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Abstract: Accurate precipitation observations are crucial for water resources management and as
inputs for a gamut of hydrometeorological applications. Precipitation data from Integrated Multi-
Satellite Retrievals for Global Precipitation Measurement (GPM) (IMERG) have recently been widely
used to complement traditional rain gauge systems. However, the satellite precipitation data needs to
be validated before being widely used in the applications and this is still missing over the Indonesian
maritime continent (IMC). We conducted a validation of the IMERG product version 6 for this region.
The evaluation was carried out using gauge data in the period from 2016 to 2020 for three types of
IMERG: Early (E), Late (L), and Final (F) from annual, monthly, daily and hourly data. In general,
the annual and monthly data from IMERG showed a good correlation with the rain gauge, with
the mean correlation coefficient (CC) approximately 0.54–0.78 and 0.62–0.79, respectively. About
80% of stations in the IMC area showed a very good correlation between gauge data and IMERG-F
estimates (CC = 0.7–0.9). For the daily assessment, the CC value was in the range of 0.39 to 0.44 and
about 40% of stations had a correlation of 0.5–0.7. IMERG had a fairly good ability to detect daily
rain in which the average probability of detection (POD) for all stations was above 0.8. However,
the false alarm ratio (FAR) value is quite high (<0.5). For hourly data, IMERG’s performance was
still poor with CC around 0.03–0.28. For all assessments, IMERG generally overestimated rainfall in
comparison with rain gauge. The accuracy of the three types of IMERG in IMC was also influenced
by season and topography. The highest and lowest CC values were observed for June–July–August
and December–January–February, respectively. However, categorical statistics (POD, FAR and critical
success index) did not show any clear seasonal variation. The CC value decreased with higher
altitude, but with slight difference for each IMERG type. For all assessments conducted, IMERG-F
generally showed the best rainfall observations in IMC, but with slightly difference from IMERG-E
and IMERG-L. Thus, IMERG-E and IMERG-L data that had a faster latency than IMERG-F show
potential to be used in rainfall observations in IMC.
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1. Introduction

Precipitation drives the hydrological cycle and has a great effect on human life. Vari-
ation in the amount and type of precipitations in each location will bring an impact on
planning in water resources management, hydrology, agriculture, industry, environment,
as well as disaster mitigation [1,2]. Since precipitation is the input of hydrological, weather,
and climate models [3,4], an accurate measurement of the number and pattern of pre-
cipitations in an area is deemed important to obtain the accurate prediction results from
these models.

One of the areas with the highest level of precipitation in the world is the Maritime
Continent situated between the Indian Ocean and the Pacific Ocean. Most of the Maritime
Continent area is covered by the sea and absorbs high levels of shortwave radiation, making
this area to have a high rainfall throughout the year. The Maritime Continent area consists
of several countries such as Indonesia, Malaysia, Singapore, and the Philippines. In the
Maritime Continent, Indonesia is the country with the most extensive area—commonly
known as the Indonesian maritime continent (IMC). IMC receives very high rainfall reach-
ing above 5000 mm per year [5,6]. This is not only a great source of water but also causes
the frequent occurrence of hydrometeorological disasters, followed by high economic
losses. Therefore, accurate observations and estimations of precipitation in IMC area are
urgently required.

Precipitation observations can be carried out directly and indirectly (remote sens-
ing) [7]. The most accurate precipitation measurements are the ones made directly on the
surface using a rain gauge [8], but such observations are merely limited to the installed
locations [9]. Furthermore, rain gauge data are also subject to errors such as those induced
from the instrument and observer [10,11]. The low number of rain gauge networks can
cause random or systematic errors when interpolating over a large area [12,13]. This condi-
tion is also found in IMC where the rain gauge networks are still sparse [9]. Many factors
can cause the limitations of rain gauge network, including: first, the uneven distribution
of the population and the large number of uninhabited islands; second, the IMC area is
located in the ring of fire, causing the IMC land to be dotted with many mountains and
making it difficult for the installation of the rain gauge networks; third, the prevalence of
sea in IMC area represents an obstacle in installing rain gauges. To cope with the lack of
rain gauge network, indirect measurement from radar and simulation model can be the
alternatives, but model observations are still unreliable [14], particularly in MC [15].

The most common indirect observation to measure precipitation is using ground-based
radar or satellite products. The number of weather radars in IMC is still insufficient and
does not cover the entire region. For this, precipitation from satellite observations represents
the best choice. The use of precipitation data from satellite product is massively used for
various applications [9,16,17]. The accessible observational data, minimum delays in data
updates, and wide spatial coverage by satellite product have made its utilization more
attractive compared to the surface radar. However, uncertainties and errors associated with
satellite data limit their use in operational applications [18]. Hence, it is deemed necessary
to validate the precipitation observation data from the satellite before their use.

There are multi-satellite precipitation products that are widely used, including Global
Satellite Mapping of Precipitation (GSMaP) [19], Climate Prediction Center morphing
technique (CMORPH) [20], Climate Hazards group Infrared Precipitation with Stations
(CHIRPS) [21], Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN) [22], and Tropical Rainfall Measuring Mission multi-satellite
precipitation analysis (TMPA) [23]. In 2014, a new era began with the launch of the Global
Precipitation Measurement (GPM) core satellite carrying the Ka- and Ku-Dual-frequency
Precipitation Radar (DPR) and GPM Microwave Imager (GMI). The GPM core satellite
observations have broader coverage, finer spatial-temporal resolution, and more accurate
rainfall and snowfall estimations than TRMM [15,24–29]. One of the precipitation products
of GPM is the Integrated Multi-satellite Retrievals for GPM (IMERG) [30,31]. It is based on
observations of a constellation of more than 10 satellites equipped with passive microwave
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radiometers [32] that provide uniformly calibrated precipitation measurements every 2–4 h
around the globe [33].

Although IMERG is a relatively new satellite product, such product has been used ex-
tensively [30,31,34]. In addition to the higher spatial-temporal resolution, IMERG provides
three runs, to accommodate different user requirements for latency and accuracy, including
IMERG Early (IMERG-E), IMERG Late (IMERG-L) and IMERG Final (IMERG-F). These
three types of data are differentiated by the delay in data availability, with IMERG-E having
a delay of 4 h, IMERG-L a delay of 12–14 h, and IMERG-F a delay of 2.5–3.5 months [30].
IMERG-E and IMERG-L data are the direct processing from satellites, while IMERG-F is
a combination of processing satellite data and surface observation data by rain gauges
from the Global Precipitation Climatology Center (GPCC) data base [35,36]. IMERG-E and
IMERG-L data that are close to real time can be used for application with shorter latency
requirements. In fact, even the same application—e.g., flood modeling—may have different
latency requirements depending on the region.

