjustment. 

 Poisoning  

 Surface 

modifications 

Detection of organic 

species 

 Bismuth oxides 

 Bismuth 

subnitrates 

 Bismuth 

Molibdate 

 Bismuth 

oxahalide 

 High tuneability 

of  oxygen 

vacancies and 

electron transfer 

rate 

 High control on 

surface 

modifications. 

 Good detection 

limits and linear 

range. 

 

 Lack of 

selectivity 

compared 

with 

enzymatic 

based sytems 

 

Adsorption of 

pollutants 

 Bismuth oxides 

 Bismuth ferrites 

 Bismuth 

wolframate 

 Good adsorptive 

performances. 

 Poor leaching. 

 

 High cost 

 Regeneration 

 

Photodegradation of 

pollutants 

 Bismuth oxides 

 Bismuth 

subnitrates 

 Bismuth 

molibdate 

 Bismuth 

oxahalide 

 High structural 

and 

morphological 

tuneability. 

 Tuneable band 

gap. 

 Poisoning  

 Need to be 

tested under 

on-field large 

scale 

conditions 

 



   
 

   
 

 Bismuth ferrites  High efficiency in 

recalcitrant 

pollutants 

treatment 

 Good regerability  

 

We firmly believe that BBMs will represent one of the game changing materials for water treatment and 

monitoring that will allow to regenerate and preserve the water resources of mankind. 
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