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AN OPTIMAL MULTIPLIER THEOREM FOR GRUSHIN

OPERATORS IN THE PLANE, II

GIAN MARIA DALL’ARA AND ALESSIO MARTINI

Abstract. In a previous work we proved a spectral multiplier theorem of
Mihlin–Hörmander type for two-dimensional Grushin operators −∂2

x−V (x)∂2
y ,

where V is a doubling single-well potential, yielding the surprising result that

the optimal smoothness requirement on the multiplier is independent of V .
Here we refine this result, by replacing the L∞-Sobolev condition on the mul-

tiplier with a sharper L2-Sobolev condition. As a consequence, we obtain the

sharp range of L1-boundedness for the associated Bochner–Riesz means. The
key new ingredient of the proof is a precise pointwise estimate in the transi-

tion region for eigenfunctions of one-dimensional Schrödinger operators with

doubling single-well potentials.

1. Introduction

1.1. Statement of the results. In this paper we continue the analysis, begun in
[DM21], of two-dimensional Grushin operators

L := −∂2x − V (x)∂2y , (1.1)

where V : R → [0,∞) is a “single-well potential” satisfying a scale-invariant reg-
ularity condition of order 1 + θ. More precisely, we assume that V is continuous,
not identically zero, C1 off the origin, and that, for some θ ∈ (0, 1), the estimates

V (−x) ≃ V (x) ≃ xV ′(x), (1.2a)

|V ′(xeh)− V ′(x)| ≲ |V ′(x)| |h|θ (1.2b)

hold for all x ∈ R \ {0} and h ∈ [−1, 1]. Here we use the standard notation A ≲ B
to denote the estimate A ≤ CB for some positive constant C, and A ≃ B to denote
the conjunction of A ≲ B and B ≲ A; below we will also write A ≲s B or A ≃s B to
indicate that the implicit constants may depend on a parameter s. We refer to the
introduction of [DM21] for a discussion of the scope of the assumptions (1.2); here
we limit ourselves to pointing out that they are satisfied by power laws V (x) = |x|d
of any degree d > 0 and appropriate perturbations thereof.

In [DM21] we proved a spectral multiplier theorem of Mihlin–Hörmander type
for L, whose smoothness requirement is independent of V and formulated in terms
of an L∞-Sobolev norm of order s > 2/2, that is, half the topological dimension of
the underlying manifold. The independence from V of the smoothness requirement
is particularly striking when compared, e.g., to the classical results based on heat
kernel bounds [Heb95, DOS02, RS08], which would give instead a condition of
order s > (2 + d/2)/2 in the case V (x) ≃ |x|d. We refer to the introduction of
[DM21] for an extensive discussion of the relevance of such result, in the context of
a programme (see also [MMN21]) aimed at understanding the optimal smoothness
requirement in multiplier theorems for sub-elliptic operators.

2020 Mathematics Subject Classification. 34L20, 35J70, 35H20, 42B15.
Key words and phrases. Grushin operator, spectral multiplier, Schrödinger operator.
The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e
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2 GIAN MARIA DALL’ARA AND ALESSIO MARTINI

While the result of [DM21] is optimal, in the sense that the smoothness threshold
2/2 cannot be lowered, it is still possible to refine it, by replacing the L∞-Sobolev
norm with an L2-Sobolev norm. This is the main result of the present paper. We
write Lqs(R) to denote the Lq-Sobolev space of (fractional) order s on R.

Theorem 1.1. Let L be the Grushin operator (1.1) on R2, where the coefficient V
satisfies the estimates (1.2). Let s > 2/2.

(i) For all m : R → C such that suppm ⊆ [−1, 1],

sup
t>0

∥m(tL)∥L1→L1 ≲s ∥m∥L2
s
.

(ii) Let η ∈ C∞c ((0,∞)) be nonzero. For all m : R → C and p ∈ (1,∞),

∥m(L)∥L1→L1,∞ ≲s sup
t>0

∥m(t·)η∥L2
s
, ∥m(L)∥Lp→Lp ≲s,p sup

t>0
∥m(t·)η∥L2

s
.

To appreciate the nature of the improvement, one may notice that Theorem 1.1
gives the sharp L1-boundedness range for Bochner–Riesz means associated with the
Grushin operator L, a result that cannot be deduced from the multiplier theorem
of [DM21].

Corollary 1.2. Under the same assumptions as in Theorem 1.1, the Bochner–Riesz
means (1− rL)λ+ of order λ associated with L are bounded on L1(R2) uniformly in
r ≥ 0 whenever λ > 1/2.

To deduce Corollary 1.2 it is sufficient to apply part (i) of Theorem 1.1 to the
function m = (1 − ·)λ+χ, where χ ∈ C∞(R) is identically 1 on [0,∞) and zero on
(−∞,−1], and observe that this m belongs to L2

s(R) whenever λ > s− 1/2.
The sharpness of Theorem 1.1 and Corollary 1.2 follows by a standard “trans-

plantation” technique (cf. [Mit74, KST82]; see also [Mar17, Theorem 5.2]). Indeed
L is elliptic (its principal symbol is a positive definite quadratic form) where x ̸= 0,
and therefore the ranges of indices s and λ for which the boundedness results in
Theorem 1.1 and Corollary 1.2 hold cannot be larger than the analogous ranges
when L is replaced by the Euclidean Laplacian −∂2x − ∂2y on R2.

Theorem 1.1 is already known under more restrictive assumptions on V . Namely,
the case V (x) = x2 is in [MS12, MM14] and the case V (x) = |x| is in [CS13].
Moreover, in a previous joint paper [DM20], we established the same result when
V is convex, C3 off the origin, and, for some d ∈ (1, 2], the estimates

|x2V ′′(x)|+ |x3V ′′′(x)| ≲ xV ′(x) ≃ V (x) = V (−x) ≃ |x|d

hold for all x ∈ R \ {0}. This appears to have been the first optimal multiplier
theorem for a nonelliptic (sub-elliptic) operator enjoying some form of stability
under perturbations of the coefficients of the operator. However, the restriction on
the power d cannot be removed using the methods of [DM20], and the desire to
overcome this limitation has been the main motivation for the development of a new
proof strategy in [DM21] and in the present paper. Notice that the aforementioned
works [RS08, MS12, MM14, CS13, DM20] treat also higher-dimensional cases, and,
as a matter of fact, some higher-dimensional cases could be treated by adapting the
methods used here too. However, in the same spirit as in [DM21], here we consider
only two-dimensional Grushin operators.

1.2. Strategy of the proof. In order to present the main ideas of the paper,
it is convenient to recall the notation for the classes of single-well potentials de-
fined in [DM21, Definitions 7.5 and 8.3], which express the assumptions (1.2) in a
quantitative form.
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Definition 1.3. Let κ ≥ 1 and θ ∈ (0, 1). We denote by P1(κ) the class of non-
identically zero continuous functions V : R → [0,∞) which are C1 off the origin
and such that

κ−1V (x) ≤ xV ′(x) ≤ κV (x), V (−x) ≤ κV (x)

for all x ̸= 0. We denote by P1+θ(κ) the class of the V ∈ P1(κ) that satisfy the
additional inequality

|V ′(ehx)− V ′(x)| ≤ κ|h|θ

for all x ̸= 0 and h ∈ [−1, 1].