The wide use of IMERG data has encouraged many researchers to assess the perfor-
mance of these data. Most of the tests have been conducted by comparing the IMERG with
TRMM multi-satellite precipitation analysis (TMPA) 3B42/3B42RT [15,24–29]. The results
overall showed that IMERG was more accurate than TRMM. These studies also showed
that the performance of the IMERG varied with the resolution of observations, altitude,
rainfall intensity, and season. For the Maritime Continent area, several validation activities
for IMERG use rain gauges and surface radar, such as in Malaysia [37,38], Singapore [25],
the Philippines [38,39], and Indonesia [40,41]. Observations in Malaysia showed that
IMERG underestimated precipitation for light rainfall (0–1 mm/day) and heavy rainfall
(>50 mm/day), while overestimated it for moderate rainfall (1–50 mm/day) [37]. The
same pattern has been also found in Indonesia [40,41]. The performance of IMERG in the
Philippines showed that the correlation value between IMERG and rain gauge observations
was found quite good for an integration time of 10 days and one month [39], and the
same results were also found in Indonesia [40,41]. The observation of IMERG performance
in Singapore showed good accuracy for monthly scale whereas moderate at the daily
scale [25].

Although GPM-IMERG validation activities in Indonesia have been carried out, previ-
ous research was limited only to a small area with a short duration. Validation conducted
in the IMC previously was limited to Bali Island from 2015 to 2017 [40] and from 2014
to 2019 [41]. The validated data type was IMERG version 4 (V04) where IMERG data is
now in version 6 (V06). Additionally, the temporal resolution of the data validated in the
previous study was daily. IMERG V06 validation for one observation point in Sumatra
has been carried out by Helmi et al. [42] and Ramadhan et al. [43]. Thus, the existing
validation activities are not able to assess the overall IMERG performance for the IMC area;
a comprehensive validation for the entire IMC area is timely.

This study validated the IMERG performance in IMC using rain data from rain gauge
observation for 5 years. All data types from IMERG-E, IMERG-L and IMERG-F version 6
(V06) were validated for different time scales including hourly, daily, monthly, and annual
data. Although IMERG-F has undergone a gauge adjustment with GPCC data at a 1◦

monthly resolution, we still carry out monthly validation of IMERG-F in Indonesia as is
often conducted in other regions, (e.g., [29,44]). GPCC, unfortunately, does not release
information about which gauges they use, so we cannot know what percentage of our rain
gauge overlaps with the GPCC product. However, gauge adjustment with GPCC data is
highly dependent on the rain gauge density. At IMC, the number of rain gauges of GPCC
is still very small [9]. Because our evaluation is at a scale finer than 1◦ monthly, there is
therefore still information there even if gauge information is used to adjust IMERG-F.
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2. Materials and Methods
2.1. Study Area and Rain Gauge Data

The IMERG GPM is validated for the IMC, which spans from 92◦E to 140◦E longitude
and 10◦S to 10◦N latitude (Figure 1). IMC is the largest archipelagic country in the world
consisting of more than 17,000 islands and it has a very diverse topography from 0 m to
4884 m above sea level.

Rain gauge data used was the semi-automatic rain gauge (abbreviated MRG) and
automatic rain gauge installed in weather observation station of the Indonesia Agency for
Meteorology, Climatology, and Geophysics (BMKG). The semi-automatic rain gauge refers
to Hellman type. Hellman rain gauge utilizes a floating gauge connected to the pen sleeve
through a water draining mechanism via a siphon tube. This rain gauge has a funnel area
of 200 cm2. Rainfall data are recorded on millimeter block paper mounted on a drum under
the Hellman rain gauge funnel. The designation of the pen on the paper corresponds to the
volume of water that enters the tube. If the pen has pointed to the number 10 mm, then
the water in the tube will come out through the siphon tube and return to 0 mm [45]. The
automatic rain gauge used was the automatic tipping bucket integrated in the Automatic
Weather Station (AWS). AWS measures rainfall with an accuracy of 0.2 mm [46]. An
automatic rain gauge that was not equipped with a weather station sensor was also used
(called as ARG in the BMKG database). Because the rain sensors of ARG and AWS are
the same, these two instruments are grouped as AWS only in this study. Figure 1 shows
the location of each rain gauge. The MRG data used had an observation resolution of
1 h, while the AWS observation resolution was within 10 min. The data used were in a
5-year range from January 2016 to December 2020. BMKG operates many rain gauges
throughout Indonesia, especially AWS, which is targeted as a substitute for all conventional
observations, including MRG. However, only 146 AWS and 80 MRG stations have a fairly
good record of observations during the 2016–2020 period. Of these, neither AWS nor MRG
is in the same location, so we cannot compare the performance of these two types of rain
gauges. However, Wicaksana et al. [45] showed that rainfall observations from AWS and
MRG were in excellent agreement, with a correlation coefficient of 0.98. AWS and MRG
data have been used in several studies in Indonesia [6,17,47].

Figure 1. The location of the rain gauge station used. MRG shows the semi-automatic rain gauge and
AWS indicates the automatic rain gauge. The elevation data were taken from a 15 arc-second grid
released by the General Bathymetric Chart of the Oceans (GEBCO) [48].
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A rigorous quality control procedure was carried out to ascertain the suitability of the
rain gauge data used for validating GPM-IMERG. The validation process carried out is the
same as that conducted by Ramadhan et al. [47]. Missing data or outliers were not included
as IMERG validation data. Errors in the instrument and by the observer can cause missing
data and outliers in rain gauge data [10,11]. Some outliers were identified based on the
hourly rainfall observed at each observation station. If necessary, we consulted with the
BMKG staff directly to ascertain whether there were errors in data entry by the operator. In
some rain gauge stations, the process of transferring data from the station to the online data
base is performed manually, so there is a potential for operator error. Evaluation of data
quality starts from the smallest observation resolution of each rain gauge to annual rainfall.
Only data that were totally complete for 24 h time range were used for daily validation.
For monthly and annual data, we used rain gauge data with the availability of monthly
and annual observation above 90%. Data availability percentage was the ratio of recorded
samples to the total number of samples that would have been recorded if there were no
measurement failures during a specific time scale. For monthly and annual data, it was
difficult to acquire data availability of 100% due to several factors such as an interrupted
power source, the process of transferring data from the logger, the small capacity of the
data logger, and other factors [49]. We only used MRG data for the annual assessment as
only two AWS stations had annual data availability above 90% during 2016–2020.

