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1. Introduction 

 

Carotid intima-media thickness (CIMT) is a commonly used marker for atherosclerotic risk 

assessment. The CIMT is typically measured on B-mode ultrasound images of the common carotid 

artery (CCA) by delineating the intima-media complex (IMC) [1] (see also Fig. 1), although in 

some studies carotid Doppler images are also employed to assist CIMT measurement [2]. Increased 

CIMT values have been associated with future cardiovascular events in high-risk subjects [3], yet 

studies have also shown negative results on the independent predictive value of CIMT for 

cardiovascular events [4]. As ultrasound imaging heavily depends on the clinical operator and 

his/her skills, a common limitation of CIMT measurements is the heterogeneity in technical 

approaches [3]. Namely, the CIMT value can vary based on the protocol used (e.g., single- vs. 

multiple-angles acquisition), the measurement location (e.g., distance from bulb), the ultrasound 

equipment used to acquire the image (e.g., transducer central frequency), and finally the image 

acquisition setup (e.g., filters, image gain, time-gain compensation, depth). This last factor (i.e., 

image acquisition setup) has been found to potentially impact the robustness of the CIMT 

measurements [5] and is in dire need of standardization when using B-mode-based systems [6]. 

Finally, several large studies focusing on the predictive value of CIMT employed manual 

measurements by the placement of calipers, which can be subject to inter- and intra-analyst 

variability and require a large amount of time and effort.  

A myriad of computerized methods have been proposed to extract the contours of the IMC and 

measure the CIMT in longitudinal ultrasound images of the CCA [7] . The problem of segmenting 

the CCA can be formally described as determining the position of the lumen-intima (LI) and media-

adventitia (MA) anatomical interfaces (see also Fig. 1). Usually, CIMT quantification is performed 

on the far wall of the CCA, as recommended by the Mannheim consensus [8]. A large number of 

segmentation methods have been extensively described, categorized, and compared in several 

dedicated reviews [7,9,10]. A brief summary of the major IMC segmentation approaches is 
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presented hereafter. Anatomical interfaces have a continuous profile and are represented by abrupt 

changes in image intensity, due to the change of acoustic impedance between different tissue types 

[11]. A variety of edge detection operators have been proposed to analyze and identify the gradient 

extrema for IMC segmentation [11,12]. An advanced analysis of local image properties was 

moreover introduced to detect gradient regions (namely, where anatomical interfaces are likely to 

be located) as a saliency map [13]. Active contours, also referred to as snakes, have been exploited 

in several different approaches [14,15]. Snakes segmentation is well suited to the IMC geometry 

due to the clear double-line pattern; however, convergence depends on initialization conditions. 

Another widely used approach is dynamic programming, which ensures a globally optimal and 

deterministic solution [16]. Based on graph theory, this approach provides the minimum-cost path 

running from the left to the right borders of the image which represents the target anatomical 

interface. In the aim to further increase segmentation robustness, a scheme known as dual-dynamic 

programming was introduced to extract simultaneously the LI and MA interfaces from ultrasound 

CCA images [17] and videos [18,19]. The above presented techniques can be described as contour-

based, since the focus is to extract the interfaces between the different anatomical regions using 

various edge operators. Contrarily, region-based methods are devised to extract entire areas based 

on texture or intensity measurements, using for example adaptive thresholding and morphological 

operations [17] or fuzzy C-mean clustering [20]. Finally, machine learning approaches have been 

proposed to segment the layers and quantify the CIMT [21], with a particular focus on deep 

learning methods in recent years [22,23], which is undergoing an incredible evolution and has 

recently shown to provide robust performances in several tasks. These systems, known as deep 

neural networks, extract a high-dimensional representation of the image and use this information to 

reconstruct a segmentation map of the objects in the image. Deep neural networks perform the 

extraction, transformation, and interpretation of intrinsic image features via many multi-scale layers 

of operations (such as, for instance, convolutions), whose parameters are trained in a supervised 

manner. Deep learning approaches provide a generalization of the segmentation problem, being 
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segmentations and computerized segmentations of all analyzed methods, has been made publicly 

available (http://dx.doi.org/10.17632/m7ndn58sv6.1).  

 

2. Materials and Methods 

2.1 Database description  

A total of 500 images were included in this study complying with the Declaration of Helsinki. 