As in other works on the subject, Theorem 1.1 will be deduced from an ap-
propriate “weighted Plancherel estimate”. In the present case, in light of [DM21,
Theorem 4.1], it will be enough to prove that for all V ∈ P1+θ(κ), γ ∈ [0, 1/2),
r > 0, and all continuous functions m : R → C with suppm ⊆ [1/4, 1],

ess sup
z′∈R2

r2−2γ max{V (r), V (x′)}1/2−γ
∫
R2

|y − y′|2γ
∣∣Km(r2L)(z, z

′)
∣∣2 dz

≲θ,κ,γ ∥m∥2L2
γ
. (1.3)

Here z := (x, y) and z′ := (x′, y′), while Km(r2L) denotes the integral kernel of

the operator m(r2L). Indeed, the estimate (1.3) proves assumption (A) of [DM21,
Theorem 4.1] for q = 2, while assumption (B) is already proved in [DM21, Theorem
9.1]. We point out that, in the special case V (x) = x2, the above estimate is
proved in [MM14], while the techniques of [MS12, CS13, DM20] lead to a different
Plancherel estimate, with a weight depending only on x, x′ in place of |y−y′|2γ and
L2 in place of L2

γ in the right-hand side.
Our proof of the weighted Plancherel estimate (1.3) largely follows the lines of

the analogous estimate proved in [DM21, Theorem 9.1], with the addition of a key
new ingredient: universal pointwise estimates for eigenfunctions of one-dimensional
Schrödinger operators with potentials in the class P1+θ(κ). As in [DM21, Section
7], we consider the Schrödinger operator H[V ] := −∂2x + V on R with potential
V ∈ P1+θ(κ), and we denote by En(V ) and ψn(·;V ) (n ≥ 1) the corresponding
eigenvalues and normalised eigenfunctions. The eigenfunction estimates that we
need here have the form

|ψn(x;V )| ≲ |{V ≤ En(V )}|−1/2 min{nδ/2, En(V )β/2|V (x)− En(V )|−β/2} (1.4)

for some δ, β ∈ (0, 1), and they have the crucial feature that the implicit constant
depends only on κ and θ and not on the specific potential V . The “universality” of
an estimate such as (1.4) lies in the fact that the right-hand side is simply expressed
in terms of natural quantities such as V,En(V ), n and universal exponents δ, β, and
does not depend, e.g., on the degree of polynomial growth of V .

In the regions where V ≪ En(V ) and V ≫ En(V ), the estimate (1.4) is already
contained in estimates proved in [DM21], which actually hold for all V ∈ P1(κ).
What is crucial for our present purposes is that (1.4) also covers the “transition
region” {V ≃ En(V )}, where the eigenfunction ψn(·;V ) exhibits a change in be-
haviour from oscillatory to decaying. Various techniques are available to deal with
the more general problem of approximating eigenfunctions in the transition region
(e.g., Olver’s method [Olv74, Chapter 11] and the WKB method, both yielding
approximations in terms of the Airy function), but it does not seem possible to use
any of them as a black box to prove (1.4) in the required generality. The method
used here is in fact substantially different and of a more direct nature, establishing
the upper bound (1.4) via a monotonicity argument inspired by what is dubbed
the “Sonin’s function” method in [Kr08], which in turn refers it back to the work
of Szegő on orthogonal polynomials [Sz75, §7.31 and §7.6].
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The importance of the pointwise estimate (1.4) is that from it one can deduce
a variant of the “spectral projector bound” proved in [DM21, Theorem 8.5], which
plays a fundamental role in the proof of the weighted Plancherel estimate (1.3).
Specifically, the desired spectral projector bound (Theorem 2.2 below) is obtained
by summing instances of the eigenfunction estimate (1.4) corresponding to different
values of n and suitably scaled versions τV of the potential V , where the scaling
parameter τ depends on n. In order to bound the resulting sum, another important
ingredient is an approximated Bohr–Sommerfeld identity with logarithmic error
term (Proposition 2.6 below) valid for Schrödinger operators with potentials in
the class P1(κ), which provides precise information on the “gaps” between the
quantities En(τV ) involved in the estimate.

1.3. Structure of the paper. In Section 2 we prove the spectral projector bound
in a conditional form, namely, by assuming that suitable pointwise eigenfunction
estimates of the form (1.4) hold.

Section 3 is devoted to the proof of the required pointwise eigenfunction esti-
mates. As discussed in that section, suitable pointwise estimates can be proved
for a larger class than P1+θ(κ). Indeed, several variants of the above eigenfunction
estimates (1.4) are discussed, which may be of independent interest, with different
values of δ and β corresponding to different assumptions on the potential V .

Finally, in Section 4, we prove the weighted Plancherel estimate (1.3) with L2-
Sobolev norm, which, in light of [DM21, Theorem 4.1], implies our main result.

1.4. Notation. 1A denotes the characteristic function of the set A. We set R+ :=
(0,∞) and R+

0 := [0,∞). N denotes the set of natural numbers (including zero),
while N+ := N \ {0} is the set of the positive integers. For an invertible function
V , we write V← to denote its compositional inverse. # I denotes the number of
elements of a finite set I. For a measurable subset A ⊆ R we denote by |A| its
Lebesgue measure. We write KT to denote the integral kernel of the operator T .

2. A variant of the spectral projector bound

2.1. Summary of the results. As before, let En(V ) and ψn(·;V ) (n ≥ 1) be
the eigenvalues and normalised eigenfunctions of the Schrödinger operator H[V ] :=
−∂2x + V on R. We begin by recording an immediate consequence of the “virial
theorem” in [DM21, Theorem 7.3]. Under more restrictive assumptions on V ,
analogous estimates can be found in [DM20, eq. (5.5)].

Proposition 2.1. Let V ∈ P1(κ) and n ∈ N+. Then the function

R+ ∋ τ 7→ En(τV ) ∈ R+

is a strictly increasing, real analytic bijection, and

En(τV ) ≲κ τ∂τEn(τV ) ≤ En(τV )

for all τ ∈ R+. Moreover, if Ξn(·;V ) : R+ → R+ denotes its inverse, then

Ξn(λ;V ) ≃κ λ∂λΞn(λ;V ).

for all λ ∈ R+.

The aim of this section is the proof of the following bound, which should be
compared to the “spectral projector bound” of [DM21, Theorem 8.5]. In the state-
ment below, by a conic subset of P1(κ) we mean a subset of P1(κ) closed under
multiplication by positive scalars.
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Theorem 2.2. Let κ, a > 1 and θ, δ ∈ (0, 1). Let P̃ be a conic subset of P1(κ)
such that the eigenfunction estimate

|ψn(x;V )| ≤ a |{V ≤ En(V )}|−1/2 min{nδ/2, En(V )θ/2|V (x)− En(V )|−θ/2}

holds for all V ∈ P̃, n ∈ N+, and x ∈ R. Then, for all V ∈ P̃ and λ,A ∈ R+,∑
n∈N+

λ/Ξn(λ;V )∈[A,2A]

ψn(x; Ξn(λ;V )V )2 ≲κ,a,θ,δ λ
1/2(1V≤8A + e−cλ

1/2|x|1V >8A),

where c = c(κ).

The main difference between the previous result and [DM21, Theorem 8.5] is that
the above sum involves eigenfunctions corresponding to different potentials (that
is, potentials τV where τ depends on the summation index n), so cannot be imme-
diately related to properties of the spectral decomposition of a single Schrödinger
operator. A similar bound can be found in [DM20, Proposition 5.8], under more
restrictive assumptions on V .

The rest of the section is devoted to the proof of Theorem 2.2.

2.2. A summation lemma. The following elementary summation lemma will be
a key tool in the proof of the spectral projector bound.

Lemma 2.3. Let c ∈ R+, κ ∈ [1,∞), θ, β ∈ [0, 1). Let I ⊆ N+ and, for all n ∈ I,
let tn ∈ [κ−1,∞) be such that

|tn − cn| ≤ κnβ . (2.1)

Then

sup
a>0

0<b≤κa

∑
n∈I
tn≤κa

min{aθ−1|tn − b|−θ, a−β} ≲κ,c,θ,β 1. (2.2)

The proof of Lemma 2.3 should be compared to that of [MM14, Lemma 10]. In
the case β = 0, the condition (2.1) implies that the tn are essentially equispaced,
and the estimate (2.2) could be obtained, e.g., by using [DM20, Lemma 5.7] to
estimate a sum with the corresponding integral. The point of this lemma is to
show that a similar estimate can be obtained even when β > 0, that is, under a
weaker assumption on the gaps between the tn, by taking advantage of the stronger
uniform bound a−β in the left-hand side of (2.2).

Proof of Lemma 2.3. Note that tn, n ≳κ 1 for all n ∈ I. Hence, from the assump-
tion (2.1) and the fact that β < 1, we deduce that tn ≃κ,c,β n for all n ∈ I.