2.2. GPM IMERG Precipitation Products

This study validated IMERG data version 6 (V06). GPM IMERG produces precipitation
data with temporal resolution up to 30 min and a spatial resolution of 0.1◦ × 0.1◦ [30]. In
order to merge passive microwave (PMW) observations, a morphing process of movement
vector data is carried out using water vapor data from numerical models on IMERG
V06 [30]. In the latest version of IMERG V06 data, the numerical models used to determine
the motion vector are Goddard Earth Observing System (GEOS), Forward Processing
(FP) [50] and Modern-Era Retrospective Analysis for Research and Applications, version 2
(MERRA-2) [51].

This study validated the observations of precipitation from the IMERG-E, IMERG-L,
and IMERG-F, each of which used a different numerical model. The GEOS model was used
on the IMERG-E and L, while the MERRA-2 model was used on the IMERG-F. IMERG-E
uses a forward morphing scheme, while IMERG-L and F use a forward and backward
morphing scheme, but the IMERG-F data morphing process was corrected using monthly
rainfall data of GPCC [52]. IMERG-E and L are the near real time data with a delay of
4 and 12 h on IMERG V06 that can be used for weather prediction, early detection of
potential disasters, or geological monitoring. IMERG-F V06 has a delay of 2.5 months,
and it can be used for agricultural forecasting, drought monitoring, and hydrological
modeling [52]. In the IMERG-F data, there are two types of data, i.e., PrecipitationCal (with
rain gauge adjustment) and PrecipitationUnCal (without rain gauge adjustment). The gauge
adjustment is conducted by correcting the satellite-only estimate (PrecipitationUnCa) to the
GPCC Monitoring Product, which is provided at a 1◦ monthly resolution via multiplicative
ratios. The ratios are then applied to the 0.1◦ half-hour satellite-only field to get the final
gauge-adjusted estimates (PrecipitationCal). The details of this process can be found in Sec.
3.8 of the Algorithm Theoretical Basis Document [53]. This study used PrecipitationCal
in that several previous studies have shown that PrecipitationCal is better in measuring
the surface rainfall [31,54]. Although IMERG-F has undergone a gauge adjustment with
GPCC data at a 1◦ monthly resolution, our evaluation is at a scale finer than 1◦ monthly,
therefore, there is still merit in this validation. The degree of overlap of our rain gauge with
the GPCC cannot be determined because GPCC does not release information about which
gauges they use. However, the number of rain gauges of GPCC is still very small in the
IMC [9].

The comparison between IMERG and rain gauge was carried out using a point-to-
pixel grid point approach as performed in previous studies [55,56]. One pixel of IMERG
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data represents precipitation in 0.1◦ × 0.1◦ area, so point to pixel matching (rain gauge
observation and corresponding satellite estimates) was carried out within ±0.05◦ from the
grid point of IMERG data. The rain gauge point observations, which are closest to the grid
point in the satellite grid (less than 0.05 degrees off the grid points), are evaluated [56]. The
pixel from the IMERG Grid used in this study had at least 1 rain gauge observation point
in it. If in one pixel there were more than one point of the same type of rain gauge (MRG or
AWS), then the amount of rainfall from the rain gauges would be averaged. In addition, as
the lowest rainfall that can be observed by the rain gauge is 0.2 mm/h, the lowest value
considered as rain from the two observing systems is set at 0.2 mm/h. For daily data, the
threshold for wet days (rain) is set if the rainfall is at least 1 mm/day, as used in several
previous studies [27,57].

Figure 2 shows the examples of the IMERG products time series of four different
station locations. The station ID (located above sea level) as shown in Figure 2 were 96071
(328 m above sea level/ASL), 96581 (2 m ASL), 150010 (43 m ASL), and 150146 (184 m ASL).
Rain gauge (AWS and MRG) and IMERG captured hourly and daily precipitation temporal
trend, which is consistent with a previous study in West Sumatra [42].

Figure 2. Example of the results in the matching of rainfall data in the hourly resolution (a,b) and
daily resolution (c,d) in IMC.

2.3. Error Analysis of IMERG Products

The performance of IMERG’s precipitation measurement was analyzed by two types
of tests: general assessment (continuous statistical metrics) and precipitation detection
capability (categorical statistical metrics). The assessment was carried out for several
temporal variations, namely yearly, monthly, daily, and hourly. As the influence of
seasons is very strong on rainfall in Indonesia [58,59], validation was also carried out
for seasonal variations by dividing monthly rainfall data into four seasons, including
December–January–February (DJF), March–April–May (MAM), June–July–August (JJA),
and September–October–November (SON). DJF referred to the peak of monsoon wind
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movement from Asia to Australia, while JJA referred to the peak of monsoon wind move-
ment from Australia to Asia. MAM and SON themselves referred to a time of transition
from the monsoon movement of the Asian and Australian continents [58,60]. The effect
of topography on IMERG performance was also carried out as performed in previous
studies [7,61,62]. Both data were processed in Coordinated Universal Time (UTC).

As shown in Table 1, there were 3 kinds of continuous statistical metrics used, includ-
ing Pearson correlation coefficient (CC), Root Mean Square Error (RMSE), and Relative
Bias (RB) [63,64]. This test aimed to quantitatively compare the performance of IMERG
observations relative to the MRG and AWS rain gauges on the surface used as a reference.
CC was used to evaluate the level of linear correlation between IMERG and the rain gauge.
RMSE was used to measure the average absolute error magnitude of IMERG. The smaller
the RMSE value obtained, the smaller the error of the IMERG measurement compared to
the rain gauge. The RB showed a systematic bias from satellite observations compared to
the rain gauge. The positive RB value indicated that IMERG measured the rainfall higher,
whereas a negative RB value indicated that IMERG measured lower than the rain gauge.