In particular, 400 images were acquired at four different centers (100 per center) using different 

ultrasound device systems and probes. Table 1 shows the breakdown of the images and the 

systems/settings used at each center, and Figure 1 shows an example image from each center. The 

Ethics Committee of each relevant center approved the study and all participants provided written 

informed consent. The Mannheim consensus guidelines for image acquisition was followed for all 

participants [8]. Moreover, 100 images were simulated using the Fast And Mechanistic Ultrasound 

Simulation (FAMUS) software [35,36]. Briefly, this simulator relies on a point source/receive 

approach and combines the speed of other approximate approaches with the flexibility and realism 

of mechanistic approaches. More details can be found in Aguilar et al. [35,36]. In particular, the in-

silico phantoms were defined using a binary mask where the IMC was manually drawn along the 

image width. FAMUS was subsequently used to simulate the final B-mode images, thus providing 

ground truth profiles to be used for comparison between both manual and computerized profiles. 

The dimensions of the simulated phantoms were 40×1×25 mm3 in the x, y and z (lateral, elevation 

and axial) directions using 30,000 scatterers (30 scatterers/mm3). The simulated array transducer 

had a central frequency of 7 MHz with 192 active elements, and the B-mode image was 

reconstructed using 128 scanlines. More details about the simulation parameters can be found in the 

Supplementary Materials.  

The pixel dimension of the images included in the entire dataset presented a mode equal to 

0.060 mm/pixel, with a minimum of 0.029 mm/pixel and a maximum of 0.099 mm/pixel. The pixel 
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Figure 1. Example of images from each center (A-D) in-vivo images. (E) FAMUS simulated 
images.  (A) Munich, Germany;  (B) Pisa, Italy; (C) Porto, Portugal; (D) Torino, Italy; and  (E) 
Toronto, Canada. 

 

2.2. Manual and Automated CIMT measurement methods  

For all 500 CCA ultrasound images investigated in this study, both manual and computerized 

measurement methods were performed, which are described hereafter.  

2.2.1. Manual measurements 

In order to assess the accuracy of each computerized segmentation method, a manual gold 

standard reference was generated, despite the lack of absolute ground truth inherent to ultrasound 

in-vivo data. After determining the full exploitable width of each image in order to (i) exclude 

regions of poor image quality if present, and to (ii) follow the Mannheim consensus guidelines [8], 

the contours of the LI and MA anatomical interfaces were subsequently manually traced by two 

experts. Manual LI and MA tracings were performed on each image by an experienced analyst A1 

(L.G. from Torino, >10 years of experience in carotid sonography) and were considered the gold 

standard. The entire manual segmentation process was performed again by A1 one month later to 
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assess intra-analyst variability (referred to as A1'), and by another expert analyst A2 (G.V. from 

Torino, > 25 years of experience in carotid sonography). The annotations performed by A1, A1', 

and A2 were blinded from each other. Manual segmentations were performed with care using a 

graphical user interface developed specifically for this purpose. More details of the manual 

segmentation GUI are provided in section 2 of the Supplementary Materials.  

2.2.2 Computerized measurements 

Seven computerized segmentation methods were developed by the authors, originating from six 

different research groups. For simplicity, each technique is named by the affiliation institution of 

the first author, with a subscript that indicates the corresponding country. The methods were 

employed on all 500 images used in this study. All methods produce the LI and MA tracings; some 

require user-interaction (CNRIT, INESCTECPT, TUMDE, UCYCY, CREATISFR), while others 

(POLITOSnakes
IT, and POLITOUNet

IT), are completely automatic. Each method was employed 

independently, so the manually determined region-of-interest (ROI) in the case of semi-automatic 

methods could vary. Five of the methods are based on traditional image processing techniques 

(CNRIT, INESCTECPT, TUMDE, UCYCY, POLITOSnakes
IT ), while the remaining two (CREATISFR, 

and POLITOUNet
IT) are based on deep learning convolutional neural network (CNN) methods1. 

Briefly, the methods are based on the first-order absolute moment [CNRIT] [6,11], anisotropic 

Gaussian derivative filters [INESCTECPT] [12,43], dynamic programming [TUMDE] [19,44], snakes 

[UCYCY] [14], dual snakes [POLITOSnakes
IT] [15], a dual-resolution UNet [CREATISFR] [45], and a 

standard UNet [POLITOUNet
IT]. More details of the methods are described below, and readers are 

directed to each respective reference for a complete in-depth presentation and validation of the 

computerized methods. 

2.2.2.1. Method by Consiglio Nazionale delle Ricerche (CNR) in Italy (CNRIT) 

                                                      
1 The POLITOIT research group developed two algorithms: one based on traditional image processing and the other one 
based on CNNs. To distinguish between these two, a superscript is used. 











https://github.com/nl3769/caroSegDeep
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for the analysis reported here. The division of the dataset for each fold into training, validation, and 

test sets are included in the publicly available dataset.  

A table summarizing the pros and cons of each method briefly presented here, along with the 

processing time, is provided in the Supplementary Materials (Table S4). 