For a given a > 0, from the condition tn ≤ κa and tn ≃κ,c,β n, we deduce that

n ≲κ,c,β a (2.3)

as well. Therefore, if Ia := {n ∈ I : tn ≤ κa}, then (2.1) implies that

|tn − cn| ≤ E

for all n ∈ Ia, where

E = E(κ, c, β, a) ≲κ,c,β a
β . (2.4)

We now split Ia into the three subsets

I− := {n ∈ Ia : cn+ E < b− c},
I+ := {n ∈ Ia : cn− E > b+ c},

I0 := Ia \ (I+ ∪ I−).
Then, for all n ∈ I−,

tn ≤ cn+ E < b− c,
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and therefore

|tn − b|−θ ≤ inf
t∈[cn+E,cn+E+c]

|t− b|−θ ≤ 1

c

∫ cn+E+c

cn+E

|t− b|−θ dt

(here we use that t 7→ |t− b|−θ is increasing for t < b) and∑
n∈I−

|tn − b|−θ ≤ 1

c

∫ b

0

|t− b|−θ dt ≲c,θ b1−θ ≲κ,θ a1−θ, (2.5)

since θ < 1. In a similar way, one proves that∑
n∈I+

|tn − b|−θ ≤ 1

c

∫ κa

b

|t− b|−θ dt ≲κ,c,θ a1−θ. (2.6)

Finally, if n ∈ I0, then
|b− cn| ≤ E + c ≲κ,c,β a

β

(here we used (2.4) and the fact that, by (2.3), aβ ≳κ,c,β nβ ≥ 1 ≳c c), which
implies that

# I0 ≲κ,c,β a
β . (2.7)

The estimate (2.2) follows by combining (2.5), (2.6) and (2.7). □

2.3. A consequence of Lagrange’s Mean Value Theorem. Let κ ≥ 1. Recall
from [DM21, Definition 6.1] the class HP1(κ) of the C1 functions W : R+ → R+

such that
κ−1W (x) ≤ xW ′(x) ≤ κW (x) (2.8)

for all x ∈ R+. In other words, an element of HP1(κ) is “half of a potential” in the
class P1(κ). Indeed, if V ∈ P1(κ), then V⊕, V⊖ ∈ HP1(κ), where V⊕, V⊖ : R+ → R+

are defined by
V⊕(x) := V (x), V⊖(x) := V (−x) (2.9)

for all x ∈ R+.
We record here some useful properties of functions in the class HP1(κ), including

an elementary consequence of Lagrange’s Mean Value Theorem, which will be used
multiple times later.

Lemma 2.4. Let W ∈ HP1(κ).

(i) For all x ∈ R+ and λ ≥ 1,

λ1/κW (x) ≤W (λx) ≤ λκW (x).

(ii) W is strictly increasing and invertible, and W← ∈ HP1(κ) too.
(iii) For all x, y ∈ R+, if x ≥ y then

W (x)−W (y) ≃κ
W (x)

x
(x− y).

Proof. Parts (i) and (ii) are proved in [DM21, Propositions 6.4 and 6.5].
As for part (iii), if x ≥ 2y, then W (x) ≥ 21/κW (y) by part (i), whence

x− y ≃ x, W (x)−W (y) ≃κ W (x)

and the desired estimate follows. If instead x ≤ 2y, then, by Lagrange’s Mean
Value Theorem,

W (x)−W (y) =W ′(ξ)(x− y)

for some ξ ∈ (y, x), and moreover

W ′(ξ) ≃κ
W (ξ)

ξ
≃κ

W (x)

x

by (2.8) and part (i), as x ≃ y ≃ ξ in this case, whence the desired estimate again
follows. □
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2.4. Bohr–Sommerfeld approximation with logarithmic error. Let us recall
from [DM21, Theorem 7.6 and Proposition 7.11] some useful estimates involving
eigenvalues and sublevel sets of the potential of one-dimensional Schrödinger oper-
ators.

Proposition 2.5. Let V ∈ P1(κ). Then

En(V )1/2 |{V ≤ En(V )}| ≃κ n. (2.10)

for all n ∈ N+. Moreover, for all E, λ ∈ R+,

|{V ≤ λE}| ≃κ,λ |{V ≤ E}| ≃κ |{V⊕ ≤ E}| ≃κ |{V⊖ ≤ E}|.

In what follows we will need a sharper version of the estimate (2.10).

Proposition 2.6. Let V ∈ P1(κ). Then, for all n ∈ N+,∣∣∣∣∫
R
(En(V )− V )

1/2
+ − πn

∣∣∣∣ ≲κ log(1 + n).

The proof of the above estimate follows the lines of [Tit62, §7.4]. In the case V
is convex, the logarithmic divergence in the right-hand side can be replaced by a
constant, as shown in [Tit62, §7.5] and [DM20, Theorem 4.2]; however the weaker
logarithmic bound does not require convexity and will be enough for our purposes.

Proof of Proposition 2.6. Let x±n ∈ R+ be such that V (±x±n ) = En := En(V );
in other words, the points ±x±n are the transition points corresponding to the
energy level En. Let y

±
n ∈ (0, x±n ) be points to be fixed later, and define Qn(x) :=

(En − V (x))1/2 for x ∈ (−x−n , x+n ).
By classical Sturm–Liouville theory, ψn := ψn(·;V ) has n−1 zeros, which are all

in the interval (−x−n , x+n ). Note now that V −En ≥ V (y±n )−En on ±[y±n ,∞), with
strict inequality away from ±y±n . Hence, by Sturm’s comparison theorem (see, e.g.,
[BS91, Chapter 2, Theorem 3.2]), if u is any nontrivial solution of −u′′+ (V (y±n )−
En)u = 0 on an interval contained in ±[y±n ,∞), then we can find a zero of u between
any two zeros of ψn. This implies in particular that on ±[y±n , x

±
n ) there are at most

1 + (x±n − y±n )Qn(±y±n )/π

zeros of ψn. Note also that∫
±[y±n ,x±n ]

(En − V )1/2 ≤ (x±n − y±n )Qn(±y±n ).

Hence, if Z±n denotes the number of zeros of ψn in ±(0, y±n ), then∣∣∣∣∫
R
(En − V )

1/2
+ − πn

∣∣∣∣
≤ 3π + 2

∑
±

(x±n − y±n )Qn(±y±n ) +
∑
±

∣∣∣∣∣
∫
±(0,y±n )

(En − V )1/2 − πZ±n

∣∣∣∣∣ .
On the other hand, by [Tit62, §7.3, Lemma] (see also [DM20, Appendix]),∣∣∣∣∣

∫
±(0,y±n )

(En − V )1/2 − πZ±n

∣∣∣∣∣ ≤ π +
1

2

∫
±(0,y±n )

|Q′n|
Qn

.

Since Q′n is increasing on (−y±n , 0) and decreasing on (0, y±n ),∫
±(0,y±n )

|Q′n|
Qn

= log
Qn(0)

Qn(±y±n )
=

1

2
log

En

En − V (±y±n )
,
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and therefore∣∣∣∣∫
R
(En − V )

1/2
+ − πn

∣∣∣∣ ≤ 5π +
∑
±

[
2(x±n − y±n )Qn(±y±n ) +

1

4
log

En

En − V (±y±n )

]
.

We now choose y±n := x±n − c(x±n /En)
1/3 for a suitable c > 0. Note that(

x±n
En

)1/3

=
x±n(

x±nE
1/2
n

)2/3
≃κ

x±n
n2/3

,

by Proposition 2.5; so, by choosing c = c(κ) sufficiently small, we can ensure that

y±n ≃κ x±n , x±n − y±n ≃κ
(
x±n
En

)1/3

.

Hence, by Lemma 2.4, we deduce that

Qn(±y±n )2 = En − V (±y±n )

≃κ
V (±x±n )
x±n

(x±n − y±n ) ≃κ
En

x±n

(
x±n
En

)1/3

=

(
En

x±n

)2/3

and therefore

(x±n − y±n )Qn(±y±n ) ≃κ 1,
En

En − V (±y±n )
≃κ n2/3,

which proves the desired estimate. □

2.5. A useful change of variables. The lemma below will be used to extract
and exploit the “rough gap information” from Proposition 2.6.

Lemma 2.7. For V ∈ P1(κ), define KV : R+ → R+ by

KV (t) := t−1/2
∫
R
(t− V )

1/2
+

for all t > 0. Then
KV (t) ≃κ tK ′V (t) ≃κ |{V ≤ t}|.

Proof. Note first that, if V⊕, V⊖ are defined as in (2.9), then

|{V ≤ t}| = |{V⊕ ≤ t}|+ |{V⊖ ≤ t}| = V←⊕ (t) + V←⊖ (t),

and moreover
KV = KV⊕ +KV⊖ ,

where, for W : R+ → R+, we define

KW (t) := t−1/2
∫ ∞
0

(t−W )
1/2
+ .

It is then enough to prove that, for all W ∈ HP1(κ),

KW (t) ≃κ tK ′W (t) ≃κ W←(t).