Table 1. Statistical quantities used to evaluate the performance of GPM IMERG data. N is number
of samples; Gi, rain-gauge observed precipitation; Si, satellite precipitation estimates; σG and σS,
standard deviation of rain-gauge and satellite precipitation, respectively. Every satellite gauge match-
up can be classified as a hit (H, observed rain correctly detected), a miss (M, observed rain not
detected), a false alarm (F, rain detected but not observed) event.

Statistical Quantities Equation Perfect Value

CC 1
N

N
∑

i=1

(
Si − S

)(
Gi − G

)
/σSσG

1

RMSE
√

1
N

N
∑

i=1
(Si − Gi)

2 0

RB N
∑

i=1
(Si − Gi)/

N
∑

i=1
Gi

0

POD H/H + M 1
FAR F/(H + F) 0
CSI H/(H + F + M) 1

Categorical statistical metrics were performed using 3 statistical metrics: Probability
of Detection (POD), False Alarm Ratio (FAR), and Critical Succession Index (CSI) [65].
These three statistical variables had the values ranging from 0 to 1. POD represented the
ratio of precipitation events detected by IMERG correctly to the actual total precipitation.
FAR, represented the ratio of events without precipitation but detected as precipitation
by IMERG to the actual total incidence. CSI, also known as the threat score, described the
overall ratio of rainfall events detected correctly by the IMERG products. The perfect score
for POD and CSI was 1 while the perfect score for FAR was 0.

3. Results
3.1. Hourly Assessment

The validation of hourly satellite rainfall products is challenging data [66]. For the
Maritime Continent area itself, the validation of rainfall in hourly resolution has never
been done, with the highest temporal resolution validated so far in Maritime Continent
being daily. The accuracy of hourly rainfall data is critical for IMC in view of the dominant
diurnal variation of rainfall in this area [5,17,67].

Figure 3 shows the spatial variation of each statistical quantities for the entire IMC
regions. The rainfall correlation between IMERG and MRG data was found very low for all
stations (CC < 0.2). On the other hand, the correlation between IMERG and AWS showed a
much better value. Approximately 25.2%, 16.8%, and 19.3% of AWS stations showed the
correlations between 0.3 and 0.5 for the IMERG-E, IMERG-L, and IMERG-F observations,
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respectively (Figure 3a–c). The maximum correlation values of hourly data validated using
AWS are 0.45 (IMERG-E), 0.49 (IMERG-L), and 0.48 (IMERG-F).

Figure 3. Spatial distribution of CC (a–c), RMSE (d–f), RB (g–i), POD (j–l), FAR (m–o), and CSI (p–r)
of IMERG’s hourly rainfall data with MRG and AWS in IMC.

In general, IMERG overestimated the hourly rainfall in IMC area as seen from the
average RMSE (Figure 3d–f) and RB (Figure 3g–i). RB was positive as also observed
for daily, monthly, and yearly data, as discussed in next sections. The mean RB values
between IMERG and AWS were 17.4% (IMERG-E), 16.0% (IMERG-L), and 19.6% (IMERG-
F), while with MRG it was 15.4% (IMERG-E), 12.8% (IMERG-L), and 17.9% (IMERG-F). The
overestimate of the hourly data was followed by a relatively small RMSE value with the
largest values around 0.18 mm/h (MRG) and 0.42 mm/h (AWS). Although most stations
showed that IMERG overestimated rainfall, 35.4% of MRG and 41.8% of AWS stations
showed that IMERG underestimated it. The dominance of the overestimated value from
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the observations of hourly rainfall found in this study was consistent with the pattern of
overestimation often found from IMERG observations [15,42,67,68]. From all continuous
statistical quantities, it can be seen that the accuracy of hourly rainfall observations from
IMERG at IMC still needs to be improved.

Categorical statistical metrics showed a diversified picture across the IMC (Figure 3j–r).
The highest (average) values of POD between IMERG and MRG data were 0.44 (0.29), 0.48
(0.30), and 0.48 (0.30) for IMERG-E, IMERG-L, and IMERG-F, respectively. AWS gave the
better scores with the highest POD values (average) of 0.82 (0.59), 0.84 (0.62), and 0.85
(0.63) for IMERG-E, IMERG-L, and IMERG-F, respectively. This POD value was consistent
with the CC value between IMERG and AWS data that were also higher than the MRG.
Thus, IMERG is quite good at detecting the rain events in hourly resolution for the IMC
region. Although the ability to detect rain events was quite good (from the POD value),
the error in detecting rain events was also quite large as illustrated by the FAR value. The
minimum FAR values from the hourly data were 0.82 (MRG) and 0.48 (AWS). The average
FAR value of the hourly data between IMERG and MRG was 0.90 (IMERG-E, L, F), while,
when compared to AWS, it was 0.69 (IMERG-E), and 0.68 (IMERG-L, F). A high FAR value
has caused a low CSI value of ~0.08 (MRG) and ~0.26 (AWS). All categorical statistical
metrics values indicated that the accuracy of the IMERG data still needs an improvement
in the observation of rainfall over time at IMC, as also seen from the continuous statistical
test. Although IMERG’s ability is good in observing rain events (from the POD value),
IMERG tends to over predict rain occurrences (high number of false alarms). This behavior
of IMERG at hourly scale has also been reported for studies over Canada [68], Brazil [69]
and mainland China [70].

3.2. Daily Assessment

The validation of daily rainfall is critical since daily rainfall data provide the input
to hydrological models [71]. However, in areas with complex terrain such as in the IMC,
daily rainfall observation using satellites tends to be less reliable, as seen in Bali, with
poor correlation (CC = 0.32) between the IMERG-F observation and the rain gauge [40].
Therefore, we attempted to see the performance of IMERG in measuring daily rainfall for
the entire IMC regions.