 

2.3. CIMT computation and common support calculation 

The computerized methods produce LI and MA profiles that contain a variable number of points 

along the image width; some methods (TUMDE, POLITOSnakes
IT, POLITOUNet

IT, CREATISFR) 

present one point for each image column, where the profiles are defined, while others have one 

point every three columns (CNRIT) or every 0.1 mm approximately (INESCTECPT). The UCYCY 

computerized method produces an amount of points that is equivalent to the manual segmentations, 

thus containing 10-20 points along the image width. In order to standardize CIMT computation and 

to facilitate the definition of the common support the following procedure was employed. The area 

of the image where all the methods proposed in this work have properly defined the LI and MA 

profiles was firstly estimated. Then the LI and MA segmentation profiles were interpolated to 

contain one point for each image column (within the original width of each profile) using a shape-

preserving piecewise cubic interpolation. It should be noted that this interpolation was not done for 

the TUMDE, POLITOSnakes
IT, POLITOUNet

IT, CREATISFR methods which already presented one 

point for each column. 

Using all manual and computerized segmentations (interpolated, if needed as described 

previously), the final CIMT values were computed using the polyline distance method [33]. This is 

based on computing the average distance between each point on one profile (i.e., LI or MA) and the 

distance resulting from the normal projection to the segment of the other profile (i.e., LI or MA, 

respectively) [33]. A more complete description of the polyline distance is reported in the 

Supplementary Materials (Figure S3). For the statistical analyses reported in subsections 2.4.1 and 

2.4.2, two separate validations were done: first, each method was compared independently with the 
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between the two SNR distributions confirmed the statistically significant difference (p<0.001).  The 

division of the dataset in these two ways allows for technical considerations to be made about when 

and why certain methods may tend to fail segmentation or produce larger bias values. Finally, the 

database was also divided by center, so as to discuss the segmentation results obtained using 

different ultrasound devices and imaging settings.  

The results obtained by dividing the dataset are presented as box plots, where limits of the 

boxes correspond to the 1st and 3rd quartile whereas the top and bottom whiskers end at 1.5 times 

above or below, respectively, the interquartile range (±IQR) which is defined as the difference 

between the 3rd and 1st quartile. To test if dataset division by morphology, SNR, and center has a 

significant effect on the CIMT absolute bias, we performed a Kruskal-Wallis (KW) non-parametric 

test. If not conversely specified, for these tests we considered the CIMT absolute biases from both 

manual and computerized operators together. Then we compared the median of each subset (e.g., 

Low, Average, and High SNR for SNR division, or straight, inclined up, inclined down, curved up, 

curved down for morphology classification) using KW test. 

 

3. Results 

3.1. Overall segmentation results 

Table 2 shows the CIMT bias results for each manual and computerized segmentation method 

along with the number of unprocessed images (see second column of Table 2). The results take into 

consideration the individual common support computed between the ground truth (i.e., A1) and the 

analyzed method. The four computerized methods that were able to process 100% of the images 

were the ones based on deep learning (that is, CREATISFR and POLITOUNET
IT) and those based on 

deformable models (that is, POLITOSnakes
IT, and UCYCY). The INESCTECPT method was unable to 

process 113 images, whereas the other computerized methods ranged from not processing one 

(TUMDE) to four (CNRIT) images.  
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higher mean and standard deviation than the manual results. The best results, based on the smallest 

bias, are reported with bold values in Table 2. The asterisk in Table 2 highlights measurements that 

are not statistically significantly different (p >= 0.05) using the Wilcoxon rank sum parametric 

paired test with respect to A1. From Table 2, it can be observed how the majority of the 

computerized methods along with both manual segmentations produce a similar Hausdorff distance 

when considering the LI and MA boundaries (i.e., HDMLI and HDMMA). Two computerized 

methods show a higher Hausdorff distance between the computerized and manual A1 LI profiles 

(INESCTECPT and CREATISFR) when compared to the Hausdorff distance between the MA 

profiles. The INESCTECPT method is much more sensitive to noise in the lumen, showing a HDMLI 

over twice as high as HDMMA.  The CREATISFR method, on the other hand, shows the lowest 

HDMMA results, differing by only approximately 16 µm when compared to HDMLI. The CNRIT 

method shows the lowest HDMLI results overall but has about a 45 µm difference compared to the 

HDMMA results. Figure 2 provides segmentation results on an example image. More segmentation 

results are included in the Supplementary Materials, showing the overall common support (Figure 

S5) and an example FAMUS image (Figure S6). Moreover, the fold results of both deep learning 

methods are shown in the Supplementary Material. 




































































