Now, for all t > 0,

KW (t) = t−1/2
∫ W←(t)

0

(t−W )1/2 ≃κ t−1/2
∫ W←(t)

0

xW ′(x)

W (x)
(t−W (x))1/2 dx,

and the change of variables τ =W (x)/t yields

KW (t) ≃κ
∫ 1

0

W←(τt) (1− τ)1/2
dτ

τ
≃κ W←(t);

the last equivalence is consequence of the fact (see Lemma 2.4) that τκW←(t) ≤
W←(τt) ≤ τ1/κW←(t) for τ ∈ (0, 1).
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Similarly, one readily sees that

2tK ′W (t) = t−1/2
∫ W←(t)

0

W

(t−W )1/2
≃κ t−1/2

∫ W←(t)

0

xW ′(x)

(t−W (x))1/2
dx

and again the change of variables τ =W (x)/t yields

tK ′W (t) ≃κ
∫ 1

0

W←(τt) (1− τ)−1/2 dτ ≃κ W←(t),

as desired. □

2.6. Proof of the variant of the spectral projector bound. Here we prove
Theorem 2.2, that is, the estimate∑

n∈N+

λ/Ξn(λ;V )∈[A,2A]

ψn(x; Ξn(λ;V )V )2 ≲κ,a,θ,δ λ
1/2(1V≤8A + e−cλ

1/2|x|1V >8A)

for all V ∈ P̃, λ,A ∈ R+, x ∈ R.
Recall from [DM21, Theorem 7.7] that, for all V ∈ P1(κ), there exists c = c(κ)

such that

|ψn(x;V )| ≲κ |{V ≤ En(V )}|−1/2 exp(−c|x|
√
V (x)) (2.11)

whenever n ∈ N+ and x ∈ {V ≥ 4En}. Recall moreover that, by assumption, P̃ is
a conic subset of P1(κ) such that, for some θ, δ ∈ (0, 1) and a > 1,

|ψn(x;V )| ≤ a |{V ≤ En(V )}|−1/2 min{nδ/2, En(V )θ/2|V (x)−En(V )|−θ/2} (2.12)

for all V ∈ P̃, x ∈ R, n ∈ N+. For simplicity, in the rest of the proof, we will write
≲ and ≃ instead of ≲κ,a,θ,δ and ≃κ,a,θ,δ.

Fix V ∈ P̃ and let Ξn := Ξn(·;V ). First note that, if V (x) > 8A and λ/Ξn(λ) ∈
[A, 2A], then Ξn(λ)V (x) > 4λ, and therefore by (2.11) we deduce that

ψn(x; Ξn(λ)V )2 ≲ |{V ≤ λ/Ξn(λ)}|−1 exp(−2c|x|
√

Ξn(λ)V (x))

≤ |{V ≤ A}|−1 exp(−4cλ1/2|x|).
On the other hand, by Proposition 2.5,

λ1/2|{V ≤ A}| ≃ λ1/2|{V ≤ λ/Ξn(λ)}| ≃ n (2.13)

so the number of summands is ≲ λ1/2|{V ≤ A}|, and we deduce that∑
n∈N+

λ/Ξn(λ;V )∈[A,2A]

ψn(x; Ξn(λ)V )2 ≲ λ1/2 exp(−4cλ1/2|x|)

whenever V (x) > 8A.
It remains to prove the uniform bound on {V ≤ 8A}. For this, we use (2.12) to

obtain that

ψn(x; Ξn(λ)V )2 ≲ |{V ≤ λ/Ξn(λ)}|−1 min{nδ, λθ|Ξn(λ)V (x)− λ|−θ}

≃ |{V ≤ A}|−1 min{nδ, Aθ|V (x)− λ/Ξn(λ)|−θ}.
(2.14)

Define KV as in Lemma 2.7, and recall that

KV (t) ≃ tK ′V (t) ≃ |{V ≤ t}|. (2.15)

Since λ/Ξn(λ) ≃ A ≳ V (x), we deduce, by Lemma 2.4, that

|V (x)− λ/Ξn(λ)| ≃
A

KV (A)
|KV (V (x))−KV (λ/Ξn(λ))|

=
A

λ1/2KV (A)
|λ1/2KV (V (x))− λ1/2KV (λ/Ξn(λ))|.



10 GIAN MARIA DALL’ARA AND ALESSIO MARTINI

Set now a := λ1/2KV (A), b := λ1/2KV (V (x)), tn := λ1/2KV (λ/Ξn(λ)), and observe
that tn ≃ a ≃ n ≳ b by (2.13) and (2.15), so the bound (2.14) can be rewritten as

ψn(x; Ξn(λ)V )2 ≲ λ1/2 min{aδ−1, aθ−1|b− tn|−θ}.

Furthermore,

tn = λ1/2KV (λ/Ξn(λ)) =

∫
R
(λ− Ξn(λ)V )

1/2
+ ,

and therefore

|tn − πn| ≲ log(1 + n) ≲ n1−δ

by Proposition 2.6 (applied to the potential Ξn(λ)V ) and the fact that δ < 1. As
a consequence, we can apply Lemma 2.3 and obtain that∑

n∈N+

λ/Ξn(λ;V )∈[A,2A]

ψn(x; Ξn(λ)V )2 ≲ λ1/2
∑
n∈N+
tn≃a

min{aδ−1, aθ−1|b− tn|−θ} ≲ λ1/2,

as desired.

3. Pointwise eigenfunction estimates in the transition region

3.1. Summary of the results. Let κ ≥ 1. Let us introduce the following sub-
classes of P1(κ). Recall that amodulus of continuity is a function ω : [0,∞] → [0,∞]
such that limt→0 ω(t) = 0.

Definition 3.1. If ω is a modulus of continuity, let P1,uc(κ, ω) be the class of
potentials V ∈ P1(κ) such that∣∣∣log(V ′(±et)/V ′(±et′))∣∣∣ ≤ ω(|t− t′|) for all t, t′ ∈ R.

In other words, ω is a modulus of continuity for the functions t 7→ log |V ′(±et)|.

Remark 3.2. It is easy to see that, for all θ ∈ (0, 1), P1+θ(κ) ⊆ P1,uc(κ, ωκ,θ),
where ωκ,θ is a suitable modulus of continuity such that ωκ,θ(t) ≃κ,θ tθ for t small.

Definition 3.3. Let P1,cv(κ) be the class of the convex potentials in P1(κ).

Definition 3.4. For k ≥ 2, let Pk(κ) be the class of the potentials V ∈ P1(κ)
which are Ck on R \ {0} and satisfy the estimates

|xℓV (ℓ)(x)| ≤ κV (x) for all x ̸= 0 and ℓ = 2, . . . , k.

The aim of this section is to prove the following pointwise estimates for the
eigenfunctions of H[V ] := −∂2x + V .

Theorem 3.5. For all x ∈ R and n ∈ N+, the estimates

|ψn(x;V )| ≲κ̄,α
1

|{V ≤ En(V )}|1/2
min{n2α/3, |1− V (x)/En(V )|−α},

|ψ′n(x;V )| ≲κ̄,α
En(V )1/2

|{V ≤ En(V )}|1/2
max{n(2α−1)/3, (1− V (x)/En(V ))

1/2−α
+ }

hold in the following cases:

(i) with κ̄ = κ and α = 1/2, whenever V ∈ P1(κ);
(ii) with κ̄ = (κ, ω) and α ∈ (1/4, 1/2), whenever V ∈ P1,uc(κ, ω);
(iii) with κ̄ = κ and α = 1/4, whenever V ∈ P1,cv(κ);
(iv) with κ̄ = κ and α = 1/4, whenever V ∈ P3(κ).
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We point out that, well inside the classical region (say, where V (x) ≤ En(V )/2),
the above bounds reduce to the uniform bound stated, e.g., in [DM21, Proposition
6.2], which applies to any V ∈ P1(κ); similarly, far from the classical region (say,
where V (x) ≥ 4En(V )), a much better (exponentially decaying) bound is known to
hold, again for arbitrary V ∈ P1(κ) (see, e.g., [DM21, Theorem 7.7]). As anticipated
in the introduction, the relevance of the above bounds is therefore their validity in
the transition region, where V (x) ≃ En(V ).