Figure 4 shows the distribution of statistical quantities from daily rainfall observation.
Overall, the average CC value for daily data was in the low correlation category (0.3–0.5)
(Figure 4a–c). The correlation between IMERG and MRG showed average CC values around
0.39, 0.40, and 0.41 for IMERG-E, IMERG-L, and IMERG-F. Furthermore, IMERG and AWS
showed the averages of CC at 0.43, 0.43, and 0.44 for IMERG-E, IMERG-L, and IMERG-F,
respectively. Though the average CC value from IMERG showed a poor correlation, some
stations showed a moderate correlation value (0.5–0.7). Approximately 40.7%, 40.7%, and
45.8% of MRG stations showed moderate CC for IMERG-E, IMERG-L, and IMERG-F with
the maximum CC values of 0.66, 0.67, and 0.68, respectively. On the other hand, 30.5%,
34.6%, and 38.8% of AWS stations showed moderate CC for IMERG-E, IMERG-L, and
IMERG-F, respectively. The CC values of the two types of rain gauge are almost the same.
The maximum daily CC values obtained by IMERG-E and IMERG-L, and IMERG-F, when
compared to AWS, were 0.67, 0.69, and 0.72, respectively. The rain gauge station with the
highest CC is located at 2.37◦N, 97.97◦E with the elevation of 33 m ASL. Thus, IMERG,
specifically IMERG-F, shows potential in observing daily rainfall in IMC.
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Figure 4. Spatial distribution of CC (a–c), RMSE (d–f), RB (g–i), POD (j–l), FAR (m–o), and CSI (p–r)
of IMERG’s daily rainfall data with MRG and AWS in IMC.

Most stations showed that the IMERG overestimated daily rainfall (Figure 4d–i). Ap-
proximately 66.1 (86.3)%, 64.4 (84.2)%, and 69.5 (89.6)% of AWS (MRG) stations showed
overestimated values for IMERG-E, IMERG-L, and IMERG-F, respectively. The overesti-
mated value of the daily IMERG data was followed by a RMSE value with a maximum
value of 3.80 mm/day (MRG) and 6.90 mm/day (AWS). The continuous statistical tests
overall showed that the daily rainfall observations using IMERG at IMC still needs to be
improved. The accuracy of daily rainfall observations, however, is still better than some
other satellite rainfall data (GSMaP and CHRIPS) in IMC [40]. Therefore, IMERG daily
rainfall data observations can be used as an alternative to replace rain gauge data in places
where there is no rain gauge network available in IMC.

The ability of IMERG to detect daily rain events was also observed from categorical
statistical metrics. POD values from all stations showed fairly similar and good values
for the entire IMC region (Figure 4j–l). The average POD values of all stations were 0.81
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(IMERG-E), 0.80 (IMERG-L), and 0.81 (IMERG-F) using MRG, and 0.87 (IMERG-E), 0.85
(IMERG-L), and 0.86 (IMERG-F) using AWS. Thus, on average, more than 80% of daily
rainfall events in IMC could be detected by the three types of IMERG. However, the good
ability of IMERG to detect daily rainfall was accompanied by a fairly high FAR value. The
average FAR value for all stations was almost equal with FAR values from AWS equal to
~0.50 and from MRG equal to ~0.43. This showed that IMERG still often misses daily rain
events. This pattern was also observed in the evaluation of IMERG performance in Bali [40].
The FAR value of daily data in IMC was found higher than observations in Singapore [25]
and Malaysia [37]. This was probably due to the more complex orography. Furthermore,
the POD and FAR values were not much different for the three types of IMERG causing
the CSI values to be almost similar, i.e., ~0.50 (MRG) and ~0.45 (AWS). Furthermore, this
observation showed that the three types of IMERG did not show a robust difference in their
ability to detect daily rainfall events.

3.3. Monthly Assessment

For the monthly assessment, we used 120 AWS stations and 64 MRG stations, all with
a percentage of data availability > 90%. Monthly observation of rainfall showed a good
correlation for all IMERG observations (Table 2) with the CC value of 0.7. This was similar
to the one obtained in Bali [40] and in Malaysia [37]. The IMERG data showed a better
monthly correlation when compared to the MRG than compared to AWS, especially for
IMERG-F.

Table 2. Statistical quantities for the monthly rainfall.

Statistical
Quantities

MRG AWS

IMERG-E IMERG-L IMERG-F IMERG-E IMERG-L IMERG-F

CC 0.71 0.73 0.79 0.69 0.70 0.69
RMSE 103.10 102.54 88.72 102.02 101.8 104.2

RB 0.125 0.135 0.133 0.185 0.185 0.258

The best (lowest) correlation of the monthly assessment was observed in the IMERG-
F (IMERG-E) data when compared to the MRG with the CC value of 0.79 (0.71). Thus,
IMERG-F showed a better ability to determine the monthly rainfall in IMC. For AWS, the
correlation values for the three IMERG data types were found to be almost equal. IMERG
overestimated monthly rainfall in IMC as indicated by a positive RB value, when compared
to MRG and AWS. This condition was consistent with the one found in Bali [40]. The same
pattern was also found in the Maritime Continent region, such as in Singapore [25] and
Malaysia [37] for IMERG-F. The patterns of overestimation of monthly rainfall were also
found in areas near the Maritime Continent, such as in Myanmar [72] and Thailand [73].
However, in Malaysia the IMERG-E and IMERG-L data estimated lower rainfall than the
rain gauges [37].

IMERG observation showed that monthly RMSE was in the range of 88.72 mm/month
(IMERG-F) to 103.10 mm/month (IMERG-E) when compared to MRG observation and
in the range of 101.80 mm/month (IMERG-L) to 104.20 mm/month (IMERG-F) when
compared to AWS observation. The obtained RMSE value was closely equal to the
value obtained in previous research in the Maritime Continent region with a value of
136.60 mm/month in Bali [40], 97.01 mm/month in Malaysia [37], and 54.75 mm/month
in Singapore [25] for IMERG-F. Additionally, Tan et al. [37] obtained a higher RMSE value
for IMERG-E and IMERG-L observations in Malaysia with the monthly RMSE values of
114.33 and 118.37 mm/month, respectively. The continuous matrix tests (CC, RMSE, and
RB) entirely showed that IMERG-E, L, and F have great potential to be used as monthly
rainfall data in the IMC area such as for the estimation of water balance analysis.