We also point out that the bound for ψn in Theorem 3.5(iv) matches the one
obtained in [DM20, Proposition 3.4] under the additional assumption V (x) ≃ |x|d
for some d > 1. The method used in [DM20] is based on a theorem by Olver
[Olv74], which essentially allows one to approximate ψn with a suitably rescaled
Airy function, so the bounds for ψn can be reduced to known bounds for the
Airy function. The method presented here, instead, does not go through such an
approximation, but yields the desired bounds directly. Moreover it allows us to
treat potentials V (x) ≃ |x|d for arbitrary d > 0, or even potentials that are not
comparable to a single power law (provided they belong to one of the classes of
potentials defined above); see also the discussion in the introduction of [DM21].

Here and in the following sections, we shall write En and ψn in place of En(V )
and ψn(·;V ) when the potential V is clear from the context.

3.2. Pointwise estimate in the classical region: C1 potentials. Here we
assume that V ∈ P1(κ) and prove the pointwise estimate

ψ2
n +

(ψ′n)
2

En − V
≲κ

En(En − V )−1

|{V ≤ En}|
(3.1)

in the classical region {V < En}.
The key to the proof is the monotonicity information provided by the following

elementary identity, valid on R \ {0}:(
(En − V )ψ2

n + (ψ′n)
2
)′

= −V ′ψ2
n (3.2)

(cf. [DM21, Proposition 5.7]). As the right-hand side is positive on (−∞, 0) and
negative on (0,∞), we conclude that

(En − V )ψ2
n + (ψ′n)

2 ≤ Enψn(0)
2 + ψ′n(0)

2 (3.3)

on the whole R.
To bound the right-hand side of the latter, we use another monotonicity argu-

ment, based on the following counterpart to (3.2):(
ψ2
n +

(ψ′n)
2

En − V

)′
=

V ′

(En − V )2
(ψ′n)

2 (3.4)

on the region {V ̸= En} \ {0} (cf. [Tit62, §8.3]). As the right-hand side is negative
on (−∞, 0) and positive on (0,∞), we can control (cf. [DM21, Section 6.4]) the

value of ψ2
n +

(ψ′n)
2

En−V at 0 with its average on {V ≤ En/2}, thus obtaining that

ψn(0)
2 +

ψ′n(0)
2

En
≤ 1

|{V ≤ En/2}|

(
∥ψn∥22 +

2

En
∥ψ′n∥22

)
≲κ

1

|{V ≤ En}|
(3.5)

by Proposition 2.5.
The desired estimate (3.1) then follows by combining (3.3) and (3.5).
We record here an elementary consequence of (3.1), that is, a uniform estimate

which is valid well within the classical region: namely, for any θ ∈ (0, 1),

ψ2
n +

(ψ′n)
2

En − V
≲κ,θ

1

|{V ≤ En}|
on {V ≤ (1− θ)En}. (3.6)
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3.3. Pointwise estimate in the classical region: C3 potentials. In this sec-
tion we assume that V ∈ P3(κ), and prove the following “improvement” of (3.1):

ψ2
n +

(
1 +

n−2/3En
En − V

)−3
(ψ′n)

2

En − V
≲κ

E
1/2
n (En − V )−1/2

|{V ≤ En}|
(3.7)

in the classical region {V < En}.
As in Section 3.2 above, the proof is based on a monotonicity argument. Specif-

ically, the method used here is inspired by what is referred to as the “Sonin’s
function” method in [Kr08]. The main idea is to consider the function

fn := (En − V )1/4ψn,

which is well defined and C2 in the punctured classical region {V < En} \ {0}.
From the differential equation

−ψ′′n + V ψn = Enψn (3.8)

satisfied by ψn, one readily obtains that

f ′′n − 2Anf
′
n +Bnfn = 0 (3.9)

in the punctured classical region, where

An := −1

4

V ′

En − V
, Bn := En − V +

5

16

(V ′)2

(En − V )2
+

1

4

V ′′

En − V
.

We now consider the “Sonin’s function” for fn, namely,

Sn := f2n +
(f ′n)

2

Bn
,

which is defined and C1 in the subset {V < En, Bn ̸= 0} of the punctured classical
region. A quick computation shows that

S′n =
4AnBn −B′n

B2
n

(f ′n)
2, (3.10)

that is, the derivative of Sn has the same sign as

4AnBn −B′n = −15

16

(V ′)3

(En − V )3
− 9

8

V ′V ′′

(En − V )2
− 1

4

V ′′′

En − V
.

To study the sign of Bn and 4AnBn −B′n, we rewrite them as

Bn = En − V +
5

16

(V ′)2

(En − V )2

[
1 +

4

5

V ′′

(V ′)2
(En − V )

]
,

4AnBn −B′n = −15

16

(V ′)3

(En − V )3

[
1 +

6

5

V ′′

(V ′)2
(En − V ) +

4

15

V ′′′

(V ′)3
(En − V )2

]
.

This is convenient because, for V ∈ P3(κ),

|V ′′/(V ′)2| ≲κ 1/V, |V ′′′/(V ′)3| ≲κ 1/V 2.

Hence, we can choose ϵ = ϵ(κ) > 0 sufficiently small to guarantee that

Bn ≃ En − V +
(V ′)2

(En − V )2
, 4AnBn −B′n ≃ − (V ′)3

(En − V )3
(3.11)

in the region Ωn := {(1 − ϵ)En ≤ V < En}. In particular, Bn > 0 there, and S′n
has the same sign as −V ′.

Define now y±n > 0 as the points such that V (±y±n ) = (1 − ϵ)En. Then, using
the fact that Sn is decreasing on Ωn ∩ (0,∞) and increasing on Ωn ∩ (−∞, 0), we
conclude that

f2n +
(f ′n)

2

Bn
≤ max

±

(
fn(±y±n )2 +

f ′n(±y±)2

Bn(±y±n )

)
on Ωn. (3.12)
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Note now that

fn = (En − V )1/4ψn, f ′n = (En − V )1/4
[
ψ′n − 1

4

V ′

En − V
ψn

]
.

In particular, by (3.11),

f2n +
(f ′n)

2

Bn
≃ (En − V )1/2

[
ψ2
n +

(ψ′n)
2

Bn

]
(3.13)

in the region Ωn, and

fn(±y±n )2 +
f ′n(y

±
n )

2

Bn(y
±
n )

≲ (ϵEn)
1/2

[
ψn(±y±n )2 +

ψ′n(±y±n )2

ϵEn

]
≲κ

E
1/2
n

|{V ≤ En}|
;

the last inequality is consequence of the fact that ±y±n ∈ {V ≤ (1 − ϵ)En}, that
is, ±y±n are well inside the classical region, so the uniform estimate (3.6) applies.
From (3.12) and (3.13) we then deduce that

ψ2
n +

(ψ′n)
2

Bn
≲κ

E
1/2
n (En − V )−1/2

|{V ≤ En}|
on Ωn. (3.14)

As |V ′| ≃κ |{V ≤ En}|−1En ≃κ n−1E3/2
n on Ωn by Proposition 2.5, from (3.11)

we deduce that

Bn ≃ En − V +
(V ′)2

(En − V )2
≃κ (En − V )

(
1 +

n−2/3En
En − V

)3

,

so from (3.14) the desired estimate (3.7) follows on Ωn. Actually the same estimate
(3.7) holds on the whole classical region {V < En}, because on {V ≤ (1− ϵ)En} it
simply reduces to the uniform estimate (3.6).

3.4. Pointwise estimate in the classical region: convex potentials and
potentials with uniformly continuous derivative. A variation of the method
presented in the previous section allows us to show that, if V ∈ P1,uc(κ, ω), then
the following pointwise estimate holds for all α ∈ (1/4, 1/2):

ψ2
n +

(
1 +

n−2/3En
En − V

)−3
(ψ′n)

2

En − V
≲κ̄,α

E2α
n (En − V )−2α

|{V ≤ En}|
(3.15)

in the classical region {V < En}, where κ̄ = (κ, ω); in addition, we will prove the
analogous estimate for α = 1/4 and κ̄ = κ in the case V ∈ P1,cv(κ).

As in Section 3.3, we apply the Sonin’s function method. We only discuss the
estimates for x ≥ 0, as the case x ≤ 0 can be be treated analogously. Let xn ∈ R+

denote the positive transition point, i.e., V (xn) = En.
Let α ∈ R+, and consider the function

fn(x) := (xn − x)αψn(x),

which is well defined and C2 in the classical region. From the differential equation
(3.8) satisfied by ψn, one readily obtains that fn satisfies (3.9) in the classical
region, where

An := −α(xn − x)−1, Bn := En − V + α(α+ 1)(xn − x)−2. (3.16)

Since α > 0, clearly Bn > 0 in the classical region. We now consider the Sonin’s
function for fn, namely,

Sn := f2n +
(f ′n)

2

Bn
,
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which is defined and C1 in the punctured classical region. By arguing as in (3.10),
we deduce that the derivative of Sn has the same sign as

4AnBn −B′n = V ′ − 4α
En − V

xn − x
− 2α(α+ 1)(2α+ 1)(xn − x)−3.

To study the sign of 4AnBn − B′n, we observe that, by Lagrange’s Mean Value
Theorem,

V ′(x)− 4α
En − V (x)

xn − x
= V ′(x)− 4αV ′(ξ) = −V ′(x)(4αV ′(ξ)/V ′(x)− 1) (3.17)

for some ξ ∈ (x, xn).
Now, if V ∈ P1,uc(κ, ω), then

|log(V ′(ξ)/V ′(x))| ≤ ω(log(ξ/x))

and therefore

4αV ′(ξ)/V ′(x) = exp(log(4α) + log(V ′(ξ)/V ′(x))) ≥ exp(log(4α)− ω(log(ξ/x))).

If we take α ∈ (1/4, 1/2), then log(4α) > 0. Since limt→0 ω(t) = 0, we can find
δ = δ(α, ω) > 0 such that

ω(t) ≤ log(4α) whenever 0 < t ≤ δ.

Consequently, whenever 0 < xn/x ≤ eδ, we have 4αV ′(ξ)−V ′(x) ≥ 0, and therefore
4AnBn −B′n < 0. As a consequence, Sn is decreasing in the interval [e−δxn, xn).

If instead V ∈ P1,cv(κ), then an even simpler argument applies. Indeed, one can
go back to (3.17), and observe that V ′(ξ)/V ′(x) ≥ 1 in this case, because V ′ is
increasing; consequently we obtain that 4AnBn −B′n < 0 on the whole R+ ∩ {V <
En} whenever α ≥ 1/4. In particular, we can take α = 1/4 and δ = 1 in this case,
and again conclude that Sn is decreasing in the interval [e−δxn, xn).

The fact that Sn is decreasing on [e−δxn, xn) implies that

f2n +
(f ′n)

2

Bn
≤ fn(e

−δxn)
2 +

f ′n(e
−δxn)

2

Bn(e−δxn)
on [e−δxn, xn). (3.18)

Note now that

fn = (xn − x)αψn, f ′n = (xn − x)α
[
ψ′n − α(xn − x)−1ψn

]
.

In particular, by (3.16),

f2n +
(f ′n)

2

Bn
≃α (xn − x)2α

[
ψ2
n +

(ψ′n)
2

Bn

]
(3.19)

on [e−δxn, xn), and

fn(e
−δxn)

2 +
f ′n(e

−δxn)
2

Bn(e−δxn)
≲κ̄,α x

2α
n

[
ψn(e

−δxn)
2 +

ψ′n(e
−δxn)

2

En

]
≲κ̄,α

x2αn
|{V ≤ En}|

;

these inequalities are consequence of the fact that e−δxn is well within the classical
region (see Lemma 2.4(i)), so En − V (e−δxn) ≃κ̄,α En and the uniform estimate
(3.6) applies. From (3.18) and (3.19) we then deduce that

ψ2
n +

(ψ′n)
2

Bn
≲κ̄,α

x2αn (xn − x)−2α

|{V ≤ En}|
on [e−δxn, xn). (3.20)

We now observe that, by Proposition 2.5,

xn ≃κ |{V ≤ En}|
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and, by Lemma 2.4,

En − V (x) ≃κ
En

|{V ≤ En}|
(xn − x)

on [e−δxn, xn); hence, from (3.16) and Proposition 2.5 we deduce that

Bn ≃κ (En − V )

(
1 +

n−2/3En
En − V

)3

on [e−δxn, xn). As a consequence, the estimate (3.20) gives (3.15) on [e−δxn, xn).
On the other hand, the interval [0, e−δxn) is well within the classical region, so
on that interval the estimate (3.15) follows from the uniform estimate (3.6). In
conclusion, (3.15) is proved on [0, xn) = {V < En} ∩ [0,∞), as desired.

3.5. Zeros and local extrema of eigenfunctions and their derivatives. In
this section we prove the estimates for ψ′n of Theorem 3.5 on the whole R, as well as
the corresponding estimates for ψn within the classical region. These estimates will
be derived from those proved in the previous sections, combined with information
on the location of the extremum points of ψn and ψ′n.

Assume at first that V ∈ P1(κ). We recall a few basic facts about zeros and
local extrema of ψn and ψ′n, which are easy consequences of the fact that ψn is a
square-integrable solution of (3.8).

(a) ψn and ψ′n do not vanish simultaneously at any point.
(b) The zeros of ψn and ψ′n are contained in the classical region {V < En}; outside

of the classical region, xψn(x)ψ
′
n(x) < 0, which implies that both ψ2

n and
(ψ′n)

2 are strictly increasing on {V ≥ En} ∩ (−∞, 0) and strictly decreasing
on {V ≥ En} ∩ (0,∞).

(c) ψn has n− 1 zeros in the classical region, which are all simple, so ψn changes
sign at each zero.

(d) The zeros of ψ′′n are the zeros of ψn and the two transition points (i.e., the
points where V = En); these are the inflexion points of ψn.

(e) Between two consecutive zeros of ψ′′n, the function ψn is strictly concave or
strictly convex according to whether ψn is positive or negative.

(f) Between two consecutive zeros of ψ′′n, there is exactly one zero of ψ′n; these are
all the zeros of ψ′n, which has n zeros, and they are all simple.

(g) Similarly, between two consecutive zeros of ψ′n, there is exactly one zero of ψn.
(h) The zeros of ψ′n are the local maximum/minimum points of ψn, that is, the

local maximum points of ψ2
n.

(i) Similarly, the zeros of ψ′′n are the local maximum/minimum points of ψ′n, that
is, the local maximum points of (ψ′n)

2.

Since |ψ′n| attains its maximum in the classical region {V < En}, from (3.1) we
derive the following uniform estimate for ψ′n:

∥ψ′n∥∞ = sup
{V <En}

|ψ′n| ≲κ
E

1/2
n

|{V ≤ En}|1/2
. (3.21)

This proves the estimate for ψ′n in Theorem 3.5(i), and moreover implies a rough
uniform estimate for ψn:

∥ψn∥∞ = sup
{V <En}

|ψn| ≤ |ψn(0)|+
∫
{V <En}

|ψ′n| ≲κ
n

|{V ≤ En}|1/2
, (3.22)

where (3.5) and Proposition 2.5 were used. Notice that the estimate (3.22) is worse
than the uniform estimate for ψn in Theorem 3.5(i); to prove the latter, a more
careful analysis of the local extrema of ψn and ψ′n is needed.
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Further important information about local extrema is deduced from the mono-
tonicity identities (3.2) and (3.4). These identities give us precise information on

the sign of the derivatives of the two functions (En−V )ψ2
n+(ψ′n)

2 and ψ2
n+

(ψ′n)
2

En−V ;

by evaluation at the zeros of ψ′′n = (V − En)ψn and ψ′n, these yield the following
information.

(j) The local maxima of ψ2
n (that is, the values of ψ2

n at the zeros of ψ′n) on
[0,∞) form a strictly increasing sequence, while on (−∞, 0] they form a strictly
decreasing sequence.

(k) The local maxima of (ψ′n)
2 (that is, the values of (ψ′n)

2 at the zeros of ψ′′n)
on [0,∞) form a strictly decreasing sequence, while on (−∞, 0] they form a
strictly increasing sequence.

In particular, the global maximum of ψ2
n is attained at an outermost zero of ψ′n

(that is, a zero closest to one of the two transition points). Similarly, for n > 1,
the global maximum of (ψ′n)

2 is attained at an innermost zero of ψn (that is, the
origin if ψn(0) = 0, or the positive and negative zeros of ψn that are closest to the
origin if ψn(0) ̸= 0). For this reason, it is useful to investigate the location of the
zeros of ψn and ψ′n within the classical region.

To this purpose, as in [Sz75, §6.31], we can fruitfully use Sturm’s comparison

theorem. Namely, for any Ẽ ∈ (0, En), we have that V −En ≤ Ẽ−En on {V ≤ Ẽ}.
Hence, we can find a zero of ψn between any two zeros of a nontrivial solution of
−u′′ + (Ẽ − En)u = 0 on {V ≤ Ẽ}; in other words, we have proved the following.