IMERG’s performance of rainfall measurement in IMC also showed a strong spatial
variation (Figure 5). The correlation between IMERG-F and MRG data showed the best
value where 20.3% of stations showed an almost perfect correlation (>0.9) and 59.4% of
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stations showed a very good correlation (0.7–0.9). There was no poor correlation (<0.3)
when compared to MRG observations. Thus, 79.7% of stations in the IMC area showed a
very good correlation with IMERG-F, particularly in Sumatra and Java where the highest
rain gauge density is present (Figure 5). The worst correlation value was observed in
IMERG-E observations in which 4.7% (10.1%) stations were with CC < 0.3 when compared
to MRG (AWS). However, the number of stations showing good CC (>0.7) from IMERG-E
observations was also quite large, i.e., 60.9% (38.7%) in comparison to MRG data (AWS).

Figure 5. Spatial distribution of CC (a–c), RMSE (d–f), and RB (g–i) in the inter-comparison between
IMERG’s monthly rainfall data relative to MRG and AWS in IMC.

Though IMERG overall overestimated monthly rainfall in IMC as indicated by a
positive RB value (Table 2), some MRG (AWS), approximately ~35% (~17%), respectively,
stations showed negative RB values (Figure 5). However, the RB value obtained was rela-
tively small, close to zero (Figure 5g–i). Thus, the IMERG product tended to overestimate
monthly rainfall in IMC.

3.4. Seasonal Assessment

Figure 6 shows the seasonal boxplot diagram of the monthly continuous matrices as
shown in Figure 5. IMERG showed a good performance in observing monthly rainfall
in each season as indicated by a good CC value (>0.7) (Figure 6a,b). IMERG showed a
trend of overestimation in monthly rainfall observations in all seasons, as observed in the
dominantly positive RB value (Figure 6e,f). This is consistent with the annual and monthly
assessments as discussed above. This overestimated value was followed by a dominantly
low RMSE value (<100 mm/month) in all seasons.
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Figure 6. The boxplot of CC (a,b), RMSE (c,d), and RB (e,f) of monthly rainfall data of IMERG data
with MRG (left) and AWS (right) for each season where E is IMERG-E, L is IMERG-L, and F is
IMERG-F. Red crosses indicate outliers.

Though IMERG generally had good accuracy in monthly rainfall observation for all
seasons, the accuracy of IMERG was dependent upon the season and IMERG data type. The
highest correlation was observed in JJA, specifically IMERG-F (Figure 6a,b). In JJA, most
of the IMC areas had low monthly rainfall, especially in southern Indonesia from south
Sumatra to Timor island, southern Kalimantan (Borneo), Sulawesi and part of Papua [58].
This was consistent with previous research in Bali showing a better correlation in the dry
season in comparison to the rainy season [40]. Other observations in Myanmar [72] and
Mekong River [74] also found similar results. Furthermore, the lowest correlation was
shown in the DJF season (Figure 6a). The DJF season is the peak of monthly rainfall which
occurred in most of the IMC areas [58]. This shows that in the wetter season, IMERG shows
a lower correlation. In addition, the variation in IMERG performance against data types
is much clearer during the DJF season. IMERG-F showed the highest correlation value,
while IMERG-E showed the lowest one. This was followed by the RMSE and RB values,
where the smallest values were observed in IMERG-F (Figure 6c–f). Overall, statistical tests
showed the best accuracy of IMERG-F in observing the seasonal rainfall in IMC.
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3.5. Annual Assessment

The observation in MRG and AWS showed the high annual rainfall in Sumatra,
Kalimantan and Java (Figure 7). The average annual rainfall in Indonesia from MRG (AWS)
observation was found at 2295 (2355) mm/year. From MRG observation, the values of
annual rainfall varied between 664 mm/year to 4687 mm/year. For AWS, the value varied
from 820 mm/year to 5221 mm/year. The highest observations from MRG observations
were observed at ID 96073 (1.550◦N, 98.88◦E) in Sumatra Island, while for AWS, the highest
annual rainfall was observed in station ID 150327 (0.357◦N, 112.317◦E), in Kalimantan
Island. As explained in Section 2.1, the percentage of annual data availability for AWS is
lower than MRG. All MRG stations in Figure 7 have data availability above 90%, while
AWS only has two stations with data availability above 90%, the remaining having 80–90%.
The regional variation of rainfall in the IMC is very strong [75] which is influenced by
global, regional, and local atmospheric circulation. This is clearly seen from the mean
annual rainfall of the IMERG data (Figure 8). High rainfall (>2500 mm/year) was observed
in Sumatra, Kalimantan, Java, and Papua. Some areas in the coastal region of Sumatra,
Kalimantan, and Papua have rainfall above 4000 mm/year, and some locations even reach
7000 mm/year. Dry areas with rainfall < 1500/year were observed in Nusa Tenggara.
This spatial variability of annual rainfall is consistent with the climatological rain map
developed by BMKG using rain gauge data from 1981 to 2010 [76] and with annual rainfall
obtained by TRMM 3G68/PR [5]. The annual rainfall produced by the three types of
IMERG is different (Figure 8d–f). In general, there is an increase in annual rainfall with an
increase in data latency which is indicated by the positive AR when the highest latency is
subtracted by a shorter latency.

Figure 7. Spatial distribution of the average of annual rainfall from MRG and AWS during the period
of 2016–2020. All MRG stations have annual data availability above 90%, while AWS only has two
stations with data availability above 90%, the remaining having 80–90%.

Figure 9 illustrates annual precipitation scatter plots for IMERG precipitation versus
ground-based rain gauge. Annual rainfall observation from the MRG and IMERG showed
a good correlation (>0.7) for MRG. The IMERG-L data showed the highest CC value, i.e.,
0.78 (Figure 9c). In general, the CC values found in this study were consistent with the
values found in several previous studies. Moderate CC for annual IMERG data was found
in Pakistan [29], China’s Diverse Sub Region [77], and Brazil [78]. Furthermore, the values
of good correlation and most perfect correlation of annual IMERG data were also found in
Maritime Continent areas such as Bali [40], Singapore [25], and Malaysia [37]. The factor
that greatly influenced the level of annual correlation was the density of the rain gauge
data. The lower density of rain gauge in IMC has caused a correlation value lower than
other observations such as in Singapore [25]. CC values are expected to increase when
coarsening the IMERG product resolution, e.g., to 0.25◦ [78].
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Figure 8. Annual rainfall from IMERG-E (a), IMERG-L (b), and IMERG-F (c) averaged over
2016–2020, and difference in annual rainfall (∆R) between IMERG-L and EMERG E (d), IMERG-F and
EMERG E (e), and between IMERG-F and EMERG-L (f). Contour lines for annual rainfall < 1500 mm
(white line) and ≥4000 m (pink line) are also given in (a–c).

Figure 9. The scattering plot of average annual rainfall from all MRG stations in IMC against
IMERG-E (a), IMERG-L (b), and IMERG-F (c) during 2016–2020. Color bar indicates the number of
gauge stations.

IMERG data in IMC overestimated annual rainfall compared to the surface rain gauges.
This was indicated by the positive RB values for all IMERG -E, -L, and -F observations
(Figure 9). The observation of the annual rainfall value of IMERG showed a more accurate
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value when compared to the MRG with the smallest RB value of 4.5%, namely in the
IMERG-L (Figure 9c). This overestimation was also found in annual rainfall in the Maritime
Continent region [25,37], and in other areas with high annual rainfall intensity, such as
Pakistan [29] and Brazil [78]. Thus, the IMERG tended to overestimate annual rainfall in
areas with high rainfall. A fairly large RMSE value was also found in the annual data.
The highest RMSE was observed in IMERG-E when compared to MRG and in IMERG-
F in comparison to AWS. The RMSE value was 663.76 mm/year and 579.45 mm/year,
respectively in comparison to the average annual rainfall at IMC reaching 4687 and 1965.
The RMSE percentage value was not much different from that the one observed in Plateau
Brazil [78], Tibet [79], and Plain China [80].

3.6. Effect of Topography

One of the factors determining the accuracy of rainfall observations by IMERG is
orography [80]. Here, we attempted to analyze the effect of topography on the accuracy of
IMERG measurements in IMC using daily rainfall data. Daily rainfall data was selected
because this data is often used as input for hydrological models [71]. The daily data is
the temporal resolution closest to real-time with the best accuracy value since the hourly
resolution is not reliable yet, as discussed in Section 3.4. The elevation of all MRG and AWS
stations in IMC varies from 0 to 1260 m above sea level (ASL). To determine the effect of
topography, all rain gauge stations were divided into four elevation categories: coastal
and low-level plains (<20 m ASL), lowlands (20–300 m ASL), highlands (300–600 ASL),
and hills (>600 m ASL). Then, the statistical quantities for each station were calculated and
compared for each of these elevation categories.

Figure 10 shows a boxplot of statistical quantities from IMERG-E, L, and F data for
all elevations of rain gauge stations. The most obvious effect of topography was on the
CC value that decreased with the increasing station elevation (Figure 10a). This was not
surprising as the ability of satellites to estimate rainfall is commonly better in flat areas
rather than in complex terrain [81]. Coastal and low elevation areas have the best CC
values with prevalently negative RB. This underestimation of rainfall in the lowlands
and especially in the coastal areas has also been found in Guangdong China [74]. Lower
CC values in hills were followed by higher RMSE and RB values (Figure 10c), consistent
with those found in Cyprus [82]. A decrease in the correlation of IMERG and rain gauge
data with increasing elevation was also found across China [83]. Hence, daily rainfall
observations using IMERG data in the hills still needs an improvement.

Although the accuracy of the IMERG observations showed a dependence on elevation,
the impact of elevation was not as clear when looking at rain detection performances.
(Figure 10b,d,f). There was a slight difference in POD values for different station elevations,
but this was not consistent with the FAR values. The best POD was observed in the
highlands, but the FAR value in the highlands was also quite high. As a result, the CSI was
nearly similar for all elevation categories (Figure 10f).
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Figure 10. The boxplot of continuous statistical matrics (a,c,e) and categorical statistical matrics
(b,d,f) of daily rainfall data from IMERG data with MRG and AWS for all elevation categories. The
total stations for each elevation category are 74 (<20 m ASL), 93 (20–300 m ASL), 18 (300–600 m ASL),
and 15 (>600 m ASL). Red crosses indicate outliers.

4. Discussion

In general, we find that the accuracy of the IMERG data increases with
increasing averaging time scales. This is similar to what was found in other
regions [25,27,37,39,66,68,70,74,80,84–90]. All previous studies show that monthly and
annual IMERG data have the best accuracy with correlations above 0.7, similar to those
obtained in this study. On daily time scales, the accuracy of the IMERG data varies
more than on monthly and annual time scales. Several studies show IMERG’s daily
data has a fairly good accuracy (CC > 0.7) [39,80,86,91,92] while others show a moderate
(0.5 < CC < 0.7) [15,37,68,73,84,86,87,90,93] and poor correlations (CC < 0.5) [26,74,85,89].
Such variation is influenced by topography conditions and the density of the rain gauge
network. The higher the rain gauge density [94], the more accurate the validation results. In
addition, the number of rain gauge networks from GPCC data used in calibrating IMERG
data is also a factor that affects the accuracy. For daily data, we found that approximately
34.6% of the MRG and 42.4% of AWS stations had a moderate correlation with IMERG.
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Furthermore, for hourly validation, we found a poor correlation between rain gauge and
IMERG. The average CC is 0.03 for MRG and 0.25 for AWS. Such low CCs are associated
with high FAR value (Figure 3). This high FAR value can be caused by the high variability
of rainfall in an IMERG grid, so that one point observation may not be adequate to represent
rainfall from the grid. High FAR value can also contribute to the high overestimation of the
IMERG data compared to the rain gauge [42]. However, for extreme rain events, which are
especially associated with short-term and limited spatial extent events (few km2), IMERG
underestimates rainfall [43,47]. IMERG current spatial resolution (10 × 10 km2) will tend
to smooth out extreme values of rainfall at short time scales.

The IMERG data combined ten satellites observation [32] that provide uniformly
calibrated precipitation measurements every 2–4 h around the globe [33]. The poor agree-
ment between IMERG and rain gauge data may demonstrate that interpolation of multiple
satellites data with a coarser spatial/temporal resolution for forming hourly data or smaller
temporal resolution does not yield much useful information at the unresolved scales (for
satellite). However, multiple satellite observations must be combined because a single
satellite observation rarely has hourly resolution at a particular location. Poor accuracy of
hourly data was also found in Canada [68], Brazil [69] and mainland China [70]. However,
the accuracy of the IMERG hourly data shows an increase compared to other satellite
precipitation datasets [27].