(l) For all Ẽ < En, there is a zero of ψn in any interval of length π/
√
En − Ẽ

fully contained in {V ≤ Ẽ}.
In order to be able to apply this result, we need to ensure that such an interval
exists, that is, we need to choose Ẽ so that

|{V ≤ Ẽ}|
√
En − Ẽ ≥ π.

We now observe that, by Proposition 2.5,(
En
n2/3

)1/2

|{V ≤ En/2}| ≃κ n2/3.

This means that there exists n0 = n0(κ) ∈ N+ sufficiently large that

En
n2/3

≤ En
2
,

(
En
n2/3

)1/2

|{V ≤ En/2}| ≥ π for all n ≥ n0.

Consequently, if we take Ẽ := En − En

n2/3 , then

|{V ≤ Ẽ}|
√
En − Ẽ ≥

(
En
n2/3

)1/2

|{V ≤ En/2}| ≥ π for all n ≥ n0,

and the previous result can be applied.
We now observe that, if x±n , y

±
n ∈ (0,∞) are such that V (±x±n ) = En and

V (±y±n ) = Ẽ, then, by Lemma 2.4 and Proposition 2.5,

x±n − y±n ≃κ
x±n
En

(En − Ẽ) ≃κ
|{V ≤ En}|

n2/3
≃κ

n1/3

E
1/2
n

≃ π√
En − Ẽ

.

In conclusion, for all n ≥ n0 = n0(κ):

(m) There are ≳κ n2/3 zeros of ψn within the region {V ≤ En − En/n
2/3}, and

the outermost of them have distance ≃κ n−2/3|{V ≤ En}| from the transition
point with the same sign.

(n) Any two consecutive zeros of ψn within the classical region have distance ≲κ
n−2/3|{V ≤ En}|
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By using the above information, we can improve, for all V ∈ P1(κ), the uniform
estimate (3.22). Indeed, we know that the maximum of |ψn| is attained at one of
the outermost zeros of ψ′n; let us call this point wn, and let ζn be the outermost
zero of ψn with the same sign. From the above discussion, we deduce that, for all

n ≥ n0, |ζn − wn| ≲κ n−2/3|{V ≤ En}| ≃κ n1/3/E1/2
n , hence, by (3.21),

∥ψn∥∞ ≤
∣∣∣∣∫ wn

ζn

ψ′n

∣∣∣∣ ≤ |ζn − wn|∥ψ′n∥∞ ≲κ
n1/3

|{V ≤ En}|1/2
. (3.23)

The same estimate for n < n0 is already contained in (3.22), since n ≃κ n1/3 for
n < n0. Combining this estimate with (3.1) proves the validity of the estimate for
ψn of Theorem 3.5(i) within the classical region.

The above information on the location of the zeros and extrema of ψn and ψ′n
can also be used to prove the estimates for ψ′n of parts (ii) to (iv) of Theorem 3.5
on the whole real line, as well as the corresponding estimates for ψn in the classical
region. Indeed, under the assumptions on V and α in any of parts (ii) to (iv) of
Theorem 3.5, we know from (3.7) and (3.15) that the improved pointwise estimate

ψ2
n +

(
1 +

n−2/3En
En − V

)−3
(ψ′n)

2

En − V
≲κ̄,α

E2α
n (En − V )−2α

|{V ≤ En}|
(3.24)

holds in the classical region {V < En}. In particular,

(ψ′n)
2 ≲κ̄,α

E2α
n (En − V )1−2α

|{V ≤ En}|
on {V ≤ En − En/n

2/3}. (3.25)

If we now apply this estimate at the two outermost zeros ±z±n of ψn within the
region {V ≤ En − En/n

2/3}, we obtain that, for all n ≥ n0,

ψ′n(±z±n )2 ≲κ̄,α
E2α
n (En − V (±z±n ))1−2α

|{V ≤ En}|
≃κ

En
|{V ≤ En}|

n−2(1−2α)/3,

where we used that En − V (±z±n ) ≃κ n−2/3En, due to the fact that the distance
between ±z±n and the transition point of the same sign is ≃κ n−2/3|{V ≤ En}| (see
(m) and (n) above).

As previously discussed, the ±z±n are local maximum points of (ψ′n)
2, and be-

cause of the monotonicity properties of the sequence of local maxima of (ψ′n)
2 (see

(k) above), we conclude that, for all n ≥ n0,

(ψ′n)
2 ≤ max

±
ψ′n(±z±n )2 ≲κ̄,α

En
|{V ≤ En}|

n−2(1−2α)/3 on R \ (−z−n , z+n ); (3.26)

here we can go beyond the classical region, because (ψ′n)
2 is increasing on {V ≥

En}∩ (−∞, 0) and decreasing on {V ≥ En}∩ (0,∞) (see (b) above). By combining
(3.25) and (3.26) we deduce the estimates for ψ′n of Theorem 3.5(ii)-(iv) on the
whole R.

As for the bound on ψn, we can argue as in (3.23), but use the improved bound
on ψ′n from (3.26). Namely, let wn be an outermost zero of ψ′n where |ψn| attains
its maximum, and ζn be the outermost zero of ψn with the same sign. Then

ζn, wn ∈ R \ (−z−n , z+n ) and |zn − wn| ≲κ n−2/3|{V ≤ En}| ≃κ n1/3/E1/2
n , so

∥ψn∥∞ = |ψn(wn)| ≤
∣∣∣∣∫ wn

ζn

ψ′n

∣∣∣∣ ≲κ n2α/3

|{V ≤ En}|1/2
(3.27)

for all n ≥ n0. The same estimate for n < n0 is already contained in (3.22), since
n ≃κ,α n2α/3 for n < n0. Combining this estimate with (3.24) proves the validity
of the estimates for ψn of Theorem 3.5(ii)-(iv) within the classical region.
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3.6. Estimate outside the classical region. In order to complete the proof of
Theorem 3.5, it remains to prove the estimate

|ψn(x)| ≲κ̄,α
1

|{V ≤ En}|1/2
(V (x)/En − 1)−α

outside the classical region. We only discuss the case x > 0, since the case x < 0
is treated analogously. So we need to prove the above estimates for x > x+n , where
x+n is the positive transition point.

Here we use the estimate from [Tit62, §8.2],

|ψn(x)| ≤ |ψn(x+n )| exp
(
−
∫ x

x+
n

(V − En)
1/2

)
≤ ∥ψn∥∞ exp

(
−
∫ x

x+
n

(V − En)
1/2

)
,

valid for all x ≥ x+n , together with the estimates for ∥ψn∥∞ obtained previously.
Let x̃+n > 0 be such that V (x̃+n ) = 4En. Then, for x ≥ x̃+n ,∫ x

x+
n

(V − En)
1/2 ≃κ x

√
V (x) ≥ x+nE

1/2
n

√
V (x)/En ≃κ n

√
V (x)/En

(see [DM21, eq. (6.11)] and Proposition 2.5) and both factors in the last product
are greater than or equal to 1. Hence, for some c = c(κ), if we use the estimate for
∥ψn∥∞ from (3.22), then we deduce that

|ψn(x)| ≲κ
n

|{V ≤ En}|1/2
exp(−cn) exp(−c

√
V (x)/En)

≲κ,N
1

|{V ≤ En}|1/2
(V (x)/En)

−N ≃N
1

|{V ≤ En}|1/2
(V (x)/En − 1)−N ,

for any N > 0, since V (x)/En ≥ 4 for x ≥ x̃+n .
For x ∈ (x+n , x̃

+
n ), instead,∫ x

x+
n

(V − En)
1/2 ≃κ

|{V ≤ En}|
En

∫ x

x+
n

(V − En)
1/2V ′

≃κ
|{V ≤ En}|

En
(V (x)− En)

3/2

≃κ n (V (x)/En − 1)3/2,

by Proposition 2.5. So, if we use the estimate for ∥ψn∥∞ from (3.23) and (3.27),
then

|ψn(x)| ≲κ̄,α
n2α/3

|{V ≤ En}|1/2
exp

(
−cn (V (x)/En − 1)3/2

)
≲α

1

|{V ≤ En}|1/2
(V (x)/En − 1)−α,

as desired.

4. Proof of the sharpened weighted Plancherel estimate

We are finally in a position to prove the desired sharpened version of the weighted
Plancherel estimate of [DM21, Theorem 9.1]. We restate it as a separate theorem.

Theorem 4.1. Assume that V ∈ P1+θ(κ) for some θ ∈ (0, 1). Let m : R → C be a
bounded Borel function such that suppm ⊆ [1/4, 1]. Then, for all γ ∈ [0, 1/2) and
all r > 0,

ess sup
z′∈R2

r2−2γ max{V (r), V (x′)}1/2−γ
∫
R2

|y − y′|2γ
∣∣Km(r2L)(z, z

′)
∣∣2 dz

≲θ,κ,γ ∥m∥2L2
γ
,
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where z := (x, y) and z′ := (x′, y′).

Proof. We follow the set-up and notation of [DM21, Section 9], but assume addi-
tionally that suppm ⊆ [1/4, 1]. For A ∈ R+, define GA(λ, τ) := m(λ)χ(Aτ), where
χ ∈ C∞c ([1/4, 1]) is such that

∑
j∈Z χ(2

j ·) = 1 on R+, and set KGA
:= KGA(L,−∂2

y)
.

Then ∫
R2

|KGA
(z′, z)|2 dz′ ≲ A−1/2

∫ 4A−1

A−1

∥M1(τ).ψ⃗(x; τV )∥2 dτ
τ∫

R2

(y′ − y)2 |KGA
(z′, z)|2 dz′ ≲ A1/2

4∑
j=1

∫ 4A−1

A−1

∥Mj(τ).ψ⃗(x; τV )∥2 dτ
τ

(4.1)

(see [DM21, eqs. (9.11) and (9.15)]), where

M1(τ) := diag(m(E⃗(τV ))),

M2(τ) := diagm′(E⃗(τV ))⊙ diag F⃗ (τV ),

M3(τ) := N⊙A(τV )⊙ incm(E⃗(τV )),

M4(τ) := F⊙A(τV )⊙ incm(E⃗(τV )).

Here E⃗(τV ) := (En(τV ))n, F⃗ (τV ) := (τ∂τEn(τV ))n, ψ⃗(·; τV ) := (ψn(·; τV ))n; the
matricesA(τV ), P(τV ),N, F, are given byAnm(τV ) := ⟨τ∂τψn(·; τV ), ψm(·; τV )⟩,
Pnm(τV ) := ⟨τV ψn(·; τV ), ψm(·; τV )⟩, Nnm := 1n/2≤m≤2n, Fnm := 1n>2m +

1m>2n; moreover ⊙ is the Schur product between matrices, ∥ ·∥ is the ℓ2-norm, and

diag f⃗ := (fnδnm)n,m, inc f⃗ := (fn − fm)n,m.

In the proof of [DM21, Theorem 9.1], the integrals in dτ
τ in (4.1) are bounded

by the corresponding suprema, which eventually results in estimates involving L∞-
Sobolev norms of m. In order to obtain sharper estimates with L2-Sobolev norms,
here instead we crucially take advantage of the integration in τ .

Let us first consider the term involving the diagonal matrix M1(τ):∫ 4A−1

A−1

∥M1(τ).ψ⃗(x; τV )∥2 dτ
τ

=

∫ 4A−1

A−1

∑
n

|m(En(τV ))|2ψn(x; τV )2
dτ

τ

=

∫ ∞
0

|m(λ)|2
∑

n : 1/Ξn(λ)∈[A/4,A]

ψn(x; Ξn(λ)V )2
λΞ′n(λ)

Ξn(λ)

dλ

λ

≲κ

∫ ∞
0

|m(λ)|2
∑

n :λ/Ξn(λ)∈[A/16,A]

ψn(x; Ξn(λ)V )2
dλ

λ

by Proposition 2.1. In light of Theorem 3.5(ii) and Remark 3.2, we can apply

Theorem 2.2 with P̃ = P1+θ(κ) to bound the above sum, and deduce that∫ 4A−1

A−1

∥M1(τ).ψ⃗(x; τV )∥2 dτ
τ

≲θ,κ ∥m∥22 (1V≤4A + e−c|x|1V >4A). (4.2)

As observed in [DM21, Section 9.3], M2(τ) is also a diagonal matrix, with diag-
onal entry m′(En(τV ))τ∂τEn(τV ), and

|m′(En(τV ))τ∂τEn(τV )| ≤ |m̃(En(τ))|,
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where m̃(λ) := λm′(λ) (see Proposition 2.1). So the same argument as above, with
m̃ in place of m, yields∫ 4A−1

A−1

∥M2(τ).ψ⃗(x; τV )∥2 dτ
τ

≲θ,κ ∥m′∥22 (1V≤4A + e−c|x|1V >4A). (4.3)

We now deal with the “near-diagonal” term M3(τ). As discussed in [DM21,
Section 9.5], the absolute value of the (n,m) entry of M3(τ) is

1n/2≤m≤2n |Anm(τV )| |m(En(τV ))−m(Em(τV ))|.

Note that, since suppm ⊆ [1/4, 1] and En(τV ) ≃κ Em(τV ) for n/2 ≤ m ≤ 2n,
there is S = S(κ) ≥ 1 such that the above entry vanishes unless Em(τV ) ∈ [S−1, S].
Now,

|m(En(τV ))−m(Em(τV ))| =

∣∣∣∣∣
∫ En(τV )

Em(τV )

m′(λ) dλ

∣∣∣∣∣
≤ |En(τV )− Em(τV )|M(m′)(Em(τV )),

where M denotes the uncentred Hardy–Littlewood maximal function on R. Con-
sequently, if we set m̂ := 1[S−1,S]Mm′, then

1n/2≤m≤2n |Anm(τV )| |m(En(τV ))−m(Em(τV ))|
≤ 1n/2≤m≤2n |Pnm(τV )| m̂(Em(τV ))

≲κ,θ
1

1 + |m− n|1+ϵ
m̂(Em(τV )),

where ϵ = ϵ(κ, θ), and we applied [DM21, Proposition 8.1 and Theorem 8.4]. Since
the matrix ((1 + |m− n|1+ϵ)−1)n,m≥1 is ℓ2-bounded, we conclude that

∥M3(τ).ψ⃗(x; τV )∥ ≲κ,θ ∥diag(m̂(E⃗(τV ))).ψ⃗(x; τV )∥.

So, the same argument that proves (4.2), applied with m̂ in place of m, yields, for
some T1 = T1(κ),∫ A−1

4A−1

∥M3(τ).ψ⃗(x; τV )∥2 dτ
τ

≲θ,κ ∥m̂∥22 (1V≤T1A + e−c|x|1V >T1A)

≲ ∥m′∥22 (1V≤T1A + e−c|x|1V >T1A),

(4.4)

where the last bound follows from the L2-boundedness of M.
Finally, from [DM21, eq. (9.19)], we already know that∫ 4A−1

A−1

∥M4(τ).ψ⃗(x; τV )∥dτ
τ

≲κ ∥m∥2∞(1V≤T2A + e−c|x|1V >T2A)

≲ (∥m∥2 + ∥m′∥2)2(1V≤T2A + e−c|x|1V >T2A)

(4.5)

for some T2 = T2(κ) ≥ 4, where the last estimate follows from Sobolev’s embedding.
In conclusion, from (4.1), (4.2), (4.3), (4.4) and (4.5), we deduce that∫

R2

|KGA
(z′, z)|2 dz′ ≲κ A−1/2∥m∥22 (1V≤T3A + e−c|x|1V >T3A),∫

R2

(y′ − y)2 |KGA
(z′, z)|2 dz′ ≲κ,θ A1/2(∥m∥2 + ∥m′∥2)2 (1V≤T3A + e−c|x|1V >T3A),

where T3 := max{T1, T2}. These two estimates are analogous to the ones stated at
the beginning of [DM21, Section 9.6], with L2-norms of m and m′ instead of L∞-
norms. As in [DM21, Section 9.6], by interpolating these two estimates and then
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summing them for A = 2j , j ∈ Z, one eventually deduces that, for all γ ∈ [0, 1/2),(∫
R2

|y − y′|2γ |Km(L)(z
′, z)|2 dz′

)1/2

≲θ,κ,γ ∥m∥Lγ
2
max{V (1), V (x)}γ/2−1/4,

which is the case r = 1 of the estimate in Theorem 4.1. The estimate for arbitrary
r > 0 follows by rescaling, that is, by replacing V (x) with Vr(x) := r2V (rx), as
explained at the end of [DM21, Section 9.6]. □
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