The accuracy of IMERG monthly data shows seasonal variations (Figure 6). Higher
accuracy was observed in the season with lower rainfall, namely in JJA, and lower accuracy
in the rainy season, namely DJF. One of the possible reasons is that extreme rainfall occurred
more frequently in IMC during the wet season and that IMERG is less accurate in observing
extreme rainfall in the tropics [37], espescially in IMC [43,47]. In addition, low CC can also
be related to the high FAR value in the rainy season. As a consequence, the accuracy of
observations in general decreases during DJF.

Different types of rain gauges show different levels of accuracy. For daily (Figure 4)
and monthly time scales (Table 2), the comparison of IMERG with MRG shows slightly
better accuracy than when compared to AWS. However, on hourly time scales (Figure 3),
AWS shows a better correlation than MRG. Although the performance evaluation of MRG
and AWS operated by BMKG showed very good accuracy [45,95], it is possible for these
rain gauges to have errors in operation. AWS uses the automatic tipping-bucket rain
gauge. A comparison between the Hellmann gauge and the tipping bucket at the Airport
of Geneva shows that the tipping-bucket gauge shows less precipitation than the Hellmann
gauge [96]. This is generally also found in BMKG instruments, where rainfall from AWS
(tipping-bucket gauge) is smaller than MRG (Hellmann gauge). The percentage differences
in daily precipitation amounts between Hellmann and tipping buckets depend on wind
speed and the intensity of the precipitation [97]. The error of the tipping-bucket rain gauge
increases with increasing rainfall intensity and decreases with increasing time scale. For
example, at moderate rainfall intensities of 10 mm/h, the tipping bucket shows relative
standard errors of 6.4% for the 5 min and 2.3% for 15 min timescales [98]. In this study, the
smallest scale used is daily, so systematic and random instrumental errors are likely to be
quite small. Another factor that might affect our results is the impact of the data recording
system, with MRG introducing errors associated with its semi-automatic logging system.

In addition to the type of rain gauge, the altitude of the rain gauge sitealso affects the
accuracy of the precipitation products [80]. For IMC the ability of the satellite product to
detect and quantify rainfall was not much different for elevations (the highest elevation of
rain gauge station was 1260 m) (Figure 10). consistent with previous studies which found
similar results for stations below 2000 m [40,82,83].

The accuracy of daily, monthly, and yearly data from IMERG is reasonable and can
complement data from traditional rain gauge systems in IMC. As expected, the accuracy
of the IMERG is best at the greatest latency (i.e., Final > Late > Early), thus the use of
IMERG-F is recommended. The greater the latency, the more information/processing gets
into the satellite estimates, the better its performance on average. However, the choice of



Remote Sens. 2022, 14, 1172 19 of 24

the product is highly dependent on the requirements of the application. If an application
can accept the 18 h latency of IMERG-L, then IMERG-L should be used instead of IMERG-F.
Applications that expect fast and near real-time (NRT) results can use the IMERG-E [99],
such as flash flood forecasting [100] and NRT hurricane rainfall forecasting [101], NRT
erosion, and fires nowcasting. For daily and long-term applications such as agricultural
forecasting or drought monitoring [101], we can use the IMERG-L. The IMERG-F offers
significant benefits on monthly applications such as hydrological modeling [102] and
climate study. However, all of these applications depend on the latency needed because
even the same application may have different latency requirements depending on needs.

Considerable biases exist in the IMERG data for all latency, so bias adjustments based
on local gauge networks are recommended before the data is used. Several methods can be
used to correct the bias of precipitation data from satellite products. First, the correction
can be performed using a mean-based approach. This method typically uses a monthly
correction factor based on the ratio between grid-based precipitation and observed values,
such as local intensity (LOCI) [103] and linear scaling (LS) [104]. Second, we can use a
distribution-based approach. This method uses a probability distribution transfer function
derived from the observed and simulated cumulative distribution function (CDF) [105].
The mean-based approach is relatively simple and easy to apply. However, the distribution-
based approach is considered better because it corrects errors in the bias of the mean and
the shape of the distribution [106].

5. Conclusions

The accuracy of IMERG in observing the rainfall in the Indonesian maritime continent
(IMC) was quite good for daily, monthly, and yearly data, as seen from the CC, RMSE
and RB values. IMERG was found to be very effective in detecting the rainfall in IMC
as reflected in the POD value. However, the falsely detected precipitation events (FAR)
were still high for daily and hourly data. Hourly data also have a poor correlation. Thus,
daily, monthly, and yearly data from IMERG have the potential to complement data from
traditional rain gauge systems in IMC. However, it can be seen that considerable biases exist
in the IMERG data, so bias adjustment needs to be performed before the data is used for
water resources management and hydrological applications. For all assessments conducted,
IMERG-F overall showed the best performance in IMC, but the differences with IMERG-E
and IMERG-L were minimal. Thus, IMERG-E and IMERG-L data, which have a faster
latency than IMERG-F have also the potential to be used in rainfall observations in IMC.
Seasons and topography affect the IMERG product quality. The highest and lowest CC
values were observed in the dry season (JJA) and wet season (DJF). However, the influence
of the season was not so visible in the categorical statistics (POD, FAR and CSI). The CC
value decreased with increasing elevation, but the difference was low for the different
IMERG products. Meanwhile, topography did not show noteworthy effects on categorical
statistics though a caveat of the study was that all the rain gauges were located at elevations
below 2000 m. In this study it was also found that the type of rain gauge could affect the
validation results, as reported in previous studies. Semi-automatic rain gauge showed a
better correlation than AWS for yearly, monthly and daily data whereas AWS was found
better for validating hourly data. The accuracy of IMERG observations may also be affected
by the intensity of rainfall. Research related to this, particularly in relation to extreme rain
has been published in a companion paper [47]. The current study validated one IMERG
grid point with one-point observation. The high FAR value found for hourly data may be
due to the strong small-scale variability of convective intense rainfall in one IMERG-F grid
(0.1◦ × 0.1◦) which cannot be captured by a single point observation. Therefore, testing with
locations where several rain gauge stations are present in one IMERG-F grid point should
be pursued when assessing the performance of IMERG at hourly scales. Furthermore, we
are investigating an appropriate bias correction method for IMERG based on local gauge
networks, and the result will be published elsewhere.
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